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Abstract. A general framework for the least squares approximation of symmetric-definite pencils
subject to generalized eigenvalues constraints is developed in this paper. This approach can be
adapted to different applications, including the inverse eigenvalue problem. The idea is based on
the observation that a natural parameterization for the set of symmetric-definite pencils with the
same generalized eigenvalues is readily available. In terms of these parameters, descent flows on
the isospectral surface aimed at reducing the distance to matrices of the desired structure can be
derived. These flows can be designed to carry certain other interesting properties and may be
integrated numerically.
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1. Introduction. Let A and B be two square matrices of size n. A matrix pencil
of A and B is a family of matrices A− λB, parameterized by λ ∈ C. Elements in the
set σ(A,B) defined by

σ(A,B) := {z ∈ C|det(A− zB) = 0}(1)

are called the generalized eigenvalues of the pencil. It is easy to see that there are
n generalized eigenvalues if and only if rank(B) = n. If B is rank deficient, then
σ(A,B) may be finite, empty, or infinite. Generalized eigenvalues are preserved under
equivalence transformations, i.e., σ(A,B) = σ(Y HAX,Y HBX), provided X and Y
are nonsingular matrices and Y H denotes the conjugate transpose of Y .

In this paper we shall limit our discussion to R
n×n, the Euclidean space of all

n× n real-valued matrices equipped with the Frobenius inner product

〈X,Y 〉 :=
∑
i,j

xijyij .(2)

For convenience, we also introduce the notation G(n) and s(n) representing, respec-
tively, the general linear group of all nonsingular matrices and the linear subspace of all
symmetric matrices in R

n×n. It is frequently the case in practice, and will be assumed
henceforth, that A is symmetric and B is symmetric and positive definite. Pencils
of this variety are referred to as symmetric-definite pencils [7]. For convenience, the
corresponding pair of matrices are referred to as a symmetric-definite pair.

Obviously A − λB is symmetric definite if and only if PTAP − λPTBP is sym-
metric definite for all P ∈ G(n). This congruence transformation naturally delineates
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a “parameterization” for the set

M(A,B) := {(PTAP,PTBP ) ∈ R
n×n × R

n×n|P ∈ G(n)}.(3)

We shall show that M(A,B), consisting of all symmetric-definite pairs with the same
generalized eigenvalues σ(A,B), is made up of smooth submanifolds in R

n×n×R
n×n.

This paper concerns the construction of a symmetric-definite pencil satisfying si-
multaneously conditions on its structure and spectrum. We cast the problem as a
task of finding the shortest distance between the set of structured matrices and the
isospectral set M(A,B), where σ(A,B) is the prescribed spectrum. The approxima-
tion is measured by the Frobenius norm over the product space s(n) × s(n), so a
solution is best in the sense of least squares.

More specifically, let Vi, i = 1, 2, denote either a single matrix or an affine subspace
in s(n) whose elements, qualified by satisfying certain specified conditions on their
structure, are being approximated. Define P : s(n)× s(n) −→ V1 × V2 by

P(X,Y ) := (P1(X),P2(Y )),(4)

where P1 and P2 denote, respectively, the projections from s(n) onto V1 and V2 with
respect to the inner product (2). In case Vi is a singleton, define Pi(X) ≡ Vi. The
approximation is considered through the optimization problem

min
(X,Y )∈M(A,B)

1

2
‖(X,Y )− P(X,Y )‖2,(5)

i.e., the part of (X,Y ) that does not carry the desirable structure is being minimized.
We emphasize here that the desirable structure in V1 can be defined independently of
that in V2.

One important point should be clarified before we move on to the discussion of
solving (5). We mention that there are two constraints, the spectrum and the struc-
ture, imposed upon an ideal problem. In practice, it may occur that one of the two
constraints should be more critical than the other due to, for example, the physical re-
alizability. On the other hand, there are also situations where one constraint could be
more relaxed than the other due to, for example, the physical uncertainty. Structural
constraint usually is imposed due to the physical realizability. Spectral constraint
often carries some physical uncertainty. In reality, it is often difficult to maintain
both the spectral constraint and the structural constraint concurrently. When these
constraints cannot be satisfied simultaneously, a least squares solution becomes the
next best thing we can hope for. Depending upon which constraint is to be enforced
explicitly, we would have different ways of defining a least squares approximation. The
situation in (5) is such that while the pair of matrices (X,Y ) vary among the isospec-
tral surface M(A,B) and hence keep the spectrum σ(A,B), the discrepancy between
(X,Y ) and the desirable structure is minimized. Another situation, which is not ad-
dressed in this paper, is to seek a symmetric-definite pair of matrices (X,Y ) in the
space V1×V2 (and hence the structure is maintained) so that the discrepancy between
the two sets σ(X,Y ) and σ(A,B) is minimized. At first glance, these two situations
appear to be quite different. In particular, a parameterization for symmetric-definite
pairs of matrices with structure specified by V1 and V2 is difficult, if not impossible,
to obtain. However, it is remarkable that in certain special circumstances these two
seemingly unrelated problems can be shown to be equivalent. One such case is the
inverse ordinary eigenvalue problem that has already been discussed in [2]. In this
paper, we shall focus on (5) only.
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The choices of Vi in the setup make the problem (5) quite versatile in application.
We mention three immediate applications below. We shall come back in a later part
of this paper to explain more specifically how these problems can be solved by our
technique.

Problem 1. Given a symmetric-definite pair of matrices (Ã, B̃) and real numbers
λ1, . . . , λn, find the least squares approximation (X,Y ) to (Ã, B̃) such that (X,Y ) is
still symmetric definite but σ(X,Y ) = {λ1, . . . , λn}.

A question that resembles Problem 1 but in the context of ordinary eigenvalue
problems, i.e., when Y ≡ B̃ = I, can be answered by the Wielandt–Hoffman theorem
[4, 10]. For generalized eigenvalue problems, however, the perturbation theory is much
more complicated. See, for example, [17, Chapter VI, section 3]. Our approach, by
taking A = diag{λ1, . . . , λn} and B = I in the definition of the isospectral surface
M(A,B), and V1 ≡ Ã and V2 ≡ B̃ in the definition of the projection P, offers an
interesting and easy way to solve Problem 1.

Problem 2. Given a symmetric-definite pencil A − λB, find all its generalized
eigenvalues.

Among the well-known numerical methods for the symmetric (ordinary) eigen-
value problem, one idea of Jacobi is to systematically reduce the norm of off-diagonal
elements. A similar idea can be applied to Problem 2 if we take V1 and V2 to be the
subspace of all diagonal matrices. In this way, the minimization in (5) amounts to
reducing the off-diagonal elements of both X and Y simultaneously by congruence
transformation. We shall see that a simple analysis on the stationary points of (5)
re-establishes the well-known fact that any symmetric-definite pair can be simultane-
ously diagonalized.

Problem 3. Given a symmetric-definite pair (Ã, B̃) and values λ1, . . . , λn, find a
diagonal matrix D so that σ(Ã+D, B̃) = {λ1, . . . , λn}.

Generalized eigenvalue problems arise, for example, when a Sturm–Liouville prob-
lem is discretized by high-order implicit finite difference schemes [14]. An inverse
problem, such as Problem 3, is then to reconstruct a certain physical parameter from
the natural frequencies. Research on inverse (ordinary) eigenvalue problems has been
extensive and fruitful. See, for example, [8] and the references contained therein.
Obviously, if B̃ = L̃L̃T is the Cholesky decomposition of B̃, then Problem 3 can be
reformulated as finding D such that σ(L̃−1(Ã + D)L̃−T , I) = {λ1, . . . , λn}, which
becomes an inverse ordinary eigenvalue problem. On the other hand, we may choose,
among several options to be discussed in what follows, V1 to be the affine subspace
of Ã plus all diagonal matrices, V2 ≡ B̃, A = diag{λ1, . . . , λn}, and B = I. Our
approach avoids the inversion of any matrix and guarantees a least squares solution
even if an exact solution does not exist.

The multiplicative inverse eigenvalue problem is another important class of prob-
lem in applications. The question centers around finding a diagonal matrix D−1 so
that the “preconditioned” matrix D−1M possesses a specialized spectrum. A mul-
tiplicative inverse eigenvalue problem can be formulated as an inverse generalized
eigenvalue problem M − λD in a setting similar to Problem 3 except the first entry
M is held constant instead.

Solving (5) by standard techniques for constrained optimization problems is not
easy because of the matrix structure involved. The main point of this paper is to
cultivate descent flows on M(A,B) for solving (5) in general. Our approach offers a
new channel for tackling generalized spectrally constrained problems. The scheme of
following flows in the open set G(n) has a similar spirit of an interior-point method
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[9, 19], an area that has attracted enormous attention in recent years. However, our
methods differ from the traditional interior-point methods in several aspects: neither
our objective function nor our feasible set is convex [1, 13, 18], and for most of our
flows the dynamics is directed by the objective value rather than the penalty function
[20]. We shall comment on this connection again at the end of Example 1 in section
5.

This paper is organized as follows: In section 2 we begin to study the geometry
of the isospectral set M(A,B). We shall show by the algebraic curve theory that
M(A,B) is a union of smooth manifolds. We even can count its dimension in the
generic case. In section 3 we outline a framework from which specific differential
equations can be designed based on needs or circumstances. The differential equations
produce descent flows for (5). Our approach is flexible, yet it offers some theoretical
insights as well as ready-made numerical algorithms. In an earlier paper [4], projected
gradient flows were derived for least squares approximations with ordinary spectral
constraints. Our development here is similar, except that no projection of the gradient
is needed this time because G(n) itself is an open set in R

n×n. On the other hand, it
will become clear in our study that in order for a flow to maintain a certain additional
property, such as being defined on M(A,B) without reference to its parameterization,
the descent direction somehow has to be a modification of the gradient. This point
will become manifest in section 3. We highlight some specific applications in section
4. Finally, in section 5 we report some numerical experiments.

2. Isospectral surface. When we refer to flows we mean integral curves of a
differential system. To define flows on the set M(A,B), we have to be certain first of
all that M(A,B) is made of smooth entities. Toward this, we establish two results in
this section concerning the topology of M(A,B).

Theorem 2.1. Given any symmetric-definite pair of matrices (A,B), the set
M(A,B) consists of all symmetric-definite pairs with generalized eigenvalues σ(A,B).

Proof. It is clear that if (X,Y ) ∈M(A,B), then X−λY is symmetric definite and
σ(X,Y ) = σ(A,B). It is known that any symmetric-definite pencil can be simultane-
ously diagonalized by congruence transformations. Therefore, if a symmetric-definite
pencil X−λY has the same generalized spectrum σ(A,B), then X−λY is congruent
to diag(σ(A,B))− λI and hence to A− λB. This proves the assertion.

The definition (3) may be thought of as an algebraic way to parameterize the set
M(A,B). Note that the parameters come from G(n) which is an open set in R

n×n.
The parameterization implies, therefore, that M(A,B) can be a geometric entity of
dimension at most n2. More precisely, we have the following theorem.

Theorem 2.2. For any given symmetric-definite pair (A,B), M(A,B) is a dis-
joint union of smooth manifolds, each of which has only a finite number of components
and has dimension at most n2 in R

n×n × R
n×n.

Proof. Consider the vector c(X,Y ) := [c1(X,Y ), . . . , cn(X,Y )]T whose compo-
nents are defined by the coefficients in the polynomial

det(X − zY ) = (−1)n det(Y )zn +
n−1∑
i=0

cn−i(X,Y )zi.

Clearly each ck(X,Y ) is a polynomial in the entries of X and Y . Suppose σ(A,B) =
{λ1, . . . , λn}. Consider the algebraic variety

V(λ1, . . . , λn) := {(X,Y ) ∈ s(n)× s(n)|c(X,Y ) = (−1)n det(Y )γ},(6)
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where γ := [γ1, . . . , γn]T with γk := (−1)k
∑

i1<···<ik λi1 . . . λik . It follows from Whit-
ney’s stratification theorem [12, Theorems 2.3 and 2.4] that V(λ1, . . . , λn) can be
expressed as a finite disjoint union of smooth manifolds, each of which has only a
finite number of components. Observe that

M(A,B) = V(λ1, . . . , λn) ∩ (s(n)× C(n)) ,

where C(n) is the cone of symmetric and positive definite matrices in R
n×n. Since

C(n) obviously is a submanifold in s(n), the assertion follows.
The gauge n2 of the dimension is not necessarily an overestimate. We can main-

tain a little bit more precision on the dimensions of submanifolds involved in Theo-
rem 2.2. A somewhat related discussion can be found in [6]. Let

ρ := max
(X,Y )∈V(λ1,...,λn)

rank

[
∂c

∂(X,Y )

]
.

Define

N (λ1, . . . , λn) :=

{
(X,Y ) ∈ V(λ1, . . . , λn)|rank

[
∂c

∂(X,Y )

]
< ρ

}
.(7)

Whitney’s theorem affirms that V(λ1, . . . , λn) − N (λ1, . . . , λn) is a smooth mani-
fold of dimension n(n + 1) − ρ. Furthermore, because the rank deficient condi-
tion in (7) imposes extra polynomial equations on (X,Y ), the set N (λ1, . . . , λn)
itself, if not empty, is a union of manifolds with lower dimensions. It follows that
V(λ1, . . . , λn) − N (λ1, . . . , λn) is the largest manifold component of V(λ1, . . . , λn)
in the sense that N (λ1, . . . , λn) is nowhere dense and has measure zero relative to
V(λ1, . . . , λn). Observe that n(n+ 1) unknowns and n equations are involved in (6),
so it must be that ρ < n. It follows that the dimension of V(λ1, . . . , λn)−N (λ1, . . . , λn)
is at least n2. Together with Theorem 2.2, we conclude that if

M(A,B) ∩N (λ1, . . . , λn) = ∅,(8)

then M(A,B) is a smooth manifold of dimension exactly n2. Sard’s theorem [11]
guarantees that for almost all choices of (A,B), the condition (8) holds. In particular,
it can be shown that (8) holds if (A,B) has distinct generalized eigenvalues. The above
result on the parameterization and dimensionality for isospectral symmetric-definite
pairs of matrices seems to be known the first time. Though the result may not appear
too surprising, the way it is obtained by utilizing Whitney’s theorem is of interest in
its own right.

Before we move on to describe flows onM(A,B) we stress that for our application
it is not essential whether the set M(A,B) itself is a one-piece manifold. The differ-
entiable flows that will be defined later automatically stay on smooth components of
M(A,B).

We conclude this section by one example showing that the inverse eigenvalue
problems for matrix pencils could be quite intricate. We show that in special circum-
stances M(A,B) may be a proper subset of N (λ1, . . . , λn). Consider the case when
n = 2, A = 0, and B = I. Then M(A,B) = {(0, PTP )|P ∈ G(n)}. Though G(2)
has dimension 4, M(A,B) obviously has dimension 3. It is interesting to note that
for a pair X = (xij) and Y = (yij) to be in V(0, 0), a necessary condition is that the
entries satisfy the equations

x21 = x12,
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y21 = y12,

x11 = |x12| sgn(x12)y12 ±
√
y2
12 − y11y22

y11
,

x22 =
−y11x11 + 2x12y12

y22
,

provided y11y22 6= 0. There are four free parameters in defining V(0, 0). However, if
Y is required to be positive definite, then X = 0 is the only possible solution.

3. Descent flows. The parameterization (3) provides grounds for maneuver on
M(A,B) to reduce the objective value in (5). In this section, we discuss how to take
advantage of this parameterization to formulate descent flows.

We start with working within the parameter space G(n). For convenience, we
introduce the abbreviation{

α1(P ):=PTAP − P1(P
TAP ),

α2(P ):=PTBP − P2(P
TBP )

(9)

when the symmetric-definite pair (A,B) is fixed. The objective function in (5) is
equivalent to the function F : G(n) −→ R, where

F (P ) :=
1

2
(〈α1(P ), α1(P )〉+ 〈α2(P ), α2(P )〉) .(10)

The following result is critical in our development.
Theorem 3.1. The gradient ∇F of F is given by

∇F (P ) = 2 {APα1(P ) +BPα2(P )} .(11)

Proof. Observe that the Fréchet derivative of F at P acting on H ∈ R
n×n can be

calculated as follows:

F ′(P )H = 〈α1(P ), HTAP − P ′1(PTAP )HTAP + PTAH − P ′1(PTAP )PTAH〉
+〈α2(P ), HTBP − P ′2(PTBP )HTBP + PTBH − P ′2(PTBP )PTBH〉

= 2
{〈α1(P ), PTAH − P ′1(PTAP )PTAH〉
+ 〈α2(P ), PTBH − P ′2(PTBP )PTBH〉}

= 2
{〈α1(P ), PTAH〉+ 〈α2(P ), PTBH〉}

= 2〈APα1(P ) +BPα2(P ), H〉.(12)

In the above, the second equality is due to the symmetry of the matrices involved.
The third equality follows from the fact that the action of P ′i (at PTAP and PTBP ,
respectively) on any point (PTAH and PTBH, specifically) resides in the tangent
space of Vi whereas the range of αi is perpendicular to the tangent space of Vi.
The last equality is obtained by utilizing the adjoint property of the Frobenius inner
product. It follows from (12) that the gradient ∇F of F may be interpreted as
asserted.

Obviously, the differential equation

Ṗ (t) := −∇F (P (t)),(13)
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where Ṗ means the derivative of P with respect to a certain artificial parameter t,
defines the steepest descent flow P (t) on G(n) for F . It should be cautioned, however,
that the open set G(n) has a boundary made up of all n × n singular matrices. The
differential equation (13) alone cannot guarantee that the flow P (t) will stay away from
the boundary of singular matrices. The first example in section 5 clearly illustrates
this occurrence.

Through the parameterization relationship{
X(t)=P (t)TAP (t),
Y (t) =P (t)TBP (t),

(14)

each flow in the parameter space G(n) has a corresponding flow on M(A,B). Related
to the flow P (t) defined by (13), for example, is the flow X(t) defined by

Ẋ = −2
{
α1(P )PTA2P + α2(P )PTBAP

+PTA2Pα1(P ) + PTABPα2(P )
}

(15)

= −2
{
β1(X)X(PTP )−1X + β2(Y )Y (PTP )−1X

+X(PTP )−1Xβ1(X) +X(PTP )−1Y β2(Y )
}
,(16)

where we have denoted {
β1(X):=α1(P ),
β2(Y ) :=α2(P )

(17)

to emphasize the dependence of the system on the variables X and Y . A similar flow
Y (t) can also be defined.

Neither (15) nor (16) is useful in that the differential system depends explicitly
on the parameterization variable P . That dependence means that to integrate (15)
or (16) one must also integrate (13). This is a waste since the parameter flow P (t)
needs to be integrated in any case. It perhaps would be more economical to obtain
X(t) and Y (t) directly from (14).

Note also that the system (13) defines the steepest descent flow. There are sit-
uations when one prefers to relinquish the steepest descent property in exchange for
maintaining other attributes. In the following we introduce several other descent flows
for this purpose.

We first illustrate a situation where the description of X(t) and Y (t) can be
implicit in the parameter P .

Corollary 3.2. The flow defined by

Ṗ := −1

2
PPT∇F (P )(18)

is a descent flow.
Proof. Observe that

〈∇F (P ),−PPT∇F (P )〉 = −〈PT∇F (P ), PT∇F (P )〉 ≤ 0

and that the equality holds only when ∇F (P ) = 0. Thus, the differential system (18),
though not the steepest one, continues to define a descent flow for F .

Upon substitution, the corresponding flow (X(t), Y (t)) on M(A,B) is defined by
the differential system {

Ẋ=− ((XW )T +XW
)
,

Ẏ = − ((YW )T + YW
)(19)
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with

W := Xβ1(X) + Y β2(Y ).(20)

Note that the differential system (19) is autonomous in X and Y and makes no
reference to the variable P . The computation of P (t) as well the troublesome matrix
inversion such as (PTP )−1 in (16) are thus avoided.

It is worth noting that the critical points of the differential system (18) are exactly
the same as the stationary points of the optimization problem (5), provided that
critical point is nonsingular. The optimization problem (5), therefore, can be solved
by integrating (19) from a suitable starting point, say (X(0), Y (0)) = (A,B), until a
limit point is located.

The simplest case of (19) when n = 1 is rather illuminating. Corresponding to
a given pair of numbers (A,B) with B > 0, the set M(A,B) = {(X,Y ) ∈ R

2|X =
AP 2, Y = BP 2, P 6= 0} is a half-array that emanates from but does not include
the origin in the direction (A,B). In particular, M(A,B) is an unbounded open set.
Suppose we want to solve Problem 1 mentioned in section 1. The corresponding
differential system of (19) becomes

{
Ẋ=−2X(X(X − Ã) + Y (Y − B̃)),

Ẏ =−2Y (X(X − Ã) + Y (Y − B̃)).
(21)

All critical points of (21) are included in the set

{(X,Y )|X(X − Ã) + Y (Y − B̃) = 0},

which is the dotted circle represented in Figure 1. But relative to M(A,B), where
the flow starting from X(0) = A and Y (0) = B resides, only the two critical points

(0, 0) and

(
C(CÃ+ B̃)

I + C2
,
CÃ+ B̃

I + C2

)
(22)

with C := AB−1 are most pertinent. Consider the case when the target point (Ã, B̃)
is located in the lower half-plane of the line that passes through the origin and is
perpendicular to the array M(A,B) (see the shaded region in Figure 1.) Obviously
the shortest distance from (Ã, B̃) to M(A,B) is attained only at the origin, but that
point does not belong to M(A,B). Thus, Problem 1 should have no true solution in
this case. Nonetheless, the flow defined by (21) stays on the half-array and indeed
moves toward the origin. In this way, we end up with a pseudosolution in the sense
that the solution is still a least squares approximation, but that point is not from
within M(A,B). On the other hand, the second critical point (22) in this case is
away from the set M(A,B) by a positive distance and hence can never be realized.
We shall refer back to (21) in section 4 for further discussion of a higher-dimension
case.

We next mention two more descent flows that possess some additional interesting
properties.

Corollary 3.3. The differential equation

Ṗ := −1

2
P
{
PT∇F (P )−∇F (P )TP

}
(23)
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M(A,B)
All critical points

(A,B)
~ ~

Two special critical points

X

Y

Fig. 1. Geometry of a pseudosolution.

defines a descent flow. Furthermore,

P (t)P (t)T ≡ constant.

Proof. From the fact that

〈∇F (P ), P
{
PT∇F (P )−∇F (P )TP

}〉 = 〈PT∇F (P ), PT∇F (P )−∇F (P )TP 〉
and the equality that

〈M,M −MT 〉 =
∑
j 6=i

(mij −mji)
2 ≥ 0

for any square matrix M = (mij), it follows that the flow P (t) enjoys the descent
property. Furthermore, because the quantity in the braces of (23) is skew symmetric,
it is easy to see that PṖT + ṖPT = 0. Thus, P (t)P (t)T ≡ P (0)P (0)T for all t.

The corresponding flow on M(A,B) are integral curves of the double-bracket
system: {

Ẋ = [X, [X,P1(X)] + [Y,P2(Y )]] ,

Ẏ = [Y, [X,P1(X)] + [Y,P2(Y )]] ,
(24)

where [X,Y ] := XY − Y X denotes the Lie bracket. Note that the system (24) is
autonomous. Note also that if P (0) = I from the beginning, then P (t) remains
orthogonal for all t. Our notion here generalizes that of orthogonal similarity trans-
formation discussed in [5].
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Corollary 3.4. The differential equation

Ṗ := −1

2

{∇F (P )PT − P∇F (P )T
}
P(25)

is a descent flow. Furthermore,

P (t)TP (t) ≡ constant.

Proof. The proof is similar to Corollary 3.3.
Although it looks similar to (23), this new system (25) by no means is a trivial

alternation (say, by taking the transpose) of (23). In particular, it can be checked by
substitution that the corresponding differential equation for X(t) and Y (t) depends
explicitly on the variable P in (25), a predicament that does not occur in (24). The
system (25) is especially useful for attacking problems where the corresponding flow
Y (t) is expected to be constant. Problem 3 is one such instance. We shall be more
specific on its application in the next section.

We conclude this section with one remark on the asymptotic behavior of the flows.
Theorem 3.5. For all the flows P (t) defined above, the corresponding (X(t), Y (t))

converges. Generically, the limit point is a stationary point, possibly on the boundary
of M(A,B), of (5). The nongeneric exception is when the product PT∇F (P ) in (23)
or ∇F (P )PT in (25) is symmetric at the limit point.

Proof. Along any solution (X(t), Y (t)) the function

G(t) := F (P (t)) =
1

2
{〈β1(X(t)), β1(X(t))〉+ 〈β2(Y (t)), β2(Y (t))〉}(26)

satisfies

Ġ(t) = 〈∇F (P (t)), Ṗ (t)〉 ≤ 0.

Furthermore, Ġ = 0 only when ∇F (P ) = 0 or Ṗ = 0. The latter case generically
implies also ∇F (P ) = 0. Thus, G(t) is monotonically decreasing until a stationary
point of (5) is found.

4. Applications. Our differential system approach not only can be used as a
convenient algorithm for finding a least squares solution but also offers some theo-
retical insights into the problem. In this section we explain more specifically how
our approach can be applied to solve the three problems described in section 1. We
discuss the applications case by case. Further numerical experiments will be reported
in section 5.

Application 1. We point out earlier that there is no easy generalization of the
Wielandt–Hoffman theorem for Problem 1. To demonstrate the complexity of Prob-
lem 1 in general, we consider a very special case when both target matrices Ã and
B̃ are diagonal. Our point of this overly simplified problem is to illustrate how com-
plicated the stationary points for Problem 1 could be. Suppose that the differential
equation (19) (which is based on the descent flow (18)) is used to solve the problem
from the initial values X(0) = A = diag{λ1, . . . , λn} and Y (0) = B = I. Recall that
the critical points of the differential system are exactly the same as the stationary
points of the problem. By construction we know the solution flow (X(t), Y (t)) of
(19) remains diagonal. The differential system, being uncoupled into n pairs (xii, yii),
i = 1, . . . n, can be represented exactly by (21) if all symbols there are interpreted
as (diagonal) matrices. Observe that the pairs (xii(t), yii(t)) are independent of each
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other and may converge to limit points of different types (see (22)). In particular,
some of the pairs, as pointed out earlier, may converge to an infeasible limit point
(0, 0). This simple uncoupled system highlights the potential difficulty for general
Ã and B̃ where these events are intertwined together and hence make Problem 1
more complicated. Regardless of this complexity, our differential equation offers an
easy-to-use numerical method for solving this type of problem.

Application 2. Using the setup described in Problem 2, i.e., V1 and V2 are the
subspaces of all diagonal matrices, the first-order optimality condition ∇F (P ) = 0 at
any stationary point P is equivalent to the equality

X(X − diag(X)) + Y (Y − diag(Y )) = 0,(27)

where X and Y are related to P by (14). It is easy to check that the diagonal elements
involved in (27) are given by∑

k 6=i
x2
ik +

∑
k 6=i

y2
ik = 0, i = 1, . . . , n.(28)

That is, (X,Y ) is a limit point of the descent flow (19) if and only if both X and Y
are diagonal matrices. Our differential equation (19) not only re-establishes the fact
that any symmetric-definite pencil can be simultaneously diagonalized but also offers
a numerical way to accomplish this.

Application 3. We give a few more details below for Problem 3 since it is of
particular interest and importance. The geometry of Problem 3 is sketched in Fig-
ure 2 where we use the three-dimensional coordinate axes to represent the triplet
(off-diag(X),diag(X), Y ) for any matrix pair (X,Y ) ∈ R

n×n × R
n×n. The desirable

state, represented by the bold horizontal line in Figure 2, means that Y = B̃ and
off-diag(X) = off-diag(Ã). The minimization in (5) is equivalent to minimizing the
distance between the two points P and Q in Figure 2 while P stays in M(A,B) (not
drawn) and Q stays in the desirable state.

The desirable state can be characterized by selecting V1 to be the affine subspace
of Ã plus all diagonal matrices and V2 ≡ B̃. To maintain the eigenvalue information,
an obvious choice would be letting A = diag{λ1, . . . , λn} and B = I. The projections
corresponding to this setup imply that β1(X) = off-diag(X − Ã) and β2(Y ) = Y − B̃.
While any of the differential equations we proposed, say (19), is ready for integration,
there is a setback in using some of these equations. The resulting solution flow may
stop at a local minimizer that does not meet the criteria of the desirable state, i.e., the
resulting Y (t) is likely to vary in t whereas the second matrix involved in Problem 3
is expected to be constantly B̃.

To remedy the above fault, we may consider using the differential system (25)
with initial values

P (0) = ULT ,(29)

where B̃ = LLT is the Cholesky decomposition of B̃ and U is an arbitrary orthogonal
matrix. Corollary 3.4 guarantees that Y (t) ≡ B̃ and hence β2(Y (t)) ≡ 0 for all t. The
differential equation (25) becomes

Ṗ =
[
Pα1(P )PT ,diag{λ1, . . . , λn}

]
P,(30)

where α1(P ) = off-diag(PTdiag{λ1, . . . , λn}P − Ã). The Lie bracket operation in
(30) is simple because the second operant is a diagonal matrix. The resulting P (t)
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off-diag(X-A)
~

B
~

(X,0)

(A,0)
~

diag(X-A)
~

Desirable State

Q

P =(X,Y)

(0,0)

Fig. 2. Geometry of Problem 3.

implicitly defines a flow (X(t), Y (t)) on the shaded region represented in Figure 2.
The flow starts from (X(0), Y (0)) = (Ldiag{λ1, . . . , λn}LT , B̃) and approximates the
set of the desirable state. Once the limit point P (∞) of (30) is found, the diagonal
matrix

D := diag(X(∞)− Ã),

where X(∞) = P (∞)Tdiag{λ1, . . . , λn}P (∞), is an optimal solution for Problem 3
in the sense of least squares.

5. Numerical experiment. In this section we report some of our numerical
experiments with the proposed methods. At present we are more concerned with the
dynamics of the flows than the efficiency of the programs. Thus, we only consider
using general-purpose initial value problem software as the integrator. We have ex-
perimented with both the FORTRAN code ODE [15] and the MATLAB code ODE
SUITE [16]. The results are similar. We shall only report experiments from ODE
SUITE since it is easier to manipulate matrix operations and to present the results
graphically by MATLAB.

There are two types of solvers, ode113 and ode15s, in the MATLAB ODE
SUITE. The code ode113 is a PECE implementation of Adams–Bashforth–Moulton
methods for nonstiff systems. The code ode15s is a quasi-constant step size imple-
mentation of the Klopfenstein–Shampine family of the numerical differential formulas
for stiff systems. The statistics about the cost of integration can be obtained di-
rectly from the odeset option built in the integrator. More details of these codes
can be found in the document [16]. Again we have experimented with both solvers.
We discover that when the prescribed eigenvalues do not vary wildly, these two codes
perform comparably. But when the ratio of the eigenvalue with the largest magnitude
to the smallest gets larger, the ode15s becomes faster in terms of CPU time. We
think a largely varying spectrum, perhaps, has resulted in a stiff initial value problem.
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In our experiments the tolerance for both absolute error and relative error is set
at 10−12. This criterion is used to control the accuracy in following the solution
path. The high accuracy we required here has little to do with the dynamics of
the underlying vector field, and perhaps is not needed in practical application. We
examine the output values at time intervals of 1 and 10, and assume that the path has
reached an equilibrium point whenever the difference of the Lyapunov’s functions (26)
at two consecutive output points is less than 10−10. So as to fit the data comfortably
in the running text, we report only the case n = 5 and display all numbers with five
digits.

Example 1. In our first experiment we report one pathological example where the
flow P (t) of parameters converges to the boundary of singular matrices, and hence
the corresponding least squares problem is solved in an unusual yet interesting way.

Suppose we want to solve the generalized eigenvalue problem, Problem 2, for the
pair of matrices

A =




1.0904 0.1575 0.2394 2.5284 −0.4716
0.1575 0.2913 −1.0421 1.8527 0.4591
0.2394 −1.0421 −2.2831 −0.0859 −2.2171
2.5284 1.8527 −0.0859 −2.5200 −1.1272

−0.4716 0.4591 −2.2171 −1.1272 1.1959


 ,

B =




6.8747 −1.6174 −1.3123 4.2938 0.5968
−1.6174 6.8615 1.2753 −2.2454 −5.3684
−1.3123 1.2753 2.8018 1.2469 0.6560

4.2938 −2.2454 1.2469 5.1703 1.9403
0.5968 −5.3684 0.6560 1.9403 10.6641




by using the steepest descent flow (13) with initial value

P (0) =



−0.62735 −0.04006 0.42746 0.63529 0.13607
−0.41918 −0.12833 0.34523 −0.51495 −0.65074
−0.23520 0.77311 −0.42324 0.18008 −0.36799
−0.22678 0.49212 0.28205 −0.51204 0.60387
−0.56918 −0.37689 −0.66288 −0.19137 0.24073


 .

When our code terminates, suggesting that a convergence has been reached, we dis-
cover that

P (∞) =



−0.0243 −0.1109 0.2316 −0.0000 0.1459
−0.1314 0.0106 0.1922 −0.0000 −0.3265

0.0860 0.2712 0.0432 0.0000 −0.2058
−0.0279 0.2026 0.3343 −0.0000 0.2038
−0.0979 0.0565 −0.2861 −0.0000 0.0261


 .

The fourth column of P (∞) is in fact as small as[−0.20072×10−13, −0.13475×10−12, 0.94951×10−13, −0.32969×10−13, −0.97683×10−13
]T
,

indicating that P (∞) is nearly singular. Note that this result of near singularity does
not contradict condition (28), where we argue that (X,Y ) is a stationary point of (5)
if and only if both X and Y are diagonal matrices. Indeed, we obtain that

X = P (∞)TAP (∞) = diag{0.0800,−0.4773, 0.7925, 0.0000,−0.4043},
Y = P (∞)TBP (∞) = diag{0.0635, 0.6128, 2.4657, 0.0000, 2.1823}.
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Fig. 3. History of F (P (t)) in Example 1 when P (t) becomes singular.

We can see also from Figure 3 that this limit point P (∞) is reducing the objective
function (10) to zero. This limit point would be a global minimizer were it not be-
coming singular. The significant difference here is that since P (∞) is singular, the
corresponding limit point (X,Y ) is no longer congruently equivalent to (A,B). In par-
ticular, Y is now only positive semidefinite and hence the information of generalized
eigenvalues is lost.

Results like this might be disappointing but are still of some theoretic value.
It illustrates how congruence transformation in reducing the off-diagonal elements of
matrices can go wrong. Our method may be far from practical per se among the many
other ways to solve the generalized eigenvalue problem. But readers are reminded that
the above illustration of solving Problem 2 by (13) is just one application of our general
approach.

It is worthy to remark on three possible remedies along our notion above:

1. The QZ flow [3] is another differential equation approach that is analogous
to the steepest descent flow described in this paper. The QZ flow, using or-
thogonal equivalence transformations instead, does not suffer from the fault
of becoming singularity. The symmetric definiteness, however, is not main-
tained.

2. Even with the descent flow approach, the singularity could be avoided by
changing the initial value P (0) and hence taking another path (and there are,
indeed, infinitely many such initial guesses.) One could also use flows defined
by (23) or (25) to carry out the computation, but we hasten to point out that
because either P (t)P (t)T or P (t)TP (t) is constant for all t in these cases, not
all symmetric-definite pairs (A,B) can be simultaneously diagonalized in this
way.
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3. Finally, it is possible to avoid the singularity by imposing penalties for sin-
gularity in the objective function (10) like those in [1, 9, 19, 20] to avoid the
semidefiniteness. This approach will eventually lead to the so-called interior-
point methods that have been studied and developed extensively.

Example 2. In general, an inverse eigenvalue problem like Problem 3 can hardly
have an exact solution at all. So an approximate solution in the sense of least squares
is sometimes desirable. In this case the globally convergent flow defined by (30)
becomes particularly meaningful. The flow approach guarantees convergence to a
local solution.

To illustrate how the dynamical system (30) behaves, we first generate test data
by considering a randomly generated symmetric-definite pair (Â, B̃):

Â =



−2.8645 1.8576 −2.1532 0.6710 0.5092

1.8576 −0.1855 0.5149 2.1096 −1.3318
−2.1532 0.5149 1.3880 −0.4591 0.3603

0.6710 2.1096 −0.4591 −4.3183 −1.2334
0.5092 −1.3318 0.3603 −1.2334 −1.8954


 ,

B̃ =




6.0810 −2.6691 0.6390 −0.5509 −1.0124
−2.6691 5.5185 1.1005 0.8248 0.8014

0.6390 1.1005 2.4625 1.9543 −0.4839
−0.5509 0.8248 1.9543 4.2586 −0.0535
−1.0124 0.8014 −0.4839 −0.0535 0.8230


 .

We use its generalized eigenvalues

σ(Â, B̃) = {3.9955, 0.3093,−0.6662,−1.2920,−3.2878}

as the target spectrum in our experiment. We use Ã = Â−diag(Â) and B̃ as the test
data for Problem 3. Apparently, diag(Â) is one global solution.

Using differential system (30) with initial value

P (0) =




2.4660 −1.0824 0.2591 −0.2234 −0.4106
0 2.0849 0.6624 0.2796 0.1713
0 0 1.3988 1.3061 −0.3510
0 0 0 1.5571 0.1704
0 0 0 0 0.6877




which comes from the Cholesky decomposition of B̃ (see (29)), we calculate the flow
P (t). At convergence we convert P (∞) into X(∞) and obtain

X(∞) ≈




7.1728 1.8576 −2.1532 0.6710 0.5092
1.8576 −0.0080 0.5149 2.1096 −1.3318

−2.1532 0.5149 −0.9992 −0.4591 0.3602
0.6710 2.1096 −0.4591 −3.9520 −1.2334
0.5092 −1.3318 0.3603 −1.2334 −2.0060


 .

We note that the off-diagonal elements of X(∞) agree with those of Ã up to the
integration error. Therefore, the local solution diag(X(∞)) we have found is also a
global solution. It is interesting to note that diag(X(∞)) 6= diag(Â), indicating that
Problem 3 may have multiple solutions. The history of convergence is in Figure 4.
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Fig. 4. History of F (P (t)) in Example 2 reaching a global solution.

Theoretically, it should be that P (t)TP (t) = B̃ for all t. Numerical calculation
introduces errors. For this reason, we closely watch for the values of

ω(P (t)) := ‖P (t)TP (t)− B̃‖.(31)

The second graph in Figure 4 indicates that the discrepancy between theoretical
expectation and numerical computation is within our tolerance.

Example 3. We want to stress that the optimization problem (5) is nonlinear
and nonconvex. Generally, we cannot expect from any method the luck of hitting
the global minimizer of any nonlinear or nonconvex optimization problem by one
random starting point. One nice feature of our approach, however, is that we are
guaranteed to find a local minimizer regardless of where we start and we have plenty
of choices of starting points. While it would be nicer to be able to foretell which
point/region would serve better as a starting value than the other, the success of such
an exploration is perhaps too much to expect due to the nonlinear and nonconvex
nature of the problem. On the other hand, since we literally can start from anywhere
(e.g., any orthogonal matrix in (29)), we find it is possible, though not the best way,
to fish for a “better” starting point by trial and error. We obtain the following results
from such a procedure. We have performed many other tests (for the case where a
global solution is known to exist) and are always able to find the appropriate starting
points after several trials. We have written our code with the convenience of repeated
experiments in mind and will make it available upon request.

We report below a case that we think is more challenging than most of the other
cases we have tested. Suppose we repeat the experiment in Example 2 with the test
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data

Ã =




1.4637 −0.3440 0.6314 0.3603 1.2990
−0.3440 −4.1759 −0.0370 0.8424 −2.5164

0.6314 −0.0370 −0.5261 3.1094 −0.2112
0.3603 0.8424 3.1094 2.6428 −0.9722
1.2990 −2.5164 −0.2112 −0.9722 −2.0921


 ,

B̃ =




2.1437 1.7880 −0.1595 0.7567 −0.0391
1.7880 7.3264 −2.8274 −0.0856 −0.0528

−0.1595 −2.8274 3.8262 −1.8245 −1.7653
0.7567 −0.0856 −1.8245 5.0857 0.4600

−0.0391 −0.0528 −1.7653 0.4600 1.5725


 ,

and the target eigenvalues σ(Ã, B̃) = {2.4562, 1.3627,−0.2342,−0.4489,−250.9816}.
This time the ratio of the eigenvalues of the largest magnitude to the smallest is
relatively large and we expect difficulty.

Suppose we start with the upper triangular matrix in the Cholesky decomposition
of B̃, i.e., suppose we choose U = I in (29). At convergence we obtain

X(∞) ≈




2.9383 −0.3450 0.6401 0.3600 1.2989
−0.3450 −13.6834 −0.0605 0.8413 −2.5144

0.6401 −0.0605 −0.2814 2.9862 −0.2303
0.3600 0.8413 2.9862 0.3243 −0.9734
1.2989 −2.5144 −0.2303 −0.9734 0.1012


 .

Note that the off-diagonal elements of X(∞) are close, but not within the expected
integration error, to those of Ã. From Figure 5 we are convinced that we have reached
only a local solution, although that solution is quite close to a global solution. We
have checked that σ(X(∞), B̃) agrees with σ(Ã, B̃) up to the integration error.

This example illustrate another difficulty associated with Problem 3. We know
that in Problem 3 only the diagonal elements of Ã are allowed to vary. The off-
diagonal elements of Ã are not supposed to change, but we find that is not the case
in our X(∞). Suppose we project X(∞) down to the affine subspace of Ã plus
all diagonal matrices to maintain the off-diagonal elements. The eigenvalues of the
corresponding projected pair are given by

σ(off-diag(Ã) + diag(X(∞)), B̃) = {2.4535, 1.4392,−0.2210,−0.4673,−245.6114}.
These values again are close but not within the integration error to the desired target
eigenvalues. In other words, this example demonstrates a case where the spectral
constraint and the structural constraint cannot be satisfied simultaneously by a local
solution.

Suppose we change the starting value to

P (0) =



−0.4186 0.4414 −0.7581 1.3847 −0.1868

0.3510 0.1044 0.8450 −0.8140 −0.5692
−0.6032 −2.4090 0.3297 0.3488 0.4427
−1.1340 −0.7609 0.9793 −1.2783 −0.6188

0.4421 −0.8593 1.2123 0.8660 −0.7967




which is obtained by multiplying a specific orthogonal matrix (acquired by random
trials) to the upper triangular matrix in the Cholesky decomposition of B̃ (see (29)).
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Fig. 5. History of F (P (t)) in Example 3 reaching a local solution.

It turns out that we are able to find a global solution

X(∞) =




1.4238 −0.3440 0.6315 0.3603 1.2990
−0.3440 −4.1785 −0.0370 0.8424 −2.5164

0.6315 −0.0370 −0.8734 3.1093 −0.2113
0.3603 0.8424 3.1093 3.0295 −0.9722
1.2990 −2.5164 −0.2113 −0.9722 −1.8037




that satisfies both the spectral and the structural constraints. The history of inte-
gration is plotted in Figure 6. The much longer length of integration required for
convergence is perhaps due to the stiffness.

6. Conclusion. We have proposed a general framework for the least squares
approximation of symmetric-definite pencils subject to generalized eigenvalue con-
straints. We have illustrated how this approach can be adapted to different appli-
cations, including the inverse generalized eigenvalue problems. Although Problem 2
has already enjoyed efficient and reliable numerical algorithms, there are few methods
available for Problem 1 and Problem 3. Our approach unifies these different problems
under the same framework. The versatility of our method by specifying V1 and V2

seem quite interesting.

We have experimented with several descent flows proposed in this paper by using
available ordinary differential equation solvers. Our methods guarantee the global
convergence to a local solution. By changing integral paths, a global solution some-
times can be reached. It remains to be studied whether a special-purpose integra-
tor/implementation can be developed to make our approach more efficient.
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Fig. 6. History of F (P (t)) in Example 3 reaching a global solution.
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Abstract. The problem of the regularization of singular systems by derivative and proportional
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1. Introduction. Consider a linear and time-invariant system

Eẋ(t) = Ax(t) +Bu(t),(1)

y(t) = Cx(t),

where E,A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n,m ≤ n, p ≤ n. When E = I, (1) is

simply a normal system. Well-known results for normal systems have been obtained
over the years and may be found in much literature on control theory. Now our
attention will be focused on the case when E is singular.

Existence and uniqueness of solutions to system (1) are guaranteed if (E,A) is
regular, that is,

det(αE − βA) 6≡ 0,

where the scalars α and β cannot be simultaneously zero. It is well known that for a
regular pencil (E,A) there exist nonsingular matrices M and N such that

MEN =

[
I 0
0 J

]
, MAN =

[
L 0
0 I

]
,(2)

where the eigenvalues of L coincide with the finite eigenvalues of the pencil and J is
a nilpotent Jordan matrix such that J i = 0, Ji−1 6= 0, i > 0, corresponding to the
infinite eigenvalues. The index of the system, denoted by ind(E,A), is defined to be
equal to the degree i of nilpotency.

For systems that are regular and of index at most 1, they can be separated
into purely dynamical and algebraic parts, and in theory the algebraic part can be
eliminated to give a reduced-order normal system. The reduction process, however,
may be numerically unstable [10].
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When ind(E,A) > 1, impulses can arise in the response of the system if the control
is not sufficiently smooth. Besides, the system can lose causality [15]. Therefore, an
appropriate feedback control should be chosen to ensure that the closed-loop system
is regular and of index less than or equal to 1.

The eigenstructure of the matrix pencil

αE − βA for some α, β ∈ R

determines the response of the system. On applying combined derivative and propor-
tional output feedback

u = Fy −Gẏ + v

to (1), the closed-loop system pencil becomes

α(E +BGC)− β(A+BFC).

The main objective of this study is to derive conditions which guarantee the existence
of a matrix pair (F,G) such that (E + BGC,A + BFC) is regular and of index at
most 1.

For state feedback regularization of singular systems (i.e., C = I), numerous
studies [5, 6, 7, 11, 12, 13, 16] have been carried out. However, as [1, 2, 8] pointed
out, methods described in these papers are based on the Kronecker canonical de-
composition of the matrix pencil (E,A), and the system is separated into fast and
slow subsystems in order to obtain the feedback controls. This transformation is well
known to be computationally unreliable [14].

Recently, [1, 2, 3] have investigated the regularization of system (1) by state
feedback (i.e., C = I) and provided numerically stable methods for constructing the
feedback gain based on orthogonal matrix decompositions. Because of the differences
in nature between state feedback and output feedback, results obtained from [1, 2, 3]
cannot directly apply to the case of derivative and proportional output feedback.

In a recent paper [4], a condition has been given for output feedback regularization
if the rank of E + BGC is larger than or equal to the rank of E. However, the
regularization problem for the complete set of possible ranks of E + BGC has not
been characterized so far. This problem will be solved in this paper.

Stabilization of singular systems by derivative and proportional output feedback
can be achieved by combining the results on regularization given in this paper and
pole assignment technique [9] which, at the same time, preserves regularity. Details
are illustrated with an example in section 4.

Next, some notations and definitions are introduced. Within this paper, we denote

re = rank(E), ra = rank(A), rb = rank(B), rc = rank(C),

reb = rank [E B] , rec = rank

[
E
C

]
, rebc = rank

[
E B
C 0

]
,

Sebc = {r | r is an integer satisfying reb + rec − rebc ≤ r ≤ min(reb, rec)} .
It can be seen that Sebc is the set of integer r satisfying

reb + rec − rebc ≤ r ≤ min(reb, rec),
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and it consists exactly of min(reb, rec)− (reb + rec − rebc) + 1 integers.
The full column rank matrices SE , SEB , SEC have their columns span

N (E), N ([E B]) , N
([

E
C

])
,

respectively, where N (Q) is the null space of Q.
The full row rank matrices TE , TEB , TEC have their columns span

N (ET ), N
(
[E B]

T
)
, N

([
E
C

]T)
,

respectively.
Concepts of controllability and observability may be extended from state variable

systems to singular systems. Few important definitions have been mentioned in [2, 3],
but these fundamentals are crucial for the discussions in later sections and are included
here for completeness.

Definition 1.1. Let (E,A) be regular. System (1) is completely controllable
(C-controllable) if and only if
C0: rank [αE − βA B] = n, ∀ (α, β) ∈ R

2\{(0, 0)}.
Definition 1.2. Let (E,A) be regular ; then system (1) is strongly controllable

(S-controllable) if and only if
C1: rank [λE −A B] = n, ∀ λ ∈ R;
C2: rank [E ASE B] = n.

Observability conditions can be defined in a similar way as the controllability
conditions C0, C1, and C2.

Definition 1.3. Let (E, A) be regular. System (1) is completely observable
(C-observable) if and only if

O0: rank

[
αE − βA

C

]
= n, ∀ (α, β) ∈ R

2\{(0, 0)}.
Definition 1.4. Let (E,A) be regular ; then system (1) is strongly observable

(S-observable) if and only if

O1: rank

[
λE −A

C

]
= n, ∀ λ ∈ R;

O2: rank


 E
THE A
C


 = n.

This paper is arranged as follows. Section 2 gives some useful preliminaries.
Section 3 describes the main results. In particular, three necessary and sufficient
conditions for derivative and proportional output feedback regularization problem of
singular systems are presented. Results related to the concepts of controllability and
observability in singular systems are also discussed. A numerical example is given in
section 4. Section 5 makes some concluding remarks.

2. Preliminaries. In this section, some useful results are given.
An easy criterion for regularity may be given by the following theorem, as men-

tioned similarly in [3].
Lemma 2.1. Let E,A ∈ R

n×n; then the pencil (E,A) is regular and ind(E,A) ≤ 1
if and only if

rank [E ASE ] = n.
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Remark. The above lemma serves as a handy tool for determining the regularity
of a given matrix pencil.

The following result is a simple extension of Lemma 5 in [3].
Lemma 2.2. Let E ∈ R

n×q and B ∈ R
n×m. There exist orthogonal matrices Q,

U , and V such that

UEV =


 Σ1 0 0
E21 E22 0
0 0 0


 , UBQ =


 0 0

ΣB 0
0 0


 ,

where E22 ∈ R
rb×(re+rb−reb) has full column rank and Σ1 ∈ R

(reb−rb)×(reb−rb), ΣB ∈
R
rb×rb are diagonal positive definite matrices. The partitioning in UEV and UBQ is

compatible.
Proof of the above lemma is similar to the one given in [3], which readers can

consult. Presented next is a new theorem based on Lemma 2.2.
Theorem 2.3. Let E ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n. There exist orthogonal
matrices U, V,Q, and W such that

UEV =




Σ1 0 0 0
E21 Σ2 E23 0
E31 0 E33 0
E41 0 0 0
0 0 0 0


 , UBQ =




0 0
B1 0
B2 0
B3 0
0 0


 ,(3)

WCV =

[
C11 0 ΣC 0
C21 0 0 0

]
,

where Σ1,Σ2,ΣC are (reb− rb)× (reb− rb), (rb + rec− rebc)× (rb + rec− rebc), (rebc−
reb)×(rebc−reb) diagonal positive definite matrices, respectively, E33 is an (re+rebc−
reb − rec)× (rebc − reb) full row rank matrix,

[
BT

1 BT
2 BT

3

]
is an rb × rb nonsingular

matrix, and
[
CT

11 C
T
21

]T
is a p× (reb − rb) matrix. The partitioning in UBQ, WCV ,

and UEV is compatible. Moreover,
 B1

B2

B3


 = U∗ΣB ,

where U∗ and ΣB are orthogonal and diagonal positive definite matrices, respectively.
Proof. From Lemma 2.2, we know that there exist orthogonal matrices Ũ , Ṽ , and

Q such that

ŨEṼ =


 Σ1 0 0

Ẽ21 Ẽ22 0
0 0 0


 , ŨBQ =


 0 0

ΣB 0
0 0


 ,(4)

where Ẽ22 ∈ R
rb×(re+rb−reb) has full column rank. Partition

Ṽ =
[
Ṽ1 Ṽ2

]
,
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where Ṽ1 ∈ R
n×(reb−rb). Let

Ê =
[
Ẽ22 0

]
and B̂ = CṼ2,

where Ê ∈ R
rb×(n−reb+rb) and B̂ ∈ R

p×(n−reb+rb). Applying Lemma 2.2 to Ê and B̂
once more, we obtain orthogonal matrices U∗, V ∗, and W such that

U∗ÊV ∗ =


 Σ2 E23 0

0 E33 0
0 0 0


 , WB̂V ∗ =

[
0 ΣC 0
0 0 0

]
.(5)

If we let

y1 = rank

[
Ê

B̂

]
− rankB̂, zc = rankB̂, y2 = rankÊ − y1,

then Σ2 ∈ R
y1×y1 and ΣC ∈ R

zc×zc are diagonal positive definite matrices, and
E33 ∈ R

y2×zc has full row rank. Hence we have the orthogonal matrices

U =


 I 0 0

0 U∗ 0
0 0 I


 Ũ , V = Ṽ

[
I 0
0 V ∗

]
,

and Q,W which give the desired transformation (3). Since

rebc = rank

[
E B
C 0

]
= rank




Σ1 0 0 0

Ẽ21 Ê ΣB 0
0 0 0 0

CṼ1 0 B̂ 0


 ,

then

zc = rebc − reb, y1 = rec − rank Σ1 − zc = rb + rec − rebc,

y2 = rank Ê − y1 = re + rebc − reb − rec.

This completes the proof.
The next theorem characterizes the complete set of possible ranks of E +BGC.
Theorem 2.4. Let E ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n, for any integer r
satisfying

reb + rec − rebc ≤ r ≤ min(reb, rec);

there exists G0 ∈ R
m×p such that

rank (E +BG0C) = r.

Or, equivalently, {
rank(E +BGC)|G ∈ R

m×p} = Sebc.
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Proof. From Theorem 2.3, there exist orthogonal matrices U, V, Q, and W such
that E,B, and C are transformed like (3). For any G ∈ R

m×p, let

G̃ = QTGWT =

[
G̃1 G̃2

G̃3 G̃4

]
;

a direct calculation yields

rank (E +BGC) = rank Σ1 + rank Σ2 + rank

[
E33 +B2G̃1ΣC

B3G̃1ΣC

]

= reb + rec − rebc + rank

[
E33 +B2G̃1ΣC

B3G̃1ΣC

]
.(6)

Moreover, we have [
E33 +B2G̃1ΣC

B3G̃1ΣC

]
= Â+

[
B2

B3

]
G̃1ΣC ,(7)

where

Â =

[
E33

0

]
.

We can choose

G̃1 = Σ−1
B (U∗)T

([
0
X

]
−
[

0

Â

])
Σ−1
C ,(8)

where X ∈ R
(rebc−rec)×(rebc−reb) is any matrix satisfying

0 ≤ i = rank X ≤ min(rebc − rec, rebc − reb).

Substituting (8) into (7), we obtain

rank

[
E33 +B2G̃1ΣC

B3G̃1ΣC

]
= rank

(
Â+

[
B2

B3

]
Σ−1
B (U∗)T

([
0
X

]
−
[

0

Â

])
Σ−1
C ΣC

)
= rank X = i.

Therefore

0 ≤ rank

[
E33 +B2G̃1ΣC

B3G̃1ΣC

]
≤ min(rebc − rec, rebc − reb).(9)

Adding reb + rec − rebc to the whole inequality (9), we have the required bound

reb + rec − rebc ≤ r ≤ min(reb, rec),

where r is the rank of E +BGC.
Remark. Note that the full derivative output feedback matrix is

G = QG̃W = Q

[
G̃1 G̃2

G̃3 G̃4

]
W,
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where G̃1 is given by (8) and G̃2, G̃3, and G̃4 are arbitrarily chosen.
Let

V̂ = V




I 0 0 0
0 I 0 0

−Σ−1
C C11 0 I 0
0 0 0 I


 , Ẽj1 = Ej1 − Ej3Σ

−1
C C11, j = 2, 3.(10)

Then

UEV̂ =




Σ1 0 0 0

Ẽ21 Σ2 E23 0

Ẽ31 0 E33 0
E41 0 0 0
0 0 0 0


 , WCV̂ =

[
0 0 ΣC 0
C21 0 0 0

]
.(11)

Also let

UAV̂ =



A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

A51 A52 A53 A54


 ,(12)

where V̂ is given in (10). Partitioning of UEV̂ and UAV̂ is compatible.
Theorem 2.5. If

rank [E ASEC B] = rank

[
E ASEC
C 0

]
= n,

then

A54 and




Σ1 A14

Ẽ31 A34

E41 A44

0 A54

C21 0




have full row rank and full column rank, respectively.
Proof. If UEV̂ and UAV̂ are defined by (11) and (12), respectively, then

rank [E ASEC B] = n =⇒ rank




Σ1 0 0 0 A14 0 0

Ẽ21 Σ2 E23 0 A24 B1 0

Ẽ31 0 E33 0 A34 B2 0
E41 0 0 0 A44 B3 0
0 0 0 0 A54 0 0


 = n.

Since
[
BT

1 BT
2 BT

3

]T
and Σ1 are nonsingular, we have

rank Σ1 + rank


 B1

B2

B3


+ rank A54 = n =⇒ rank A54 = n− reb.
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Note that A54 ∈ R
(n−reb)×(n−rec); thus A54 has full row rank.

We also have

rank

[
E ASEC
C 0

]
= n =⇒ rank




Σ1 0 0 0 A14

Ẽ21 Σ2 E23 0 A24

Ẽ31 0 E33 0 A34

E41 0 0 0 A44

0 0 0 0 A54

0 0 ΣC 0 0
C21 0 0 0 0




= n.

Hence

rank




Σ1 A14

Ẽ31 A34

E41 A44

0 A54

C21 0


 = n− rank Σ2 − rank ΣC = n− rb − rec + reb.

Thus, the theorem has been proved.

3. Derivative and proportional output feedback. Without loss of general-
ity, we assume that rec ≤ reb in most of the results presented in this section; however,
for cases rec > reb, similar argument is applied to the dual system

(
ET , AT , CT , BT

)
.

The regularization of a singular system by using derivative and proportional
output feedback is studied in this section. Three necessary and sufficient condi-
tions are provided. The first one relates to derivative output feedback, the second
one to combined derivative and proportional output feedback with complete set of
rank(E +BGC), and the last one to proportional output feedback.

Theorem 3.1. Given E,A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, and rec ≤ reb,

then there exists matrix G ∈ R
m×p such that the pencil (E + BGC,A) is regular,

ind(E +BGC,A) ≤ 1, and rank (E +BGC) = rec if and only if

rank [E ASEC B] = rank

[
E ASEC
C 0

]
= n.(13)

Proof. Necessity. Let

G = Q

[
G̃1 G̃2

G̃3 G̃4

]
W

be such that pencil (E +BGC,A) is regular, ind(E +BGC,A) ≤ 1, and

rank (E +BGC) = rec.(14)

Substituting (14) into (6), we obtain

rank

[
E33 +B2G̃1Σc

B3G̃1Σc

]
= rebc − reb.

By observing the structure of U(E +BGC)V̂ , it can be deduced that

SE+BGC = V̂

[
0

In−rec

]
= V

[
0

In−rec

]
= SEC ;
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hence,

ASE+BGC = ASEC = UT



A14

A24

A34

A44

A54


 .(15)

Since (E + BGC,A) is regular and ind(E + BGC,A) ≤ 1, then by Lemma 2.1, we
have

rank [E +BGC ASE+BGC ] = n

or, equivalently,

rank [E +BGC ASEC ] = n.

Since

[E +BGC ASEC ] = [E ASEC ] +BG [C 0] ,

therefore, using Theorem 2.4, we obtain

min

(
rank [E ASEC B] , rank

[
E ASEC
C 0

])
≥ n;

however, if

rank [E ASEC B] ≤ n and rank

[
E ASEC
C 0

]
≤ n,

then

rank [E ASEC B] = n and rank

[
E ASEC
C 0

]
= n.

Hence the necessary conditions for the existence of G have been proved.
Sufficiency. Since (13) holds, Theorem 2.4 gives that there exists matrix G ∈

R
m×p such that

rank [E +BGC ASEC ] = rank ([E ASEC ] +BG [C 0]) = n.

By reversing the proof procedure of the necessity part and using Theorem 2.4, we
obtain

rank(E +BGC) = rec

and

rank [E +BGC ASE+BGC ] = rank [E +BGC ASEC ] = n.

Equivalently, we can say that the pencil (E + BGC,A) is regular and ind(E +
BGC,A) ≤ 1 by Lemma 2.1.
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Theorem 3.1 gives a necessary and sufficient condition for regularizing (1) by
derivative output feedback. This condition is also suitable for the combined derivative
and proportional feedback case with a complete set of possible ranks of E +BGC.

Denote

So =
{
G ∈ R

m×p|(E +BGC,A+BFC) is regular

and ind(E +BGC,A+BFC) ≤ 1 for some F ∈ R
m×p} .

Theorem 3.2. Let E,A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, and rec ≤ reb; then

{rank(E +BGC)|G ∈ So} = Sebc(16)

if and only if (13) is true.
Proof. Necessity. Since rec ∈ Sebc, there exists G ∈ So such that (E +BGC,A+

BFC) is regular, ind(E +BGC,A+BFC) ≤ 1, and rank(E +BGC) = rec for some
F ∈ Rm×p. From the proof of Theorem 3.1, we have

SE+BGC = SEC = V

[
0

In−rec

]
= V̂

[
0

In−rec

]
;

then we obtain

(A+BFC)SE+BGC = (A+BFC)SEC = ASEC = ASE+BGC , ∀F ∈ R
m×p.

Hence

rank(E +BGC,ASE+BGC) = rank [E +BGC, (A+BFC)SE+BGC ] .

From Lemma 2.1, it can be concluded that (E + BGC,A) is regular and of index at
most 1 and rank(E +BGC) = rec. Together with Theorem 3.1, (13) results.

Sufficiency. Assume r ∈ Sebc is an arbitrary integer. Now that we have

rank [E ASEC B] = n, rank

[
E ASEC
C 0

]
= n;

then by Theorem 2.5, it can be deduced that

A54 and




Σ1 A14

Ẽ31 A34

E41 A44

0 A54

C21 0


(17)

have full row rank and full column rank, respectively. Let
 E23

E33

0


 =


 E1

23 E2
23

E1
33 E2

33

0 0


 , G̃1 =

[
G̃11 G̃12

]
, ΣC =

[
Σ1
C 0
0 Σ2

C

]
,

where E2
23 and Σ2

C are (rb + rec − rebc)× (rec − r) and (rec − r)× (rec − r) matrices,

respectively. Since
[
BT

1 BT
2 BT

3

]T
and ΣC are nonsingular, we can choose

G̃12 = −Σ−1
B (U∗)T


 E2

23

E2
33

0


 (Σ2

C)−1;(18)
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then 
 E2

23

E2
33

0


+


 B1

B2

B3


 G̃12Σ

2
C = 0.

Define 

A13

A23

A33

A43

A53


 =



A1

13 A2
13

A1
23 A2

23

A1
33 A2

33

A1
43 A2

43

A1
53 A2

53


 , S̃E+BGC = V̂

[
0

In−r

]
,

F̃ = QTFWT =

[
F̃1 F̃2

F̃3 F̃4

]
, F̃1 =

[
F̃11 F̃12

]
;

then we have

E +BGC = UT




Σ1 0 0 0 0

Ẽ21 +B1G̃2C21 Σ2 E1
23 +B1G̃11Σ

1
C 0 0

Ẽ31 +B2G̃2C21 0 E1
33 +B2G̃11Σ

1
C 0 0

E41 +B3G̃2C21 0 B3G̃11Σ
1
C 0 0

0 0 0 0 0


 V̂ −1(19)

and

A+BFC = UT




A11 A12 A1
13 A2

13 A14

A21 +B1F̃2C21 A22 A1
23 +B1F̃11Σ

1
C A2

23 +B1F̃12Σ
2
C A24

A31 +B1F̃2C21 A32 A1
33 +B2F̃11Σ

1
C A2

33 +B2F̃12Σ
2
C A34

A41 +B3F̃2C21 A42 A1
43 +B3F̃11Σ

1
C A2

43 +B3F̃12Σ
2
C A44

A51 A52 A1
53 A2

53 A54


 V̂ −1.

Therefore,

rank
[
E +BGC (A+BFC)S̃E+BGC

]
= rank Y + rank Σ2,

where

Y =




Σ1 0 A2
13 A14

Ẽ31 +B2G̃2C21 E1
33 +B2G̃11Σ

1
C A2

33 +B2F̃12Σ
2
C A34

E41 +B3G̃2C21 B3G̃11Σ
1
C A2

43 +B3F̃12Σ
2
C A44

0 0 A2
53 A54




=




Σ1 0 A2
13 A14

Ẽ31 E1
33 A2

33 A34

E41 0 A2
43 A44

0 0 A2
53 A54


+




0
B2

B3

0



[
G̃11 F̃12 G̃2

] 0 Σ1
C 0 0

0 0 Σ2
C 0

C21 0 0 0




is an (n+ rebc − rb − rec)× (n+ rebc − rb − rec) matrix. From (17), we have

rank




Σ1 0 A2
13 A14 0

Ẽ31 E1
33 A2

33 A34 B2

E41 0 A2
43 A44 B3

0 0 A2
53 A54 0


 = n+ rebc − rb − rec
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and

rank




Σ1 0 A2
13 A14

Ẽ31 E1
33 A2

33 A34

E41 0 A2
43 A44

0 0 A2
53 A54

0 Σ1
c 0 0

0 0 Σ2
c 0

C21 0 0 0




= rank ΣC+rank




Σ1 A14

Ẽ31 A34

E41 A44

0 A54

C21 0


 = n+rebc−rb−rec.

From Theorem 2.4, we know that there exists a real matrix
[
G̃11 F̃12 G̃2

]
such that

rank Y = n+ rebc − rb − rec;

furthermore,

rank
[
E +BGC (A+BFC)S̃E+BGC

]
= rank Σ2 + rank Y = n.

Now we have shown the existence of G satisfying

rank(E +BGC) = r,

where reb + rec − rebc ≤ r ≤ rec. The above equality and (19) imply SE+BGC =
S̃E+BGC ; then

rank [E +BGC (A+BFC)SE+BGC ] = n.

Hence from Lemma 2.1,

(E +BGC, A+BFC) is regular and ind(E +BGC,A+BFC) ≤ 1.

Hence the theorem has been proved.
Related to proportional output feedback without the assumption of rec ≤ reb, we

have Theorem 3.3.

Theorem 3.3. Let E,A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, m ≤ n, p ≤ n; then

there exists F ∈ R
m×p such that (E, A+BFC) is regular and ind(E, A+BFC) ≤ 1

if and only if

rank [E ASE B] = rank

[
E ASE
0 CSE

]
= n.(20)

Proof. From Lemma 2.1, the pencil (E, A + BFC) is regular and ind(E, A +
BFC) ≤ 1 if and only if

rank[E (A+BFC)SE ] = rank ([E ASE ] +BF [0 CSE]) = n.

From Theorem 2.4, the existence of F in the above equation is equivalent to

min

(
rank[E ASE B], rank

[
E ASE
0 CSE

])
≥ n(21)

and

rank[E ASE B] + rank

[
E ASE
0 CSE

]
− rank

[
E ASE B
0 CSE 0

]
≤ n.(22)
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And in fact

rank[E ASE B] ≤ n, rank

[
E ASE
0 CSE

]
≤ n.

Inequalities (21) and (22) lead to (20) and the theorem has been proved.
Remark. In [4], sufficient conditions (i.e., C1, O1, C2, O2 in their paper) are

given to ensure that there exist feedback matrices F and G such that the closed-loop
system is strongly controllable and strongly observable, with an index at most 1 and

t1 ≤ rank (E +BGC) ≤ t1 + t2 for some positive integers t1, t2.

In this paper, we have obtained three necessary and sufficient conditions (see The-
orems 3.1, 3.2, and 3.3) for the regularization of singular system (1) by derivative
output feedback, combined derivative and proportional output feedback, and propor-
tional output feedback, respectively, such that the closed-loop system is regular and
has an index at most 1 with

reb + rec − rebc ≤ rank (E +BGC) ≤ min(reb, rec).(23)

In fact, these lower and upper bounds are reachable.
We will show that the upper bound min(reb, rec) achieved in this paper is greater

than the one in [4] (i.e., t1 + t2). By examining the reduced forms of (E,A,B,C)
in [4] and (E,B,C) in our work, we can deduce that

reb = t1 + t2 + t3, rec = t1 + t2 + t5, rebc = t1 + 2t2 + t3 + t5,

where t3, t5 are positive integers defined in [4]. After some manipulations, we obtain

t1 + t2 = reb − t3 = rec − t5

=⇒ t1 + t2 ≤ min(reb, rec).

Hence, under C1, O1, C2, O2, and (13), it is obvious that the upper bound in (23)

min(rec, reb)

is greater than the 1 (i.e., t1 + t2) shown in [4].

3.1. Controllability and observability of singular systems. Issues con-
cerning output feedback regularization problems relating to C-controllability (and
C-observability) and S-controllability (S-observability) of singular systems (1) are dis-
cussed next.

Obviously, if system (1) is C-controllable (C-observable), it is S-controllable (S-
observable). It is known that by using derivative output feedback, system (1) can
be transformed into a normal system which is C-controllable and C-observable if and
only if system (1) is C-controllable and C-observable. In case system (1) is not C-
controllable and C-observable, it is still possible to use derivative output feedback to
modify system (1) such that the closed-loop system is regular, S-controllable (or S-
observable), and has index at most 1. This fact is illustrated by the following theorem
for derivative output feedback.

Theorem 3.4. Given system (1), rec ≤ reb (or rec > reb), there exists derivative
output feedback u = −Gẏ + v such that the closed-loop system is S-controllable (or
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S-observable), regular, has index at most 1, and rank(E +BGC) = rec if and only if
(E,A,B) (or (E,A,C)) satisfies condition C1 (or O1) and (13).

Proof. Since

rank [λ(E +BGC)−A B] = rank [λE −A B] , ∀λ ∈ R,(24)

condition C1 is preserved by derivative output feedback. Furthermore, by Lemma 2.1,
(E +BGC,A) is regular and ind(E +BGC,A) ≤ 1 is equivalent to

rank [E +BGC ASE+BGC ] = n

=⇒ rank [E +BGC ASE+BGC B] = n,(25)

which is simply C2 for the closed-loop system. Also, results of Theorem 3.1 give (13).
Hence this theorem has been proved.

The above theorem is extended to the case of proportional feedback without proof.

Theorem 3.5. Given system (1), there exists proportional output feedback u =
Fy+v such that the closed-loop system is S-controllable (or S-observable), regular, and
has index at most 1 if and only if the triple (E,A,B) (or (E,A,C)) satisfies condition
C1 (or O1) and (20).

Given system (1), define

S̃ =
{
(F,G)|F,G ∈ R

m×p, closed-loop system given by applying derivative and

proportional output feedback u = Fy −Gẏ + v is S-controllable, regular, and

has index at most 1} ,
S̃o =

{
G|(F,G) ∈ S̃ for some F ∈ R

m×p
}
.

Then by applying combined derivative and proportional output feedback to (1), sim-
ilar results can be obtained without proof.

Theorem 3.6. Given system (1), rec ≤ reb, then

{
rank(E +BGC)|G ∈ S̃o

}
= Sebc

if and only if the triple (E,A,B) satisfies condition C1 and (13).

Remark. For Theorem 3.6 we have a similar result for reb < rec with the dual
system.

4. An example. In this section, a numerical example is presented to illustrate
the results given in the previous section. It should be noted that our main results are
derived based on the condensed form given in Theorem 2.3, which can be computed
in a numerically stable way. A numerical procedure based on this condensed form is
included in Appendix A. The program is coded in MATLAB1 and performed on a
SPARC-10 Sun2 workstation running under Unix3.

This test problem is adopted from [5] with slight variations. Recall that in this

1 MATLAB is a trademark of the Mathworks, Inc.
2 Sun is a trademark of Sun Microsystems.
3 Unix is a trademark of AT&T.
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example n = 6, m = 2, p = 2, and the system matrices are given by

E =




0 0 0 0 0 0
0 0 1 0 0 0
0 0 −1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0



, A =




1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 2 0 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 0 0 1



.

It can be shown that (E,A) is not regular and of index greater than 1. Besides,
rank(E) = 3, that is, the maximum number of open-loop finite poles is 3. The input
and output matrices are defined to be

B =




0 1
1 0
0 0
0 0
0 0
1 −1



, C =

[
1 0 0 0 0 0
0 0 0 1 0 0

]
.

Since the system satisfies (13) and

reb = rank [E B] = 5 = rank

[
E
C

]
= rec,

the possible number of closed-loop finite poles is

3 ≤ r ≤ 5.

For instance, if we choose r = 3, we obtain

F =

[ −0.1060 −0.6490
−1.0223 −0.7382

]
and G =

[
0 0
0 0

]
.

By Lemma 2.1, we can verify that the closed-loop system (E +BGC,A+BFC) now
becomes regular and of index at most 1 and rank(E+BGC) = 3. Besides, the system
satisfies (20), and Theorem 3.1 is verified.

Similarly for r = 4, we obtain

F =

[
0 −0.3765
0 −0.8450

]
and G =

[ −0.2614 0
−1.0985 0

]
.

By Lemma 2.1, we can verify that the closed-loop system (E +BGC,A+BFC) now
becomes regular and of index at most 1. Besides, the rank of E + BGC has been
increased to 4, which is the number of finite poles for the closed-loop system.

It can be verified that the resulting closed-loop system (E + BGC,A + BFC)
possesses unstable eigenvalues. By following the approach in [9], we can find a pro-
portional feedback matrix

Fs =

[
14.1412 0

0 0

]

such that (E +BGC,A+BFC +BFsC) is stable. Note that regularity is preserved.
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Similarly, for r = 5 we obtain

F =

[
0 0
0 0

]
and G =

[ −0.1570 −0.5034
−0.5115 −0.7280

]
.

By Lemma 2.1, we can verify that the closed-loop system (E +BGC,A+BFC) now
becomes regular and of index at most 1. Besides, the rank of E + BGC has been
increased to 5, which is the number of finite poles for the closed-loop system.

It can be verified that the resulting closed-loop system (E + BGC,A + BFC)
possesses unstable eigenvalues. By following the approach in [9], we can find a pro-
portional feedback matrix

Fs =

[ −0.3952 0.4327
−0.4980 −0.8184

]

such that (E +BGC,A+BFC +BFsC) is stable. Note that regularity is preserved.

Remark. In this paper, we have discussed the issue of finding the pair (F,G)
such that (E+BGC,A+BFC) is regular, has index at most 1, and possesses desired
number of finite poles. But from the numerical point of view, an optimal G is expected
such that E + BGC is well conditioned. In the state feedback case, [3] has given a
method to solve it. However, in the case of output feedback, this is still an open
question and requires further investigation.

5. Conclusions. In this paper, we have studied the problem of the regularization
of singular systems by derivative and proportional output feedback. Some necessary
and sufficient conditions are given to guarantee the existence of a derivative and
proportional output feedback such that the closed-loop system is regular and of index
at most 1. It is also shown that the closed-loop system becomes strongly controllable
and observable by using this feedback. A numerical example is given to illustrate the
result.

Appendix A. A numerical algorithm is developed to implement the main result
given in section 3.

Input: E, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and an integer r which must be

within the following bound

reb + rec − rebc ≤ r ≤ min(reb, rec).

Output: F, G ∈ R
m×p such that

(a) the pencil (E +BGC, A+BFC) is regular;

(b) ind(E +BGC, A+BFC) ≤ 1; and

(c) rank (E +BGC) = r.

Step 1. If rec ≤ reb, proceed to the next step. Otherwise, use the dual system for
further manipulations; that is, let

E = ET , A = AT , B = CT , C = BT .

Step 2. Check if (13) holds.

Step 3. Find orthogonal matrices Ũ , Ṽ ∈ R
n×n, Q ∈ R

m×n such that (4) is satisfied.
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Step 4. Form V̂ , UEV̂ , and UAV̂ using (10), (11), and (12). Partition the matrices

[
E23

E33

]
=

[
E1

23 E2
23

E1
33 E2

33

]
,



A13

A23

A33

A43

A53


 =



A1

13 A2
13

A1
23 A2

23

A1
33 A2

33

A1
43 A2

43

A1
53 A2

53


 , ΣC =

[
Σ1
C 0
0 Σ2

C

]
,

where E2
23 ∈ R

(rb+rec−rebc)×(rec−r) and Σ2
C ∈ R

(rec−r)×(rec−r). Note that the parti-
tioning is compatible.

Step 5. Find the matrix
[
G̃11 F̃12 G̃2

]
such that

B̃
[
G̃11 F̃12 G̃2

]
C̃ + Ã

is nonsingular. Here

B̃ =




0
B2

B3

0


 , C̃ =


 0 Σ1

C 0 0
0 0 Σ2

C 0
C21 0 0 0


 , Ã =




Σ1 0 A2
13 A14

Ẽ31 E1
33 A2

33 A34

E41 0 A2
43 A44

0 0 A2
53 A54




and G̃11, F̃12, G̃2 are rb × (rebc − reb − rec + r), rb × (rec − r), rb × (p − rebc + reb)
matrices, respectively.

Step 6. Compute G̃12 according to (18).

Step 7. The desired output feedback matrices are

F = Q

[
F̃1 F̃2

F̃3 F̃4

]
W, G = Q

[
G̃1 G̃2

G̃3 G̃4

]
W,

where F̃1 = [F̃11 F̃12], G̃ = [G̃11 G̃12], and F̃11, F̃2, F̃3, F̃4, G̃3, G̃4 are arbitrarily
chosen.

Step 8. If (E+BGC, A+BFC) is unstable, find Fs by [9] such that (E+BGC, A+
BFC +BFsC) is stable and regular. Then set F = F + Fs.

Remarks.

• Step 3 can be achieved by using the procedure given in the proof of Lemma 5
in [3]. This procedure only requires some simple matrix manipulations and
applying SVD or QR methods for a few times, which makes this procedure
numerically reliable.

• Step 5 can be achieved as follows: apply Theorem 2.3 to (Ã, B̃, C̃) to get
a condensed form like (3); then use the procedure provided in the proof of
Theorem 2.4 to get the desired matrix.

• Steps 4, 5, and 6 only require simple matrix manipulations and the inverses
of two diagonal and positive-definite matrices which can be computed in a
numerically reliable way.

Acknowledgment. We gratefully acknowledge the anonymous referees and ed-
itors for their kind and detailed comments on the early version of this paper. The
research reported here also benefitted a great deal from the valuable suggestions given
by them.
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Abstract. New perturbation results for the two different algebraic Riccati equations (continuous
time and discrete time) are derived in a uniform manner. The new results are illustrated by numerical
examples.
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bound, condition number
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1. Introduction. We consider the continuous-time algebraic Riccati equation
(CARE)

(1.1) Q+AHX +XA−XBR−1BHX = 0

and the discrete-time algebraic Riccati equation (DARE)

(1.2) X −AHXA+AHXB(R+BHXB)−1BHXA− CHC = 0.

Appropriate assumptions on the coefficient matrices will be made in sections 1.1 and
1.2 to guarantee the existence and uniqueness of the Hermitian positive semidefinite
(p.s.d.) solution. Equations (1.1) and (1.2) arise naturally in linear control and system
theory, and there are many contributions in the literature on the theory, applications,
and numerical solution of the equations (see, e.g., [1], [17], [22], [23]). Although for
applications the real case, i.e., when all the coefficient matrices are real and real
solution matrices X are to be found, is especially important, we consider here the
general, i.e., complex, case as well as the real case.

The central question of perturbation theory for an algebraic Riccati equation is
as follows: How does the Hermitian p.s.d. solution X change when the coefficient
matrices are subject to perturbations? The interest in this topic is motivated by
the fact that these equations are usually subject to perturbations in the coefficient
matrices reflecting various errors in the formulation of the problems and in their
solutions by a computer. (See, e.g., [2], [11], [18], [19], [21], [22], [29] for numerical
methods for solving the equations.)

Perturbation theory for the algebraic Riccati equations (1.1) and (1.2) are studied
by a number of authors [3], [5], [7], [10], [12], [13], [14], [15], [16], [26], [27], [28], [32].
This paper, as a continuation of the previous results of other authors [3], [5], [14], [15],
[16], [32], derives new perturbation bounds for the Hermitian p.s.d. solution to the
CARE (1.1) and for the Hermitian p.s.d. solution to the DARE (1.2) in a uniform
manner. The new results are illustrated by numerical examples.
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Throughout this paper we use Cm×n (or Rm×n) to denote the set of complex (or
real) m × n matrices, and Hn×n to denote the set of n × n Hermitian matrices. Ā
denotes the conjugate of a matrix A, AT denotes the transpose of A, and AH = ĀT .
I stands for the identity matrix, In is the identity matrix of order n, and 0 is the
null matrix. The positive definiteness (or semidefiniteness) of a Hermitian matrix A
will be denoted by A > 0 (or A ≥ 0). The eigenvalues of A ∈ Cn×n are denoted by
λ1(A), λ2(A), . . . , λn(A), and λ(A) = {λi(A)}ni=1. The spectral radius ρ(A) is defined
by ρ(A) = maxi |λi(A)|. The symbol ‖ ‖ stands for any unitarily invariant norm,
‖ ‖F is the Frobenius norm, and ‖ ‖2 is the spectral norm. For A = (a1, . . . , an) =
(αij) ∈ Cm×n and a matrix B, A ⊗ B = (αijB) is a Kronecker product, and vec(A)
is a vector defined by vec(A) = (aT1 , . . . , a

T
n )T . (See [9, Chaps. 1 and 2] for properties

of the Kronecker product and vec operation.)
The stable matrix is an important notion to the study of the CARE and DARE.

An n × n matrix A is said to be c-stable if all the eigenvalues of A lie in the open
left-half complex plane, and A is said to be d-stable if ρ(A) < 1.

1.1. Problem statement of the CARE. The coefficient matrices of the CARE
(1.1) are A ∈ Cn×n, B ∈ Cn×m, Q ∈ Hn×n, and R ∈ Hm×m, in which Q ≥ 0 and
R > 0. Let G = BR−1BH . Then the CARE (1.1) can be written in the equivalent
form

(1.3) Q+AHX +XA−XGX = 0,

where Q,G ≥ 0.
Throughout this paper we assume that (A,G) is a c-stabilizable pair, i.e., there

is a matrix K ∈ Cn×n such that the matrix A−GK is c-stable, and that (A,Q) is a
c-detectable pair, i.e., if (AT , QT ) is c-stabilizable. It is known [3], [18] that in such
a case there exists a unique Hermitian p.s.d. solution X to the CARE (1.3), and the
matrix A−GX is c-stable.

Many perturbation results for the CARE (1.3) can be found in the literature.
Byers [3], and Kenney and Hewer [12] obtain the first-order perturbation bounds for
the solution to the CARE (1.3). Chen [5] and Konstantinov, Petkov, and Christov [14]
derive global perturbation bounds for the solution. Xu [32] improves Chen’s results,
and Konstantinov, Petkov, Gu, and Postlethwaite [16] sharpen the results of [14].
Kenney, Laub, and Wette [13] derive residual error bounds associated with Newton
refinement of approximate solutions. Ghavimi and Laub [7] present a new backward
error criterion, together with a sensitivity measure, for assessing solution accuracy.
Besides, a new residual bound for an approximate solution to (1.3) is presented in
[26].

Let X be the unique Hermitian p.s.d. solution to the CARE (1.3). Under some
hypotheses, Konstantinov, Petkov, and Christov [14] and Konstantinov, Petkov, Gu,
and Postlethwaite [16] derive upper bounds for ‖X̃ −X‖F , where X̃ is a solution to
the perturbed CARE

(1.4) Q̃+ ÃHX̃ + X̃Ã− X̃G̃X̃ = 0.

However, it is not considered whether the solution X̃ is Hermitian p.s.d., and it is
not even considered whether the perturbed equation (1.3) has a Hermitian p.s.d.
solution. Recently, Xu [32] described a technique for discussing perturbations of the
Hermitian p.s.d. solution X of the CARE (1.3), and presented an upper bound for
‖X̃ − X‖C/‖X‖C , where X̃ is a Hermitian p.s.d. solution to the perturbed CARE
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(1.4), and ‖ ‖C denotes any consistent norm on Cn×n with ‖I‖C = 1, but the new
upper bound given by [32] is as conservative as that of [14].

In section 3 we shall present some reasonable restrictions on the perturbations
in the coefficient matrices and derive a sharp upper bound for ‖X̃ −X‖, where X̃ is
the unique Hermitian p.s.d. solution to the perturbed CARE (1.4). The first-order
perturbation bound and condition numbers of the unique Hermitian p.s.d. solution
X to the CARE (1.3) are then deduced from the new perturbation result.

1.2. Problem statement of the DARE. The coefficient matrices of the DARE
(1.2) are A ∈ Cn×n, B ∈ Cn×m, C ∈ Cr×n, and R ∈ Cm×m. As usual, we assume
RH = R > 0. (Note that the perturbation analysis of a more general DARE,
where the assumption R > 0 is dropped [11], will be studied separately.) Let
G = BR−1BH , Q = CHC. Then the DARE (1.2) can be written in the equiva-
lent form

(1.5) X −AHX(I +GX)−1A−Q = 0,

where Q,G ≥ 0.
Throughout this paper we assume that (A,B) is a d-stabilizable pair, i.e., if

wHB = 0 and wHA = λwH for some constant λ implies |λ| < 1 or w = 0, and that
(A,C) is a d-detectable pair, i.e., if (AT , CT ) is d-stabilizable [21]. It is known [1],
[10], [15] that in such a case there exists a unique Hermitian p.s.d. solution X to the
DARE (1.5), and the matrix (I +GX)−1A is d-stable.

Perturbation theory for the DARE (1.5) is studied by a certain number of authors.
Gudmundsson, Kenney, and Laub [10] derive a condition number of the DARE (1.5)
and a bound on the relative error of a computed solution. Konstantinov, Petkov,
and Christov [15] obtain perturbation bounds and determine the conditioning of the
equation. Computable residual bounds of an approximate solution to the DARE (1.5)
are derived by [27], and the normwise backward error of an approximate solution is
evaluated by [28].

Let X be the unique Hermitian p.s.d. solution to the DARE (1.5). Under some
hypotheses, Konstantinov, Petkov, and Christov [15] derive upper bounds for ‖X̃ −
X‖F and ‖X̃ −X‖2, where X̃ is a Hermitian solution to the perturbed DARE

(1.6) X̃ − ÃHX̃(I + G̃X̃)−1Ã− Q̃ = 0.

However, it is not considered whether the solution X̃ is p.s.d., and it is not even con-
sidered whether the perturbed DARE (1.6) has a Hermitian p.s.d. solution. Moreover,
the upper bounds given by [15] can be improved.

One of the difficult points for deriving a sharp upper bound for ‖X̃−X‖ is how to
find an equation of ∆X ≡ X̃−X which is easy to handle. Another difficult point is how
to find some reasonable restrictions on the perturbations in the coefficient matrices of
the DARE (1.5) such that the perturbed DARE (1.6) has a unique Hermitian p.s.d.
solution X̃, and that it is easy to estimate ‖X̃ −X‖.

In section 4, we shall present some reasonable restrictions on the perturbations
in the coefficient matrices and derive a new upper bound for ‖X̃ − X‖, where X̃ is
the unique Hermitian p.s.d. solution to the perturbed DARE (1.6). The first-order
perturbation bound and condition numbers of the unique Hermitian p.s.d. solution
X to the DARE (1.5) are then deduced from the new perturbation result.

The rest of this paper is organized as follows. We begin in section 2 with some
lemmas on perturbation properties of the stable matrices and on the uniqueness of
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the stabilizing solution. In sections 3 and 4 we derive new perturbation results for
the CARE and DARE, respectively. The new results will be illustrated by simple
numerical examples in section 5. Finally, in the Appendix we give a proof of several
useful formulae.

2. Lemmas.

2.1. Perturbation properties of stable matrices. Let Φ ∈ Cn×n. Define the
linear operator Lc: Hn×n → Hn×n by

(2.1) LcW = ΦHW +WΦ, W ∈ Hn×n.

It is known (see, e.g., [25, pp. 222–223]) that if Φ is c-stable, then Lc is invertible.
The following lemma will be used in section 3.

Lemma 2.1 (see [26, Corollary 2.5]). Let Lc be the linear operator defined by
(2.1) with a c-stable matrix Φ ∈ Cn×n. If E ∈ Cn×n satisfies

2‖L−1
c ‖‖E‖ < 1,

then Φ + E is c-stable.
Let Φ ∈ Cn×n. Define the linear operator Ld: Hn×n → Hn×n by

(2.2) LdW = W − ΦHWΦ, W ∈ Hn×n.

It is known [6] that if Φ is d-stable, then Ld is invertible. The following lemma will
be used in section 4.

Lemma 2.2. Let Ld be the linear operator defined by (2.2) with a d-stable matrix
Φ ∈ Cn×n, and let

(2.3) ld = ‖L−1
d ‖−1, φ = ‖Φ‖2.

If E ∈ Cn×n satisfies

(2.4) ‖E‖ < ld

φ+
√
φ2 + ld

,

then Φ + E is d-stable.
Lemma 2.2 is a corollary of Lemma 2.4 of this section. We first prove the following

lemma.
Lemma 2.3. Let Φ ∈ Cn×n. If there is an eigenvalue φk ∈ λ(Φ) with |φk| = 1,

then the operator Ld defined by (2.2) is singular.
Proof. We only need to prove that under the hypothesis there is a Hermitian

matrix W 6= 0 such that H(W ) ≡W − ΦHWΦ = 0.
Let ΦH = UTUH be the Schur decomposition of ΦH , where U is unitary, and T

is upper triangular with the diagonal elements φ1, . . . , φn, the eigenvalues of Φ (see
[8, Chap. 7] for the Schur decomposition). Without loss of generality we may assume
that ΦH = T and k = 2, i.e., ΦH has the form

ΦH =

(
T1 ∗
0 ∗

)
with T1 =

(
φ1 t
0 φ2

)
, ‖φ2| = 1.

Observe that if we take

W =

(
W1 0
0 0

)
with W1 =

(
ω1 w
w̄ ω2

)
,
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then

H(W ) =

(
H1(W1) 0

0 0

)
with H1(W1) = W1 − T1W1T

H
1 =

(
η1 h
h̄ η2

)
,

where

(2.5)
η1 = (1− |φ1|2)ω1 − |t|2ω2 − φ1t̄w − φ̄1tw̄,

η2 = (1− |φ2|2)ω2 = 0, h = −φ̄1tω2 + (1− φ1φ̄2)w.

There are two possibilities: (a) |φ1| 6= 1 or (b) |φ1| = 1. In the former case (a),
we can take ω2 = 1, and it is easy to verify that by (2.5) the Hermitian matrix

W1 =

(
ω∗1 w∗

w̄∗ 1

)
with w∗ =

φ̄1t

1− φ1φ̄2
, ω∗1 =

|t|2 + φ1t̄w
∗ + φ̄1tw̄

∗

1− |φ1|2

satisfies W1 6= 0 and H1(W1) = 0, thereby there is a Hermitian matrix W =(
W1 0
0 0

)
6= 0 such that H(W ) = 0. In the latter case (b), we can take ω1 = 1,

and it is evident that by (2.5) the Hermitian matrix W1 =
(

1 0
0 0

)
satisfies W1 6= 0

and H1(W1) = 0, thereby there is a Hermitian matrix W =
(

W1 0
0 0

)
6= 0 such that

H(W ) = 0. The proof is completed.
Referring to [30], for the d-stable matrix Φ we define the quantity s by

s = min

{
‖E‖ : max

1≤j≤n
|λj(Φ + E)| ≥ 1, E ∈ Cn×n

}
.

The quantity smeasures the size of the smallest ‖E‖ such that Φ+E has an eigenvalue
λj∗ with |λj∗ | ≥ 1. By the continuity of the eigenvalues we have

(2.6) s = min

{
‖E‖ : max

1≤j≤n
|λj(Φ + E)| = 1, E ∈ Cn×n

}
.

This means that the quantity s measures the smallest ‖E‖ such that Φ + E has an
eigenvalue on the unit circle.

The following result establishes a connection between the quantities s, ld, and
ρ(Φ).

Lemma 2.4. Let Φ ∈ Cn×n be d-stable, and let ld and s be defined by (2.3) and
(2.6), respectively. Moreover, let ρ = ρ(Φ) and φ = ‖Φ‖2. Then

(2.7)
ld

φ+
√
φ2 + ld

≤ s ≤ 1− ρ.

Proof. Let E∗ ∈ Cn×n be such that

s(Φ) = ‖E∗‖ with max
1≤j≤n

|λj(Φ + E∗)| = 1.

Then by Lemma 2.3, the transformation

W →W − (Φ + E∗)HW (Φ + E∗) with W ∈ Hn×n
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is singular, i.e., there is a Hermitian matrix W∗ 6= 0 such that

W∗ − (Φ + E∗)HW∗(Φ + E∗) = 0,

or, equivalently,

(2.8) LdW∗ = ΦHW∗E∗ + EH∗ W∗Φ + EH∗ W∗E∗,

where Ld is defined by (2.2). From (2.8)

s2 + 2φs− ld ≥ 0,

which implies the first inequality of (2.7).
Let Φ = UTUH be the Schur decomposition of Φ, where U is unitary, and T is

upper triangular with the diagonal elements λ1(Φ), . . . , λn(Φ). Assume that ρ(Φ) =
|λi∗(Φ)|. By (2.6) we have

(2.9)

s = min

{
‖E‖ : max

1≤j≤n
∣∣λj(T + UHEU)

∣∣ = 1

}

≤ min

{
‖D‖ : max

1≤j≤n
|λj(T +D)| = 1

}
,

where D = diag(δi) with complex scalars δi, i = 1, . . . , n. Take

δi =



−λi(Φ) + eiarg(λi(Φ)) if i = i∗,

0 otherwise.

Then

max
1≤j≤n

|λj(T +D)| = 1 with ‖D‖ = 1− ρ.

Substituting it into (2.9) gives the second inequality of (2.7).
From Lemma 2.4 we get Lemma 2.2 immediately.

2.2. The uniqueness of the stabilizing solution. We call X ∈ Hn×n a c-
stabilizing solution to the CARE (1.3) if X satisfies (1.3), and A − GX is c-stable.
Similarly, we call X ∈ Hn×n a d-stabilizing solution to the DARE (1.5) if X satisfies
(1.5), and (I +GX)−1A is d-stable.

Lemma 2.5. If the CARE (1.3) has a c-stabilizing solution, then it is unique.
Proof. Let X1 and X2 be two c-stabilizing solutions to the CARE (1.3). Then

from

Q+AHXi +XiA−XiGXi = 0, i = 1, 2,

we get

(2.10) (A−GX2)
H(X1 −X2) + (X1 −X2)(A−GX1) = 0.

Since both A−GX1 and A−GX2 are c-stable, (2.10) has the unique solutionX1−X2 =
0, i.e., X1 = X2.

Lemma 2.6 (see [11, Proposition 1]). If the DARE (1.5) has a d-stabilizing
solution, then it is unique.
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3. Perturbation results for the CARE.

3.1. Perturbation equation. Let X be the unique Hermitian p.s.d. solution
to the CARE (1.3), and let X̃ be a Hermitian solution to the perturbed CARE (1.4).
Define

∆X = X̃ −X, ∆Q = Q̃−Q, ∆A = Ã−A, ∆G = G̃−G.

Then from (1.3) and (1.4) we see that the matrix ∆X satisfies the equation

(3.1) (A−GX)H∆X + ∆X(A−GX) = −E + h1(∆X) + h2(∆X),

where

(3.2) E = ∆Q+ ∆AHX +X∆A−X∆GX,

and

(3.3)
h1(∆X) = − [(∆A−∆GX)H∆X + ∆X(∆A−∆GX)

]
,

h2(∆X) = ∆X(G+ ∆G)∆X.

Let Φ = A−GX, and define the linear operator L: Hn×n → Hn×n by

(3.4) LW = ΦHW +WΦ, W ∈ Hn×n.

Then (3.1) can be written as

(3.5) L∆X = −E + h1(∆X) + h2(∆X).

Since Φ is c-stable, the operator L is invertible. Define the function µ(∆X) by

(3.6) µ(∆X) = −L−1E + L−1[h1(∆X) + h2(∆X)].

Obviously, µ(∆X) can be regarded as a continuous mapping M : Hn×n → Hn×n,
and the set of the solutions to (3.5) is just the set of the fixed points of the mapping
M.

Define the linear operators P: Cn×n → Hn×n, and Q: Hn×n → Hn×n by [3]

(3.7) PN = L−1(XN +NHX), N ∈ Cn×n,

and

(3.8) QH = L−1(XHX), H ∈ Hn×n.

Then by (3.2) we have

(3.9) L−1E = L−1∆Q+ P∆A−Q∆G.

In the following subsections we derive an upper bound for some fixed points ∆X
of the continuous mappingM expressed by (3.6) under some assumptions on ∆Q,∆A,
and ∆G, where ∆X = X̃ − X, in which X is the unique Hermitian p.s.d. solution
to the CARE (1.3), and X̃ is the unique Hermitian p.s.d. solution to the perturbed
CARE (1.4). For simplicity, we assume that Q̃, G̃ ≥ 0.
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3.2. Estimates of some fixed points of M. Let L, P, Q be the linear oper-
ators defined by (3.4), (3.7), and (3.8), respectively. Define

(3.10)
l = ‖L−1‖−1, p = ‖P‖, q = ‖Q‖,

δ = ‖∆A‖+ ‖∆G‖2‖X‖, g = ‖G‖2, ĝ = g + ‖∆G‖2.

Observe that from (3.3) and (3.10)

(3.11) ‖h1(∆X)‖ ≤ 2δ‖∆X‖, ‖h2(∆X)‖ ≤ ĝ‖∆X‖2.

Hence, by (3.5), (3.9), (3.10), and (3.11), ∆X satisfies

(3.12) ‖∆X‖ ≤ ε+
2δ

l
‖∆X‖+

ĝ

l
‖∆X‖2, i.e., ĝ‖∆X‖2 − (l − 2δ)‖∆X‖+ lε ≥ 0,

where ε is defined by

ε =
1

l
‖∆Q‖+ p‖∆A‖+ q‖∆G‖.

Consider the equation

(3.13) ĝξ2 − (l − 2δ)ξ + lε = 0.

It can be verified that if δ and ε satisfy

(3.14) δ <
l

2
and ε ≤ (l − 2δ)2

4lĝ
,

then the positive scalar ξ∗ expressed by

(3.15) ξ∗ =
2lε

l − 2δ +
√

(l − 2δ)2 − 4lĝε

is a solution to (3.13), and the function µ(∆X) defined by (3.6) satisfies

(3.16) ‖µ(∆X)‖ ≤ ε+
2δ

l
‖∆X‖+

ĝ

l
‖∆X‖2 ≤ ξ∗ if ‖∆X‖ ≤ ξ∗.

It is known that the space Hn×n with any unitarily invariant norm ‖ ‖ is a Banach
space. We now consider the set Sξ∗ ⊂ Hn×n defined by

Sξ∗ = {∆X ∈ Hn×n : ‖∆X‖ ≤ ξ∗}.

Since Sξ∗ is a bounded closed convex set of Hn×n, and the relation (3.16) shows that
the continuous mapping M expressed by (3.6) maps Sξ∗ into Sξ∗ , by the Schauder
fixed-point theorem (see, e.g., [20, sect. 6.3]), the mapping M has a fixed point
∆X∗ ∈ Sξ∗ , i.e.,

(3.17) ‖∆X∗‖ ≤ ξ∗,

where ξ∗ is expressed by (3.15).
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3.3. The matrix X + ∆X∗. Let ∆X∗ ∈ Sξ∗ be a fixed point of the mapping
M expressed by (3.6). Define Y = X + ∆X∗. Then from section 3.1 we see that the
Hermitian matrix Y satisfies

(3.18) Q̃+ ÃHY + Y Ã− Y G̃Y = 0,

i.e., Y is a Hermitian solution to the perturbed CARE (1.4).
It is easy to verify that (3.18) can be written as

(3.19) (Ã− G̃Y )HY + Y (Ã− G̃Y ) = −(Q̃+ Y G̃Y ).

Observe the following facts: the matrix Q̃+Y G̃Y is Hermitian p.s.d.; from Ã = A+∆A
and Y = X + ∆X∗ we have

Ã− G̃Y = Φ + ∆A−∆GX − (G+ ∆G)∆X∗,

where Φ = A−GX is stable, and from (3.10) and (3.17)

‖∆A−∆GX − (G+ ∆G)∆X∗‖ ≤ δ + ĝξ∗.

Consequently, by Lemma 2.1, if

(3.20) 2(δ + ĝξ∗)/l < 1, i.e., δ + ĝξ∗ < l/2,

then the matrix Ã − G̃Y is also stable. Hence, by Lemma 2.5, under the condi-
tion (3.20) the matrix Y , as a c-stabilizing solution to the CARE (3.18), is unique.
Moreover, the Hermitian matrix Y , as a solution to (3.19), is p.s.d. [31, Lemma 12.1].

Thus, we have proved that under conditions (3.14) and (3.20), there is a unique
Hermitian p.s.d. solution X̃ = Y to the CARE (1.4), and ‖X̃ −X‖ ≤ ξ∗, where X is
the unique Hermitian p.s.d. solution to the CARE (1.3).

3.4. The conditions (3.14) and (3.20). Note that the condition (3.20) can
be deduced from the conditions (3.14). In fact, the conditions (3.14) imply that the
positive scalar ξ∗ expressed by (3.15) satisfies

ξ∗ ≤ (l − 2δ)/(2ĝ),

which is just the condition (3.20). Moreover, the conditions (3.14) can be expressed
by an equivalent condition

δ +
√
lĝε <

l

2
.

3.5. Perturbation bounds. Overall, we have the following theorem.
Theorem 3.1. Let X be the unique Hermitian p.s.d. solution to the CARE (1.3).

Define the linear operators L, P, and Q by (3.4), (3.7), and (3.8), and define l, p, q, δ, ĝ
by (3.10), respectively. Moreover, let Q̃ = Q+ ∆Q, Ã = A+ ∆A, and G̃ = G+ ∆G
be the coefficient matrices of the perturbed CARE (1.4), and let

(3.21) ε =
1

l
‖∆Q‖+ p‖∆A‖+ q‖∆G‖,

and

(3.22) ξ∗ =
2lε

l − 2δ +
√

(l − 2δ)2 − 4lĝε
.
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If G̃, Q̃ ≥ 0, and if

(3.23) δ +
√
lĝε <

l

2
,

then the CARE (1.4) has a unique Hermitian p.s.d. solution X̃, and

(3.24) ‖X̃ −X‖ ≤ ξ∗.

From Theorem 3.1 we get the first-order perturbation bound for the solution X:

(3.25) ‖X̃ −X‖ ≤ ε+O(‖(∆Q,∆A,∆G)‖2), ‖(∆Q,∆A,∆G)‖ → 0,

where ε is defined by (3.21). Consequently, for sufficiently small ‖(∆Q,∆A,∆G)‖, we
have

(3.26)
‖X̃ −X‖
‖X‖

<∼
‖Q‖
l‖X‖

‖∆Q‖
‖Q‖ +

p‖A‖
‖X‖

‖∆A‖
‖A‖ +

q‖G‖
‖X‖

‖∆G‖
‖G‖ .

Remark 3.2. Konstantinov et al. [16, sect. 3.2.1] present the same upper bound
ξ∗ for ‖X̃−X‖F , where ξ∗ is expressed by (3.22), in which ε is defined by (3.21) in the
Frobenius norm ‖ ‖F . However, [16, sect. 3.2.1] does not distinguish whether or not
the solution X̃ to the perturbed CARE (1.4) is Hermitian, and it does not even know
whether or not (1.4) has a Hermitian p.s.d. solution. Recently, Xu [32] presented an
upper bound for ‖X̃ − X‖C/‖X‖C , where X̃ is a Hermitian p.s.d. solution to the
CARE (1.4), and ‖ ‖C denotes any consistent norm on Cn×n with ‖I‖C = 1. But the
bound obtained by [32] is conservative. For comparing our result (Theorem 3.1) with
that of [32], we now take the spectral norm ‖ ‖2. By [32, Thm. 2.1], for sufficiently
small ‖(∆Q,∆A,∆G)‖2 we have

(3.27)
‖X̃ −X‖2
‖X‖2

<∼
2

l2
(2‖A‖2 + ‖X‖2‖G‖2)

(‖∆A‖2
‖A‖2 +

‖∆G‖2
‖G‖2 +

‖∆Q‖2
‖Q‖2

)
≡ χ,

where l2 = ‖L−1‖−1, in which the operator norm ‖ ‖ is induced by the spectral norm
‖ ‖2. By Theorem 3.1 we have the estimate (3.26). Observe that from (1.3), (3.10),
(3.7), and (3.8)

‖Q‖2 ≤ ‖X‖2(2‖A‖2 + ‖X‖2‖G‖2), p ≤ 2‖X‖2/l2, q ≤ ‖X‖22/l2.

Hence, the estimate (3.26) implies

‖X̃ −X‖2
‖X‖2

<∼ 1
l2

[
2‖A‖2 ‖∆A‖2‖A‖2 + ‖G‖2‖X‖2 ‖∆G‖2‖G‖2

+(2‖A‖2 + ‖X‖2‖G‖2)‖∆Q‖2‖Q‖2

]
≤ χ/2,

where χ is defined by (3.27). Consequently, the result of Theorem 3.1 is better than
that of [32].

Note that the quantity l2 is difficult to compute. Suppose that the operator norm
‖ ‖ in the definition l = ‖L−1‖−1 is induced by the Frobenius norm ‖ ‖F (see section
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3.7 for the computation of the scalar l). From l/
√
n ≤ l2 ≤

√
nl [24, Thm. 4.10] we

see that if we define χ̂ by

χ̂ =
2

l
(2‖A‖2 + ‖X‖2‖G‖2)

(‖∆A‖2
‖A‖2 +

‖∆G‖2
‖G‖2 +

‖∆Q‖2
‖Q‖2

)
,

then

(3.28) χ(l) ≡ 1√
n
χ̂ ≤ χ ≤ √nχ̂ ≡ χ(u).

3.6. Condition numbers. The relation (3.26) shows that the scalars cQ(X),

cA(X), cG(X), and c
(r)
Q (X), c

(r)
A (X), c

(r)
G (X), defined by

cQ(X) =
1

l
, cA(X) = p, cG(X) = q

and

c
(r)
Q (X) =

‖Q‖
l‖X‖ , c

(r)
A (X) =

p‖A‖
‖X‖ , c

(r)
G (X) =

q‖G‖
‖X‖ ,

are the absolute and relative condition numbers of X with respect to Q,A,G, respec-
tively. Moreover, the scalar c(r)(X) defined by

(3.29) c(r)(X) =
1

‖X‖
√

(‖Q‖/l)2 + (p‖A‖)2 + (q‖G‖)2

can be regarded as the relative condition number of X.
By using a local linear estimate, Byers [3] presents a condition number κB(X) of

X:

(3.30) κB(X) =
1

‖X‖F (‖Q‖F /l + p‖A‖F + q‖G‖F ) ,

in which the operator norm ‖ ‖ for defining l, p, q is induced by the Frobenius norm
‖ ‖F . We now take the Frobenius norm in (3.29). Comparing (3.29) with (3.30) gives

1√
3
κB(X) ≤ c(r)(X) ≤ κB(X).

3.7. Expressions of ‖L−1‖−1, ‖P‖, and ‖Q‖. Let L, P, and Q be the linear
operators defined by (3.4), (3.7), and (3.8), respectively, and let l = ‖L−1‖−1, p =
‖P‖, and q = ‖Q‖ (see (3.10)). The problem of finding explicit expressions of l, p, q
is a difficult one. However, if the operator norm ‖ ‖ for defining l and q is induced by
the Frobenius norm on Hn×n, and the operator norm ‖ ‖ for defining p is induced by
the Frobenius norm ‖ ‖F on Cn×n, then by using the technique described by Byers
and Nash [4] we can find explicit expressions of the corresponding l, p, and q: define
the matrix T by

(3.31) T = In ⊗ ΦH + ΦT ⊗ In,

where Φ = A−GX is c-stable. Then

(3.32) l = ‖T−1‖−1
2 ,
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(3.33) p = ‖T−1[(In ⊗X)(In2 , iIn2) + (XT ⊗ In)Π(In2 , −iIn2)]‖2,

and

(3.34) q = ‖T−1(XT ⊗X)‖2,

where Π is the vec-permutation matrix [9, pp. 32–34]. Note that in the real case

(3.35) p = ‖T−1[In ⊗X + (XT ⊗ In)Π]‖2.

See the Appendix for a proof of the formulae (3.32)–(3.35).

4. Perturbation results for the DARE.

4.1. On perturbation equation. Let X be the unique Hermitian p.s.d. solu-
tion to the DARE (1.5), and let X̃ be a Hermitian solution to the perturbed DARE
(1.6). Define

∆X = X̃ −X, ∆Q = Q̃−Q, ∆A = Ã−A, ∆G = G̃−G.

Then from (1.5) and (1.6) we see that the matrix ∆X satisfies the equation

(4.1) ∆X − ÃH(X + ∆X)[I + G̃(X + ∆X)]−1Ã+AHX(I +GX)−1A−∆Q = 0.

As Konstantinov, Petkov, and Christov [15] pointed out, the higher-order term of
∆X in the perturbation equation (4.1) is hard to manipulate. In this section we shall
transform the equation to an equivalent form which is easy to handle. In the course
of the transformation, the matrix relations

(I + U)−1 = I − U(I + U)−1, V (I + UV )−1 = (I + V U)−1V

are used again and again.
Matrix operations give

(X + ∆X)[I + G̃(X + ∆X)]−1 = X(I + G̃X)−1 + (I +XG̃)−1∆X(I + G̃X)−1

−(I +XG̃)−1∆X(I + G̃X)−1G̃∆X[I + G̃(X + ∆X)]−1.

Consequently, (4.1) can be written as

(4.2)

∆X − ÃH(I +XG̃)−1∆X(I + G̃X)−1Ã

= ∆Q+ ÃHX(I + G̃X)−1Ã−AHX(I +GX)−1A

−ÃH(I +XG̃)−1∆X(I + G̃X)−1G̃∆X[I + G̃(X + ∆X)]−1Ã.

We now define the matrices F,Φ,Ψ,K,Θ by

(4.3) F = (I +GX)−1, Φ = FA, Ψ = XF, K = ΨA, Θ = F (I + ∆GΨ)−1.

Substituting Ã = A+ ∆A, G̃ = G+ ∆G, and X̃ = X + ∆X into (4.2) we see that the
matrix ∆X ∈ Hn×n satisfies the equation

(4.4) ∆X − Φ̃H∆XΦ̃ = E + h2(∆X),
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where the matrix Φ̃ is expressed by

(4.5) Φ̃ = (I + G̃X)−1Ã = (I +GX + ∆GX)−1(A+ ∆A) = Φ + ∆Φ

with

(4.6) ∆Φ = F [∆A−∆GΨ(I + ∆GΨ)−1(A+ ∆A)] = F (I + ∆GΨ)−1(∆A−∆GK),

the matrix E is expressed by

(4.7) E = ∆Q+ ÃHX(I + G̃X)−1Ã−AHX(I +GX)−1A = E1 + E2

with

(4.8) E1 = ∆Q+KH∆A+ ∆AHK −KH∆GK

and
(4.9)
E2 = ∆AHΨ∆A+KH∆GΨ(I + ∆GΨ)−1∆GK −KH∆GΨ(I + ∆GΨ)−1∆A

−∆AHΨ(I + ∆GΨ)−1(∆GK + ∆GΨ∆A),

and the function h2(∆X) is expressed by
(4.10)
h2(∆X) = −(A+ ∆A)HΘH∆XΘ(G+ ∆G)∆XΘ[I + (G+ ∆G)∆XΘ]−1(A+ ∆A).

Further, substituting (4.5)–(4.7) into (4.4) and letting

(4.11) h1(∆X) = ∆ΦH∆XΦ + ΦH∆X∆Φ + ∆ΦH∆X∆Φ,

(4.4) becomes

(4.12) ∆X − ΦH∆XΦ = E1 + E2 + h1(∆X) + h2(∆X).

Define the linear operator L: Hn×n → Hn×n by

(4.13) LW = W − ΦHWΦ, W ∈ Hn×n.

Since the matrix Φ defined by (4.3) is d-stable, the operator L is invertible. Define
the function µ(∆X) by

(4.14) µ(∆X) = L−1E1 + L−1E2 + L−1[h1(∆X) + h2(∆X)].

Obviously, µ(∆X) can be regarded as a continuous mapping M : Hn×n → Hn×n, and
the set of the solutions to (4.12) is just the set of the fixed points of the
mapping M.

Moreover, define the linear operators P: Cn×n → Hn×n, and Q: Hn×n → Hn×n

by [3], [15]

(4.15) PN = L−1(KHN +NHK), N ∈ Cn×n,
and

(4.16) QM = L−1(KHMK), M ∈ Hn×n.
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Then by (4.8)

(4.17) L−1E1 = L−1∆Q+ P∆A−Q∆G.

In the following subsections we shall derive an upper bound for some fixed points
∆X of the continuous mapping M expressed by (4.14) under some assumptions on
∆Q,∆A, and ∆G, where ∆X = X̃ −X, in which X is the unique Hermitian p.s.d.
solution to the DARE (1.5), and X̃ is the unique Hermitian p.s.d. solution to the
perturbed DARE (1.6). For simplicity, we assume that Q̃, G̃ ≥ 0.

4.2. Estimates of some fixed points ofM. Let F,Φ,Ψ,K,Θ be the matrices
defined by (4.3), and let L, P, and Q be the linear operators defined by (4.13), (4.15),
and (4.16), respectively. Define

(4.18)
l = ‖L−1‖−1, p = ‖P‖, q = ‖Q‖, φ = ‖Φ‖2, ψ = ‖Ψ‖2,

α = ‖A‖2, κ = ‖K‖2, f = ‖F‖2, g = ‖G‖2.
Moreover, we assume that ∆G satisfies

(4.19) 1− ψ‖∆G‖2 > 0,

and define

(4.20) δ =
‖∆A‖+ κ‖∆G‖

1− ψ‖∆G‖2 .

Observe the following facts:
1. By (4.9) and (4.18)–(4.20),

(4.21)

‖E2‖ ≤ ψ‖∆A‖2‖∆A‖+
κ2ψ‖∆G‖2‖∆G‖

1− ψ‖∆G‖2

+
κψ‖∆A‖2‖∆G‖

1− ψ‖∆G‖2 +
ψ(κ+ ψ‖∆A‖2)‖∆G‖2‖∆A‖

1− ψ‖∆G‖2
= ψδ(‖∆A‖+ κ‖∆G‖) ≡ ε2.

2. By (4.11), (4.6), and (4.18)–(4.20),

(4.22) ‖h1(∆X)‖ ≤ (2φ‖∆Φ‖2 + ‖∆Φ‖22)‖∆X‖ ≤ η‖∆X‖,
where

(4.23) η = fδ(2φ+ fδ).

3. Define

(4.24) α̂ =
f(α+ ‖∆A‖2)
1− ψ‖∆G‖2 , ĝ =

f(g + ‖∆G‖2)
1− ψ‖∆G‖2 ,

and assume that 1− ĝ‖∆X‖ > 0. Then by (4.10), (4.3), (4.18), and (4.24)

(4.25) ‖h2(∆X)‖ ≤ ‖Θ‖32(α+ ‖∆A‖2)2(g + ‖∆G‖2)‖∆X‖2
1− (g + ‖∆G‖2)‖Θ‖2‖∆X‖ ≤ α̂2ĝ‖∆X‖2

1− ĝ‖∆X‖ ,
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where it is assumed that

(4.26) 1− ĝ‖∆X‖ > 0.

Hence, by (4.14), (4.17), (4.21)–(4.23), and (4.25), ∆X satisfies

(4.27) ‖∆X‖ ≤ ε+
1

l

(
η‖∆X‖+

α̂2ĝ‖∆X‖2
1− ĝ‖∆X‖

)
,

where η and α̂, ĝ are defined by (4.23) and (4.24), respectively, and ε is defined by

ε = ε1 + ε2/l,

in which ε2 is defined by (4.21), and ε1 is defined by

ε1 = ‖∆Q‖/l + p‖∆A‖+ q‖∆G‖.

Let

(4.28) ξ∗ =
2lε

l − η + lĝε+
√

(l − η + lĝε)2 − 4lĝ(l − η + α̂2)ε
,

and

Sξ∗ = {∆X ∈ Hn×n : ‖∆X‖ ≤ ξ∗}.

By the Schauder fixed-point theorem, and using the same technique described in
section 3.2, we can prove that if ε satisfies

(4.29) ε ≤ (l − η)2

lĝ
(
l − η + 2α̂+

√
(l − η + 2α̂)2 − (l − η)2

) ,

then the mapping M expressed by (4.14) has a fixed point ∆X∗ ∈ Sξ∗ , i.e.,

(4.30) ‖∆X∗‖ ≤ ξ∗.

Note that if the scalar η defined by (4.23) satisfies

(4.31) l − η > 0,

then any ∆X ∈ Sξ∗ satisfies the condition (4.26). In fact, for any ∆X ∈ Sξ∗ we have

1− ĝ‖∆X‖ ≥ 1− ĝξ∗ ≥ 1− 2lĝε

l − η + lĝε
(by (4.28))

=
l − η − lĝε

l − η + lĝε
≥ l − η − (l − η)2/(l − η + 2α̂)

l − η + lĝε
(by (4.29))

=
2(l − η)α̂

(l − η + lĝε)(l − η + 2α̂)
> 0 (by (4.31)).
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4.3. The matrix X + ∆X∗. Let ∆X∗ ∈ Sξ∗ be a fixed point of the mapping
M expressed by (4.14). Define Y = X + ∆X∗. Then from section 4.1 we see that the
Hermitian matrix Y satisfies

(4.32) Y − ÃHY (I + G̃Y )−1Ã− Q̃ = 0,

i.e., Y is a Hermitian solution to the DARE (1.6).
From

[(I + G̃Y )−1Ã]HY (I + G̃Y )−1Ã = ÃH(I + Y G̃)−1Y [I − G̃Y (I + G̃Y )−1]Ã

= ÃHY (I + G̃Y )−1Ã− [Y (I + G̃Y )−1Ã]HG̃Y (I + G̃Y )−1Ã

it follows that the relation (4.32) can be written as

(4.33) Y −[(I+G̃Y )−1Ã]HY (I+G̃Y )−1Ã = Q̃+[Y (I+G̃Y )−1Ã]HG̃Y (I+G̃Y )−1Ã,

where the matrix on the right-hand side is obviously a Hermitian p.s.d. matrix. Ob-
serve that

(4.34) (I + G̃Y )−1Ã = [I + (G+ ∆G)(X + ∆X∗)]−1(A+ ∆A) = Φ + Φ1,

where Φ = (I +GX)−1A is d-stable, Φ1 can be expressed by

Φ1 = F [∆A− Ω(I + Ω)−1(A+ ∆A)]

with

Ω = ∆GΨ +G∆X∗F + ∆G∆X∗F,

and a simple operation gives

Φ1 = F (I + ∆GΨ +G∆X∗F + ∆G∆X∗F )−1(∆A−∆GK −G∆X∗Φ−∆G∆X∗Φ),

and

(4.35)

‖Φ1‖2 ≤ f [‖∆A‖+ κ‖∆G‖+ φ(g + ‖∆G‖2)ξ∗]
1− [ψ‖∆G‖2 + f(g + ‖∆G‖2)ξ∗]

=
fδ + φĝξ∗
1− ĝξ∗

(by (4.20) and (4.24)),

where it is assumed that

(4.36) 1− ĝξ∗ > 0.

Hence, by (4.34), (4.35), and Lemma 2.2, if

(4.37)
fδ + φĝξ∗
1− ĝξ∗

<
l

φ+
√
φ2 + l

,

then the matrix (I + G̃Y )−1Ã is d-stable. In this case, by Lemma 2.6, the matrix Y ,
as a d-stabilizing solution to the DARE (4.32), is unique. Moreover, the Hermitian
matrix Y , as a solution to (4.33), is p.s.d. [6, Prop. 2.1].

Thus, we have proved that under the conditions (4.19), (4.29), (4.31), (4.36), and
(4.37), there is a unique Hermitian p.s.d. solution X̃ = Y to the DARE (1.6), and
‖X̃ −X‖ ≤ ξ∗, where X is the unique Hermitian p.s.d. solution to the DARE (1.5).
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4.4. The conditions (4.31) and (4.37). Note that the condition (4.31) can
be deduced from the condition (4.37). In fact, from the inequality (4.37)

fδ < l/(φ+
√
φ2 + l),

which implies

2φfδ + (fδ)2 < l,

and, by using (4.23), the last relation is equivalent to (4.31).

4.5. Perturbation bounds. Overall, we have the following theorem.
Theorem 4.1. Let X be the unique Hermitian p.s.d. solution to the DARE (1.5).

Define the linear operators L, P, and Q by (4.13), (4.15), and (4.16), define l, p, q,
φ, ψ, α, κ, f , and g by (4.18), and define α̂, ĝ by (4.24), respectively. Moreover, let
Q̃ = Q+ ∆Q, Ã = A+ ∆A, G̃ = G+ ∆G be the coefficient matrices of the perturbed
DARE (1.6), and let

δ = (‖∆A‖2 + κ‖∆G‖2)/(1− ψ‖∆G‖2), η = fδ(2φ+ fδ),

(4.38) ε1 =
1

l
‖∆Q‖+ p‖∆A‖+ q‖∆G‖, ε = ε1 +

ψδ

l
(‖∆A‖+ κ‖∆G‖),

and

(4.39) ξ∗ =
2lε

l − η + lĝε+
√

(l − η + lĝε)2 − 4lĝ(l − η + α̂2)ε
.

If Q̃, G̃ ≥ 0, and if

(4.40) 1− ψ‖∆G‖2 > 0, 1− ĝξ∗ > 0,
fδ + φĝξ∗
1− ĝξ∗

<
l

φ+
√
φ2 + l

,

and

(4.41) ε <
(l − η)2

lĝ
(
l − η + 2α̂+

√
(l − η + 2α̂)2 − (l − η)2

) ,

then the DARE (1.6) has a unique Hermitian p.s.d. solution X̃, and

(4.42) ‖X̃ −X‖ ≤ 2lε

l − η + lĝε+
√

(l − η + lĝε)2 − 4lĝ(l − η + α̂2)ε
= ξ∗.

From Theorem 4.1 we get the first-order perturbation bound for the solution X:

(4.43) ‖X̃ −X‖ ≤ ε1 +O(‖(∆Q,∆A,∆G)‖2), ‖(∆Q,∆A,∆G)‖ → 0,

where ε1 is defined by (4.38). Consequently, for sufficiently small ‖(∆Q,∆A,∆G)‖,
we have

(4.44)
‖X̃ −X‖
‖X‖

<∼
‖Q‖
l‖X‖

‖∆Q‖
‖Q‖ +

p‖A‖
‖X‖

‖∆A‖
‖A‖ +

q‖G‖
‖X‖

‖∆G‖
‖G‖ .



56 JI-GUANG SUN

For comparing our results with those of [15], we now cite a result of [15], which
also presents a perturbation bound for the Hermitian p.s.d. solution to the DARE
(1.5).

Theorem 4.2 (see [15, Thm. 3.2]). Let X be the unique Hermitian p.s.d. solution
to the DARE (1.5). ‖ ‖ stands for the Frobenius norm, or the spectral norm. Define
the linear operator L by (4.13), and let l = ‖L−1‖−1. Moreover, let Q̃ = Q + ∆Q,
Ã = A + ∆A, and G̃ = G + ∆G be the coefficient matrices of the perturbed DARE
(1.6), and define a0, a1, a2 by

a0 =
(‖∆Q‖+ ‖X‖(2‖A‖+ ‖∆A‖)‖∆A‖+ ‖A‖2‖X‖2‖∆G‖) /l,

a1 =
(
(2‖A‖+ ‖∆A‖)‖∆A‖+ 2‖A‖2‖X‖‖∆G‖) /l,

a2 =
(‖(I +GX)−1A‖2‖G‖+ ‖A‖2‖∆G‖) /l.

If

D ≡ (1− a1)
2 − 4a0a2 > 0,

then there is a unique Hermitian solution X̃ to the DARE (1.6) such that

(4.45) ‖X̃ −X‖ ≤ 1− a1 −
√
D

2a2
≡ ξKPC.

Remark 4.3. From Theorem 4.1 it follows that for sufficiently small ∆Q,∆A,∆G,
and for any unitarily invariant norm ‖ ‖, we have the estimate

(4.46) ‖X̃ −X‖ <∼
1

l
‖∆Q‖+ p‖∆A‖+ q‖∆G‖ ≡ ε1,

where X̃ is the unique Hermitian p.s.d. solution to the DARE (1.6). However, by
Theorem 4.2, the matrix X̃ of (4.45) is only a Hermitian solution to the perturbed
DARE (1.6). It is not considered whether the solution X̃ is p.s.d. Moreover, from
Theorem 4.2 it follows that for sufficiently small ∆Q, ∆A, ∆G, we have the estimate
[15, eq. (37)]

(4.47) ‖X̃ −X‖ <∼
1

l
(‖∆Q‖+ 2‖A‖‖X‖‖∆A‖+ ‖A‖2‖X‖2‖∆G‖) ≡ εKPC,

where ‖ ‖ stands for the Frobenius norm, or the spectral norm. Observe that from
(4.15), (4.16), (4.3), and (4.18)

(4.48)
p ≤ 2‖K‖/l ≤ 2‖X(I +GX)−1‖‖A‖/l ≤ 2‖X‖‖A‖/l,

q ≤ ‖K‖2/l ≤ ‖X(I +GX)−1‖2‖A‖2/l ≤ ‖X‖2‖A‖2/l,
where the last inequalities of (4.48) hold is due to the fact that for the Hermitian
p.s.d. matrices X and G, and for any positive scalar µ, we have

(X + µI)[I +G(X + µI)]−1 = [(X + µI)−1 +G]−1 ≤ X + µI,

and

(4.49) ‖(X + µI)[I +G(X + µI)]−1‖ ≤ ‖X + µI‖.
Taking µ→ 0, from (4.49) we get ‖X(I+GX)−1‖ ≤ ‖X‖. Hence, the estimate (4.46)
implies (4.47) (by (4.48)). Consequently, the result of Theorem 4.1 is better than that
of Theorem 4.2.
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4.6. Condition numbers. The relation (4.44) shows that the scalars cQ(X),

cA(X), cG(X), and c
(r)
Q (X), c

(r)
A (X), c

(r)
G (X), defined by

cQ(X) =
1

l
, cA(X) = p, cG(X) = q

and

c
(r)
Q (X) =

‖Q‖
l‖X‖ , c

(r)
A (X) =

p‖A‖
‖X‖ , c

(r)
G (X) =

q‖G‖
‖X‖

are the absolute and relative condition numbers of X with respect to Q,A,G, respec-
tively. Further, the scalar c(r)(X) defined by

(4.50)

c(r)(X) =

√
[c

(r)
Q (X)]2 + [c

(r)
A (X)]2 + [c

(r)
G (X)]2

=
1

‖X‖
√

(‖Q‖/l)2 + (p‖A‖)2 + (q‖G‖)2

can be regarded as the relative condition number of the solution X.

4.7. Expressions of ‖L−1‖−1, ‖P‖, and ‖Q‖. Let L, P, and Q be the linear
operators defined by (4.13), (4.15), and (4.16), respectively, and let l = ‖L−1‖−1,
p = ‖P‖, and q = ‖Q‖ (see (4.18)). The problem of finding explicit expressions of
l, p, and q is a difficult one. However, if the operator norm ‖ ‖ for defining l and
q is induced by the Frobenius norm ‖ ‖F on Hn×n, and the operator norm ‖ ‖ for
defining p is induced by the Frobenius norm ‖ ‖F on Cn×n, then we can find explicit
expressions of the corresponding l, p, and q: define the matrix T by

(4.51) T = In2 − ΦT ⊗ ΦH ,

where Φ = (I +GX)−1A is d-stable. Then

(4.52) l = ‖T−1‖−1
2 ,

(4.53) p = ‖T−1[(In ⊗KH)(In2 , iIn2) + (KT ⊗ In)Π(In2 , −iIn2)]‖2,
and

(4.54) q = ‖T−1(KT ⊗KH)‖2,
where Π is the vec-permutation matrix [9, pp. 32–34], and K = X(I+GX)−1A. Note
that in the real case

(4.55) p = ‖T−1[In ⊗KT + (KT ⊗ In)Π]‖2.
See the Appendix for a proof of the formulae (4.52)–(4.55).

5. Numerical examples. We now use simple numerical examples to illustrate
our results. All computations were performed using MATLAB, version 4.2c, im-
plemented on a SALT. The relative machine precision reported by MATLAB is
2.2204× 10−16.
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Example 5.1 (see [3, Example 2]). Consider the CARE (1.3) with

A =

( −0.100 0.000
0.000 −0.020

)
, Q = CTC with C = (10, 100),

G = BR−1BT with B =

(
0.100 0.000
0.001 0.010

)
, R =

(
1 + 10−m 1

1 1

)
.

The pair (A,G) is c-stabilizable, and the pair (A,Q) is c-detectable. Suppose that
the perturbations in the coefficient matrices are

∆Q = ∆Q0 × 10−j , ∆A = ∆A0 × 10−j , ∆G = ∆G0 × 10−j

with

∆Q0 =

(
5 −2

−2 4

)
, ∆A0 =

(
0.3 −0.2
0.1 0.1

)
, ∆G0 =

(
0.2 0.1
0.1 −0.3

)
.

Let Q̃ = Q+ ∆Q, Ã = A+ ∆A, and G̃ = G+ ∆G be the coefficient matrices of the
perturbed CARE (1.4).

By using the MATLAB file “are” one can compute the unique Hermitian p.s.d.
solution X to the CARE (1.3) and the unique Hermitian p.s.d. solution X̃ to the per-
turbed CARE (1.4). Some numerical results on relative perturbation bounds ε/‖X‖F
and ξ∗/‖X‖F are listed in Table 5.1, where ε and ξ∗ are as in (3.25) and (3.24) (see
(3.21) and (3.22) for the definitions). The scalars χ(l) and χ(u) are the lower and
upper bounds for χ, the relative perturbation bound given by Xu [32] (see (3.27) and
(3.28)). The relative condition number c(r)(X) of the solution X is defined by (3.29).
The scalars l, p, and q are computed by the formulae (3.32), (3.35), and (3.34), respec-
tively. The cases when the condition (3.23) of Theorem 3.1 is violated are denoted by
asterisks.

Table 5.1
j = 12.

m
‖X̃−X‖F
‖X‖F ε/‖X‖F ξ∗/‖X‖F χ(l) χ(u) c(r)(X)

0 1.3707e-09 1.9142e-09 1.9142e-09 2.0984e-08 4.1968e-08 5.0007e+01
1 1.3830e-09 1.9305e-09 1.9306e-09 9.9505e-08 1.9901e-07 5.0254e+02
2 1.4525e-09 2.0274e-09 2.0316e-09 5.7608e-06 1.1522e-05 5.2749e+03
3 1.6101e-09 2.2534e-09 2.4817e-09 1.9129e-04 3.8259e-04 5.8481e+04
4 1.7457e-09 2.4482e-09 ∗ 3.1086e-03 6.2171e-03 6.3406e+05
5 1.7962e-09 2.5390e-09 ∗ 3.6628e-02 7.3256e-02 6.5701e+06

The results listed in Table 5.1 show that the relative perturbation bounds ε/‖X‖F
and ξ∗/‖X‖F are fairly sharp, and the bound χ given by [32] is conservative.

Example 5.2 (see [15]). Consider the DARE (1.5) with

Q = V Q0V, A = V A0V, G = V G0V,

where

Q0 = diag(10m, 1, 10−m), A0 = diag(0, 10−m, 1), G0 = diag(10−m, 10−m, 10−m),

and

V = I − 2vvT /3, v = (1, 1, 1)T .
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The perturbations in the coefficient matrices are

∆Q = V∆Q0V, ∆A = V∆A0V, ∆G = V∆G0V,

where

∆Q0 =


 10m −5 7

−5 1 3
7 3 10m


× 10−j , ∆A0 =


 3 −4 8
−6 2 −9

2 7 5


× 10−j ,

and

∆G0 =


 10−m −10−m 2× 10−m

−10−m 5× 10−m −10−m

2× 10−m −10−m 3× 10−m


× 10−j .

The unique Hermitian p.s.d. solution X to the DARE (1.5) is given by X = V X0V ,
where X0 = diag(x1, x2, x3) with

xi = {a2
i + qigi − 1 + [(a2

i + qigi − 1)2 + 4qigi]
1/2}/(2gi),

and qi, ai, and gi are the corresponding diagonal elements of Q0, A0, and G0.
Let Q̃ = Q+∆Q, Ã = A+∆A, and G̃ = G+∆G be the coefficient matrices of the

perturbed DARE (1.6). By using MATLAB and the file “dare” one can compute the
unique Hermitian p.s.d. solution X̃ to (1.6). Note that the file “dare” is a computer
program written by Alan J. Laub (1993). The program is an implementation of a
generalized eigenproblem algorithm by Arnold and Laub [2].

Some numerical results on relative perturbation bounds are listed in Tables 5.2
and 5.3, where the bounds ε1, ξ∗, εKPC, and ξKPC are defined by (4.46), (4.42), (4.47),
and (4.45), respectively. The relative condition number c(r)(X) of the solution X is
defined by (4.50). The scalars l, p, and q are computed by the formulae (4.52), (4.55),
and (4.54). The cases when the conditions of Theorem 4.1 or Theorem 4.2 are violated
are denoted by asterisks.

Table 5.2
m = 2, c(r)(X) ≈ 47.

j
‖X̃−X‖F
‖X‖F ε1/‖X‖F ξ∗/‖X‖F εKPC/‖X‖F ξKPC/‖X‖F

10 5.5516e-09 8.2724e-09 8.2724e-09 1.9863e-07 1.9863e-07
9 5.5516e-08 8.2724e-08 8.2724e-08 1.9863e-06 1.9866e-06
8 5.5514e-07 8.2724e-07 8.2728e-07 1.9863e-05 1.9895e-05
7 5.5503e-06 8.2724e-06 8.2767e-06 1.9863e-04 2.0193e-04
6 5.5394e-05 8.2724e-05 8.3163e-05 1.9863e-03 2.4854e-03
5 5.4352e-04 8.2724e-04 8.7518e-04 1.9863e-02 ∗
4 4.7144e-03 8.2724e-03 ∗ 1.9863e-01 ∗

The results listed in Tables 5.2 and 5.3 show that the relative perturbation bounds
ε1/‖X‖F and ξ∗/‖X‖F are sharper than the bounds εKPC/‖X‖F and ξKPC/‖X‖F
given by [15].

Appendix. We provide proof of the formulae (3.32)–(3.35) and (4.52)–(4.55).
We first cite a lemma of [4].
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Table 5.3
j = 10.

m
‖X̃−X‖F
‖X‖F ε1/‖X‖F ξ∗/‖X‖F εKPC

‖X‖F
ξKPC
‖X‖F c(r)(X)

0 7.5367e-10 1.7284e-09 1.7284e-09 1.0326e-08 1.0326e-08 1.2038e+00
1 1.0742e-09 2.6635e-09 2.6635e-09 2.2239e-08 2.2239e-08 5.2360e+00
2 5.5516e-09 8.2724e-09 8.2724e-09 1.9863e-07 1.9863e-07 4.7054e+01
3 5.0549e-08 6.7488e-08 6.7490e-08 1.9671e-06 1.9702e-06 4.6601e+02
4 4.9931e-07 6.5999e-07 6.6204e-07 1.9652e-05 2.4487e-05 4.6557e+03
5 4.1427e-06 6.5851e-06 ∗ 1.9650e-04 ∗ 4.6552e+04

Lemma A.1 (see [4, Lemma 7]). If W1,W2 ∈ Hn×n satisfy W2 ≥ W1 ≥ −W2,
then ‖W1‖F ≤ ‖W2‖F .

Let Φ ∈ Cn×n be c-stable, L, P, and Q be the linear operators defined by (3.4),
(3.7), and (3.8), and let l = ‖L−1‖−1, p = ‖P‖, and q = ‖Q‖, where the operator
norm ‖ ‖ for defining l and q is induced by the Frobenius norm ‖ ‖F on Hn×n, and
the operator norm ‖ ‖ for defining p is induced by the Frobenius norm ‖ ‖F on Cn×n.

Define the linear operator T: Cn×n → Cn×n by

(A-1) TZ = ΦHZ + ZΦ, Z ∈ Cn×n.

Byers and Nash [4, Thm. 8] prove the formula (3.32): l = ‖T−1‖−1
2 , where T , the

matrix representation of T, is expressed by (3.31).
By (3.7)

PN = L−1(XN +NHX) ≡W ∈ Hn×n, N ∈ Cn×n.

Combining it with

Z ≡ T−1(XN +NHX)

follows that for the same N ∈ Cn×n we have TZ = LW , or, equivalently,

(A-2) ΦH(Z −W ) + (Z −W )Φ = 0.

Since Φ is c-stable, (A-2) implies W = Z, i.e.,

PN = T−1(XN +NHX), N ∈ Cn×n.

Consequently,

(A-3)

p = max
N ∈ Cn×n
N 6= 0

‖T−1(XN +NHX)‖F
‖N‖F

= max
N ∈ Cn×n
N 6= 0

‖T−1[(In ⊗X)vecN + (XT ⊗ In)vecNH ]‖2
‖vecN‖2 .

Write N = NR + iNI with NR, NI ∈ Rn×n and i =
√−1. Observe that

vecN = (In2 , iIn2)

(
vecNR

vecNI

)
, vecNH = Π(In2 , −iIn2)

(
vecNR

vecNI

)
,
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where Π is the vec-permutation matrix. Hence, from (A-3) we get the formula (3.33).
Note that in the real case, N ∈ Rn×n in (A-3). Consequently, we have the formula
(3.35).

Let T be the linear operator defined by (A-1), and define the linear operator R:
Cn×n → Cn×n by

RN = T−1(XNX), N ∈ Cn×n,
where X ∈ Hn×n. We now prove the formula (3.34): q = ‖T−1(XT ⊗X)‖2.

Obviously, we only need to prove the relation

(A-4) max
H ∈ Hn×n

H 6= 0

‖L−1(XHX)‖F
‖H‖F = max

N ∈ Cn×n
N 6= 0

‖T−1(XNX)‖F
‖N‖F .

We first prove that there exists a matrix N∗ ∈ Cn×n such that

(A-5) max
N ∈ Cn×n
N 6= 0

‖T−1(XNX)‖F
‖N‖F =

‖T−1(XN∗X)‖F
‖N∗‖F ,

and either NH
∗ = N∗ or NH

∗ = −N∗.
Since the operator R is a linear transformation on the vector space Cn×n, and

the Frobenius norm is just the Euclidean vector norm applied to “vectors” in Cn×n,
so the maximum in the left-hand side of (A-5) occurs when N is a singular “vector”
of R corresponding to the largest singular value. Let N1 ∈ Cn×n be such a singular
“vector,” and let

(A-6) Z1 = T−1(XN1X).

Then by (A-1) we can write (A-6) as

ΦHZ1 + Z1Φ = XN1X,

or, equivalently,

ΦHZH1 + ZH1 Φ = XNH
1 X, i.e., ZH1 = T−1(XNH

1 X).

Thus, we have

‖T−1(XNH
1 X)‖F = ‖T−1(XN1X)‖F .

This means that NH
1 is also a singular “vector” of R corresponding to the largest

singular value. If N1 +NH
1 = 0, then N∗ = N1 is a skew-Hermitian matrix satisfying

(A-5). Otherwise, N∗ = N1 +NH
1 is a Hermitian matrix satisfying (A-5).

Therefore, for proving (A-4) we only need to show that for any skew-Hermitian
K ∈ Cn×n, there is a matrix H ∈ Hn×n such that

(A-7)
‖T−1(XKX)‖F

‖K‖F ≤ ‖L−1(XHX)‖F
‖H‖F .

Let

(A-8) Z1 = T−1(XKX),
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and let

(A-9) W1 = iZ1, Ω1 = X(iK)X.

Then by (A-1) and (A-9), the relation (A-8) can be written as

(A-10) ΦHW1 +W1Φ = Ω1.

Decompose the Hermitian matrix iK as

(A-11) iK = Udiag(λ1, . . . , λn)UH ,

where U ∈ Cn×n is unitary, and λj are real scalars. Further, define H ∈ Hn×n by

(A-12) H = Udiag(|λ1|, . . . , |λn|)UH ,

and define Ω2 ∈ Hn×n by

(A-13) Ω2 = XHX ≥ 0.

Then from (A-11) and (A-12)

(A-14) H ≥ iK ≥ −H, ‖H‖F = ‖K‖F ,

and from (A-9), (A-13), and (A-14)

(A-15) Ω2 ≥ Ω1 ≥ −Ω2.

If W2 solves

(A-16) ΦHW2 +W2Φ = −Ω2,

then W2 is Hermitian p.s.d. [31, Lem. 12.1], and by the definition of L, W2 can be
expressed by

(A-17) W2 = −L−1Ω2.

Combining (A-16) with (A-10) gives

(A-18) ΦH(W2 −W1) + (W2 −W1)Φ = −(Ω2 + Ω1),

and

(A-19) ΦH(W2 +W1) + (W2 +W1)Φ = −(Ω2 − Ω1),

where Ω2 + Ω1 ≥ 0, and Ω2 − Ω1 ≥ 0 (by (A-15)). Since Φ is c-stable, (A-18) and
(A-19) imply that both the matrices W2 +W1 and W2−W1 are Hermitian p.s.d. [31,
Lem. 12.1], i.e.,

W2 ≥W1 ≥ −W2.

By Lemma A.1

(A-20) ‖W1‖F ≤ ‖W2‖F .
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Consequently, we have

‖T−1(XKX)‖F
‖K‖F =

‖Z1‖F
‖K‖F (by (A-8))

=
‖W1‖F
‖H‖F (by (A-9) and (A-14))

≤ ‖W2‖F
‖H‖F (by (A-20))

=
‖L−1Ω2‖F
‖H‖F (by (A-17))

=
‖L−1(XHX)‖F

‖H‖ (by (A-13)),

where H ∈ Hn×n is defined by (A-12). Thus, (A-7) is proved.
Let Φ ∈ Cn×n be d-stable, L, P, and Q be the linear operators defined by (4.13),

(4.15), and (4.16), and let l = ‖L−1‖−1, p = ‖P‖, and q = ‖Q‖, where the operator
norm ‖ ‖ for defining l and q is induced by the Frobenius norm ‖ ‖F on Hn×n, and
the operator norm ‖ ‖ for defining p is induced by the Frobenius norm ‖ ‖F on Cn×n.
Moreover, define the linear operator T: Cn×n → Cn×n by

(A-21) TZ = Z − ΦHZΦ, Z ∈ Cn×n.
The formulae (4.52)–(4.55) can be proved by using the same technique described

above. For example, we now prove the formula (4.52): l = ‖T−1‖−1
2 , where T , the

matrix representation of T, is expressed by (4.51).
Obviously, we only need to prove the relation

(A-22) min
Z ∈ Cn×n
Z 6= 0

‖Z − ΦHZΦ‖F
‖Z‖ = min

W ∈ Hn×n

W 6= 0

‖W − ΦHWΦ‖F
‖W‖ .

First of all, by using the technique described by [4, proof of Lem. 1] we can prove
that there exists a matrix Z∗ ∈ Cn×n such that

min
Z ∈ Cn×n
Z 6= 0

‖Z − ΦHZΦ‖F
‖Z‖ =

‖Z∗ − ΦHZ∗Φ‖F
‖Z∗‖ ,

and either ZH∗ = Z∗ or ZH∗ = −Z∗. Therefore, for proving (A-22) we only need to
show that for any skew-Hermitian K ∈ Cn×n, there is a matrix H ∈ Hn×n such that

‖K − ΦHKΦ‖F
‖K‖ ≥ ‖H − ΦHHΦ‖F

‖H‖ ,

which can be proved by a similar argument as above for (A-7).
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Abstract. Some known inequalities for the Hadamard product of matrices are extended and
new inequalities obtained.
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1. Introduction. If A,B are positive semidefinite n × n Hermitian matrices,
then A2 ◦B2 − (A ◦B)2 is positive semidefinite, i.e., in inequality form, we have [1]

(1.1) (A ◦B)2 ≤ A2 ◦B2,

where A ◦B is the Hadamard product of matrices A and B.
From this inequality, we can also get [1]

(1.2) A ◦B ≤ (A2 ◦B2)1/2

and

(1.3) A1/2 ◦B1/2 ≤ (A ◦B)1/2.

Some converse results were obtained recently in [4]. We have

(1.4) A2 ◦B2 − (A ◦B)2 ≤ 1

4
(M −m)2I,

and

(1.5) (A2 ◦B2)1/2 ≤ M +m

2
√
Mm

A ◦B,

where A and B are positive definite Hermitian matrices, and M and m are, respec-
tively, the largest and smallest eigenvalues of A⊗B (the Kronecker product of A and
B).

Some generalizations and related results will be given in this paper.

2. Results.
Theorem 2.1. Let A and B be positive definite n × n Hermitian matrices and

let r and s be two nonzero integers such that s > r. Then

(2.1) (As ◦Bs)1/s ≥ (Ar ◦Br)1/r.
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Proof. The following result holds [5].
Let A be an n×n positive definite Hermitian matrix and let V be an n× t matrix

such that V ∗V = I. Then

(2.2) (V ∗AsV )1/s ≥ (V ∗ArV )1/r

for all real r and s such that s /∈ (−1, 1) and r /∈ (−1, 1), s > r.
In our case, nonzero integers r and s satisfy these conditions. Further, instead of

V , we use J , the selection matrix of order n2 × n with the property [3, 4]

(2.3) A ◦B = J t(A⊗B)J

as well as the fact that for any integer p we have

(2.4) (A⊗B)p = Ap ⊗Bp.

Thus (2.2) gives

(J t(A⊗B)sJ)1/s ≥ (J t(A⊗B)r)1/r

and, from (2.4),

(J t(As ⊗Bs)J)1/s ≥ (J t(Ar ⊗Br)J)1/r,

which is, by (2.3), inequality (2.1).
Special cases. Some special cases of (2.1) are the following:

(2.5) (A−1 ◦B−1)−1 ≤ A ◦B
or, equivalently,

(2.6) (A ◦B)−1 ≤ A−1 ◦B−1.

For positive integer r,

(2.7) A ◦B ≤ (Ar ◦Br)1/r

from which we can get

(2.8) A1/r ◦B1/r ≤ (A ◦B)1/r.

These last two results are extensions of (1.2) and (1.3).
Remark. Inequalities (1.1) and (2.6) can be obtained by using Jensen’s inequality

for matrix convex functions, i.e., for matrix convex function f [6]

(2.9) f(V ∗AV ) ≤ V ∗f(A)V.

Namely, using this result for the matrix convex function f(t) = t2, we can get

(A ◦B)2 = (J t(A⊗B)J)2 ≤ J t(A⊗B)2J

= J t(A2 ⊗B2)J = A2 ◦B2

which is (1.1).
Similarly, we can use (2.9) for the matrix convex function f(t) = t−1 to get (2.6).
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Theorem 2.2. Let A and B be two positive definite n × n Hermitian matrices
and let r and s be nonzero integers such that r < s. Then

(2.10) r(Ar ◦Br − aAs ◦Bs − bI) ≥ 0,

where

a = (Mr −mr)/(Ms −ms), b = (Msmr −Mrms)/(Ms −ms),

and M and m are the largest and smallest eigenvalues of A⊗B.
Proof. We have the matrix inequality [7]

r(Ar − aAs − bI) ≥ 0,

i.e.,

r[(A⊗B)r − a(A⊗B)s − bI] ≥ 0.

Therefore, from (2.4),

r[Ar ⊗Br − a(As ⊗Bs)− bI] ≥ 0.

Now pre- and post-multiplication by J t and J , respectively, give (2.10).
Remark. We can also prove Theorem 2.2 by using Theorem 1 from [8].
Theorem 2.3. Let the conditions of Theorem 2.2 be satisfied. Then

(2.11) (As ◦Bs)1/s ≤ ∆̃(Ar ◦Br)1/r,

where

(2.12) ∆̃ =

{
r(γs − γr)

(s− r)(γr − 1)

}1/s {
s(γr − γs)

(r − s)(γs − 1)

}−1/r

and γ = M/m.
Proof. Let A be an n × n positive definite Hermitian matrix with eigenvalues

contained in the interval [m,M ], where 0 < m < M , and let V be an n × t matrix
such that V ∗V = I. If r, s are nonzero real numbers such that s > r and either
s /∈ (−1, 1) or r /∈ (−1, 1), then [8]

(2.13) (V ∗AsV )1/s ≤ ∆̃(V ∗ArV )1/r,

where ∆̃ is given by (2.12).
Therefore, in our case, we have

(As ◦Bs)1/s = (J t(As ⊗Bs)J)1/s = (J t(A⊗B)sJ)1/s

≤ ∆̃(J t(A⊗B)rJ)1/r = ∆̃(J t(Ar ⊗Br)J)1/r = ∆̃(Ar ◦Br)1/r.

Special cases.
1. For s = 2 and r = 1, we get (1.5).
2. For s = 1, r = −1, we get

(2.14) A ◦B ≤ (m+M)2

4Mm
(A−1 ◦B−1)−1
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or, equivalently,

(2.15) A−1 ◦B−1 ≤ (M +m)2

4Mm
(A ◦B)−1.

Theorem 2.4. Let the conditions of Theorem 2.2 be satisfied. Then

(2.16) (As ◦Bs)1/s − (Ar ◦Br)1/r ≤ ∆I,

where

(2.17) ∆ = max
θ∈[0,1]

{
[θMs + (1− θ)ms]1/s − [θMr + (1− θ)mr]1/r

}
.

Proof. Let A be an n × n positive definite Hermitian matrix with eigenvalues
contained in the interval [m,M ], where 0 < m < M , and let V be an n × t matrix
such that V ∗V = I. If r, s are nonzero real numbers such that s > r and either
s /∈ (−1, 1) or r /∈ (−1, 1), then [8]

(2.18) (V ∗AsV )1/s − (V ∗ArV )1/r ≤ ∆I,

where ∆ is given by (2.17).

Thus, in our case, we have

(As ◦Bs)1/s − (Ar ◦Br)1/r = [J t(As ⊗Bs)]1/s

− [J t(Ar ⊗Br)J ]1/r = [J t(A⊗B)sJ ]1/s − [J t(A⊗B)rJ ]1/r ≤ ∆I.

Special cases.

1. For s = 2, r = 1, we get

(2.19) (A2 ◦B2)1/2 −A ◦B ≤ (M −m)2

4(M +m)
I.

2. For s = 1, r = −1, we get

(2.20) A ◦B − (A−1 ◦B−1)−1 ≤ (
√
M −√m)2I.

We note that the eigenvalues of A⊗B are the n2 products of the eigenvalues of A
by the eigenvalues of B [2, p. 245]. Thus if the eigenvalues of A and B, respectively,
are ordered by

α1 ≥ α2 ≥ · · · ≥ αn > 0, β1 ≥ β2 ≥ · · · ≥ βn,

then in all previous results M = α1β1 and m = αnβn.
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Thus (1.4), (1.5), (2.14), (2.13), (2.19), and (2.20) become, respectively,

A2 ◦B2 − (A ◦B)2 ≤ 1

4
(α1β1 − αnβn)2I,

(A2 ◦B2)1/2 ≤ (α1β1 + αnβn)

2
√
α1β1αnβn

A ◦B,

A ◦B ≤ (α1β1 + αnβn)2

4α1β1αnβn
(A−1 ◦B−1)−1,

A−1 ◦B−1 ≤ (α1β1 + αnβn)2

4α1β1αnβn
(A ◦B)−1,

(A2 ◦B2)1/2 −A ◦B ≤ (α1β1 − αnβn)2

4(α1β1 + αnβn)
I,

and

A ◦B − (A−1 ◦B−1)−1 ≤ (
√
α1β1 −

√
αnβn)2I.

REFERENCES

[1] R. A. Horn, The Hadamard product, in Matrix Theory and Applications, C. R. Johnson, ed.,
Proc. Sympos. Appl. Math., 40 (1989), pp. 87–169.

[2] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New
York, 1991.

[3] T. Kollo and H. Neudecker, Asymptotics of eigenvalues and unit-length eigenvectors of
sample variance and correlation matrices, J. Multivariate Anal., 47 (1993), pp. 283–300.

[4] S. Liu and H. Neudecker, Several matrix Kantorovich-type inequalities, J. Math. Anal. Appl.,
197 (1996), pp. 23–26.
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PRIMITIVITY OF POSITIVE MATRIX PAIRS: ALGEBRAIC
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Abstract. In this paper the primitivity of a positive matrix pair (A,B) is introduced as a strict
positivity constraint on the asymptotic behavior of the associated two-dimensional (2D) state model.
The state evolution is first considered under the assumption of periodic initial conditions. In this
case the system evolves according to a one-dimensional (1D) state updating equation, described by a
block circulant matrix. Strict positivity of the asymptotic dynamics is equivalent to the primitivity
of the circulant matrix, a property that can be restated as a set of conditions on the spectra of
A+ eiωB, for suitable real values of ω.

The theory developed in this context provides a foundation whose analytical ideas may be gener-
alized to nonperiodic initial conditions. To this purpose the spectral radius and the maximal modulus
eigenvalues of the matrices eiθA + eiωB, θ and ω ∈ R, are related to the characteristic polynomial
of the pair (A,B) as well as to the structure of the graphs associated with A and B and to the fac-
torization properties of suitable integer matrices. A general description of primitive positive matrix
pairs is finally derived, including both spectral and combinatorial conditions on the pair.

Key words. primitive matrices, circulant matrices, directed graphs, integer matrices, multidi-
mensional systems

AMS subject classifications. 15A48, 11C20, 11A07, 15A18, 93C55
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1. Introduction. The notion of primitive matrix grew out of the study of the
spectra and the directed graphs of positive irreducible matrices, in a purely algebraic
context [2], [3], [15]. Indeed, an irreducible matrix F ∈ Rn×n+ is primitive if and only
if its spectral radius is the only maximal modulus eigenvalue of F or, equivalently, if
and only if in the associated directed graph the gcd of the lengths of all circuits is
unitary.

An alternative definition of primitivity arises in the asymptotic analysis of the
homogeneous discrete time positive system

x(t+ 1) = Fx(t), t = 0, 1, . . . ,(1)

when x(0), the initial state, is a nonnegative vector. Positive systems appear quite
frequently in modeling real processes whose variables represent intrinsically nonneg-
ative quantities, such as pressures, concentrations, densities, population levels, etc.,
and have been the object of a long stream of research aiming to explore basic issues
of linear system theory, like controllability, reachability [4], [6], [7], [17], and real-
izability [1], [14] under positivity constraints. In this context, the primitivity of F
can be equivalently restated as the property that every positive initial condition x(0)
produces a state evolution which becomes strictly positive within a finite number of
steps.

When trying to introduce a notion of primitivity for a positive matrix pair (A,B),
with A and B in Rn×n+ , an extension of the above algebraic characterizations is not
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immediately apparent, whereas it is easy to figure out a reasonable extension of the
dynamical behavior we have just described. To this end, we associate with the pair
(A,B) the discrete homogeneous 2D system [8]

x(h+ 1, k + 1) = Ax(h, k + 1) +Bx(h+ 1, k), h, k ∈ Z, h+ k ≥ 0,(2)

where the doubly indexed local states x(h, k) are elements of the positive orthant Rn+
and initial conditions are given by assigning a sequence X0 := {x(`,−`) : ` ∈ Z} of
nonnegative local states on the separation set C0 := {(`,−`) : ` ∈ Z}. A 2D system
satisfying these constraints is called a 2D positive system [11].

2D state models described in (2) allow us to represent processes or devices whose
evolutions depend upon two independent variables, according to a quarter plane
causality law, and provide suitable descriptions of a large class of phenomena. They
were introduced in the early seventies, and most of their internal and external fea-
tures have been subsequently investigated. 2D positive systems, instead, have made
their appearance only recently in some contributions dealing with the discretization
of the set of PDEs describing a diffusion process [9], [12], but still their relevance for
modeling certain classes of physical processes has been immediately apparent.

By assuming the aforementioned dynamical viewpoint, and in analogy with the
1D case, we express the primitivity of the pair (A,B) as a strict positivity constraint
on the asymptotic behavior of (2). It is easy to see, however, that the structure of the
sequence X0 has to be somehow constrained. In fact, if X0 includes N +1 consecutive
zero local states

x(h,−h) = x(h+ 1,−h− 1) = · · · = x(h+N,−h−N) = 0,

then zero local states occur also on the separation sets

Ct := {(t+ `,−`) : ` ∈ Z}, t = 1, 2, . . . , N,

irrespective of the remaining initial conditions on C0. So, in order to guarantee that for
some finite t all local states on Ct are strictly positive, we must restrict our attention to
admissible sequences of initial conditions, namely, to nonnegative sequences X0 which
satisfy the following assumption: there is an integerN > 0 such that

∑h+N
`=h x(`,−`) >

0 for all h ∈ Z. We are now in a position to introduce the following definition of
primitivity for a nonnegative matrix pair.

Definition 1.1. A pair of nonnegative matrices (A,B) is primitive if, for every
admissible sequence X0 of initial conditions, all local states x(h, k) become strictly
positive when h+ k is sufficiently large.

Notice that when a 2D system is described by a primitive matrix pair, eventually
all its variables appear “permanently excited,” independent of the particular set of
admissible initial conditions that originated its evolution. This seems to be particu-
larly relevant when the system describes, for instance, a diffusion process and the two
independent variables represent a spatial and a temporal coordinate. In that case,
primitivity guarantees that, after a certain time instant, at every point all system
variables represent strictly positive quantities.

To investigate the spectral and combinatorial properties of a primitive matrix pair,
we consider first the dynamics of system (2) when the initial conditions sequence X0

has a periodic pattern of period T . Under this assumption, the 2D system exhibits
a behavior which is somewhat intermediate between those of (1) and (2), as its state
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evolution can be equivalently described by a model (1) with an nT×nT block circulant
system matrix F = CT (A,B). It is clear that x(h, k) eventually becomes strictly
positive if and only if CT (A,B) is primitive, a property that easily translates into the
condition that the spectral radii of the matrices A + ei2π`/TB, ` = 1, . . . , T − 1, are
smaller than the spectral radius of A+B.

So, the primitivity of all circulant matrices CT (A,B), T = 1, 2, . . . , which is
a necessary condition for the primitivity of (A,B), is equivalent to assuming that
A + eiωB has spectral radius smaller than that of A + B, whenever ω is a rational,
but not an integer, multiple of 2π.

This remark suggests a way for obtaining equivalent descriptions of the primitivity
of (A,B), based on the spectral properties of the matrix family {A+ eiωB : ω ∈ R}.
Actually, searching for a graph theoretic interpretation of the primitivity condition of
all circulant matrices CT (A,B), we can show that it corresponds to simple constraints
on the structure of a certain directed graph D∗(A,B) associated with the pair (A,B),
and on the integer matrix LA,B which describes its cyclic structure. Tying together
these combinatorial characterizations with a result [10] on the Hurwitz products in-
volved in the state updating of (2), we prove that the primitivity of all CT (A,B),
T = 1, 2, . . ., is also sufficient for that of the pair (A,B).

The paper is organized as follows: the next section investigates the spectral and
combinatorial features of the pair (A,B) by means of the complex matrices eiθA +
eiωB, θ, ω ∈ R, and of the directed graph D∗(A,B), respectively. Section 3 analyzes
the periodic dynamics of system (2) and the properties of the associated circulant
matrices CT (A,B), T = 1, 2, . . . . Finally, in section 4, the primitivity of (A,B) is
shown to be equivalent to a set of conditions involving the cyclic structure of D∗(A,B),
the spectra of eiθA+eiωB, θ, ω ∈ R, and the positivity of at least one Hurwitz product.

As we assume familiarity with the basic results of graph theory and positive matrix
theory, they will be only touched upon in this introduction to explain the notation
in use throughout the paper. Although some elementary background on 2D systems
will be provided later in this section, a couple of algebraic facts will be stated without
proof. The interested reader is referred to [10], which includes further references on
the subject.

Matrices and vectors will usually be represented by capital italic and lower case
boldface letters, respectively, while their entries are represented by the corresponding
lower case italic letters. Sometimes, however, when a matrix F is expressed as the
product or the sum of other matrices, it will be convenient to denote its (i, j)th entry
as [F ]ij . If F = [fij ] is a matrix (in particular, a vector), we write F � 0 (F strictly
positive), if fij > 0 for all i, j; F > 0 (F positive), if fij ≥ 0 for all i, j, and fhk > 0
for some pair (h, k); F ≥ 0 (F nonnegative), if fij ≥ 0 for all i, j. The spectral radius
of a matrix F , i.e., the modulus of its maximal eigenvalue, is denoted by ρ(F ). Every
n × n nonnegative matrix F has a corresponding [3] digraph (directed graph) D(F )
of order n, with vertices indexed by 1, 2, . . . , n. There is an arc (i, j) from i to j if
and only if fij > 0. Similarly, we associate with a pair of n× n nonnegative matrices
(A,B) a digraph of order n, D∗(A,B), with arcs of two different kinds, namely, A-arcs
and B-arcs. There is an A-arc from vertex i to vertex j if and only if aij > 0, and a
B-arc if and only if bij > 0.

Example 1. Consider the pair of positive matrices

A =


 0 0 2

1 4 0
0 0 0


 , B =


 0 0 6

0 0 0
0 4 0


 .
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Fig. 1.

The associated digraph D∗(A,B) is given in Fig. 1, where A-arcs and B-arcs have
been represented (as in what follows) by thick lines and thin lines, respectively.

A sequence of arcs in D(F ) of the form (i0, i1), (i1, i2), . . . , (ik−1, ik) defines a path
of length k in D(F ), connecting i0 to ik. When assigning a path p in D∗(A,B), we also
have to specify, for each pair of consecutive vertices, which kind of arc they are con-
nected by, so that p will have a representation like (i0, i1)A, (i1, i2)B , . . . , (ik−1, ik)B .
Thus, it is natural to associate p with a couple of nonnegative integers, α(p) and β(p),
representing the number of A-arcs and B-arcs occurring in p, respectively. A path
whose extreme vertices coincide, i.e., i0 = ik, is called a cycle. In particular, if each
vertex in a cycle appears exactly once as the first vertex of an arc, the cycle is called
a circuit.

Given a pair of square matrices (A,B), not necessarily nonnegative, the Hurwitz
products of A and B are inductively defined [10] as

Ai 0B = Ai, i ≥ 0, and A0 jB = Bj , j ≥ 0,(3)

and, when i and j are both greater than zero,

Ai jB = A(Ai−1 jB) +B(Ai j−1B).(4)

One easily sees that Ai jB is the sum of all matrix products that include the factors
A and B, i and j times, respectively. For notational convenience sometimes we allow
either i or j to be negative integers, and in these cases we assume Ai jB = 0.
Hurwitz products allow us to express any local state x(h, k) of system (2) in terms
of the sequence of initial conditions. Actually, if X0 = {x(`,−`) : ` ∈ Z} is an
arbitrary sequence of initial conditions on C0, for all h, k ∈ Z, h+ k ≥ 0, x(h, k) can
be represented as

x(h, k) =
∑
`

(Ah−` k+`B) x(`,−`).(5)

In particular, if the initial conditions on the separation set C0 are all zero, except at
(0, 0), we have

x(h, k) = (Ah kB) x(0, 0) ∀ h, k ≥ 0.
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The characteristic polynomial of a pair of n× n matrices (A,B) is defined as

∆A,B(z1, z2) := det(In −Az1 −Bz2)

and plays for system (2) the same role as det(In − Fz) for system (1). In particular,
there is a bijective correspondence [10] between the characteristic polynomial of a pair
(A,B) and the family of traces tr(Ai jB), i, j ∈ N, a result which generalizes the
well-known relation [13] between the coefficients of det(In −Fz) and the traces of all
powers of F .

2. Spectral properties of the matrices eiθA+eiωB. The Perron–Frobenius
theory establishes, for an n × n irreducible matrix F , very tight connections among
its characteristic polynomial, the invariance under rotation of its spectrum, and the
lengths of all cycles in the associated digraph D(F ). These connections can be spe-
cialized to primitive matrices, thus leading to a set of characterizations of primitivity
which represent suitable strengthenings of those available for irreducibility. Trying
to determine necessary and sufficient conditions for the primitivity of a positive ma-
trix pair (A,B), it seems natural to ask to what extent the above results admit a
generalization, once the spectrum of F is replaced by the variety of ∆A,B(z1, z2) and
the digraph of F by D∗(A,B). To this purpose, in this section and throughout the
paper, we will steadily assume that the matrix pair (A,B) we are considering has the
following properties:

a) A and B are both positive;
b) A+B is irreducible;
c) A+B has a unitary maximal eigenvalue.

The set of n×n pairs endowed with these properties will be denoted by In. Assump-
tions a) and b) easily prove to be necessary conditions for 2D primitivity, which is our
final goal. Actually, requiring that all states on Ct are strictly positive for large values
of t implies that both A and B are nonzero, otherwise any sequence X0 including a
zero local state would produce on every Ct a state sequence with the same property.
Analogously, if A + B were reducible, a positive, but not strictly positive, vector c
could be found such that the initial state sequence X0 = {x(`,−`) = c : ∀ ` ∈ Z}
produces a constant sequence of nonstrictly positive local states on every separation
set Ct. Assumption c) entails no loss of generality. Actually, we can divide both A
and B by ρ(A+B) without affecting the properties we aim to investigate, which are
independent of the spectral radius of A+B. The case when A+B is nilpotent would
constitute the unique exception to this rescaling procedure, but then A + B would
not be irreducible.

The answer to the previous question is given by the following proposition, which
enlightens, under different points of view, which rotations of θ and ω radians in the
z1- and z2-planes, respectively, leave the variety of ∆A,B(z1, z2) invariant. The proof
is based on the following remarkable result due to Wielandt [15].

Wielandt’s theorem. If an n × n complex matrix C = [cij ] is dominated by an
irreducible matrix F = [fij ] > 0, i.e., |cij | ≤ fij , for all i and j, then for all eigenvalues
λC of C

|λC | ≤ ρ(F ).(6)

Equality holds in (6) if and only if

C = eiφDFD−1,(7)
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where λC = eiφρ(F ) and D = diag{eiω1 , eiω2 , . . . , eiωn , }, ω1, ω2, . . . , ωn ∈ R.
Proposition 2.1. Let (A,B) ∈ In. For any θ and ω ∈ R the following facts are

equivalent:
i) 1 is an eigenvalue of eiθA+ eiωB;
ii) there exists a diagonal matrix D = diag{eiω1 , eiω2 , . . . , eiωn , }, ω1, ω2, . . . , ωn ∈

R, such that

A = eiθDAD−1 and B = eiωDBD−1;(8)

iii) for every cycle γ in D∗(A,B), including α(γ) A-arcs and β(γ) B-arcs,

α(γ)θ + β(γ)ω ≡ 0 mod 2π;(9)

iv) the characteristic polynomial of the pair (A,B) satisfies

∆A,B(z1, z2) = ∆A,B(z1e
iθ, z2e

iω).(10)

Proof. i) ⇒ ii) As the matrix eiθA+ eiωB is dominated by A+B and condition
i) holds, by Wielandt’s theorem we have ρ(eiθA+ eiωB) = ρ(A+B) = 1 and

A+B = D(eiθA+ eiωB)D−1,(11)

for some diagonal matrix D = diag{eiω1 , eiω2 , . . . , eiωn , }, ω1, ω2, . . . , ωn ∈ R. If ahk 6=
0, from (11) one gets

eiωh(eiθahk + eiωbhk)e
−iωk = ahk + bhk,

and consequently

(1− ei(θ+ωh−ωk))ahk = −(1− ei(ω+ωh−ωk))bhk.(12)

As the real parts on the left and right sides of (12) are nonnegative and nonpositive,
respectively, they must be zero, and hence ωk ≡ ωh + θ mod 2π. So, we have

[eiθDAD−1]hk = eiθeiωhahke
−iωk = ahk,

which proves the first equation in (8). The second one immediately follows from (11).
ii) ⇒ iii) Let γ = (g1, g2), . . . , (g`−1, g`), (g`, g1) be a cycle of length ` in D∗(A,B),

including α(γ) A-arcs and β(γ) B-arcs. For every arc (gi, gj) in γ, let cgigj denote
agigj if (gi, gj) is an A-arc and bgigj if it is a B-arc. By (8) we have, then,

0 < cg1g2cg2g3 . . . cg`g1 = ei[α(γ)θ+β(γ)ω]cg1g2cg2g3 . . . cg`g1 ,

which implies (9).
iii) ⇒ iv) Consider any Hurwitz product Ah kB, with h, k ∈ N, h + k > 0. If

tr(Ah kB) 6= 0, there is a circuit γ in D∗(A,B), including h A-arcs and k B-arcs and,
by assumption, the congruence relation hθ+kω ≡ 0 mod 2π is satisfied. Consequently,
the identity tr(Ah kB)[1− ei(hθ+kω)] = 0 holds for all integers h and k, and we get

tr(Ah kB) = ei(hθ+kω)tr(Ah kB) = tr
(
(eiθA)h k(eiωB)

)
.(13)

As the traces of the Hurwitz products uniquely determine the coefficients of the char-
acteristic polynomial of a matrix pair [10], it follows that

∆A,B(z1, z2) = det(I−Az1−Bz2) = det
(
I−(eiθA)z1−(eiωB)z2

)
= ∆A,B(z1e

iθ, z2e
iω).
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iv) ⇒ i) As the pair (A,B) is in In, 1 is an eigenvalue of A+B. Consequently,

0 = det(I −A−B) = ∆A,B(1, 1) = ∆A,B(eiθ, eiω) = det(I − eiθA− eiωB),

which implies 1 ∈ Λ(eiθA+ eiωB).
Remarks. a) In order to check condition iii) of Proposition 2.1, it is not necessary

to consider all cycles but only the circuits in D∗(A,B). So, point iii) reduces to a
finite number, say t, of congruence relations which can be expressed in matrix form
as

LA,B

[
θ
ω

]
=



α(γ1) β(γ1)
α(γ2) β(γ2)

...
...

α(γt) β(γt)



[
θ
ω

]
≡ 0 mod 2π.(14)

b) If in D∗(A,B) both an A-arc and a B-arc can be found, connecting a vertex h to
a vertex k, there are two cycles γ1 and γ2 with α(γ2) = α(γ1)−1 and β(γ2) = β(γ1)+1.
As the pairs (θ, ω) which satisfy (9) for all γ in D∗(A,B) must, in particular, satisfy

α(γ1)θ + β(γ1)ω ≡ 0 mod 2π,(
α(γ1)− 1

)
+
(
β(γ1) + 1

)
ω ≡ 0 mod 2π,

we have θ ≡ ω mod 2π for all solutions of (9).
c) Finally, notice that condition 1 ∈ Λ(eiθA + eiωB) for some real pair (θ, ω)

is equivalent to the fact that, for a suitable real pair (φ, ψ), eiφ is an eigenvalue of
A+ eiψB.

If (A,B) is an element of In and A+B is primitive, the situation when only the
trivial rotations, i.e., θ ≡ ω ≡ 0 mod 2π, leave invariant the variety of ∆A,B(z1, z2),
corresponds to the special case when the congruence (14) is devoid of nonzero solu-
tions. This happens if and only if LA,B is a right prime integer matrix.

Proposition 2.2. Let (A,B) ∈ In and assume that A + B is primitive. The
following facts are equivalent:

i) 1 ∈ Λ(eiθA+ eiωB) implies θ ≡ ω ≡ 0 mod 2π;
ii) the integer matrix LA,B is right prime;
iii) ∆A,B(z1, z2) = ∆A,B(eiθz1, e

iωz2) implies θ ≡ ω ≡ 0 mod 2π.
Proof. i) ⇒ ii) We show first that LA,B has full column rank. Consider the integer

matrix

L̄A,B :=



α(γ1) α(γ1) + β(γ1)
α(γ2) α(γ2) + β(γ2)

...
...

α(γt) α(γt) + β(γt)


 = LA,B

[
1 1
0 1

]
,

whose second column consists of the lengths of all circuits inD∗(A,B). The primitivity
assumption on A + B implies that the gcd of these lengths is 1, and hence integer
coefficients xh can be found such that

∑
h xh [α(γh) + β(γh)] = 1. If L̄A,B were not

full column rank, its first column, which is nonzero as (A,B) is in In, would be a
scalar multiple of the second one, namely,

L̄A,B

[
1
−q
]

= 0,
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Fig. 2.

for some rational number q, 0 < q < 1. Consequently, we would have 0 <
∑
h xhα(γh) <

1, which is impossible, as all addenda xhα(γh) are integer numbers. So, L̄A,B , and
hence LA,B , have rank 2.

We prove now that LA,B is right prime. If not, it would factor over the ring Z

as LA,B = L∆, where L is a t × 2 right prime matrix and ∆ a square matrix with
det ∆ 6= ±1 [16]. As ∆−1 is not an integer matrix, the pair[

θ
ω

]
:= ∆−1

[
2π
2π

]
6≡ 0 mod 2π

satisfies LA,B [
θ
ω

] ≡ 0 mod 2π. By Proposition 2.1, this implies 1 ∈ Λ(eiθA+ eiωB).

ii) ⇒ i) If LA,B is right prime, it admits a 2 × t integer left inverse S, so that

SLA,B = I2. Consequently, LA,B [
θ
ω

] ≡ 0 mod 2π implies [
θ
ω

] ≡ 0 mod 2π. By

Proposition 2.1, this proves the result.
i) ⇔ iii) This is obvious from Proposition 2.1.
The situation when in θ is zero in Proposition 2.1 is particularly interesting for

the subsequent analysis of circulant matrices. Clearly, the problem of determining
for which ω’s the matrix A+ eiωB has eigenvalue 1 can be solved by resorting to the
above propositions and, in particular, by analyzing the cyclic structure of D∗(A,B). It
seems more convenient, however, to associate with the pair (A,B) a simpler (strongly
connected) digraph DA(B) obtained as follows: for all vertices h ∈ {1, 2, . . . , n} shrink
into a single vertex [h] all vertices of the communicating class of h in D(A+AT ), and
then connect [h] and [k] with the arc ([h], [k]) if there is an arc (`,m) in D(B) for
some ` ∈ [h] and m ∈ [k]. The structure of the shrunken digraph DA(B) of a pair
(A,B) is better clarified by means of an example.

Example 2. The positive matrices

A =




0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 , B =




0 6 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 3
4 0 0 0 0




are associated with Fig. 2.
Proposition 2.3. Let (A,B) ∈ In. 1 is an eigenvalue of A + eiωB if and only

if the imprimitivity index hA(B) of the digraph DA(B) satisfies



PRIMITIVITY OF POSITIVE MATRIX PAIRS 79

hA(B) ω ≡ 0 mod 2π.(15)

Proof. By Proposition 2.1, the statement 1 ∈ Λ(A+ eiωB) can be replaced by the
equivalent condition β(γ) ω ≡ 0 mod 2π, where γ ranges over all cycles in D∗(A,B)
and β(γ) denotes the number of B-arcs in γ. Assume, first, that hA(B) ω ≡ 0 mod 2π.
Every cycle γ in D∗(A,B), including, say, β(γ) B-arcs, obviously determines a cycle
γ′ of length β(γ) in DA(B). As hA(B) is the gcd of the lengths of all cycles in DA(B),
the length β(γ) of γ′ satisfies β(γ) ω ≡ 0 mod 2π. To prove the converse, consider
any cycle γ̂ in DA(B) of length, say, `. By definition of DA(B), there is a cycle γ̄ in
D∗(A+AT , B) such that γ̂ is obtained by identifying every pair of consecutive vertices
connected in γ̄ by an (A + AT )-arc. As A + B is irreducible, every AT -arc (h, k) in
γ̄ can be replaced in D∗(A,B) by a suitable path phk, from h to k, thus producing a
new cycle γ∗. Clearly, as akh > 0, phk can be completed into a cycle γhk of D∗(A,B)
by means of the A-arc corresponding to akh. Since all cycles γhk as well as γ∗ satisfy

β(γhk) ω ≡ 0 mod 2π,

β(γ∗) ω ≡
(
`+

∑
β(γhk)

)
ω ≡ 0 mod 2π,

it follows that the length ` of any cycle in DA(B) satisfies `ω ≡ 0 mod 2π, and hence
hA(B)ω ≡ 0 mod 2π.

The results obtained in Proposition 2.2 for the linear combinations eiθA + eiωB
of the matrices A and B particularize to the case θ = 0, by resorting once again to
the shrunken digraph DA(B).

Proposition 2.4. Let (A,B) ∈ In. The following facts are equivalent:

i) 1 ∈ Λ(A+ eiωB) for some real number ω implies ω ≡ 0 mod 2π;

ii) gcd {β(γ) : γ a cycle in D∗(A,B)} = 1;

iii) the imprimitivity index hA(B) of DA(B) is 1.

Proof. i) ⇒ ii) If b := gcd {β(γ) : γ a cycle in D∗(A,B)} is greater than 1, then
ω̄ := 2π/b is not an integer multiple of 2π. However, condition β(γ) ω̄ ≡ 0 mod 2π
holds true for every cycle γ in D∗(A,B), thus implying, by Proposition 2.1, that 1 is
an eigenvalue of A+ eiω̄B. This contradicts i).

ii) ⇒ iii) Given any cycle γ in D∗(A,B) with, say, β(γ) B-arcs, we can identify
pairs of consecutive vertices which are connected by A-arcs, thus obtaining a cycle in
DA(B) of length β(γ). So, as gcd {β(γ) : γ a cycle in D∗(A,B)} = 1, there is a family
of cycles in DA(B) whose lengths are coprime, and hence hA(B) is 1.

iii) ⇒ i) This follows from Proposition 2.3.

Remark. Analogous results can be obtained for the family of matrices eiθA+B,
θ ∈ R, by simply referring to the shrunken digraph DB(A) and to the occurrences of
the A-arcs in the cycles of D∗(A,B). It is worthwhile to notice, however, that the
digraphs DA(B) and DB(A) can be endowed with different structural properties and,
in particular, their imprimitivity indices hA(B) and hB(A) need not coincide.

To conclude this section we investigate the set of solutions of the congruence
relation (14). As the pair (A,B) is in In, both columns of LA,B are nonzero, and
therefore we can distinguish two cases, depending on the rank of LA,B .

• LA,B has rank 1 if and only if there is a pair of positive coprime integers, m
and `, such that

LA,B

[
m
−`
]

= 0.
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Fig. 3.

By the same reasoning adopted to prove Proposition 2.1, we see that the traces of the
Hurwitz products Ah kB are possibly nonzero only for (h, k) = (t`, tm), t ∈ N. This
situation corresponds [10] to a characteristic polynomial of the form ∆A,B(z1, z2) =
p(z`1z

m
2 ), i.e., with support included in a straight line through the origin. In this case

the set of all distinct solutions of (14), i.e., corresponding to different pairs (eiθ, eiω),
includes infinitely many elements.

Example 3. The pair of matrices (A,B) in I5, with

A =
1
4
√

2




0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0


 , B =

1
4
√

2




0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 0


 ,

has characteristic polynomial ∆A,B(z1, z2) = 1 − z1z
3
2 ∈ R[z1z

3
2 ] and the associated

digraph D∗(A,B) is shown in Fig. 3.
Clearly,

LA,B =

[
1 3
1 3

]

has rank 1.
• When the support of ∆A,B(z1, z2) is not included in a straight line, LA,B has

rank 2 and there is only a finite set of distinct solutions of (14). To study this set, it
is convenient to consider the Smith form of LA,B over Z, namely,

SAB =




s1 0
0 s2
0 0
...

...
0 0


 = ULA,BV,

where U and V are unimodular integer matrices, and the positive integers s1 and
s1s2 represent the gcd’s of the elements and of the second-order minors of LA,B ,
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respectively. Equation (14) can be rewritten as[
s1 0
0 s2

]
V −1

[
θ
ω

]
≡ 0 mod 2π,(16)

and hence as [
s1 0
0 s2

] [
r1
r2

]
≡ 0 mod Z,(17)

where [ r1 r2 ]
T

:= V −1 [ θ/2π ω/2π ]
T
. A set of distinct representatives of all

solutions of (17) is given by




n1

s1
n2

s2


 : n1 = 0, 1, . . . , s1 − 1; n2 = 0, 1, . . . , s2 − 1


 .

So, letting g1 := 2πV [ 1/s1 0 ]
T

and g2 := 2πV [ 0 1/s2 ]
T
, the set

{n1g1 + n2g2 : n1 = 0, 1, . . . , s1 − 1; n2 = 0, 1, . . . , s2 − 1},(18)

is the abelian group of the solutions (mod 2π) of (14), represented as the direct sum
of two cyclic groups. The case when both cyclic groups are nontrivial is quite special
because it occurs only when all elements of LA,B have a nontrivial common divisor s1.
In terms of Hurwitz products, this amounts to requiring that tr (Ah kB) is possibly
nonzero only when both h and k are multiples of s1 or, equivalently [10], ∆A,B(z1, z2)
is in R[zs11 , z

s1
2 ].

Example 4. The pair of positive matrices (A,B) ∈ I5, with

A =




0 1/2 0 0 1/2
0 0 0 0 0
0 0 0 0 0

1/2 0 0 0 0
1/2 0 0 0 0


 , B =




0 0 0 0 0
0 0

√
3 0 0

0 0 0
√

3 0
0 0 0 0 0
0 0 0 0 0


 ,

has characteristic polynomial ∆A,B(z1, z2) = 1 − 1
4z

2
1 − 3

4z
2
1z

2
2 ∈ R[z2

1 , z
2
2 ]. The asso-

ciated digraph D∗(A,B) is shown in Fig. 4.
All entries of the matrix

LA,B =

[
2 0
2 2

]

are multiples of 2.
In the remaining cases and, in particular, when (A,B) ∈ In has primitive sum

A + B, the set of distinct solutions of (14) is a cyclic group generated by g2 and
including s2 elements. Finally, when LA,B is right prime, both cyclic groups collapse
and we have only the trivial solution θ ≡ ω ≡ 0 mod 2π.

As a final remark, if our interest is in the pairs (0, ω) which satisfy LA,B [
0
ω

] ≡ 0

mod 2π or, equivalently, in the values ω ∈ [0, 2π[ for which

1 ∈ Λ(A+ eiωB),(19)

it is more convenient to exploit condition hA(B) ω ≡ 0 mod 2π, given in Proposition
2.3. This way it is immediately apparent that the solutions (mod 2π) constitute a
cyclic group of order hA(B) ≤ n.
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Fig. 4.

3. Periodic initial conditions and circulant matrices. In this section we
turn our attention to some conditions on the pair (A,B) which ensure a strictly
positive asymptotic dynamics for the associated 2D system (2), under the assumption
that the initial conditions X0 have a periodic pattern.

Although this situation is admittedly restrictive, it deserves a thorough discussion
for at least two reasons. First, it develops intuitive insights into the combinatorial and
spectral properties of a positive matrix pair, meanwhile enlightening some interesting
features of block circulant positive matrices. Second, this analysis leads the way to
the solution of the general problem, which we shall afford in the subsequent section.
If X0 is nonzero and periodic with period T , i.e.,

x(`,−`) = x(`+ T,−`− T ) ≥ 0 ∀ ` ∈ Z,(20)

it is clear that the local states x(t+ `,−`) on each subsequent separation set Ct still
constitute a periodic sequence of period T . It is a matter of simple computation to
check that the nT -dimensional vector

pT (t) :=




x(t, 0)
x(t+ 1,−1)

...
x(t+ T − 1,−T + 1)


 ,(21)

obtained by stacking T consecutive local states on Ct, updates according to the fol-
lowing equation:

pT (t+ 1) = CT (A,B) pT (t),(22)

where CT (A,B) denotes the nT × nT block circulant matrix

CT (A,B) =




A B
A B

. . .
. . .

B
B A


(23)
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if T > 1, and the n × n matrix A + B if T = 1, i.e., if all initial local states on C0

coincide.
It is worth noticing that pT (t) is completely determined by the initial condition,

pT (0) > 0, and by the structure of CT (A,B). In particular,
• if CT (A,B) is irreducible, no component of pT (t) remains permanently unex-

cited. Conversely, if CT (A,B) is reducible, a positive vector pT (0) can be found such
that for some j ∈ {1, 2, . . . , nT}, the jth entry of pT (t) is zero for all t ∈ N.

• If CT (A,B) is irreducible, pT (t) eventually becomes strictly positive if and only
if the set of the indices corresponding to nonzero entries in pT (0) includes at least
one element of each communicating class in D(CT (A,B)).

• The matrix CT (A,B) is primitive if and only if for every pT (0) > 0 the vector
pT (t) eventually becomes strictly positive.

So, under the assumption of periodic initial conditions with period T , the asymp-
totic strict positivity of every state evolution of (2) is equivalent to the primitivity
of CT (A,B), which describes the system dynamics according to (22). Consequently,
our primary goal in this section is to investigate how the properties of a positive pair
(A,B) affect those of CT (A,B) and, in particular, under what conditions CT (A,B)
is irreducible or primitive. The solution of this problem relies on the results obtained
in the previous section and on a couple of technical lemmas, available in the litera-
ture. The first lemma introduces a general result on the spectra of block circulant
matrices, which allows to express the spectrum of CT (A,B) in terms of the spectra
Λ(A + ei2π`/TB), ` = 0, 1, . . . , T − 1. The second lemma provides a useful criterion
for recognizing irreducible matrices.

Lemma on circulant matrices (see [5]). The spectrum of the block circulant matrix

C =



A1 A2 . . . AT
AT A1 AT−1

. . .

A2 A3 . . . A1


 , Ai ∈ Rn×n,

is the nT -tuple given by

Λ(C) = Λ(A1 +A2 + · · ·+AT ) ] Λ(A1 + eiωA2 + · · ·+ eiω(T−1)AT )

] · · · ] Λ(A1 + eiω(T−1)A2 + · · ·+ eiω(T−1)(T−1)AT ),

where ω = 2π/T . In particular, the spectrum of (23) is

Λ(CT (A,B)) = Λ(A+B) ] Λ(A+ eiωB) ] · · · ] Λ(A+ eiω(T−1)B).(24)

Irreducibility criterion (see [15]). An n× n matrix F > 0 with a simple maximal
eigenvalue λmax is irreducible if and only if both F and FT have strictly positive
eigenvectors corresponding to λmax.

Lemma 3.1. Let (A,B) ∈ In and T ∈ N. The circulant matrix CT (A,B) is
i) irreducible if and only if 1 is not an eigenvalue of any one of the following

matrices:

A+ eiωB,A+ e2iωB, . . . , A+ e(T−1)iωB, ω = 2π/T ;(25)

ii) primitive if and only if A+B is primitive and none of the above matrices has
an eigenvalue of unitary modulus.
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Proof. i) By the above lemma on circulant matrices, if none of the matrices in
(25) has 1 as an eigenvalue, 1 is the simple maximal eigenvalue of A + B and hence
of CT (A,B). On the other hand, if v and w denote two strictly positive eigenvectors
of A+B and (A+B)T , respectively, corresponding to the eigenvalue 1, we have

CT (A,B)


v

...
v


 =


v

...
v


 ,

and

CT (A,B)T


w

...
w


 =


w

...
w


 .

Consequently, both CT (A,B) and CT (A,B)T have a strictly positive eigenvector cor-
responding to the eigenvalue 1, and hence are irreducible. Conversely, if 1 is an
eigenvalue of some matrix in (25), the multiplicity of 1 as maximal eigenvalue of
CT (A,B) is greater than one, and CT (A,B) is reducible.

ii) Assume that CT (A,B) is primitive. As its spectral radius ρ(CT (A,B)) = 1 is
an eigenvalue of A + B, none of the matrices A + eiω`B, ` = 1, 2, . . . , T − 1, has an
eigenvalue of unitary modulus. In particular, the irreducible matrix A + B, having
no eigenvalue of unitary modulus except for 1, is primitive. Conversely, if A + B is
primitive and none of the matrices in (25) has an eigenvalue of unitary modulus, by
the first part of the proof CT (A,B) is an irreducible matrix with 1 as simple maximal
eigenvalue. As any other eigenvalue of CT (A,B) has modulus strictly less than 1,
CT (A,B) must be primitive.

It is easy to obtain dual statements for the block circulant matrices CT (B,A),
T = 1, 2, . . . , thus relating the irreducibility and primitivity of these matrices to
the spectra Λ(eiθ`A + B), θ = 2π/T , ` = 1, 2, . . . , T − 1. In general, however, the
irreducibility of CT (B,A) need not imply that of CT (A,B), as a consequence of the
fact that the imprimitivity indices hA(B) and hB(A) need not coincide.

Example 5. The pair of matrices (A,B), with

A =


 0 1 0

0 0 0
0 0 0


 , B =


 0 0 0

0 0 1
1 0 0


 ,

is an element of I3. It is immediate to see from the digraphs DA(B) and DB(A)

that the block circulant matrix C2(A,B) = [
A B
B A

] is reducible, whereas C2(B,A) =

[
B A
A B

] is irreducible.

Notice that, different from the case of irreducibility, A and B play a symmetric
role in determining the primitivity of CT (A,B). Actually, if CT (A,B) is primitive,
none of the matrices A+ eiω`B, ω = 2π/T and ` = 1, 2, . . . , T − 1, has an eigenvalue
of unitary modulus, and this happens if and only if the same holds true for the family
B + eiω`A, ` = 1, 2, . . . , T − 1. Thus, CT (B,A) is primitive, too.

Proposition 3.2. Let (A,B) ∈ In. The following facts are equivalent:
i) all circulant matrices CT (A,B), T = 1, 2, . . . , are irreducible;
ii) 1 ∈ Λ(A+ eiωB) for some real number ω implies ω ≡ 0 mod 2π.
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Proof. i) ⇒ ii) Assume, by contradiction, that 1 is an eigenvalue of A+ eiωB, for
some ω 6≡ 0 mod 2π. By Proposition 2.3, ω must be a rational multiple of 2π, i.e.,
ω = 2π(ν/T̄ ), for some nonzero integers ν and T̄ , ν 6≡ 0 mod T̄ . But in this case, by
Lemma 3.1, CT̄ (A,B) is a reducible matrix, which contradicts assumption i).

ii) ⇒ i) This follows from Lemma 3.1, too.
Proposition 3.3. Let (A,B) ∈ In, with A + B primitive. The following facts

are equivalent:
i) all circulant matrices CT (A,B), T = 1, 2, . . . , are primitive;
ii) 1 ∈ Λ(eiθA+ eiωB) implies θ ≡ ω ≡ 0 mod 2π.
Proof. i) ⇒ ii) As remarked at the end of the previous section, LA,B has rank 2.

So, all solutions of

LA,B

[
θ
ω

]
≡ 0 mod 2π

and, consequently, all the pairs (θ, ω) for which 1 belongs to Λ(eiθA+ eiωB) must be
rational multiples of 2π, namely, (θ, ω) = 2π(q1, q2), q1, q2 ∈ Q. However, if 1 would
be in Λ(eiθA + eiωB), for certain θ and ω rational multiples of 2π, we would have
e−iθ ∈ Λ(A+ ei(ω−θ)B), thus contradicting Lemma 3.1.

ii) ⇒ i) This is immediate from Lemma 3.1.
Tying together Propositions 2.2 and 2.4 with the above results, several alternative

characterizations of the irreducibility and the primitivity of all circulant matrices
CT (A,B), T ∈ N, can be obtained, based on the digraphs DA(B) and D∗(A,B),
respectively. In particular, graph-theoretic criteria are available for checking the above
properties and hence the strict positivity of the asymptotic dynamics of (2), starting
from periodic initial conditions.

4. Arbitrary initial conditions and 2D primitivity. In this section we drop
the periodicity assumption and turn our attention to general (admissible) initial con-
ditions. As every periodic X0 is admissible, it is clear that the primitivity of all
CT (A,B), T ∈ N, is necessary for 2D primitivity. We aim to prove that it is also
sufficient.

In fact, we will show that when all CT (A,B), T ∈ N, are primitive, and hence
LA,B is right prime, there exists a solid convex cone K in R2

+ such that for all (h, k)
in K ∩ Z2 the Hurwitz products Ah kB are strictly positive. Consequently, every
nonzero local state x(`,−`) > 0 produces a strictly positive state evolution inside the
cone (`,−`) +K, as we have

x(h+ `, k − `) ≥ (Ah kB)x(`,−`) � 0 ∀ (h+ `, k − `) ∈ (`,−`) +K.

The admissibility assumption on X0 guarantees that the union of all cones (`,−`)+K,
which correspond to positive initial states x(`,−`), includes all separation sets Ct, for
t greater than a suitable tmin. Consequently, for t > tmin all local states on the
separation set Ct are strictly positive.

The subsequent discussion is based on the following number theoretic result, which
extends a well-known lemma attributed to Schur [3].

Lemma 4.1. Let S be a nonempty subset of N2, closed under addition, such that
the Z-module generated by S is Z2. Then there exists a solid convex cone K∗ in R2

+

such that all elements in K∗ ∩ Z2 are in S.
Proof. Let (α1, β1), . . ., (αt, βt) be a set of elements of S which generate Z2, and

let r :=
∑t
i=1(αi + βi). For every nonnegative pair (h, k) in T := {(h, k) : h, k ∈
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N, h+ k ≤ r} we may determine integer coefficients ch,ki such that

(h, k) =

t∑
i=1

ch,ki (αi, βi).

Let M be the maximum of the integers |ch,ki |, (h, k) ∈ T , and i = 1, 2, . . . , t, and
define

(v, w) :=

t∑
i=1

M (αi, βi).

As the Z-module generated by S is Z2, the cone K generated in R2
+ by the positive

pairs (α1, β1), . . ., (αt, βt) is convex and solid. We aim to show that all integer pairs
in K∗ := (v, w) +K belong to S. Every integer pair (c, d) in K can be expressed as

(c, d) =

t∑
i=1

qi (αi, βi), qi ∈ Q+,

and therefore as

(c, d) =

t∑
i=1

bqic(αi, βi) +
t∑
i=1

(qi − bqic)(αi, βi),

where bqic denotes the integer part of qi. Since 0 ≤ qi − bqic < 1, the pair (c̄, d̄) :=∑t
i=1(qi − bqic)(αi, βi) is an element of T , and (c, d) decomposes into

(c, d) = (c̄, d̄) +

t∑
i=1

ni (αi, βi), ni ∈ N.(26)

So, every integer pair (h, k) in K∗ can be written as (h, k) = (v, w)+(c, d), (c, d) ∈ K,
and hence as

(h, k) = (v, w) + (c̄, d̄) +

t∑
i=1

ni (αi, βi)

=
t∑
i=1

M (αi, βi) +
t∑
i=1

cc̄,d̄i (αi, βi) +
t∑
i=1

ni (αi, βi)

=
t∑
i=1

(M + ni + cc̄,d̄i )(αi, βi),

with ni and cc̄,d̄i in N, i = 1, 2, . . . , t. Since M + cc̄,d̄i + ni is a nonnegative integer for
every i, and S is closed under addition, (h, k) belongs to S.

Proposition 4.2. Let (A,B) be in In. The following facts are equivalent:
i) the integer matrix LA,B is right prime;
ii) there is a solid convex cone K in R2

+ such that for every pair of integers (h, k)
in K and every couple of vertices i and j, there is a path p in D∗(A,B), from i to j,
including h A-arcs and k B-arcs;

iii) there is a solid convex cone KH in R2
+ such that for every pair of integers

(h, k) in KH the Hurwitz product Ah kB is strictly positive;
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iv) the pair (A,B) is primitive.

Proof. i) ⇒ ii) Let S` be the set of integer vectors [α(γ) β(γ)] corresponding to
all cycles γ in D∗(A,B) passing through vertex `. Clearly, S` is nonempty and closed
under addition. Moreover, the Z-module generated by S` coincides with the Z-module
generated by the rows of LA,B , namely, with Z2. Actually, consider a positive vector
[α(γ) β(γ)], γ a circuit in D∗(A,B), which is not included in S`, and let j be any
vertex γ passes through. As D∗(A,B) is strongly connected, it includes a cycle γ′

passing through ` and j, and another cycle, γ′′, obtained by connecting γ and γ′. So,
both [α(γ′) β(γ′)] and [α(γ′′) β(γ′′)] are in S`, and

[α(γ) β(γ)] = [α(γ′′) β(γ′′)]− [α(γ′) β(γ′)]

is in the Z-module generated by S`. By the above lemma, then, there exists a solid
convex cone K∗` in R2

+ such that all integer vectors in K∗` are in S`.
If i and j are arbitrary vertices in D∗(A,B) and pi` and p`j are two fixed paths

connecting i to ` and ` to j, respectively, all integer vectors in the cone

K∗ij := [α(pi`) + α(p`j) β(pi`) + β(p`j)] +K∗`
correspond to paths connecting i to j. Clearly, K := ∩ijK∗ij is a solid convex cone
which satisfies ii).

ii) ⇒ iii) This is obvious, once KH = K is assumed.

iii) ⇒ iv) Under assumption iii), it is easy to see that every admissible X0 eventu-
ally produces a strictly positive state evolution, and hence the pair (A,B) is primitive,
by definition.

iv) ⇒ i) When (A,B) is primitive, all nonzero periodic initial conditions eventu-
ally produce strictly positive dynamics. This implies that all CT (A,B), T ∈ N, are
primitive matrices and hence, by Propositions 2.2 and 3.3, LA,B is right prime.

To conclude, observe that the above proposition reduces the primitivity of the
pair (A,B) to the existence of a solid cone KH in R2

+, whose integer coordinates
points correspond to strictly positive Hurwitz products. Indeed, this condition can
be considerably simplified, as the existence of a primitive, and hence of a strictly
positive, Hurwitz product ensures that of a whole cone KH of strictly positive Hurwitz
products. This property nicely extends to matrix pairs the well-known fact that a
positive matrix F is primitive if and only if it has a strictly positive power.

Proposition 4.3. Let (A,B) be in In. The following facts are equivalent:

i) there is a solid convex cone KH in R2
+ such that for every pair of integers (h, k)

in KH the Hurwitz product Ah kB is strictly positive;

ii) there exists a positive pair (`,m) ∈ N× N such that A` mB is primitive.

Proof. i) ⇒ ii) This is obvious.

ii) ⇒ i) Assume that A` mB is primitive. Then there exists a positive integer
r such that Ar` rmB ≥ (A` mB)r � 0. So, it is not restrictive to assume that
A` mB is strictly positive. As A and B are both positive and D∗(A,B) is strongly
connected, there exists a vertex j with an outgoing A-arc, (j, u), and an ingoing B-
arc (e, j). By the assumption on A` mB, in D∗(A,B) one can find a cycle γ passing
through j, a path puj from u to j and a path pje from j to e, each of them including `
A-arcs and m B-arcs. So, the path pju can be completed into a cycle with `+1 A-arcs
and m B-arcs, and similarly pej can be completed into a cycle including ` A-arcs and
m+1 B-arcs. Clearly, the Z-module M generated by the pairs (`,m), (`+1,m), and
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(`,m+ 1) is Z2, as the integer matrix


 ` m
`+ 1 m
` m+ 1




is right prime. Moreover, as the Z-module generated by the rows of LA,B includes
M, LA,B is a right prime matrix, too, and the conclusion follows from the above
proposition.
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Abstract. For a real nonsingular n-by-n matrix A, there exists a decomposition A = VΠU ,
where Π is a permutation matrix and V, U are upper triangular matrices. When ΠTVΠ is lower
triangular and U is normalized, such a decomposition is called the left Bruhat decomposition of A.
An algorithm for computing the left Bruhat decomposition is given. For classes of matrices introduced
by Wilkinson and recently (from a practical application) by Foster that have an exponential growth
factor when Gaussian elimination with partial pivoting (GEPP) is applied, left Bruhat decomposition
has at most linear growth. A partial pivoting strategy for Bruhat decomposition is also developed,
and an explicit equivalence between GEPP and Bruhat decomposition with partial pivoting (BDPP)
is derived. This equivalence implies that the growth factor for GEPP on A equals the growth factor
for BDPP on ρAT , where ρ is the permutation matrix that reverses the rows of AT . BDPP is shown
to give a growth factor of at most 2 when applied to any matrix for which GEPP gives the maximal
growth factor of 2n−1.

Key words. Bruhat decomposition, Gaussian elimination, growth factor, numerical stability,
partial pivoting

AMS subject classifications. 65F05, 15A23
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1. Introduction. Matrix factorization techniques are frequently used for solv-
ing nonsingular systems of linear equations. The most common factorization is LU
decomposition, and Gaussian elimination with partial pivoting (GEPP) is the most
common practical algorithm for computing an LU decomposition. However, other
decompositions, such as LPR decomposition (see, e.g., Elsner [2], Gohberg and Gold-
berg [4]) and Bruhat decomposition, can also be used to solve linear systems.

Bruhat decomposition, known from the theory of linear algebraic groups [5], [9],
was considered by Kolotilina and Yeremin [9] as an alternative to LU decomposition
for solving sparse systems of linear equations. Kolotilina and Yeremin also gave rela-
tions between Bruhat decomposition and the other two decompositions given above,
and sparsity of the Bruhat decomposition factors was considered in [8].

In the following sections we describe the left Bruhat decomposition, and give
an algorithm for its computation (Algorithm 2.1), which is the analogue of an al-
gorithm given in [9, section 2] for the right Bruhat decomposition. In contrast with
GEPP, Bruhat decomposition is numerically stable for the classes of matrices given by
Wilkinson and Foster (section 3). We also introduce a pivoting strategy for Bruhat de-
composition (Algorithm 4.1) and derive explicit relationships (Corollary 4.5) between
the factors that are determined by applying GEPP to A and Bruhat decomposition
with partial pivoting (BDPP) to ρAT , where ρ is the permutation matrix that re-
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verses the order of the rows of AT . We show that BDPP gives a growth factor of at
most 2 when applied to matrices that give maximal growth when GEPP is applied
(section 5). BDPP is a practical algorithm for solving systems of linear equations and
is an alternative to consider when GEPP may be unstable.

2. Description of the Bruhat decomposition. Let A be a given n-by-n real
nonsingular matrix. Then there exists a decomposition

(2.1) A = VΠU,

where V and U are n-by-n upper triangular matrices and Π is an n-by-n permutation
matrix. The permutation matrix Π in (2.1) is uniquely determined by A [9]. A
decomposition of the form (2.1) is called a Bruhat decomposition of the matrix A,
and Π is called the Bruhat permutation of A. The decomposition (2.1) is called the
reduced on the left Bruhat decomposition if the matrix ΠTVΠ is lower triangular, and
reduced on the right if the matrix ΠUΠT is lower triangular [9]. For the remainder
of this paper, we work with the reduced on the left Bruhat decomposition with U
normalized to have all diagonal entries equal to 1, and we refer to this as the left
Bruhat decomposition. With this normalization, the left Bruhat decomposition of a
given nonsingular matrix is unique.

The decomposition (2.1) can be computed by postmultiplication of A by n − 1
nonsingular matrices U (i), whose entries are chosen so as to introduce zeros into the
matrix product. Let

A(0) = A and A(i) = A(i−1)U (i), 1 ≤ i ≤ n− 1,

so that A(i) = AU (1)U (2) · · ·U (i).
Denoting A(i) = [a

(i)
jk ], the matrices U (i) can be written compactly as

U (i) = I − e(i)
(
m(i)

)T
,

where

m
(i)
j =




a
(i−1)
ri,j

a
(i−1)
ri,i

for i+ 1 ≤ j ≤ n,

0 otherwise,

e
(i)
j =

{
1, i = j,

0 otherwise,

and ri is the maximum row index such that a
(i−1)
ri,i

6= 0. Thus, at the ith step, a
(i−1)
ri,i

is

the pivot entry, and multiplication by U (i) zeros out all entries of A(i−1) in row ri and
columns i + 1, . . . , n. After n − 1 elimination steps, A(n−1) = AU (1)U (2) · · ·U (n−1).

Let a
(n−1)
rn,n denote the sole nonzero entry in column n of A(n−1) and Π = [πjk] be the

permutation matrix with πrk,k = 1 for 1 ≤ k ≤ n. Then, letting

(2.2) V = A(n−1) ΠT

and U−1 = U (1)U (2) · · ·U (n−1) gives A = VΠU .
The following algorithm determines the factors of this decomposition.
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Algorithm 2.1 (left Bruhat decomposition).
Input: Nonsingular n-by-n matrix A
Output: The matrices V , Π, and U , where the left Bruhat decomposition is

A = VΠU
Initialization: U = I

for i = 1 to n

j = max{p | api 6= 0}
πji = 1, π`i = 0 for ` 6= j

νtj = ati for 1 ≤ t ≤ n

for k = i+ 1 to n

m =
ajk
aji

uik = m

for ` = 1 to j − 1

a`k = a`k −ma`i

ajk = 0

By construction, U is upper triangular. Thus, to prove that Algorithm 2.1 gives
the left Bruhat decomposition of A, we show that V is upper triangular, and then we
show that ΠTVΠ is lower triangular. Let π(j) = i if πji = 1; then π−1(i) = j. From

(2.2), for any fixed q, νiq = a
(n−1)
i,π(q) . If q = max{p | a(n−1)

p,π(q) 6= 0}, then a
(n−1)
i,π(q) = 0 for

i > q, hence V is upper triangular. Also by (2.2)

(ΠTVΠ)rj = (ΠTA(n−1))rj = a
(n−1)
π−1(r),j .

But a
(n−1)
π−1(r),r 6= 0 and a

(n−1)
π−1(r),j = 0 for j > r as these entries are eliminated in the rth

step of the algorithm. Hence, ΠTVΠ is lower triangular.
In general, Π cannot be determined from the zero–nonzero pattern ofA; it depends

as well on the numerics. Even if matrix A does not have an LU decomposition, there
exists a permutation matrix P such that PA has an LU decomposition. Such a
permutation matrix is ΠT from the left Bruhat decomposition [9], because if A =
VΠU , then ΠTA = (ΠTVΠ)U = LU . This relationship between the left Bruhat
decomposition ofA and the LU decomposition (with U normalized) of ΠTA shows that
each of the triangular factors of the left Bruhat decomposition is uniquely determined.

3. Bruhat decomposition of matrices with large γ for GEPP. For GEPP
on a nonsingular matrix A = [ajk], the growth factor γ is defined as

γ = max
i,j,k

|a(i)
jk |

/
max
j,k

|ajk|,

where A(i) = [a
(i)
jk ] is the derived matrix after the ith elimination step (see, e.g., [7,

p. 177] and [10, p. 151]). The computation of the solution x of a linear system Ax = b
may be unstable if the growth factor is very large [6]. Motivated by a backward error
analysis for LU decomposition [7, p. 176] and its relationship to Bruhat decomposition,
we define the growth factor for Bruhat decomposition as

(3.1) γB = max

{
max
i,j,k

|u(i)
jk |/max

j,k
|ajk|, max

i,j,k
|a(i)

jk |/max
j,k

|ajk|
}
.
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Wilkinson [11, p. 212] introduced an n-by-n matrix Wn that achieves the largest
possible growth factor of 2n−1 when GEPP is applied. The Bruhat decomposition,
on the other hand, gives γB = 2, as demonstrated in the following example.

Example 3.1. The left Bruhat decomposition of the 5-by-5 Wilkinson matrix is

W5 =




1 0 0 0 1

−1 1 0 0 1

−1 −1 1 0 1

−1 −1 −1 1 1

−1 −1 −1 −1 1




=




2 −1 −1
2 − 1

4 1

0 2 0 0 −1

0 0 2 0 −1

0 0 0 2 −1

0 0 0 0 −1







0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0







1 1 1 1 −1

0 1 1
2

1
2 0

0 0 1 1
2 0

0 0 0 1 0

0 0 0 0 1


 .

In general, application of Algorithm 2.1 to the n-by-n Wilkinson matrix Wn gives
γB = 2.

Wilkinson also noted that matrices with large γ do not seem to arise in practical
applications. However, recently, Foster [3] discussed a class of n-by-n matrices that
arises in the numerical solution of Volterra integral equations and that for GEPP has
growth factor close to the maximal value of 2n−1. In contrast, for Bruhat decompo-
sition on an n-by-n matrix in Foster’s class, the factors V and U can be explicitly
determined, and γB is linear in n.

Bruhat decomposition is a good alternative to GEPP for the matrices above when
the latter gives exponentially large growth factors. However, for some matrices both
GEPP and Bruhat decomposition give exponential growth (for example, the block
matrix given by Wright [12, equations (10) and (12)]). There are also examples of
matrices for which Bruhat decomposition gives exponential growth, whereas GEPP
gives constant growth; one such example is ρWn, where ρ is the permutation matrix
that reverses the rows of Wn.

4. A pivoting strategy for Bruhat decomposition. We now present a piv-
oting strategy for Bruhat decomposition that, like the use of partial pivoting with
Gaussian elimination, keeps the multipliers bounded by one and usually results in a
stable computation. The decomposition is computed by postmultiplication of A by
n − 1 pairs of nonsingular matrices P (i)U (i) for i = 1, 2, . . . , n − 1, where P (i) is a
permutation matrix and U (i) is chosen to introduce zeros into the matrix product.
Let A(0) = A and A(i) = A(i−1)P (i)U (i), so that

A(i) = AP (1)U (1)P (2)U (2) · · ·P (i)U (i).

At the ith step of the decomposition, P (i) is chosen to interchange columns i and c
of A(i−1), where c is such that

max
i≤t≤n

|a(i−1)
n−i+1,t| = |a(i−1)

n−i+1,c|.
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Then U (i) is chosen so that a
(i)
n−i+1,r = 0 for r = i + 1, i + 2, . . . , n. That is, letting

A(i−1)P (i) = [ã
(i−1)
jk ], then U (i) = I − e(i)(m(i))T , where

m
(i)
j =




ã
(i−1)
n−i+1,j

ã
(i−1)
n−i+1,i

for i+ 1 ≤ j ≤ n,

0 otherwise.

After n− 1 steps,

A(n−1) = AP (1)U (1)P (2)U (2) · · ·P (n−1)U (n−1)

=




a
(1)
11 a

(2)
12 · · · a

(n−2)
1,n−2 a

(n−1)
1,n−1 a

(n−1)
1n

a
(1)
21 a

(2)
22 · · · a

(n−2)
2,n−2 a

(n−1)
2,n−1

a
(1)
31 a

(2)
32 · · · a

(n−2)
3,n−2

... . .
. 0

a
(1)
n1




= V ρ,

where V is an upper triangular matrix and the permutation matrix ρ reverses the
columns of V .

The following algorithm essentially determines the factors of the above decompo-
sition

A = V ρ
(
U (n−1)

)−1

P (n−1)
(
U (n−2)

)−1

P (n−2) · · ·
(
U (1)

)−1

P (1),

where we note that
(
P (i)

)−1
= P (i) for i = 1, 2, . . . , n−1. The one-dimensional array

P has P (i) = c if P (i) interchanges columns i and c of A(i−1). The ith row of the

upper triangular matrix
(
U (i)

)−1
is stored in the ith row of an n-by-n matrix U . The

reduced matrices A(i) overwrite A and the function swap(i, c) is used to interchange
columns i and c of A.

Algorithm 4.1 (Bruhat decomposition with partial pivoting (BDPP)).
Input: Nonsingular n-by-n matrix A

Output: The essential components of the factors V ,
(
U (i)

)−1
, and P (i) of the

Bruhat decomposition with partial pivoting of A.
Initialization: U = I, P (j) = j for j = 1, 2, . . . , n− 1

for j = n to 2

i = n− j + 1

find c : max
i≤t≤n

|ajt| = |ajc|
if c > i then

swap (i, c)

P (i) = c

νtj = ati for 1 ≤ t ≤ j

for k = i+ 1 to n

m =
ajk
aji
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uik = m

for ` = 1 to j − 1

a`k = a`k −ma`i

ajk = 0

ν11 = a1n

The next theorem shows an equivalence between BDPP and GEPP.
Theorem 4.2. Let A be an n-by-n nonsingular matrix. Suppose that

L(n−1)P̄ (n−1)L(n−2)P̄ (n−2) · · ·L(1)P̄ (1)A = Ū

is the result of applying GEPP to A, where L(i) is the lower triangular matrix of
multipliers and P̄ (i) is the permutation matrix associated with the ith step of GEPP.
Suppose also that

ρATP (1)U (1)P (2)U (2) · · ·P (n−1)U (n−1) = V ρ

is the result of applying BDPP to ρAT = B. Then P (i) = P̄ (i), U (i) = (L(i))T , and
ρ(A(i))T = B(i) for 1 ≤ i ≤ n− 1.

Proof. The proof is by induction. For i = 1, consider the first step of GEPP. Let

max
1≤j≤n

|aj1| = |at1|.

Thus, the effect of P̄ (1) is to interchange rows 1 and t. Letting P̄ (1)A = [ãjk], then

L(1) = I − m(1)
(
e(1)

)T
, where m

(1)
j =

ãj1
ã11

is the jth entry of the vector m(1) for

2 ≤ j ≤ n and m
(1)
1 = 0. Thus, A(1) = L(1)P (1)A. Now consider the first step of

BDPP applied to B = ρAT . Note that

bn−p+1,j =
n∑

k=1

ρn−p+1,k ajk = ajp for 1 ≤ j, p ≤ n.

Thus,

max
1≤j≤n

|bnj | = max
1≤j≤n

|aj1| = |at1| = |bnt|,

and the effect of P (1) is to interchange columns 1 and t, so that P (1) =
(
P̄ (1)

)T
= P̄ (1).

Let BP (1) = [b̃jk], and note that BP (1) = ρ
(
P̄ (1) A

)T
. Now U (1) = I − e(1)

(
x(1)

)T
,

where

x
(1)
j =

b̃nj

b̃n1

=
ãj1
ã11

= m
(1)
j for 2 ≤ j ≤ n and x

(1)
1 = m

(1)
1 = 0.

Thus, U (1) =
(
L(1)

)T
; hence,

B(1) = BP (1)U (1) = ρ
(
L(1) P̄ (1) A

)T
= ρ

(
A(1)

)T
.

Thus, the statement is true for i = 1.
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Suppose that the theorem is true for all i such that 1 ≤ i ≤ s < n − 1, and
consider the (s +1)st step of GEPP. Let

max
s+1≤j≤n

|a(s)
j,s+1| = |a(s)

r,s+1|.

Thus, the effect of P̄ (s+1) is to interchange rows (s+ 1) and r. Letting

P̄ (s+1) A(s) =
[
ã
(s)
jk

]
,

then L(s+1) = I −m(s+1)
(
e(s+1)

)T
, where

m
(s+1)
j =

ã
(s)
j,s+1

ã
(s)
s+1,s+1

for s+ 2 ≤ j ≤ n

and

m
(s+1)
j = 0 for 1 ≤ j ≤ s+ 1.

Thus, A(s+1) = L(s+1) P̄ (s+1) A(s). Now consider the (s+ 1)st step of BDPP applied

to B = ρAT . By the induction hypothesis, B(s) = ρ
(
A(s)

)T
, and consequently

max
s+1≤j≤n

∣∣b(s)n−s,j
∣∣ = max

s+1≤j≤n
∣∣a(s)

j,s+1

∣∣ =
∣∣a(s)

r,s+1

∣∣ =
∣∣b(s)n−s,r

∣∣.
Thus, the effect of P (s+1) is to interchange columns (s+ 1) and r, so that

P (s+1) =
(
P̄ (s+1)

)T
= P̄ (s+1).

Let B(s) P (s+1) = [b̃
(s)
jk ], and note that B(s) P (s+1) = ρ

(
P̄ (s+1) A(s)

)T
. Now

U (s+1) = I − e(s+1)
(
x(s+1)

)T
,

where

x
(s+1)
j =

b̃
(s)
n−s,j

b̃
(s)
n−s,s+1

=
ã
(s)
j,s+1

ã
(s)
s+1,s+1

= m
(s+1)
j for s+ 2 ≤ j ≤ n

and

x
(s+1)
j = m

(s+1)
j = 0 for 1 ≤ j ≤ s+ 1.

Thus, U (s+1) =
(
L(s+1)

)T
, and

B(s+1) = BP (s+1)U (s+1) = ρ
(
L(s+1) P̄ (s+1) A

)T
= ρ

(
A(s+1)

)T
,

completing the proof.
Remark 4.3. Consider GEPP applied to AT ρ. From Theorem 4.2, this is equiva-

lent to the application of BDPP to ρ(AT ρ)T = A.
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An immediate consequence of Theorem 4.2 is the following, which shows that
Bruhat decomposition with partial pivoting on A determines the left Bruhat decom-
position of a column permutation of A. This result is analogous to a well-known result
for GEPP.

Corollary 4.4. Suppose A is an n-by-n nonsingular matrix and let

AP (1)U (1)P (2)U (2) · · ·P (n−1)U (n−1) = V ρ

be the result of BDPP applied to A. Then there exist a permutation matrix P and an
upper triangular matrix U such that AP = V ρU .

Proof. Let

L(n−1) P̄ (n−1) L(n−2) P̄ (n−2) · · ·L(1) P̄ (1) AT ρ = L−1 P̄ AT ρ = Ū

be the result of applying GEPP to AT ρ (see, e.g., [1, p. 123] and [10, p. 125]). Thus,

ŪT = ρA P̄T (L−1)T

= ρA P̄ (1)
(
L(1)

)T
· · · P̄ (n−1)

(
L(n−1)

)T
= ρAP (1)U (1) · · ·P (n−1)U (n−1),

by Theorem 4.2 and Remark 4.3. Hence, AP̄T (L−1)T = V ρ, which implies that
AP̄T = V ρLT , giving the required result with P = P̄T and U = LT .

We summarize the relationship between GEPP and BDPP in the following corol-
lary.

Corollary 4.5. Suppose A is an n-by-n nonsingular matrix. If the result of
applying GEPP to A is P̄A = LŪ , and the result of applying BDPP to ρAT is
ρATP = V ρU , then

P̄ = PT , L = UT , and Ū = ρV T ρ.

By virtue of the relations between the Bruhat decomposition and the LU decom-
position, and between BDPP and GEPP, both Algorithms 2.1 and 4.1 require about
n3/3 flops (see, e.g., [1]).

5. Stability of BDPP. For BDPP the growth of entries in U is bounded by 1;
thus, from (3.1), the growth factor for BDPP is

γBP = max
i,j,k

∣∣a(i)
jk

∣∣ / max
j,k

∣∣ajk∣∣.
For ρWn, the row reversal of the Wilkinson matrix, it can be shown that γ = 2,
γB = 2n−1, and γBP = 2. The transpose of the Wilkinson matrix, WT

n , is another
matrix that has an exponential growth factor (γB = 2n−1) when Algorithm 2.1 is
applied and a constant growth factor (γBP = 4) when Algorithm 4.1 is applied.
Note that by the equivalence in Theorem 4.2, γ for A equals γBP for ρAT . Thus,
γBP ≤ 2n−1, and this upper bound is realized, for example, by ρWT

n .
We now show that γBP ≤ 2 for every n-by-n real matrix that has γ = 2n−1 when

GEPP is applied. The following theorem due to Higham and Higham characterizes
this class of matrices, which includes Wn.
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Theorem 5.1 (see [6, Theorem 2.2]). All real n-by-n matrices for which γ = 2n−1

are of the form

A = DM

[
T

... θd

0
...

]
,

where D = diag(±1), M is unit lower triangular with mij = −1 for i > j, T = [tij ]
is a nonsingular upper triangular matrix of order n− 1, d = [1 2 4 · · · 2n−1]T , and
θ is a scalar such that

θ = |a1n| = max
i,j

|aij |.

For example, the general form of a 5-by-5 matrix with D = I having γ = 24 is

A =




t11 t12 t13 t14 θ
−t11 t22 − t12 t23 − t13 t24 − t14 θ
−t11 −(t22 + t12) t33 − (t23 + t13) t34 − (t24 + t14) θ
−t11 −(t22 + t12) −(t33 + t23 + t13) t44 − (t34 + t24 + t14) θ
−t11 −(t22 + t12) −(t33 + t23 + t13) −(t44 + t34 + t24 + t14) θ


 .

Theorem 5.2. Let A be a real n-by-n matrix for which γ = 2n−1 when GEPP is
applied. Then application of BDPP to A gives γBP ≤ 2.

Proof. As A is assumed to have γ = 2n−1, matrix A must be of the form given in
Theorem 5.1. At the first step of BDPP on A, if

θ = max
1≤q≤n−1

|anq| = |an1| = |t11|,

then no interchange is performed; however, if

θ > max
1≤q≤n−1

|anq| or θ = max
2≤q≤n−1

|anq| = |ank|

with k ∈ {2, . . . , n − 1}, then P (1) interchanges columns 1 and n. (Note that this
includes a tie-breaking strategy for BDPP.) After one step of Algorithm 4.1,

max
j,k

∣∣a(1)
jk

∣∣ / max
j,k

|ajk| ≤ 2.

The resulting matrix A(1) can be partitioned as

A(1) =

[
z

... H

... 0

]
,

where z is either column 1 or column n of A, and H is an (n − 1)-by-(n − 1) upper
Hessenberg matrix with hi,n−1 = 0 for i = 2, . . . , n − 1. Thus, further steps require
only column permutations (but no eliminations). Thus, γBP ≤ 2.

We conjecture that if an n-by-n nonsingular matrix A can be written as A =
R+ xyT , where R is an upper triangular matrix, then γBP ≤ 2(n− 1). The matrices
of Theorem 5.1 and the matrices of Foster [3] are of this form.
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Abstract. For x ∈ R
n and 1 ≤ k ≤ n, define

‖x‖k ≡
k∑

i=1

|x[i]|,

where x[1], . . . , x[n] are the entries of x such that |x[1]| ≥ · · · ≥ |x[n]|. It is shown that

‖x‖2 ≤ ‖y‖‖z‖
for all permutation invariant absolute norms on R

n if and only if

‖x‖2k ≤ ‖y‖k‖z‖k, k = 1, 2, . . . , n.

This generalizes Ky Fan’s dominance theorem and implies similar results for unitarily invariant norms
on the space of matrices that have application in some recent work of Bhatia, Kittaneh, and Li [Linear
and Multilinear Algebra, to appear] on inequalities for commutators. Further generalizations of the
above result are also obtained.

Key words. permutation invariant absolute norm, singular values
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1. Introduction and main result. Given x ∈ R
n, let x[i] be the ith largest

component of x in absolute value. For k = 1, 2, . . . , n, define

‖x‖k ≡
k∑
i=1

|x[i]|.

Let R
n
+↓ denote the set of nonnegative vectors in R

n with components arranged in
nonincreasing order. For any nonzero α ∈ R

n
+↓ define

‖x‖α ≡
n∑
i=1

αi|x[i]|.

It is easy to check that both ‖x‖k and ‖x‖α are permutation invariant absolute norms
(also known as symmetric gauge functions or symmetric norms; see, e.g., [3, Chapter
3]) on R

n. There is a simple relation between these two families of norms:

‖x‖α =
n∑

k=1

(αk − αk+1)‖x‖k;(1.1)

we set αn+1 = 0. Note that the factors (αk − αk+1) are nonnegative.
Ky Fan’s dominance theorem [2, Theorem 7.4.45] is as follows.
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Theorem 1.1. Take x, y ∈ R
n. Then

‖x‖ ≤ ‖y‖(1.2)

for all permutation invariant absolute norms on R
n if and only if

‖x‖k ≤ ‖y‖k, k = 1, 2, . . . , n.(1.3)

This is a very useful theorem, especially because, according to a result of von
Neumann (see, e.g., [2, Theorem 7.4.24]), any unitarily invariant norm on the space of
matrices can be represented as a permutation invariant absolute norm of the singular
values of the matrix. For 1 ≤ k ≤ n, define the Ky Fan k-norm of an n× n matrix X
by

‖X‖k =
k∑
i=1

σi(X),

where σ1(X) ≥ · · · ≥ σn(X) denote the singular values of X. Then Theorem 1.1
immediately implies a similar result for unitarily invariant norms.

Theorem 1.2. Take n× n complex matrices X and Y . Then

‖X‖ ≤ ‖Y ‖

for all unitarily invariant norms on the space of n×n complex matrices if and only if

‖X‖k ≤ ‖Y ‖k, k = 1, 2, . . . , n.

In this note we give some generalizations of Theorem 1.1. These generalizations
imply generalizations of Theorem 1.2 for unitarily invariant norms. One application
of Theorem 1.4 is in the work of Bhatia, Kittaneh, and Li [1] on inequalities for
commutators: Theorem 1.4 here implies that the bound [1, equation (2.3)] for the Ky
Fan k-norms is valid for all unitarily invariant norms.

To prove Theorems 1.4 and 2.1 we use the following quasi-linear representation
of permutation invariant absolute norms that is essentially [4, Theorem 2.1].

Theorem 1.3. Let ‖ · ‖ be a permutation invariant absolute norm on R
n. Then

there is a compact convex set A ⊆ R
n
+↓ such that for all x ∈ R

n

‖x‖ = max{‖x‖α : α ∈ A}.

In some sense, the above result says that the collection of ‖ · ‖α with α ∈ R
n
+↓

forms a generating set for permutation invariant absolute norms. In fact, the set A in
Theorem 1.3 can be taken to be the intersection of R

n
+↓ and the unit ball of the dual

of ‖ · ‖. To illustrate the power of this representation we use it to prove Theorem 1.1.
Let x, y ∈ R

n satisfy (1.3). Choose a permutation invariant absolute norm and
let A be a corresponding set. Let α ∈ A be such that

‖x‖ = ‖x‖α.

Then

‖x‖ = ‖x‖α
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=

n∑
k=1

(αk − αk+1)‖x‖k

≤
n∑

k=1

(αk − αk+1)‖y‖k

= ‖y‖α
≤ ‖y‖.

This proof is considerably simpler than the standard proof which involves doubly
stochastic matrices and Birkhoff’s theorem; see, e.g., [2, proof of Theorem 7.4.45].
The proof that we have just given is essentially the same as [3, proof of Corollary
3.5.9].

The following is our main result. Although we shall further generalize it in the
next section, we prefer to present the statement and proof here since the statement
can be directly applied to the work of Bhatia, Kittaneh, and Li [1, Theorem 2.2] on
spectral variation as mentioned before, and the proof contains one of the key ideas in
this paper. To see that Theorem 1.4 is indeed a generalization of Theorem 1.1, take
y = z and take square roots of (1.4) and (1.5).

Theorem 1.4. Let x, y, z ∈ R
n. Then

‖x‖2 ≤ ‖y‖‖z‖(1.4)

for all permutation invariant absolute norms on R
n if and only if

‖x‖2k ≤ ‖y‖k‖z‖k, k = 1, 2, . . . , n.(1.5)

Consequently, for any n× n matrices X,Y, Z,

‖X‖2 ≤ ‖Y ‖‖Z‖
for all unitarily invariant norms if and only if

‖X‖2k ≤ ‖Y ‖k‖Z‖k, k = 1, 2, . . . , n.

Proof. Clearly, one only needs to prove the (⇐) part. Take any permutation
invariant absolute norm ‖ · ‖ on R

n. Let A be a compact convex set corresponding to
the norm ‖ · ‖. Let α ∈ A be such that

‖x‖α = ‖x‖.
The condition (1.5) ensures that the 2× 2 matrices( ‖y‖k ‖x‖k

‖x‖k ‖z‖k
)
, k = 1, 2, . . . , n,

are positive semidefinite. Since the quantities (αk − αk+1) are nonnegative it follows
that

n∑
k=1

(αk − αk+1)

( ‖y‖k ‖x‖k
‖x‖k ‖z‖k

)
=

( ‖y‖α ‖x‖α
‖x‖α ‖z‖α

)

is also positive semidefinite. Using the nonnegativity of the determinant of this matrix
for the first inequality and the representation of ‖ · ‖ in terms of A for the second we
have

‖x‖2 = ‖x‖2α ≤ ‖y‖α‖z‖α ≤ ‖y‖‖z‖
which is the required inequality.
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2. Generalizations. One can extend Theorem 1.4 to several vectors and prove
that

(i) for x0, x1, . . . , xm ∈ R
n, we have

‖x0‖m ≤
m∏
i=1

‖xi‖(2.1)

for all permutation invariant absolute norms on R
n if and only if

‖x0‖mk ≤
m∏
i=1

‖xi‖k, k = 1, 2, . . . , n.(2.2)

A similar (and actually simpler) proof using the quasi-linear representation in
Theorem 1.3 yields

(ii) for x0, x1, . . . , xm ∈ R
n, we have

‖x0‖ ≤ 1

m

m∑
i=1

‖xi‖(2.3)

for all permutation invariant absolute norms on R
n if and only if

‖x0‖k ≤ 1

m

m∑
i=1

‖xi‖k, k = 1, 2, . . . , n.(2.4)

(iii) For nonzero x0, x1, . . . , xm ∈ R
n, we have

‖x0‖ ≤ m

{
m∑
i=1

‖xi‖−1

}−1

(2.5)

for all permutation invariant absolute norms on R
n if and only if

‖x0‖k ≤ m

{
m∑
i=1

‖xi‖−1
k

}−1

, k = 1, 2, . . . , n.(2.6)

More generally, we have the following theorem.
Theorem 2.1. Suppose f : R

m
+ → R is concave, increasing in each variable and

homogeneous, i.e., f(ta1, . . . , tam) = tf(a1, . . . , am) for any t ≥ 0. Then

‖x0‖ ≤ f(‖x1‖, . . . , ‖xm‖)(2.7)

for all permutation invariant absolute norms ‖ · ‖ on R
n if and only if

‖x0‖k ≤ f(‖x1‖k, . . . , ‖xm‖k), k = 1, 2, . . . , n.(2.8)

Consequently, for any n× n matrices X0, X1, . . . , Xm,

‖X0‖ ≤ f(‖X1‖, . . . , ‖Xm‖)
for all unitarily invariant norms ‖ · ‖ if and only if

‖X0‖k ≤ f(‖X1‖k, . . . , ‖Xm‖k), k = 1, 2, . . . , n.
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Proof. We need to prove only the (⇐) part. Take any permutation invariant
absolute norm ‖ · ‖ on R

n. Let A be a compact convex set corresponding to the norm
‖ · ‖. Then there exists α ∈ A such that ‖x0‖ = ‖x0‖α. Let βk = (αk − αk+1)/α1.
Then

‖x0‖ = ‖x0‖α
=

n∑
k=1

βk(α1‖x0‖k)

≤
n∑

k=1

βkf(α1‖x1‖k, . . . , α1‖xn‖k)

≤ f

(
n∑

k=1

βkα1‖x1‖k, . . . ,
n∑

k=1

βkα1‖xn‖k
)

= f(‖x1‖α, . . . , ‖xn‖α)

≤ f(‖x1‖, . . . , ‖xn‖).

We have used the homogeneity of f and (2.8) for the first inequality and the concavity
of f for the second, and the increasing property of f for the final inequality.

To verify the concavity of the geometric and harmonic means one can compute
the Hessian and show that it is negative semidefinite on R

n
+.

Note that Theorem 2.1 is very similar to [3, Corollary 3.5.11], which asserts that
(2.7) holds for all functions f that increase in each variable if and only if (2.7) is valid
for all α-norms ‖·‖α. Our result focuses on those functions f satisfying (2.7) whenever
the finite set of conditions in (2.8) hold, and is easier to use in applications (cf. [1,
Theorem 2.2]). There are other types of norms that admit quasi-linear representations
(e.g., see [5, Theorem 3.3]) so that one may prove results similar to [3, Corollary 3.5.11]
for such norms. However, in many cases, it is impossible to obtain results similar to
that of Ky Fan (e.g., see [5, section 4]), and hence hopeless to obtain analogues of
Theorem 2.1.

Another direction to extend the result of Ky Fan is to consider the functions
φ : R

n
+ → R such that

φ(x) ≤ φ(y) whenever (1.3) holds.

This has been done extensively in connection with the theory of majorization; e.g.,
see [6]. In view of our Theorem 1.4 and statement (i), it is natural to consider the set
Pm of functions φ : R

n
+ → R such that

φ(x0)
m ≤

m∏
i=1

φ(xi) whenever (2.2) holds.

By the previous results, it is clear that for each m = 1, 2, . . . , the set Pm contains all
permutation invariant absolute norms. Also, it is not hard to show that

P1 ⊇ P2 ⊇ P3 ⊇ · · · .(2.9)

Evidently (e.g., see [6, Chapter 3]), a function φ : R
n
+ → R belongs to P1 if and only

if the function φ̃ that satisfies

φ(x) = φ̃(‖x‖n, . . . , ‖x‖1)
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is increasing in each variable on the domain

D = {x̃ = (‖x‖n, . . . , ‖x‖1) : x ∈ R
n
+}.

In the same spirit, one sees that a function φ : R
n
+ → R belongs to P2 if and only if

the function φ̃ defined above satisfies

φ̃(x)2 ≤ φ̃(y)φ̃(z) whenever x, y, z ∈ D satisfy y ◦ z − x ◦ x ∈ R
n
+,(2.10)

where ◦ denotes the Schur (entrywise) product of vectors. This condition is reason-
ably easy to check, and it is not difficult to construct examples of φ̃ that do not
correspond to permutation invariant absolute norms. For instance, one may let φ̃ be
the kth elementary symmetric function or the kth completely symmetric function on
n variables for any 1 ≤ k ≤ n. Furthermore, one may construct φ̃ which is increasing
in each variable, but (2.10) does not hold. One will then get a function φ ∈ P1 \ P2.
For example, if φ(x) = log(1 + ‖x‖1), then clearly φ ∈ P1, but (2.10) does not hold
for x = (2, 0, . . . , 0), y = 2x, and z = x/2.

The characterization of functions in Pm becomes more complicated and not so
easy to check if m ≥ 3. As a result, it is difficult to use the technique in the preceding
paragraph to check whether the inclusion

Pm ⊇ Pm+1

is proper for m ≥ 2. Fortunately, we have the following result.
Theorem 2.2. For each positive integer m, let Pm be the collection of φ : R

n
+ → R

such that

φ(x0)
m ≤

m∏
i=1

φ(xi) whenever (2.2) holds.(2.11)

Then

P1
⊃
6= P2 = P3 = P4 = · · · .

Proof. By the previous discussion and (2.9), it suffices to prove that P2 ⊆ Pm.
Suppose φ ∈ P2, and x0, x1, . . . , xm ∈ R

n
+. We may assume that xi ∈ R

n
+↓ for all

i = 0, . . . ,m. If x1 = · · · = xm, then ‖x0‖k ≤ ‖x1‖k for all k = 1, . . . ,m. Since
φ ∈ P2 ⊆ P1, it follows that φ(x0)

m ≤ φ(x1)
m =

∏m
i=1 φ(xi).

Suppose not all xi are equal for i = 1, . . . ,m. Pick indices p and q such that

‖xp − xq‖n = max{‖xr − xs‖n : 1 ≤ r < s ≤ m}.
Let u0 = v0 = w0 = 0, uk = ‖xp‖k, vk = ‖xq‖k, wk =

√
ukvk for k = 1, . . . , n. Then

ur+1 − ur ≤ ur − ur−1 and vr+1 − vr ≤ vr − vr−1 for r = 1, . . . , n− 1. It follows that

wr+1 + wr−1 =
√
ur+1vr+1 +

√
ur−1vr−1

≤ {(ur+1 + ur−1)(vr+1 + vr−1)}1/2
≤ 2wr,

i.e., wr+1 − wr ≤ wr − wr−1, for r = 1, . . . , n− 1. Define

x̃p = x̃q = (w1 − w0, w2 − w1, . . . , wn − wn−1) ∈ R
n
+↓.
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We have

(‖x̃p‖n, . . . , ‖x̃p‖1) ◦ (‖x̃q‖n, . . . , ‖x̃q‖1) = (‖xp‖n, . . . , ‖xp‖1) ◦ (‖xq‖n, . . . , ‖xq‖1).
Since φ ∈ P2, we have φ(x̃p)

2 ≤ φ(xp)φ(xq), and hence

m∏
i=1

φ(x̃i) ≤
m∏
i=1

φ(xi)

if x̃r = xr for all r 6= p, q. Moreover, the equality holds if φ is replaced by ‖ · ‖k for
each k = 1, . . . , n.

Iterating the above procedure, we see that the m vectors will converge to a single
vector, say x̃, and this x̃ will satisfy

φ(x̃)m ≤
m∏
i=1

φ(xi),

and the equality will hold if φ is replaced by ‖ · ‖k for k = 1, . . . , n. Thus

‖x0‖mk ≤
m∏
i=1

‖xi‖k = ‖x̃‖mk , k = 1, . . . , n.

Since φ ∈ P2 ⊆ P1, we have

φ(x0) ≤ φ(x̃)

and hence

φ(x0)
m ≤ φ(x̃)m ≤

m∏
i=1

φ(xi)

as required.
Similarly, one may consider Sm to be the set of functions φ : R

n
+ → R such that

φ(x0) ≤ 1

m

m∑
i=1

φ(xi) whenever (2.4) holds,

and consider Hm to be the set of functions φ : R
n
+ → R such that

φ(x0) ≤ m

{
m∑
i=1

φ(xi)
−1

}−1

whenever (2.6) holds.

Again, one can show that

S1
⊃
6= S2 = S3 = S4 = · · · and H1

⊃
6= H2 = H3 = H4 = · · · .

In fact, if φ(x) = ‖x‖1/21 , then φ ∈ S1, but φ /∈ S2 as φ(x) > (φ(y) + φ(z))/2 with
x = 3v, y = 2v, and z = 4v for any nonzero v ∈ R

n. Similarly, if φ(x) = ‖x‖21, then
φ ∈ H1, but φ /∈ H2 as φ(x) > 2{(φ(y)−1 + φ(z)−1}−1 with x = v/3, y = v/2, and
z = v/4 for any nonzero v ∈ R

n.
One may also consider generalizations along the direction of Theorem 2.1.



106 CHI-KWONG LI AND ROY MATHIAS

REFERENCES

[1] R. Bhatia, F. Kittaneh, and R.-C. Li, Some inequalities for commutators and an application
to spectral variation II, Linear and Multilinear Algebra, to appear.

[2] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
[3] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New

York, 1991.
[4] R. A. Horn and R. Mathias, Cauchy-Schwarz inequalities associated with positive semidefinite

matrices, Linear Algebra Appl., 142 (1990), pp. 63–82.
[5] C.-K. Li and N.-K. Tsing, G-invariant norms and G(c)-radii, Linear Algebra Appl., 150 (1991),

pp. 179–194.
[6] A. W. Marshall and I. Olkin, Inequalities: The Theory of Majorization and Its Applications,

Academic Press, New York, 1979.



A FAST STABLE SOLVER FOR NONSYMMETRIC TOEPLITZ AND
QUASI-TOEPLITZ SYSTEMS OF LINEAR EQUATIONS∗

S. CHANDRASEKARAN† AND ALI H. SAYED‡

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 107–139, January 1998 008

Abstract. We derive a stable and fast solver for nonsymmetric linear systems of equations
with shift structured coefficient matrices (e.g., Toeplitz, quasi-Toeplitz, and product of two Toeplitz
matrices). The algorithm is based on a modified fast QR factorization of the coefficient matrix
and relies on a stabilized version of the generalized Schur algorithm for matrices with displacement
structure. All computations can be done in O(n2) operations, where n is the matrix dimension, and
the algorithm is backward stable.

Key words. displacement structure, generalized Schur algorithm, QR factorization, hyperbolic
rotations, generator matrices, Schur complements, error analysis
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1. Introduction. Linear systems of equations can be solved by resorting to the
LDU factorization (Gaussian elimination) of the coefficient matrix. But for indefinite
or nonsymmetric matrices, the LDU factorization is numerically unstable if done
without pivoting. Moreover, since pivoting can destroy the structure of a matrix, it
is not always possible to incorporate it into a fast algorithm for structured matrices
without potential loss of computational efficiency.

Sometimes though, one can transform a given structured matrix to another struc-
tured form so that the new structure is insensitive to partial pivoting operations [9, 12].
While this technique can be satisfactory for certain situations, it may still pose numer-
ical problems because partial pivoting by itself is not sufficient to guarantee numerical
stability even for slow algorithms. It also seems difficult to implement complete piv-
oting in a fast algorithm without accruing a considerable loss of efficiency. Recently,
Gu [11] proposed a fast algorithm that incorporates an approximate complete pivoting
strategy.

Another way to solve a structured linear system of equations is to compute the
QR factorization of the coefficient matrix rapidly. Several fast methods have been
proposed earlier in the literature [1, 6, 7, 8, 19], but none of them are numerically
stable.

In this paper we resolve this open issue and derive an algorithm that is provably
both fast and backward stable for solving linear systems of equations involving non-
symmetric structured coefficient matrices (e.g., Toeplitz, quasi Toeplitz, and Toeplitz-
like). The algorithm is based on a modified fast QR factorization of the coefficient
matrix T in Tx = b. It computes a factorization for T of the form

T = ∆(∆−1Q)R,
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where ∆ is lower triangular, (∆−1Q) is orthogonal, and R is upper triangular. The
factorization is then used to solve for x efficiently by using

x = R−1(QT∆−T )∆−1b.(1.1)

All computations can be done in O(n2) operations, where n is the matrix dimension,
and the algorithm is backward stable in the sense that the computed solution x̂ is
shown to satisfy an equation of the form

(T +H)x̂ = b,

where the norm of the error matrix satisfies

‖H‖ ≤ c1ε ‖T‖ + O(ε2),

where ε denotes machine precision and c1 is a low-order polynomial in n.
The fast and stable algorithm to be derived in this paper is based on ideas of

displacement structure theory [15]. The concept of displacement structure was intro-
duced by Kailath, Kung, and Morf almost two decades ago [14] and has since proven
to be a useful tool in matrix analysis. Its strength lies in the fact that it allows us,
in a systematic way, to describe and exploit varied forms of matrix structure. In this
framework, matrix structures are described in terms of displacement equations and
triangular factorizations are efficiently carried out by a generalized Schur algorithm
[15].

However, the numerical behavior of the generalized Schur algorithm has been an
issue of concern until very recently, which is mainly due to the fact that the algorithm
relies heavily on hyperbolic transformations. In recent work, Bojanczyk et al. [2] have
shown that for a subclass of positive-definite shift structured matrices (known as quasi
Toeplitz), the Cholesky factorization provided by the generalized Schur algorithm is
asymptotically stable despite the hyperbolic rotations.

The class of quasi-Toeplitz matrices refers to a special kind of structured matrices
whose displacement rank (to be defined later) is equal to 2. Stewart and van Dooren
[18] further considered the case of positive-definite shift structured matrices with
displacement ranks larger than 2. They argued that the generalized Schur algorithm
will still provide a stable Cholesky factorization provided the required rotations are
now implemented in a special way (a combination of unitary rotations followed by a
single hyperbolic rotation in mixed form).

Motivated by the work of Bojanczyk et al. [2], we have also pursued in [4] a
detailed analysis of the numerical stability of the generalized Schur algorithm for a
general class of positive-definite structured matrices. In particular, we have shown
that along with proper implementations of the hyperbolic transformations, if further
modifications are introduced while computing intermediate quantities, the algorithm
will guarantee a Cholesky factorization that is provably backward stable. We further
employed a perturbation analysis to indicate the best accuracy that can be expected
from any finite precision algorithm (slow or fast), and then showed that the modified
Schur algorithm of [4] essentially achieves this bound. For all practical purposes,
the major conclusion of the analysis in [4] was that the modified Schur algorithm is
backward stable for a large class of structured matrices.

The above results have further motivated us to tackle the standing issue of de-
riving an algorithm that is both fast and stable for the solution of nonsymmetric
structured linear systems of equations Tx = b, where T is shift structured (to be de-
fined later). The stability analyses of the generalized Schur algorithm that we referred
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to above do not apply in this case since the structured matrix T is not positive definite
(it is not even required to be symmetric). The only restriction on T is invertibility.

The way we approach the problem is motivated by embedding ideas pursued in
[5, 13]. We first embed the given n×n matrix T into a larger 2n× 2n matrix M that
is defined by

M =

[
TTT TT

T 0

]
.(1.2)

The matrix M is symmetric but still indefinite; while its leading n × n submatrix is
positive definite (equal to TTT ), its Schur complement with respect to the (1, 1) block
is negative definite (and equal to −I). (The product TTT is not formed explicitly, as
explained later.)

We then apply 2n steps of the generalized Schur algorithm to M and obtain its
computed triangular factorization, which is of the form[

R̂T 0

Q̂ ∆

] [
R̂ Q̂T

0 −∆T

]
,

where R̂T and ∆ are n×n lower triangular matrices. The matrices {R̂, Q̂,∆} are the
quantities used in (1.1) to determine the computed solution x̂ in a backward stable
manner.

From a numerical point of view, the above steps differ in crucial ways from the
embeddings suggested in [5, 13], and which turn out to mark the difference between
a numerically stable and a numerically unstable implementation.

The discussion in [5, pp. 37, 50, 52] and [13] is mainly concerned with fast pro-
cedures for the QR factorization of Toeplitz-block and block-Toeplitz matrices. It
employs an embedding of the form

M =

[
TTT TT

T I

]
,(1.3)

where the identity matrix I in (1.3) replaces the zero matrix in our embedding (1.2).
The derivation in [5, 13] suggests applying n (rather than 2n) steps of the generalized
Schur algorithm to (1.3) and then uses the resulting R̂ and Q̂ as the QR factors of
T . This procedure, however, does not guarantee a numerically orthogonal matrix Q̂
and cannot, therefore, be used to implement a stable solver for a linear system of
equations Tx = b.

For this reason, we instead propose in this paper to proceed with the earlier
embedding (1.2) since it seems difficult to obtain a stable algorithm that is solely
based on the alternative embedding (1.3). We also apply 2n steps (rather than just
n steps) of the generalized Schur algorithm to (1.2). This allows us to incorporate a
correction procedure into the algorithm that is shown to ensure backward stability,
when coupled with other modifications that are needed, especially while applying the
hyperbolic rotations.

1.1. Notation. In the discussion that follows we use ‖ · ‖ to denote the 2-norm
of its argument. Also, the ·̂ notation denotes computed quantities, and we use ε to
denote the machine precision and n the matrix size. We also use subscripted δ’s to
denote quantities bounded by machine precision in magnitude, and subscripted c’s to
denote low-order polynomials in n.
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We assume that in our floating point model additions, subtractions, multiplica-
tions, divisions, and square roots are done to high relative accuracy, i.e.,

fl(x ◦ y) = (x ◦ y)(1 + δ),

where ◦ denotes +,−,×,÷ and |δ| ≤ ε. Likewise for the square root operation. This
is true for floating point processors that adhere to the IEEE standards.

2. Displacement structure. Consider an n × n symmetric matrix M and an
n× n lower triangular real-valued matrix F . The displacement of M with respect to
F is denoted by ∇F and defined as

∇F = M − FMFT .(2.1)

The matrix M is said to have low displacement rank with respect to F if the rank
of ∇F is considerably lower than n. In this case, M is said to have displacement
structure with respect to F [15].

Let r � n denote the rank of ∇F . It follows that we can factor ∇F as

∇F = GJGT ,(2.2)

where G is an n× r matrix and J is a signature matrix of the form

J =

[
Ip 0
0 −Iq

]
, p+ q = r.(2.3)

The integer p denotes the number of positive eigenvalues of ∇F , while the integer
q denotes the number of its negative eigenvalues. The factorization (2.2) is highly
nonunique. If G satisfies (2.2), then GΘ also satisfies (2.2) for any J-unitary matrix
Θ, i.e., for any Θ such that ΘJΘT = J. This follows from the trivial identity

(GΘ)J(GΘ)T = G(ΘJΘT )GT = GJGT .

Combining (2.1) and (2.2), a matrix M is said to be structured with respect to the
displacement operation defined by (2.1) if it satisfies a displacement equation of the
form

M − FMFT = GJGT ,(2.4)

with a “low” rank matrix G. Equation (2.4) uniquely defines M (i.e., it has a unique
solution M) iff the diagonal entries of the lower triangular matrix F satisfy the con-
dition

1− fifj 6= 0 for all i, j.

This uniqueness condition will hold for the cases studied in this paper. (It can be
relaxed in some instances [15].)

The pair (G, J) is said to be a generator pair for M since, along with F , it
completely identifies M . Note, however, that while M has n2 entries, the matrix
G has nr entries and r is usually much smaller than n. Therefore, algorithms that
operate on the entries of G, with the purpose of obtaining a triangular factorization
for M , will generally be an order of magnitude faster than algorithms that operate
on the entries of M itself. The generalized Schur algorithm is one such fast O(rn2)
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procedure, which receives as input data the matrices (F,G, J) and provides as output
data the triangular factorization of M . A recent survey on various other forms of
displacement structure and on the associated forms of Schur algorithms can be found
in [15].

The notion of structured matrices can also be extended to nonsymmetric matrices
M . In this case, the displacement of M is generally defined with respect to two lower
triangular matrices F and A (which can be the same, i.e., F = A; see (2.10)),

∇F,A = M − FMAT ,(2.5)

and the low-rank difference matrix ∇F,A is (nonuniquely) factored as

∇F,A = GBT ,(2.6)

where G and B are n× r generator matrices, i.e.,

M − FMAT = GBT .(2.7)

Again, this displacement equation uniquely defines M iff the diagonal entries of F
and A satisfy 1− fiaj 6= 0 for all i, j, a condition that will be met in this paper.

2.1. Toeplitz, quasi-Toeplitz, and shift structured matrices. The concept
of displacement structure is perhaps best introduced by considering the much-studied
special case of a symmetric Toeplitz matrix T =

[
t|i−j|

]n
i,j=1

, t0 = 1.

Let Z denote the n × n lower triangular shift matrix with ones on the first sub-
diagonal and zeros elsewhere (i.e., a lower triangular Jordan block with eigenvalue
0):

Z =




0
1 0

. . .
. . .

1 0


 .(2.8)

It can be easily checked that the difference T−ZTZT has displacement rank 2 (except
when all ti, i 6= 0, are zero), and a generator for T is {G, (1⊕−1)}, where

T − ZTZT =




1 0
t1 t1
...

...
tn−1 tn−1



[

1 0
0 −1

]
1 0
t1 t1
...

...
tn−1 tn−1



T

= GJGT .(2.9)

Similarly, for a nonsymmetric Toeplitz matrix T = [ti−j ]
n
i,j=1 , we can easily verify

that the difference T − ZTZT has displacement rank 2 and that a generator (G,B)
for T is

T − ZTZT =




t0 1
t1 0
...

...
tn−1 0






1 0
0 t−1

...
...

0 t−n+1



T

= GBT .(2.10)



112 S. CHANDRASEKARAN AND A. SAYED

This is a special case of (2.7) with F = A = Z. In particular, any matrix T for which
(T − ZTZT ) has rank 2 is called quasi Toeplitz, i.e.,

T − ZTZT = GBT has rank 2.(2.11)

For example, the inverse of a Toeplitz matrix is quasi Toeplitz [15].
Later in the paper we shall focus on the class of shift structured matrices (cf.

(4.1)), which includes Toeplitz and quasi-Toeplitz matrices as special cases. These
are all matrices that are structured with respect to F = A = Z. For ease of reference,
we define the terminology below.

Definition 2.1.
1. Any matrix that is structured with respect to the shift operators F = Z and

A = Z will be said to be shift structured. That is, for shift structured matrices
the rank of ∇Z,Z (or displacement rank) is low compared to n.

2. A quasi-Toeplitz matrix is a shift structured matrix with displacement rank 2.
For example, the product of two Toeplitz matrices is shift structured with dis-

placement rank 4 [15].

3. The generalized Schur algorithm. An efficient algorithm for the triangu-
lar factorization of symmetric or nonsymmetric structured matrices (of either forms
(2.4) or (2.7)) is the generalized Schur algorithm [15]. For our purposes, it is sufficient
to describe the algorithm here for symmetric structured matrices M of the form (2.4),
with a strictly lower triangular matrix F . This includes, for example, the following
special choices for F : F = Z, F = Z2, F = (Z ⊕ Z), etc. The matrix M is further
assumed to be strongly regular (i.e., all its leading submatrices are nonsingular).

A generator matrix G is said to be in proper form if its first nonzero row has a
single nonzero entry, say in the first column

G =




x 0 0 0 0
x x x x x
x x x x x
...

...
...

...
...

x x x x x


 ,(3.1)

or in the last column

G =




0 0 0 0 x
x x x x x
x x x x x
...

...
...

...
...

x x x x x


 .(3.2)

The generalized Schur algorithm operates on the entries of (F,G, J), which de-
scribe the displacement structure of M in (2.4) (assumed strongly regular), and pro-
vides the triangular factorization of M [15].

Algorithm 3.1 (the generalized Schur algorithm).
• Input data: An n× n strictly lower triangular matrix F , an n× r generator
G1 = G, and J = (Ip ⊕−Iq).

• Output data: A lower triangular factor L and a signature matrix D such that
M = LDLT , where M is the solution of (2.4) (assumed n× n).
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The algorithm operates as follows: start with G1 = G, F1 = F , and repeat
for i = 1, 2, . . . , n:

1. Let gi denote the top row of Gi.
2. If giJg

T
i > 0 (we refer to this case as a positive step):

• Choose a J-unitary rotation Θi that converts gi to proper form with
respect to the first column, i.e.,

giΘi =
[
x 0 0 0 0

]
.(3.3)

Let Ḡi = GiΘi (i.e., apply Θi to Gi).
• The nonzero part of the ith column of L, denoted by l̄i, is the first column

of Ḡi,

l̄i = Ḡi

[
1
0

]
.(3.4)

The ith column of L, denoted by li, is obtained by appending (i−1) zero
entries to l̄i,

li =

[
0
l̄i

]
.(3.5)

The ith signature is di = 1.
• Keep the last columns of Ḡi unchanged and multiply the first column by
Fi, where Fi denotes the submatrix obtained by deleting the first (i− 1)
rows and columns of F . This provides a new matrix whose first row is
zero (since Fi is strictly lower triangular) and whose last rows are the
rows of the next generator matrix Gi+1, i.e.,[

0
Gi+1

]
=

[
Fi l̄i Ḡi

[
0

I

] ]
.(3.6)

3. If giJg
T
i < 0 (we refer to this case as a negative step):

• Choose a J-unitary rotation Θi that converts gi to proper form with
respect to the last column, i.e.,

giΘi =
[

0 0 0 0 x
]
.(3.7)

Let Ḡi = GiΘi (i.e., apply Θi to Gi).
• The nonzero part of the ith column of L, denoted by l̄i, is the last column

of Ḡi,

l̄i = Ḡi

[
0
1

]
.(3.8)

The ith column of L, denoted by li, is obtained by appending (i−1) zero
entries to l̄i,

li =

[
0
l̄i

]
.(3.9)

The ith signature is di = −1.
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• Keep the first columns of Ḡi unchanged and multiply the last column
by Fi. This provides a new matrix whose first row is zero (since Fi is
strictly lower triangular) and whose last rows are the rows of the next
generator matrix Gi+1, i.e.,[

0
Gi+1

]
=

[
Ḡi

[
I

0

]
Fi l̄i

]
.(3.10)

4. The case giJg
T
i = 0 is ruled out by the strong regularity of M .

Schematically, for the special case r = 2, we have the following simple array
picture for a positive-step case (a similar picture holds for a negative-step case):

Gi =




x x
x x
x x
...

...


 Θi−→




x′ 0
x′ x′

x′ x′
...

...




︸ ︷︷ ︸
Ḡi

apply Fi−→




0 0
x′′ x′

x′′ x′
...

...


 =

[
0 0
Gi+1

]
.(3.11)

Using words we have the following:
• Use the top row of Gi to define a J-unitary matrix Θi that transforms this

row to the form
[
x′ 0

]
;

• multiply Gi by Θi and keep the last columns unchanged;
• apply Fi to the first column of Ḡi = GiΘi;
• these two operations result in Gi+1.

The rotations Θi are always guaranteed to exist and they can be constructed in
different ways (see, e.g., [15, Lem. 4.3 and sect. 4.4.1]).

After n steps, the algorithm provides the triangular decomposition [15]

M =

n∑
i=1

dilil
T
i(3.12)

at O(rn2) computational cost.
Moreover, the successive matrices Gi that are obtained via the algorithm have an

interesting interpretation. Let Mi denote the Schur complement of M with respect to
its leading (i−1)× (i−1) submatrix. That is, M1 = M , M2 is the Schur complement
with respect to the (1, 1) top left entry of M , M3 is the Schur complement with
respect to the 2 × 2 top left submatrix of M , and so on. The matrices Mi are
therefore (n− i+1)× (n− i+1). Recall also that Fi denotes the submatrix obtained
by deleting the first (i− 1) rows and columns of F . Hence, Mi and Fi have the same
dimensions.

While the Mi are never computed explicitly, it can be shown that (Mi, Fi, Gi)
satisfy the displacement equation [15]

Mi − FiMiF
T
i = GiJG

T
i .(3.13)

Hence, Gi constitutes a generator matrix for the ith Schur complement Mi, which
is therefore structured. Note further that Ḡi is also a generator matrix for the
same Schur complement Mi since, due to the J-unitarity of Θi, we have ḠiJḠ

T
i =

GiΘiJΘT
i G

T
i = GiJG

T
i .

We summarize the above discussion in the following statement, deliberately stated
in loose terms.
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Lemma 3.2. The successive Schur complements of a structured matrix are also
structured and the generalized Schur algorithm is a recursive procedure that provides
generator matrices for the successive Schur complements. It also provides the trian-
gular factors of the original matrix.

We also indicate here, for later reference, that two successive Schur complements
Mi and Mi+1 are related via the Schur complementation step:

Mi = di l̄i l̄
T
i +

[
0 0
0 Mi+1

]
.(3.14)

We now address the main issues of this paper.

4. Fast QR factorization of shift structured matrices. Let T be an n× n
shift structured matrix (possibly nonsymmetric) with displacement rank r,

T − ZTZT = GBT .(4.1)

Special cases include the Toeplitz matrix of (2.10) and quasi-Toeplitz matrices of
(2.11), whose displacement ranks are equal to 2 (r = 2).

Consider the 3n× 3n augmented matrix

M =


 −I T 0

TT 0 TT

0 T 0


 .(4.2)

The matrix M is also structured (as shown below) with respect to Zn ⊕ Zn ⊕ Zn,
where Zn denotes the n× n lower shift triangular matrix (denoted earlier by Z; here
we include the subscript n in order to explicitly indicate the size of Z).

It can be easily verified that M − (Zn ⊕Zn ⊕Zn)M(Zn ⊕Zn ⊕Zn)T is low rank
since

M − (Zn ⊕ Zn ⊕ Zn)M(Zn ⊕ Zn ⊕ Zn)T =


 −e1eT1 GBT 0

BGT 0 BGT

0 GBT 0


 ,(4.3)

where e1 =
[

1 0 . . . 0
]T

is a basis vector of appropriate dimension. A generator
matrix for M , with 3n rows and (2r + 1) columns, can be seen to be

G =
1√
2


 G −G e1

B B 0
G −G 0


 , J =

[
Ir
−Ir+1

]
.(4.4)

That is,

M −FMFT = GJ GT ,
where F = (Zn ⊕ Zn ⊕ Zn) and (G,J ) are as above.

The n × n leading submatrix of M is negative definite (in fact, equal to −I).
Therefore, the first n steps of the generalized Schur algorithm applied to (F ,G,J )
will be negative steps (cf. step 3 of Algorithm 3.1). These first n steps lead to a
generator matrix, denoted by Gn+1 (with 2n rows), for the Schur complement of M
with respect to its leading n× n leading submatrix, viz.,

Mn+1 − (Zn ⊕ Zn)Mn+1(Zn ⊕ Zn)T = Gn+1JGTn+1 ,(4.5)
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where Mn+1 is 2n× 2n and equal to

Mn+1 =

[
TTT TT

T 0

]
.(4.6)

Clearly, M and its Schur complement Mn+1 are related via the Schur complement
relation (cf. (3.14))

M =


 I
−TT

0


 (−I) [ I −TT 0

]
+


 0 0 0

0 TTT TT

0 T 0


 .

Therefore, (Gn+1,J ) is a generator for Mn+1 with respect to (Zn⊕Zn), as shown by
(4.5).

The leading n × n submatrix of Mn+1 is now positive definite (equal to TTT ).
Therefore, the next n steps of the generalized Schur algorithm applied to (Zn ⊕
Zn,Gn+1,J ) will be positive steps (cf. step 2 of Algorithm 3.1). These steps lead to
a generator matrix, denoted by G2n+1 (with n rows), for the Schur complement of M
with respect to its leading 2n× 2n leading submatrix, viz.,

M2n+1 − ZnM2n+1Z
T
n = G2n+1JGT2n+1,

where M2n+1 is now n× n and equal to −I.
Again, Mn+1 and M2n+1 are related via a (block) Schur complementation step

(cf. (3.14)), written as[
TTT TT

T 0

]
= Mn+1 =

[
RT

Q

]
(I)
[
R QT

]
+

[
0 0
0 −I

]
,(4.7)

where we have denoted the first n columns of the triangular factor of Mn+1 by[
RT

Q

]
with R an n × n upper triangular matrix and Q an n × n matrix. The R and Q
matrices are thus obtained by splitting the first n columns of the triangular factor of
Mn+1 into a leading lower triangular block followed by a full matrix Q.

By equating terms on both sides of (4.7) we can explicitly identify R and Q as
follows:

TTT = RTR , T = QR , QQT − I = 0.

These relations show that Q and R define the QR factors of the matrix T .
In summary, the above discussion shows the following: given a shift structured

matrix T as in (4.1), its QR factorization can be computed efficiently by applying 2n
steps of the generalized Schur algorithm to the matrices (F ,G,J ) defined in (4.4).
The factors Q and R can be obtained from the triangular factors {li} for i = n +
1, n+ 2, . . . , 2n.

Alternatively, if a generator matrix is directly available for Mn+1 in (4.6) (see
section 4.1), then we need only apply n Schur steps to the generator matrix and read
the factors Q and R from the resulting n columns of the triangular factor.

In the later sections of this paper we shall establish, for convenience of exposition,
the numerical stability of a fast solver for Tx = b that starts with a generator matrix
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for the embedding (4.6) rather than the embedding (4.2). It will become clear, how-
ever, that the same conclusions will hold if we instead start with a generator matrix
for the embedding (4.2).

The augmentation (4.2) was used in [16, 17] and it is based on embedding ideas
originally pursued in [5, 13] (see section 4.2).

4.1. The Toeplitz case. In some cases it is possible to find an explicit generator
matrix for Mn+1. This saves the first n steps of the generalized Schur algorithm.

For example, consider the case when T is a Toeplitz matrix (which is a special case
of (4.1) whose first column is [t0, t1, . . . , tn−1]

T and whose first row is [t0, t−1, . . . , t−n+1]).
Define the vectors

 c0
...

cn−1


 =

Te1
‖Te1‖ ,


 s0

...
sn−1


 = TT


 c0

...
cn−1


 .

It can be verified that a generator matrix for Mn+1 in (4.6) is the following [5]:

Mn+1 − (Zn ⊕ Zn)Mn+1(Zn ⊕ Zn)T = Gn+1JGTn+1,

where J is 5× 5,

J = diag[1, 1,−1,−1,−1],

and Gn+1 is 2n× 5,

Gn+1 =




s0 0 0 0 0
s1 t−1 s1 tn−1 0
...

...
...

...
...

sn−1 t−n+1 sn−1 t1 0
c0 1 c0 0 1
c1 0 c1 0 0
...

...
...

...
cn−1 0 cn−1 0 0



.

4.2. Other augmentations. It is also possible to compute the QR factors of a
structured matrix T satisfying (4.1) by using other augmented matrices, other than
(4.2). For example, consider the 3n× 3n augmented matrix

M =


 −I T 0

TT 0 TT

0 T I


 ,(4.8)

where an identity matrix replaces the zero matrix in the (3, 3) block entry of the
matrix in (4.2). A generator matrix for M , with 3n rows and (2r+2) columns, is now

G =
1√
2


 G 0 −G e1

B 0 B 0
G e1 −G 0


 , J =

[
Ir+1

−Ir+1

]
.

If T is Toeplitz, as in section 4.1, then the rank of G can be shown to reduce to
2r = 4 [5] (this is in contrast to the displacement rank 5 that follows from the earlier
embedding (4.2), as shown in section 4.1).
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After 2n steps of the generalized Schur algorithm applied to the above (G,J ), we
obtain the following factorization (since now M2n+1 = 0):

M =


 I 0
−TT RT

0 Q


[ −I 0

0 I

] I 0
−TT RT

0 Q


T ,

from which we can again read the QR factors of T from the triangular factors {li} for
i = n+ 1, . . . , 2n+ 1. This augmentation was suggested in [5, p. 37] and [13].

However, from a numerical point of view, computing the QR factors of a struc-
tured matrix T using the generalized Schur algorithm on the augmented matrices M
in (4.2) or (4.8) is not stable. The problem is that the computed Q matrix is not nec-
essarily orthogonal. This is also true for other procedures for fast QR factorization
[1, 7, 8, 19].

In the next section we show how to overcome this difficulty and develop a fast
and stable algorithm for solving linear systems of equations with shift structured
coefficient matrices T . For this purpose, we proceed with the embedding suggested
earlier in (4.2) since it seems difficult to obtain a stable algorithm that is based solely
on the alternative embedding (4.8). The reason is that the embedding (4.2) allows us
to incorporate a correction procedure into the algorithm in order to ensure stability.

We first derive a stable algorithm for a well-conditioned coefficient matrix, and
then modify it for the case when the coefficient matrix is ill conditioned. The in-
terested reader may consult at this time the summary of the final algorithm that is
provided in section 10.

5. Well-conditioned T . In this section we develop a stable algorithm for the
case of well-conditioned matrices T . A definition of what we mean by a well-condi-
tioned matrix is given further ahead (see (5.19)). Essentially this refers to matrices
whose condition number is less than the reciprocal of the square root of the machine
precision. Modifications to handle the ill-conditioned case will be introduced later in
the paper.

We start with an n × n (possibly nonsymmetric) shift structured matrix T with
displacement rank r,

T − ZnTZ
T
n = GBT ,(5.1)

and assume we have available a generator matrix G for the 2n×2n augmented matrix

M =

[
TTT TT

T 0

]
,(5.2)

that is,

M −FMFT = GJ GT ,(5.3)

where F = (Zn⊕Zn). Note that, for ease of exposition, we have modified our notation.
While we have earlier denoted the above matrix M by Mn+1, its generator by Gn+1,
and have used F to denote (Zn ⊕Zn ⊕Zn), we are now dropping the subscript n+ 1
from (Mn+1,Gn+1) and are using F to denote the 2n× 2n matrix (Zn ⊕ Zn).

In section 4.1 we have discussed an example where we have shown a particular
generator matrix G for M when T is Toeplitz. (We repeat that the error analysis of
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later sections will still apply if we instead start with the 3n×3n embedding (4.2) and
its generator matrix (4.4).)

We have indicated earlier (at the end of section 4) that by applying n steps of
the generalized Schur algorithm to the matrix M in (5.2) we can obtain the QR
factorization of T from the resulting n columns of the triangular factors of M . But
this procedure is not numerically stable since the resulting Q is not guaranteed to
be unitary. To fix this problem, we propose some modifications. The most relevant
modification we introduce now is to run the Schur algorithm for 2n steps on M rather
than just n steps. As suggested in the paper [4], we also need to be careful in the
application of the hyperbolic rotations. In particular, we assume that the hyperbolic
rotations are applied using one of the methods suggested in the paper [4] (mixed
downdating, OD method, or H procedure; see Appendices A and B at the end of this
paper).

The matrix T is only required to be invertible. In this case, the leading submatrix
of M in (5.2) is positive definite and therefore the first n steps of the generalized Schur
algorithm will be positive steps. Hence, the hyperbolic rotations needed for the first n
steps will perform transformations of the form (3.3), where generators are transformed
into proper form with respect to their first column. Likewise, the Schur complement
of M with respect to its leading submatrix TTT is equal to −I, which is negative
definite. This means that the last n steps of the generalized Schur algorithm will be
negative steps. Hence, the hyperbolic rotations needed for the last n steps will perform
transformations of the form (3.7), where generators are transformed into proper form
with respect to their last column.

During a positive step (a similar discussion holds for a negative step), a generator
matrix Gi will be reduced to proper form by implementing the hyperbolic transfor-
mation Θi as a sequence of orthogonal transformations followed by a 2× 2 hyperbolic
rotation (see also [18]). The 2× 2 rotation is implemented along the lines of [4], e.g.,
via mixed downdating [3], or the OD method, or the H procedure (see Appendices A
and B for a description of the OD and H procedures [4]). Details are given below.

5.1. Implementation of the J -unitary rotations Θi. When the generalized
Schur algorithm is applied to (G,F) in (5.3), we proceed through a sequence of gen-
erator matrices (G,G2,G3, . . .) of decreasing number of rows (2n, 2n − 1, 2n − 2, . . .).
Let gi denote the top row of the generator matrix Gi at step i. In a positive step,
it needs to be reduced to the form (3.3) via an (Ip ⊕ −Iq)-unitary rotation Θi. We
propose to perform this transformation as follows:

1. Apply a unitary (orthogonal) rotation (e.g., Householder) to the first p columns
of Gi so as to reduce the top row of these p columns into proper form,

gi =
[
x x x x x x

] unitary Θi,1−→ [
x 0 0 x x x

]
= gi,1,

with a nonzero entry in the first column. Let

Gi,1 = Gi
[

Θi,1 0
0 I

]
(5.4)

denote the modified generator matrix. Its last q columns coincide with those
of Gi.

2. Apply another unitary (orthogonal) rotation (e.g., Householder) to the last q
columns of Gi,1 so as to reduce the top row of these last q columns into proper
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form with respect to their last column,

gi,1 =
[
x 0 0 x x x

] unitary Θi,2−→ [
x 0 0 0 0 x

]
= gi,2,

with a nonzero entry in the last column. Let

Gi,2 = Gi,1
[
I 0
0 Θi,2

]
(5.5)

denote the modified generator matrix. Its first p columns coincide with those
of Gi,1.

3. Employ an elementary hyperbolic rotation Θi,3 acting on the first and last
columns (in mixed-downdating [3] form, or according to the OD or the H
methods of [4]; see also Appendices A and B) in order to annihilate the
nonzero entry in the last column,

gi,2 =
[
x 0 0 0 x

] hyperbolic Θi,3−→ [
x 0 0 0 0 0

]
.

4. The combined effect of the above steps is to reduce gi to the proper form
(3.3) and, hence,

Ḡi = Gi
[

Θi,1 0
0 I

] [
I 0
0 Θi,2

]
Θi,3.(5.6)

Expression (5.6) shows that, in infinite precision, the generator matrices Gi and
Ḡi must satisfy the fundamental requirement

GiJGTi = ḠiJ ḠTi .(5.7)

Obviously, this condition cannot be guaranteed in finite precision. But with the
above implementation of the transformation (5.6) (as a sequence of two orthogonal
transformations and a hyperbolic rotation in mixed, OD, or H forms), equality (5.7)
can be guaranteed to within a “small” error (see (5.8)). Indeed, it follows from (5.4)
and (5.5), and from the orthogonality of Θi,1 and Θi,2, that

‖Ĝi,2J ĜTi,2 − GiJGTi ‖ ≤ c2ε‖Gi‖2,

and ∣∣∣ ‖Ĝi,2‖2 − ‖Gi‖2 ∣∣∣ ≤ c3ε‖Gi‖2.

It further follows from the error bound (A.3) (in the Appendix) that

‖ ˆ̄GiJ ˆ̄GTi − Ĝi,2J ĜTi,2‖ ≤ c4ε
(
‖ ˆ̄Gi‖2 + ‖Ĝi,2‖2

)
.

Combining the above error bounds we conclude that the following holds:

‖ ˆ̄GiJ ˆ̄GTi − GiJGTi ‖ ≤ c5ε
(
‖ ˆ̄Gi‖2 + ‖Gi‖2

)
.(5.8)

A similar analysis holds for a negative step, where the hyperbolic rotation Θi,3

is again implemented as a sequence of two unitary rotations and one elementary
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hyperbolic rotation in order to guarantee the transformation (3.7). We forgo the
details here.

We finally remark that in the algorithm, the incoming generator matrix Gi will in
fact be the computed version, which we denote by Ĝi. This explains why in the error
analysis of the next section (see (5.11) and (5.13)) we replace Gi by Ĝi in the error
bound (5.8).

Note that we are implicitly assuming that the required hyperbolic rotation Θi,3

exists. While that can be guaranteed in infinite precision, it is possible that in finite
precision we can experience breakdowns. This matter is handled in section 5.3.

5.2. Error analysis of the first n steps. After the first n steps of the gener-
alized Schur algorithm applied to (F ,G) in (5.3), we let[

R̂T

Q̂

]

denote the computed factors that correspond to expression (4.7). We further define
the matrix Sn+1 that solves the displacement equation

Sn+1 − ZnSn+1Z
T
n = Ĝn+1J ĜTn+1.(5.9)

Note that Sn+1 is an n× n matrix, which in infinite precision would have been equal
to the Schur complement −I (cf. (4.7)). We can now define

M̂ =

[
R̂T

Q̂

] [
R̂ Q̂T

]
+

[
0 0
0 Sn+1

]
.(5.10)

We also define the difference

Ni = ˆ̄GiJ ˆ̄GTi − ĜiJ ĜTi ,(5.11)

and introduce the error matrix E = M − M̂ . Using (5.8), the error analysis in [4,
sect. 7, eq. (41)] can be extended to show that the 2n× 2n error matrix satisfies the
equation

E −FEFT =
n∑
i=1

Ni.

Consequently, since F = (Zn ⊕ Zn) is nilpotent,

E =

n−1∑
k=0

Fk

(
n∑
i=1

Ni

)
(Fk)T .

If we further invoke the fact that F is contractive we conclude that

‖E‖ ≤
n−1∑
k=0

∥∥∥∥∥
n∑
i=1

Ni

∥∥∥∥∥ ≤
n−1∑
k=0

n∑
i=1

‖Ni‖ = n
n∑
i=1

‖Ni‖,(5.12)

where, according to (5.8),

‖Ni‖ ≤ c5ε
(
‖ ˆ̄Gi‖2 + ‖Ĝi‖2

)
.(5.13)
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But since all columns of Ĝi+1 and ˆ̄Gi coincide, except for one column in ˆ̄Gi that is
shifted down (multiplied by Fi) to produce the corresponding column in Ĝi+1, then
we clearly have

‖Ĝi+1‖2 ≤ ‖ ˆ̄Gi‖2.

We can therefore rewrite (5.13) as

‖Ni‖ ≤ c6ε
(
‖Ĝi+1‖2 + ‖Ĝi‖2

)
.(5.14)

Substituting into (5.12) we obtain the following error bound:

‖E‖ ≤ c7ε
n∑
i=1

(
‖Ĝi+1‖2 + ‖Ĝi‖2

)
≤ c8ε

n∑
i=1

‖Ĝi‖2.(5.15)

5.3. Avoiding breakdown. The above error analysis assumes that the first
n steps of the generalized Schur algorithm applied to (G,F) in (5.3) do not break
down. That is, during the first n steps, the J -unitary rotations Θi are well defined.
This further requires that the leading submatrices of the first n successive Schur
complements remain positive definite. We now show that this can be guaranteed by
imposing a lower bound on the minimum singular value of the matrix T (see (5.19);
this corresponds to requiring a well-conditioned T , an assumption that will be dropped
in section 7 when the algorithm is extended for ill-conditioned T ).

The argument is inductive. We assume that the algorithm has successfully com-
pleted the first (i − 1) steps and define the matrix Si that solves the displacement
equation

Si −FiSiFT
i = ĜiJ ĜTi , 1 ≤ i ≤ (n+ 1),(5.16)

where Fi is the submatrix obtained from F in (5.3) by deleting its first (i − 1) rows
and columns. In particular, F1 = F and Fn = Zn. Note that Si is an (2n− i+ 1)×
(2n − i + 1) matrix, which in infinite precision would have been equal to the Schur
complement of M with respect to its leading (i− 1)× (i− 1) submatrix.

We further define, for 1 ≤ i ≤ n+ 1, the matrices M̂i,

M̂i =

i−1∑
j=1

l̂i l̂
T
i + Si,(5.17)

where the l̂i are the computed triangular factors, given by (cf. (3.4) and (3.5)). We
can again establish, by following the arguments of [4, sect. 7.1], that the error matrices
Ei = M − M̂i satisfy

Ei −FiEiFT
i =

i−1∑
j=1

Nj .

This relation again establishes, along the lines of (5.15), that

‖M − M̂i‖ ≤ c9ε
i−1∑
j=1

‖Ĝj‖2.
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Therefore, if the minimum eigenvalue of the leading n× n submatrix of M (which is
equal to TTT ) meets the lower bound

λmin(TTT ) > c9ε
i−1∑
j=1

‖Ĝj‖2,(5.18)

then the leading n×n submatrix of M̂i will be guaranteed to be positive definite and
the algorithm can continue to the next iteration.

This analysis suggests the following lower bound on the minimum singular value
of T in order to avoid breakdown in the first n steps of the algorithm:

σ2
min(T ) > 2 c9ε

n∑
j=1

‖Ĝj‖2.(5.19)

We refer to a matrix T that satisfies the above requirement as being well conditioned
(the scalar multiple 2 is made explicit for convenience in later discussion; see (5.29)).

Theorem 5.1 (error bound). The first n steps of the generalized Schur algorithm
applied to (F ,G) in (5.3), for a matrix T satisfying (5.19), and with the rotations Θi

implemented as discussed in section 5.1, guarantee the following error bound on the
matrix (M − M̂) (with M̂ defined in (5.10)):

‖M − M̂‖ ≤ c9ε

n∑
j=1

‖Ĝj‖2.(5.20)

5.4. Growth of generators. The natural question then is, How big can the
norm of the generator matrices be? The analysis that follows is motivated by an
observation in [18] that for matrices of the form TTT , with T Toeplitz, there is no
appreciable generator growth.

To establish an upper bound on the generator norm, we consider the generator
matrix Ĝi (at the ith step) and recall from the discussion that led to (5.6) that, in a
positive step, Ĝi is transformed via three rotation steps: a unitary rotation Θi,1 that

reduces the first p columns of Ĝi into proper form, a second unitary rotation Θi,2 that

reduces the last q columns of Ĝi into proper form, and a last elementary hyperbolic
rotation Θi,3 that reduces the overall generator matrix Ĝi into proper form.

We denote the first and last columns of Ĝi by ûi and v̂i, respectively, and denote
the remaining columns by the block matrices Ûi and V̂i, i.e., we write

Ĝi =
[
ûi Ûi V̂i v̂i

]
.

After the above sequence of three rotations we obtain a new generator matrix ˆ̄Gi that
we partition accordingly,

ˆ̄Gi =
[

ˆ̄ui
ˆ̄U i

ˆ̄V i ˆ̄vi

]
.

The last (r−1) columns of ˆ̄Gi remain unchanged and provide the columns of the next
generator matrix Ĝi+1, while the first column ˆ̄ui is multiplied by Fi (which essentially
corresponds to a simple shifting operation). Hence, we have

Ĝi+1 =
[
ûi+1 Ûi+1 V̂i+1 v̂i+1

]
=
[
Fi ˆ̄ui ˆ̄U i

ˆ̄V i ˆ̄vi

]
.
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The first unitary rotation Θi,1 operates on {ûi, Ûi} and provides {ũi, ˆ̄U i}. This
step guarantees the following norm relation:

‖ ˆ̄U i‖ ≤ (1 + c10ε)
(
‖Ûi‖ + ‖ûi‖

)
.

But since ˆ̄U i = Ûi+1, we also have

‖Ûi+1‖ ≤ (1 + c10ε)
(
‖Ûi‖ + ‖ûi‖

)
.

By repeatedly applying the above inequality we obtain

‖Ûi+1‖ ≤ (1 + c11ε)
i

i∑
j=1

‖ûj‖.

Consequently,

∥∥[ ûi+1 Ûi+1

]∥∥ ≤ (1 + c12ε)
i
i+1∑
j=1

‖ûj‖.(5.21)

But the ûi, for i = 2, . . . , n+ 1, are shifted versions of the (nonzero parts of the)
columns of the block matrix [

R̂T

Q̂

]
.

Therefore,

i+1∑
j=1

‖ûj‖ ≤ n

∥∥∥∥
[
R̂T

Q̂

]∥∥∥∥ + ‖û1‖.

Now further recall that

Si+1 −Fi+1Si+1FT
i+1 = Ĝi+1J ĜTi+1,

where Fi+1 is nilpotent (in fact, composed of shift matrices). It thus follows that∥∥[ V̂i+1 v̂i+1

]∥∥2 ≤ ∥∥[ ûi+1 Ûi+1

]∥∥2
+ 2‖Si+1‖.(5.22)

Combining (5.21) and (5.22) we conclude that

‖Ĝi+1‖2 ≤ 8n2(1 + c12ε)
2i

∥∥∥∥
[
R̂T

Q̂

]∥∥∥∥
2

+ 8‖û1‖2 + 4‖Si+1‖.(5.23)

We will now show that ‖Si+1‖ is bounded (at least in infinite precision).
For this purpose, we partition T into T =

[
T1 T2

]
, where T1 has i columns

and T2 has (n− i) columns. Commensurately partition M as follows:

M =


 TT

1 T1 TT
1 T2 TT

1

TT
2 T1 TT

2 T2 TT
2

T1 T2 0


 .
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Therefore, the Schur complement Si+1 in infinite precision is given by

Si+1 =

[
TT

2 T2 − TT
2 T1(T

T
1 T1)

−1TT
1 T2 TT

2 − TT
2 T1(T

T
1 T1)

−1TT
1

T2 − T1(T
T
1 T1)

−1TT
1 T2 −T1(T

T
1 T1)

−1TT
1

]
.

Let the partitioned QR factorization of T in infinite precision be

T =
[
Q1 Q2

] [ R11 R12

0 R22

]
.

Then

T1(T
T
1 T1)

−1TT
1 = Q1Q

T
1 ,

which is an orthogonal projector with 2-norm equal to one. It then follows that ‖Si+1‖
is bounded as follows:

‖Si+1‖ ≤ 1 + 2‖T‖2 + 2‖T‖.(5.24)

The derivation of the above bound can be extended to finite precision by following
the technique used in the next section for ‖Sn+1‖. We omit the details here.

Therefore, a first-order bound for the sum of the norms of the generators in (5.20)
is given by

n∑
i=1

‖Gi‖2 ≤
n∑
i=1

[
8n2

∥∥∥∥
[
R̂T

Q̂

]∥∥∥∥
2

+ 8‖û1‖2 + 4‖Si+1‖
]

+ O(ε2)

≤ 8n3‖M‖+ 8n‖M‖ + 4n(1 + 2‖T‖2 + 2‖T‖) + O(ε2)

≤ 16n(1 + n2)(1 + ‖T‖+ ‖T 2‖) + O(ε2).(5.25)

5.5. Error analysis of the last n steps. It follows from (5.10), and from the
definition of E = M − M̂ , that

M − E =

[
R̂T

Q̂

] [
R̂ Q̂T

]
+

[
0 0
0 Sn+1

]
.(5.26)

If we partition the error matrix −E into subblocks, say

−E =

[
E11 E12

E21 E22

]
, E21 = ET

12 ,

and use the definition of M in (5.2), we obtain from (5.26) that

Sn+1 = E22 − (T + E21)(T
TT + E11)

−1(TT + E12).

Therefore,

Sn+1 = E22 − T (TTT + E11)
−1TT − T (TTT + E11)

−1E12

−E21(T
TT + E11)

−1TT − E21(T
TT + E11)

−1E12

= −(I + T−TE11T
−1)−1 + Ē,(5.27)

where several terms have been collected into the matrix Ē,

Ē = E22 − T (TTT + E11)
−1E12 − E21(T

TT + E11)
−1TT − E21(T

TT + E11)
−1E12.
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Its norm satisfies the bound

‖Ē‖ ≤ ‖E‖+
2 ‖T‖ ‖E‖

λmin(TTT )− ‖E‖ +
‖E‖2

λmin(TTT )− ‖E‖ ,

and the denominator is positive in view of (5.19) and (5.20). At this stage we make
the following normalization assumption:

‖T‖ ≤ 1

5
,(5.28)

which can always be guaranteed by proper scaling (as explained in the statement of
the algorithm in section 10).

We also recall that the well-conditioned assumption (5.19), along with (5.25) and
the error bound (5.20), guarantees the following condition:

λ−1
min(TTT )‖E‖ ≤ 1

2
.(5.29)

Remark. This essentially means that the condition number of T should be smaller
than 1/

√
ε. We will relax this condition in section 7.

From assumptions (5.28) and (5.29) we obtain ‖E‖2 ≤ ‖T‖ ‖E‖, since

‖E‖ ≤ σ2
min(T )

2
≤ ‖T‖

2

2
≤ 1

5

‖T‖
2
≤ ‖T‖.

Therefore,

‖Ē‖ ≤ ‖E‖+
3 ‖T‖ ‖E‖

λmin(TTT )− ‖E‖ .

Applying Corollary 8.3.2 in [10] to expression (5.27), we get

σmin(Sn+1) ≥ 1

1 + λ−1
min(TTT )‖E‖ − ‖Ē‖.(5.30)

Using (5.28) and (5.29) we get

σmin(Sn+1) ≥ 2

3
− ‖Ē‖,(5.31)

and

‖Ē‖ ≤ 11

5
‖E‖ ≤ 11

25
.(5.32)

It then follows from (5.31) that

σmin(Sn+1) ≥ 17

75
≥ 1

5
.(5.33)

We now derive an upper bound for ‖Sn+1‖. Applying Corollary 8.3.2 in [10] to
expression (5.27), and using (5.29) and (5.32), we get

σmax(Sn+1) ≤ 1

1− λ−1
min(TTT )‖E‖ + ‖Ē‖ ≤ 2 +

11

25
< 3.(5.34)
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Therefore, the condition number of Sn+1 satisfies

κ(Sn+1) ≤ 15.(5.35)

This establishes that Sn+1 is a well-conditioned matrix.
By Corollary 8.3.2 in [10], the matrix (I + T−TE11T

−1)−1 in (5.27) is positive
definite since by (5.29) 1− λ−1

min(TTT )‖E‖ ≥ 1/2 > 0. Furthermore,

‖Ē‖ ≤ 11

25
<

1

2
<

1

1− λ−1
min(TTT )‖E‖ ≤ 2.

Therefore, applying Corollary 8.3.2 in [10] again to expression (5.27) we conclude that
Sn+1 is negative definite.

Lemma 5.2. The matrix Sn+1 defined in (5.9) is negative definite and well con-
ditioned. In particular, its condition number is at most 15 (cf. (5.35)).

We can now proceed with the last n steps of the generalized Schur algorithm
applied to Ĝn+1, since Ĝn+1 is a generator matrix for Sn+1:

Sn+1 − ZnSn+1Z
T
n = Ĝn+1J ĜTn+1.

All steps will now be negative steps. Hence, the discussion of section 5.1 applies.
The only difference will be that we make the generator proper with respect to its
last column. In other words, the third step of the algorithm in section 5.1 should be
modified as follows:

gi,2 =
[
x 0 0 0 x

] hyperbolic Θi,3−→ [
0 0 0 0 0 x

]
.(5.36)

Let −∆∆T be the computed triangular factorization of Sn+1. A similar error
analysis to that of section 5.2 (or the results of [4]) can be used to show that

‖Sn+1 − (−∆∆T )‖ ≤ c13ε
2n∑

i=n+1

‖Ĝi‖2.(5.37)

The norm of the generators {Ĝi} appearing in the above error expression can be shown
to be bounded as follows. Similar to (5.21) we have

∥∥[ V̂i+1 v̂i+1

]∥∥ ≤ (1 + c14ε)
i−n

i∑
j=n+1

‖v̂j‖.(5.38)

Moreover, the v̂i, for i = n + 2, . . . , 2n, are shifted versions of the (nonzero parts of
the) columns of ∆. Hence,

i∑
j=n+1

‖v̂j‖ ≤ n‖∆‖ + ‖v̂n+1‖.

By using the fact that Zn is lower triangular and contractive and that Sn+1 is negative
definite, Lemma B.2 in [4] can be extended to show that∥∥[ ûi+1 Ûi+1

]∥∥ ≤ ∥∥[ V̂i+1 v̂i+1

]∥∥ .
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Therefore,

‖Ĝi‖ ≤
∥∥[ ûi+1 Ûi+1

]∥∥+
∥∥[ V̂i+1 v̂i+1

]∥∥
≤ 2

∥∥[ V̂i+1 v̂i+1

]∥∥
≤ 2(1 + c14ε)

i−n[n‖∆‖+ ‖v̂n+1‖],(5.39)

where in infinite precision

‖∆‖2 = ‖Sn+1‖ ≤ 3,

from relation (5.34). Similarly, the bound for v̂n+1 follows from (5.23) and (5.24).

Summary. We have shown so far that if we apply 2n steps of the generalized
Schur algorithm to the matrices (F ,G) in (5.3), with proper implementation of the
J -unitary rotations (as explained in section 5.1), then the error in the computed
factorization of M is bounded as follows:∥∥∥∥M −

[
R̂T 0

Q̂ ∆

] [
R̂ Q̂T

0 −∆T

]∥∥∥∥ ≤ c15ε
2n∑
i=1

‖Ĝi‖2.(5.40)

We have also established (at least in infinite precision) that the norm of the gener-
ators is bounded. Therefore, the computed factorization is (at least asymptotically)
backward stable with respect to M .

6. Solving linear systems. We now return to the problem of solving the linear
system of equations Tx = b, where T is a well-conditioned nonsymmetric shift struc-
tured matrix (e.g., Toeplitz, quasi-Toeplitz, and product of two Toeplitz matrices).

Note from the bound (5.40) that

‖Q̂Q̂T −∆∆T ‖ ≤ c15ε

2n∑
i=1

‖Ĝi‖2.

Therefore,

‖(∆−1Q̂)(∆−1Q̂)T − I‖ ≤ c15ε‖∆−1‖2
2n∑
i=1

‖Ĝi‖2.

It follows from (5.33) and (5.35) that

σmin(∆∆T ) ≥ σmin(Sn+1)− c15ε
2n∑

i=n+1

‖Ĝi‖2 ≥ 1

5
− c15ε

2n∑
i=n+1

‖Ĝi‖2 ≈ 1

5
.

Therefore, ‖∆−1‖2 is bounded by 1/5 (approximately), from which we can conclude
that ∆−1Q̂ is numerically orthogonal.

Furthermore, from (5.40) we also have

‖T − Q̂R̂‖ ≤ c15ε

2n∑
i=1

‖Ĝi‖2.

This shows that we can compute x by solving the nearby linear system

∆∆−1Q̂R̂x = b,
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in O(n2) flops by exploiting the fact that ∆−1Q̂ is numerically orthogonal and ∆ is
triangular as follows:

x̂ ← R̂−1(Q̂T∆−T )∆−1b.(6.1)

The fact that this scheme for computing x is backward stable will be established in
section 8 (see the remark after expression (8.2)).

7. Ill-conditioned T . We now consider modifications to the algorithm when
the inequality (5.29) is not satisfied by T . This essentially means that the condition
number of T is larger than the square root of the reciprocal of the machine precision.
We will refer to such matrices T as being ill conditioned.

There are several potential numerical problems now, all of which have to be
eliminated. First, the (1, 1) block of M can fail to factorize as it is not sufficiently
positive definite. Second, even if the first n steps of the Schur algorithm are completed
successfully, the Schur complement Sn+1 of the (2, 2) block may no longer be negative
definite, making the algorithm unstable. Third, the matrix ∆ may no longer be well
conditioned, in which case it is not clear how one can solve the linear system Tx = b
in a stable manner. We now show how these problems can be resolved.

To resolve the first two problems we add small multiples of the identity matrix
to the (1, 1) and (2, 2) blocks of M , separately:

M =

[
TTT + αI T

TT −βI
]
,(7.1)

where α and β are positive numbers that will be specified later.1 This leads to an
increase in the displacement rank of M . For Toeplitz matrices the rank increases only
by one and the new generators are given as follows:

M − (Zn ⊕ Zn)M(Zn ⊕ Zn)T = GJ GT ,(7.2)

where J is 6× 6,

J = diag[1, 1, 1,−1,−1,−1],(7.3)

and G is 2n× 6,

G =




√
α s0 0 0 0 0

0 s1 t−1 s1 tn−1 0
...

...
...

...
...

...
0 sn−1 t−n+1 sn−1 t1 0
0 c0 1 c0 0

√
1 + β

0 c1 0 c1 0 0
...

...
...

...
...

0 cn−1 0 cn−1 0 0



.(7.4)

Had we instead started with the embedding (4.2) for more general shift structured
matrices, we would then modify the generators as explained later in the remark in
section 9.

1We continue to use M for the new matrix in (7.1) for convenience of notation.
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Assume α is chosen such that

α ≥ c16ε
n∑

j=1

‖Ĝj‖2;(7.5)

then since

λmin(TTT + αI) > c16ε

n∑
j=1

‖Ĝj‖2 ,(7.6)

it follows from the analysis in section 5.3 that the first n steps of the generalized
Schur algorithm applied to G in (7.4) will complete successfully. As in (5.10), define
the matrix

M̂ =

[
R̂T

Q̂

] [
R̂ Q̂T

]
+

[
0 0
0 Sn+1

]
,(7.7)

where Sn+1 is the solution of

Sn+1 − ZnSn+1Z
T
n = Ĝn+1J Ĝn+1.

(Recall that Ĝn+1 now has six columns and J is 6× 6.) Then following the analysis
of the first n steps of section 5.2 we obtain (cf. (5.20))

‖E‖ =
∥∥∥M − M̂

∥∥∥ ≤ c19ε
n∑

j=1

‖Ĝj‖2,

where, as shown earlier in (5.23),

‖Ĝi+1‖2 ≤ 8n2(1 + c16ε)
2i

∥∥∥∥
[
R̂T

Q̂

]∥∥∥∥
2

+ 8‖û1‖2 + 4‖Si+1‖2.(7.8)

The proof that Si+1 is bounded is similar to the proof that Sn+1 is bounded, which
we now give. First, we assume that β satisfies the following bound:

β ≥ 1 + c16ε

1− c16ε
(‖E‖+ 4) .(7.9)

Recall that Sn+1 satisfies the relation

M − E =

[
R̂T

Q̂

] [
R̂ Q̂T

]
+

[
0 0
0 Sn+1

]
.(7.10)

If we partition the error matrix −E into subblocks, say

−E =

[
E11 ET

12

E12 E22

]
,

and use the definition of M in (7.1), we obtain from (7.10) that

Sn+1 = −βI + E22 − (T + E12)(T
TT + αI + E11)

−1(TT + ET
12).(7.11)
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Since α and β satisfy (7.5) and (7.9), we have that

α ≥ ‖E‖ ≥ ‖E11‖, β ≥ 1 + c16ε

1− c16ε
(‖E‖+ 4) ≥ ‖E‖ ≥ ‖E22‖.

Therefore, (αI + E11) is positive definite and (−βI + E22) is negative definite. This
shows, in view of (7.11), that Sn+1 is negative definite. We now proceed to bound
the smallest and the largest eigenvalues of Sn+1.

Using (7.11) we write

Sn+1 = −βI + E22 − (I + E12T
−1)(I + αT−TT−1 + T−TE11T

−1)−1(I + T−TET
12),

and note that

‖(I + αT−TT−1 + T−TE11T
−1)−1‖ =

∥∥∥∥∥
(
I + αT−T

[
I +

E11

α

]
T−1

)−1
∥∥∥∥∥ ≤ 1,

since ‖E11‖/α < 1.
We now make the assumption

‖T−1‖ ‖E‖ ≤ 1,(7.12)

which is considerably weaker than the assumption (5.29) used in the well-conditioned
case. Assumption (7.12) essentially means that the condition number of T should be
less than the reciprocal of the machine precision.

It then follows that

‖Sn+1‖ ≤ β + ‖E‖ + 4.

Since, technically, ‖E‖ depends upon ‖Sn+1‖, we have only shown that ‖Sn+1‖ is
bounded to first order in ε. With more effort, this restriction can be removed.

Before proceeding, we mention that the error in factorizing Sn+1 into −∆∆T by
the generalized Schur algorithm can be written in the form

‖Sn+1 − (−∆∆T )‖ ≤ c17ε‖Sn+1‖,
where c17 can be obtained by extending the analysis of section 5.2.

As mentioned earlier (cf. (5.18)), Sn+1 can be factorized by the Schur algorithm
if its minimum eigenvalue satisfies

|λmin(Sn+1)| ≥ c17ε‖Sn+1‖ .
But since |λmin(Sn+1)| ≥ β−‖E22‖, the above condition can be guaranteed by choos-
ing

β ≥ c17ε‖Sn+1‖ + ‖E22‖
≥ c17ε(β + ‖E‖+ 4) + ‖E‖
≥ 1

1− c17ε
[c17ε(‖E‖+ 4) + ‖E‖]

≥ 1 + c17ε

1− c17ε
(‖E‖+ 4),

which is assumption (7.9) on β (with c17 = c16).
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Therefore, the last n steps of the generalized Schur algorithm can be completed
to give the following error bound in the factorization of M in (7.1):

∥∥∥∥M −
[
R̂T 0

Q̂ ∆

] [
R̂ Q̂T

0 −∆T

]∥∥∥∥ ≤ α + β + c18ε
2n∑
i=1

‖Ĝi‖2 ,(7.13)

where the norm of the generators is again bounded by arguments similar to those in
section 5.4. In other words, we have a backward stable factorization of M .

Since ∆ is no longer provably well conditioned, we cannot argue that ∆−1Q̂ is
numerically orthogonal. For this reason, we now discuss how to solve the linear system
of equations Tx = b in the ill-conditioned case.

8. Solving the linear system. Note that if x solves Tx = b, then it also
satisfies [

TTT TT

T 0

] [
x
−b

]
=

[
0
b

]
.

Using the above backward stable factorization (7.13) we can solve the above linear
system of equations to get([

TTT TT

T 0

]
+ H

)[
ŷ
ẑ

]
=

[
0
b

]
,(8.1)

where the error matrix H satisfies

‖H‖ ≤ α + β + c18ε
2n∑
i=1

‖Ĝi‖2 + c19ε

∥∥∥∥
[
R̂T 0

Q̂ ∆

]∥∥∥∥
2

.

Note that ŷ is computed by the expression

R−1Q̂T∆−T∆−1b,(8.2)

which is identical to the earlier formula (6.1) we obtained by assuming ∆−1Q̂ is
numerically orthogonal! Therefore, the subsequent error analysis holds equally well
for the well-conditioned case.

Moreover, it follows from (8.1) that

(T +H21)ŷ +H22ẑ = b.

Therefore, we can write this as(
T +H21 +

H22ẑŷ
T

ŷT ŷ

)
ŷ = b,(8.3)

where ∥∥∥∥H21 +
H22ẑŷ

T

ŷT ŷ

∥∥∥∥ ≤ ‖H21‖ + ‖H22‖‖ẑ‖‖ŷ‖ .(8.4)

If we assume

‖T‖ ≤ 1(8.5)
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(which is implied by (5.28)), then in infinite precision

‖ẑ‖
‖ŷ‖ =

‖b‖
‖x‖ =

‖b‖
‖T−1b‖ ≤

‖b‖
‖b‖ ‖T‖ ≤ 1.

Under the assumptions in Theorem C.1, which are of a similar nature to as-
sumptions we have already made, we can show that ‖ẑ‖/‖ŷ‖ is also bounded in finite
precision. Therefore, our algorithm is backward stable for solving shift structured
linear systems.

Theorem C.1 imposes a bound on κ(M), the condition number of M . We now
verify that κ(M) is of the same order as κ(T ). First, note that

‖M‖ ≤ 2‖T‖ + ‖T‖2 ≤ 3‖T‖,
since ‖T‖ ≤ 1. Moreover,

M−1 =

[
0 T−1

T−T −I
]
,

from which we conclude that

‖M−1‖ ≤ 1 + 2‖T−1‖.
Hence,

κ(M) ≤ (1 + 2‖T−1‖)(3‖T‖) ≤ 9κ(T ).

Therefore, the restriction on κ(M) can be considered a restriction on κ(T ), which will
be similar to our earlier assumption (7.12).

For convenience we now give a simple first-order bound for the backward error in
(8.3). Indeed,∥∥∥∥H21 +

H22ẑŷ
T

ŷT ŷ

∥∥∥∥ ≤ ‖H21‖ + ‖H22‖ + O(ε2)

≤ 2‖H‖ + O(ε2)

≤ 2

[
α + β + c20ε

2n∑
i=1

‖Ĝi‖2 + c21ε

∥∥∥∥
[
R̂T 0

Q̂ ∆

]∥∥∥∥
2
]

+ O(ε2)

≤ 2(α + β)

+c22ε

[
‖M‖ +

2n∑
i=1

(
8n2‖M‖+ 4(1 + 2‖T‖2 + 2‖T‖))

]
+ O(ε2)

≤ 2(α + β) + c23ε
[‖M‖ + 4n(1 + 2‖T‖2 + 2‖T‖)] + O(ε2)

≤ 2(α + β) + c24ε[‖M‖+ 1] + O(ε2)

≤ 2(α + β) + c25ε[‖T‖+ 1] + O(ε2).(8.6)

Note that ‖T‖ should be approximately one for the algorithm to be backward stable.
This can be satisfied by appropriately normalizing ‖T‖.

8.1. Conditions on the coefficient matrix. For ease of reference, we list
here the conditions imposed on the coefficient matrix T in order to guarantee a fast
backward stable solver of Tx = b:

1. ‖T‖ is suitably normalized to guarantee ‖T‖ ≈ 1 (cf. (5.28) and (8.5)).
2. ‖T−1‖ satisfies (7.12), which essentially means that the condition number of

T should be less than the reciprocal of the machine precision.
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9. A remark. Had we instead started with the embedding (4.2), we first perform
n steps of the generalized Schur algorithm to get a generator matrix Ĝn+1 for the
computed version of the 2n× 2n embedding (4.6). We then add two columns to Ĝn+1

as follows:




√
α 0

0 0
0

√
β

... Ĝn+1

...
0 0
0 0



,

where the entry
√
β occurs in the (n + 1)th row of the last column. The new first

column has a positive signature and the new last column has a negative signature.

10. Pseudocode of the algorithm for Toeplitz systems. For convenience
we summarize the algorithm here for the case of nonsymmetric Toeplitz systems. We
hasten to add though that the algorithm also applies to more general shift structured
matrices T (such as quasi Toeplitz or with higher displacement ranks, as demonstrated
by the analysis in the earlier sections). The only difference will be in the initial
generator matrix G and signature matrix J for M in (7.1) and (7.2). The algorithm
will also be essentially the same, apart from an additional n Schur steps, if we instead
employ the embedding (4.2).

Input: A nonsymmetric n × n Toeplitz matrix T and an n-dimensional column
vector b. The entries of the first column of T are denoted by [t0, t1, . . . , tn−1]

T , while
the entries of the first row of T are denoted by [t0, t−1, . . . , t−n+1].

Output: A backward stable solution of Tx = b.

Algorithm:

• Normalize T and b. Since the Frobenius norm of ‖T‖ is less than

γ =

√√√√n
n−1∑

i=−n+1

t2i ,

we can normalize T by setting ti to be ti/(5γ) for all i. Similarly, divide the
entries of b by 5γ. In what follows, T and b will refer to these normalized
quantities.
• Define the vectors


 c0

...
cn−1


 =

Te1
‖Te1‖ ,


 s0

...
sn−1


 = TT


 c0

...
cn−1


 .

• Construct the 6× 6 signature matrix

J = diag[1, 1, 1,−1,−1,−1],
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and the 2n× 6 generator matrix G,

G =




√
α s0 0 0 0 0

0 s1 t−1 s1 tn−1 0
...

...
...

...
...

...
0 sn−1 t−n+1 sn−1 t1 0
0 c0 1 c0 0

√
1 + β

0 c1 0 c1 0 0
...

...
...

...
...

0 cn−1 0 cn−1 0 0



,

where the small positive numbers α and β are chosen as follows (by experi-
mental tuning):

α = n1/2ε ‖G‖2, β = 4(2n)1/4ε.

(If T is well conditioned, then we set β = 0 = α, and delete the first columns
of G and J , which then become 2n× 5 and 5× 5, respectively).
• Apply n steps of the generalized Schur algorithm starting with G1 = G and
F = (Zn ⊕Zn), and ending with Gn+1 and F = Zn. These are positive steps
according to the description of Algorithm 3.1 (step 2), where the successive
generators are reduced to proper form relative to their first column. Note
that this must be performed with care for numerical stability as explained in
section 5.1.
• Apply n more steps of the generalized Schur algorithm starting with Gn+1.

These are negative steps according to the description of Algorithm 3.1 (step
3), where the successive generators are reduced to proper form relative to
their last column. This also has to be performed with care as explained prior
to (5.36).
• Each of the above 2n steps provides a column of the triangular factorization

of the matrix M in (7.1), as described in Algorithm 3.1 (steps 2 and 3). The
triangular factor of M is then partitioned to yield the matrices {R̂, Q̂,∆},[

R̂T 0

Q̂ ∆

]
,

where R̂ is upper triangular and ∆ is lower triangular.
• The solution x̂ is obtained by evaluating the quantity

R−1Q̂T∆−T∆−1b,

via a sequence of back substitutions and matrix–vector multiplications. The
computed solution is backward stable. It satisfies

(T +H)x̂ = b,

where the norm of the error matrix is bounded by

‖H‖ ≤ 2(α + β) + c26ε[1 + ‖T‖] +O(ε2) ≤ c27ε ‖T‖+O(ε2).(10.1)
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10.1. Operation count. The major computational cost is due to the applica-
tion of the successive steps of the generalized Schur algorithm. The overhead opera-
tions that are required for the normalization of T , and for the determination of the
generator matrix G, amount at most to O(n logn) flops. Table 10.1 shows the number
of flops needed at each step of the algorithm (i denotes the iteration number and it
runs from i = 2n down to i = 1). The operation count given below assumes that, for
each iteration, two Householder transformations are used to implement the reduction
to proper form of section 5.1, combined with an elementary hyperbolic rotation in
OD form.

Table 10.1
Complexity analysis of the algorithm.

During each iteration of the algorithm Count in flops

Compute two Householder transformations 3r
Apply the Householder transformations 4 · i · r
Compute the hyperbolic transformation 7
Apply the hyperbolic transformation using OD 6 · i
Shift columns i

Total for i = 2n down to 1 (14 + 8r)n2 + 10nr + 21n
Cost of three back substitution steps 3n2

Cost of matrix–vector multiplication 2n2

Startup costs n(24 logn+ r + 52)

Total cost of the algorithm (19 + 8r)n2 + n(24 logn+ 11r + 73)

Table 10.2 indicates the specific costs for different classes of structured matrices.

Table 10.2
Computational cost for some structured matrices.

Matrix type Cost

Well-conditioned Toeplitz matrix 59n2 + n(24 logn+ 128)
Ill-conditioned Toeplitz matrix 67n2 + n(24 logn+ 139)

11. Conclusions. We performed extensive experiments to verify the theoretical
bounds for both well-conditioned and ill-conditioned Toeplitz matrices. The error was
always better than the bounds predicted by the theory. Interested readers can get
Matlab codes of the algorithm by contacting the authors.

The results of this work can be extended to Toeplitz least-squares problems,
which will be addressed in a companion paper. Furthermore, there are also useful
applications of these ideas in filtering theory, which will be reported elsewhere.

Appendix A. The OD procedure. Let ρ = β/α be the reflection coefficient
of a hyperbolic rotation Θ,

Θ =
1√

1− ρ2

[
1 −ρ
−ρ 1

]
,

with |ρ| < 1. Let
[
x1 y1

]
and

[
x y

]
be the postarray and prearray rows,

respectively, [
x1 y1

]
=
[
x y

]
Θ.
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The advantage of the OD method is that the computed quantities x̂1 and ŷ1 satisfy
the equation [

x̂1 + e1 ŷ1 + e2
]

=
[
x+ e3 y + e4

]
Θ,(A.1)

with ∥∥[ e1 e2
]∥∥ ≤ c28ε

∥∥[ x̂1 ŷ1

]∥∥ , ∥∥[ e3 e4
]∥∥ ≤ c29ε

∥∥[ x y
]∥∥ ,(A.2)

and, consequently,

|(x̂2
1 − ŷ2

1)− (x2
1 − y2

1)| ≤ c30ε(x̂
2
1 + ŷ2

1 + x2 + y2).(A.3)

Algorithm A.1 (the OD procedure). Consider a hyperbolic rotation Θ with
reflection coefficient ρ = β/α, |ρ| < 1. Given a row vector

[
x y

]
as a prearray, the

transformed (postarray) row vector
[
x1 y1

]
=
[
x y

]
Θ is computed as follows:

[
x′ y′

]← [
x y

] [ 1 1
−1 1

]
,

[
x′′ y′′

]← [
x′ y′

]  1
2

√
α+β
α−β 0

0 1
2

√
α−β
α+β


 ,

[
x1 y1

]← [
x′′ y′′

] [ 1 −1
1 1

]
.

Appendix B. The H procedure. Let ρ = β/α be the reflection coefficient of
a hyperbolic rotation Θ,

Θ =
1√

1− ρ2

[
1 −ρ
−ρ 1

]
,

with |ρ| < 1. Let
[
x1 y1

]
and

[
x y

]
be the postarray and prearray rows,

respectively, [
x1 y1

]
=
[
x y

]
Θ, with |x| > |y|.

The advantage of the H method is that the computed quantities x̂1 and ŷ1 satisfy the
equation [

x̂1 + e′1 ŷ1 + e′2
]

=
[
x y

]
Θ,(B.1)

where the error terms satisfy

|e′1| ≤ c31ε|x̂1|, |e′2| ≤ c32ε(|x̂1|+ |ŷ1|).(B.2)

If |x| < |y|, then it can be seen that
[
y x

]
Θ =

[
y1 x1

]
. Therefore, without

loss of generality, we shall only consider the case |x| > |y|.
Algorithm B.1 (the H procedure). Given a hyperbolic rotation Θ with reflec-

tion coefficient ρ = β/α, |ρ| < 1, and a prearray
[
x y

]
with |x| > |y|, the postarray[

x1 y1

]
can be computed as follows:
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If β
α
y
x < 1/2

then ξ ← 1− β
α
y
x

else

d1 ← |α|−|β|
|α| , d2 ← |x|−|y|

|x|
ξ ← d1 + d2 − d1d2

endif

x1 ← |α|xξ√
(α−β)(α+β)

y1 ← x1 −
√

α+β
α−β (x− y).

The H procedure requires 5n to 7n multiplications and 3n to 5n additions. It is
therefore costlier than the OD procedure, which requires 2n multiplications and 4n
additions. But the H procedure is forward stable (cf. (B.1)) whereas the OD method
is only stable (cf. (A.1)).

Appendix C. Miscellaneous error bounds. The following is an extension of
Lemma 2.7.1 and Theorem 2.7.2 of [10].

Theorem C.1. Suppose

M

[
y
z

]
= b,

where M is an n× n matrix, b is an n-dimensional vector, and ‖z‖ ≤ ‖y‖. Let

(M +H)

[
ŷ
ẑ

]
= b,

where H is an n× n matrix such that ‖H‖ ≤ c33ε‖M‖. If c33εκ(M) = r < 1
5 , where

κ(M) = ‖M‖ ‖M−1‖, then

‖ẑ‖
‖ŷ‖ ≤

1 + 3r

1− 5r
.

Proof. From Theorem 2.7.2 in [10] it follows that

‖y‖ − 2r

1− r
[‖y‖+ ‖z‖] ≤ ‖ŷ‖ ≤ ‖y‖+

2r

1− r
[‖y‖+ ‖z‖].

By interchanging y and z we can obtain a similar inequality for ẑ. Then

‖ẑ‖
‖ŷ‖ ≤

‖z‖+ 2r
1−r [‖y‖+ ‖z‖]

‖y‖ − 2r
1−r [‖y‖+ ‖z‖]

≤ 1 + 3r

1− 5r
,

since ‖z‖ ≤ ‖y‖.
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Abstract. The main purpose of this paper is to introduce and exploit special properties of two
special classes of rectangular matrices A and B that have the relations

A = PAQ and B = −PBQ, A, B ∈ Cn×m,
where P and Q are two generalized reflection matrices. The matrices A (B), a generalization of reflex-
ive (antireflexive) matrices and centrosymmetric matrices, are referred to in this paper as generalized
reflexive (antireflexive) matrices.

After introducing these two classes of matrices and developing general theories associated with
them, we then show how to use some of the important properties to decompose linear least-squares
problems whose coefficient matrices are generalized reflexive into two smaller and independent sub-
problems. Numerical examples are presented to demonstrate their usefulness.
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1. Introduction. In this paper, we introduce two new special classes of matrices
A and B that have the following relations:

A = PAQ and B = −PBQ, A, B ∈ Cn×m,
where P of dimension n and Q of dimension m are two generalized reflection matrices.
By a generalized reflection matrix, say R, we mean that R satisfies the following two
conditions: (1) R = R∗ and (2) R2 = I. In other words, a generalized reflection
matrix is an involutory Hermitian matrix. The matrices A and B are, respectively, a
generalization of reflexive matrices U and antireflexive matrices V [ChSa87, Chen88],
which possess the following special properties:

U = PUP and V = −PV P, U, V ∈ Cn×n,
where P is some reflection (symmetric signed permutation) matrix. We shall refer to
A and B as generalized reflexive and generalized antireflexive matrices, respectively,
in this paper. The role of generalized antireflexive matrices to that of generalized
reflexive matrices is what antireflexive matrices are to reflexive matrices.

In addition to presenting these two classes of matrices and exploiting their special
properties, we provide numerical examples to show how to use the exploited proper-
ties to decompose linear least-squares problems with generalized reflexive coefficient
matrices into independent subproblems. To illustrate the frequent occurrences of gen-
eralized reflexive matrices and the wide applicability of the proposed approach, we
also present physical examples obtained from engineering/scientific applications.
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2. Generalized reflexive/antireflexive matrices. In this section, we present
some basic definitions related to generalized reflexive matrices. Throughout this pa-
per, we use the superscripts T , ∗, and + to denote the transpose, conjugate transpose,
and generalized inverse of matrices (vectors), respectively. All matrix–matrix multi-
plications and additions are assumed to be conformable if their dimensions are not
mentioned.

Definition 2.1. Let P be some generalized reflection matrix of dimension n.
• Reflexive (antireflexive) vectors. A vector x ∈ Cn is said to be reflexive (or

antireflexive) with respect to P if x = Px (or if x = −Px).
• Reflexive (antireflexive) matrices. A matrix A ∈ Cn×n is said to be reflexive

(or antireflexive) with respect to P if A = PAP (or A = −PAP ).
• Reflexive (antireflexive) subspaces. A space S is said to be a reflexive (or

antireflexive) subspace with respect to P if every element in S is reflexive (or
antireflexive) with respect to the same matrix P .

It should be mentioned that this definition differs slightly from that in [Chen88,
ChSa89a], where reflexivity and antireflexivity are defined in terms of reflection ma-
trices instead of the generalized ones. The main reason for using generalized reflection
matrices in this paper to define such special classes of vectors, matrices, and subspaces
is that by doing so we not only enlarge their membership but also leave intact all the
underlying properties associated with them. Note also that the definition of reflex-
ive subspaces applies both to the spaces consisting of reflexive vectors and to those
consisting of reflexive matrices as their elements. The same is true for antireflexive
subspaces. When applied to vectors in Cn, reflexive and antireflexive subspaces will
be denoted by Cnr (P ) and Cna(P ), respectively. When applied to matrices in Cn×n,
they will be denoted by Cn×nr (P ) and Cn×na (P ), respectively.

Definition 2.2. Let P and Q be two generalized reflection matrices of dimension
n and m, respectively.

• Generalized reflexive (antireflexive) matrices. A matrix A ∈ Cn×m is said to
be generalized reflexive (or generalized antireflexive) with respect to the matrix
pair (P,Q) if A = PAQ (or A = −PAQ).

• Generalized reflexive (antireflexive) subspaces. A subspace S ⊂ Cn×m is said
to be generalized reflexive (or generalized antireflexive) with respect to (P,Q)
if A = PAQ (or A = −PAQ) for any A ∈ S.

• Generalized SAS (anti-SAS) properties. A matrix A is said to possess a gen-
eralized SAS (or generalized anti-SAS) property if A is generalized reflexive
(or generalized antireflexive), where SAS stands for symmetric and antisym-
metric.

From this definition, it is clear that a reflexive (antireflexive) matrix or vector is
necessarily a generalized reflexive (antireflexive) matrix. The converse, however, is not
true in general. By taking P = Jn and Q = Jm, where Jk is the cross-identity matrix
of dimension k, then the generalized reflexive matrices A, A = PAQ, reduce to the
rectangular centrosymmetric matrices defined in [Weav85]. Therefore, centrosymmet-
ric matrices (square or rectangular), whose special properties have been under exten-
sive study [Zehf62, Aitk49, Good70, Andr73a, Andr73b, PyBA73, CaBu76, Weav88],
are also a special case of generalized reflexive matrices.

To serve as an example of generalized reflexive matrices, let

A =


 α β γ

µ ν ν
α γ β


 , P =


 0 0 1

0 1 0
1 0 0


 , and Q =


 1 0 0

0 0 1
0 1 0


 .
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Then the matrix A, real or complex, is a generalized reflexive matrix with respect to
(P,Q) since A = PAQ.

Definition 2.3. Left (right) orthogonality. A matrix X ∈ Cn×m is said to be
left (or right) orthogonal to another matrix Y ∈ Cn×m if X∗Y = 0 (or Y X∗ = 0).
Likewise, a subspace S1 of Cn×m is said to be left (or right) orthogonal to another
subspace S2 of Cn×m if X∗Y = 0 (or Y X∗ = 0) for any X ∈ S1 and any Y ∈ S2.

It should be pointed out that the conventional orthogonality for vectors is simply
the left orthogonality defined above. For simplicity, in the rest of the paper, we
shall use L-orthogonality and R-orthogonality to denote left orthogonality and right
orthogonality, respectively. Now, let Cn×mr (P,Q) and Cn×ma (P,Q), where the order of
P and Q in the matrix pair is important, be two subsets of the space Cn×m defined
by

Cn×mr (P,Q) = {A | A ∈ Cn×m and A = PAQ},(1)

Cn×ma (P,Q) = {A | A ∈ Cn×m and A = −PAQ},(2)

where P and Q are two generalized reflection matrices of dimension n and m, respec-
tively. Here we use the subscript r (a) to reflect the generalized reflexive (antireflex-
ive) nature of the subsets. Note that if m = n and Q = P , then Cn×mr (P,Q) and
Cn×ma (P,Q) reduce to Cn×nr (P ) and Cn×na (P ), respectively. In the case where m = 1
and Q = 1, Cn×mr (P,Q) and Cn×ma (P,Q) become Cnr (P ) and Cna(P ), respectively.

3. Special properties. After presenting the basic definitions for generalized
reflexive/antireflexive matrices, we are now in a position to exploit their fundamental
properties.

Theorem 3.1. Let P and Q be two generalized reflection matrices of dimensions
n and m, respectively, and α, β ∈ C.

1. If A and B are both in Cn×mr (P,Q), then

(αA+ + βB+) ∈ Cm×nr (Q,P ),

(αA∗ + βB∗) ∈ Cm×nr (Q,P ),

A∗B ∈ Cm×mr (Q), and AB∗ ∈ Cn×nr (P ).

2. If A and B are both in Cn×ma (P,Q), then

(αA+ + βB+) ∈ Cm×na (Q,P ),

(αA∗ + βB∗) ∈ Cm×na (Q,P ),

A∗B ∈ Cm×mr (Q), and AB∗ ∈ Cn×nr (P ).

3. If A is in Cn×mr (P,Q) and B is in Cn×ma (P,Q), or vice versa, then

(αA∗A+ βB∗B) ∈ Cm×mr (Q),

(αAA∗ + βBB∗) ∈ Cn×nr (P ),

A∗B ∈ Cm×ma (Q), and AB∗ ∈ Cn×na (P ).
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Proof. The generalized inverse of a matrix A ∈ Cn×m is typically defined to
be the unique matrix X that satisfies the following four Moore–Penrose conditions
[Moor35, Penr55]:

(a) AXA = A, (b) XAX = X, (c) (AX)∗ = AX, and (d) (XA)∗ = XA.

To prove part 1, we shall first prove that both A+ and B+ are in Cm×nr (Q,P ). Sub-
stitution of A = PAQ into the condition (a) with A+ replacing X yields

PAQA+PAQ = PAQ(3)

since A+ is the generalized inverse of A. Premultiplying and postmultiplying both
sides of (3) by P−1 and Q−1, respectively, we have

AY A = A,

where Y = QA+P . Observe that Y satisfies the first Moore–Penrose condition. By
using the fact that both P and Q are unitary Hermitian matrices, it can easily be
shown that Y also satisfies the other three Moore–Penrose conditions. Therefore, Y
is a generalized inverse of A. Since the Moore–Penrose inverse is known to be unique,
we conclude that A+ = Y and, therefore,

A+ = QA+P ∈ Cm×nr (Q,P ).

Likewise,

B+ = QB+P ∈ Cm×nr (Q,P ).

Accordingly, (αA+ + βB+) ∈ Cm×na (Q,P ), The proof for the rest requires no further
knowledge and is, therefore, omitted. Analogous proof can also be obtained for parts
2 and 3.

Theorem 3.2. Given two generalized reflection matrices P of dimension n and
Q of dimension m, any matrix A ∈ Cn×m can be decomposed into two parts U and
V , U + V = A, such that U ∈ Cn×mr (P,Q) and V ∈ Cn×ma (P,Q) .

Proof. Take

U =
1

2
(A+ PAQ) and V =

1

2
(A− PAQ)(4)

and employ the involutory property P 2 = I and Q2 = I. The proof is trivial and,
thus, omitted.

Two special instances of this theorem can be found in [ChSa89a, ChSa89b], where
one is obtained by setting m = 1 and Q = 1 for vectors and the other is the special
case when m = n and Q = P for square matrices.

Theorem 3.3. Cn×mr (P,Q) is a generalized reflexive subspace and Cn×ma (P,Q)
is a generalized antireflexive subspace of Cn×m, with respect to (P,Q) over the field
C. Furthermore, Cn×mr (P, I) is L-orthogonal to Cn×ma (P, I) and Cn×mr (I,Q) is R-
orthogonal to Cn×ma (I,Q), where I is the identity matrix of appropriate dimension.

Proof. (1) Cn×mr (P,Q) and Cn×ma (P,Q) are subspaces. From Theorem 3.2, it
is clear that Cn×mr (P,Q) is a nonempty subset of Cn×m. Now let X and Y be two
arbitrary elements in Cn×mr (P,Q) and α ∈ C. The matrix (αX + Y ) remains in
Cn×mr (P,Q) since

(αX + Y ) = P (αX + Y )Q .
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Therefore, Cn×mr (P,Q) is a subspace of Cn×m over the field C. Analogously, Cn×ma (P,Q)
is also a subspace of Cn×m over the field C.

(2) Since Cn×mr (P,Q) and Cn×ma (P,Q) are subspaces, we conclude from (1), (2),
and Definition 2.2 that Cn×mr (P,Q) is a generalized reflexive subspace and Cn×ma (P,Q)
is a generalized antireflexive subspace of Cn×m with respect to (P,Q) over the field C.

(3) Cn×mr (P, I) and Cn×ma (P, I) are mutually L-orthogonal. For anyX ∈ Cn×mr (P, I)
and any Y ∈ Cn×ma (P, I) we have

X∗Y = (X∗P ∗)(−PY ) = −X∗Y = 0 ,

Y ∗X = (X∗Y )∗ = 0 .

Hence, Cn×mr (P, I) and Cn×ma (P, I) are mutually L-orthogonal. Likewise, Cn×mr (I,Q)
and Cn×ma (I,Q) are mutually R-orthogonal.

Corollary 3.4.
1. Cnr (P ) (or Cna(P )) is a generalized reflexive (or generalized antireflexive) sub-

space of Cn with respect to P over the field C. Furthermore, Cnr (P ) and Cna(P )
are mutually L-orthogonal.

2. Cn×nr (P ) (or Cn×na (P )) is a generalized reflexive (or generalized antireflexive)
subspace of Cn×n with respect to P over the field C.

This is trivial because a reflexive (antireflexive) subspace is necessarily a gener-
alized reflexive (generalized antireflexive) subspace. Note that Cnr (P ) and Cna(P ) are
not mutually R-orthogonal in general although they are mutually L-orthogonal.

Theorem 3.5. Given a linear least-squares problem

min
x

‖Ax− b‖2, A ∈ Cn×m, x ∈ Cm, b ∈ Cn, m ≤ n,

where A is assumed to have full column rank, i.e., rank(A) = m, let x̃ be the unique
solution to the problem and r̃ = b−Ax̃, the residual.

1. If A ∈ Cn×mr (P,Q), then

x̃ ∈ Cmr (Q) and r̃ ∈ Cnr (P ) if b ∈ Cnr (P ),(5)

x̃ ∈ Cma (Q) and r̃ ∈ Cna(P ) if b ∈ Cna(P ).(6)

2. If A ∈ Cn×ma (P,Q), then

x̃ ∈ Cmr (Q) and r̃ ∈ Cna(P ) if b ∈ Cna(P ),(7)

x̃ ∈ Cma (Q) and r̃ ∈ Cnr (P ) if b ∈ Cnr (P ).(8)

Proof. The proof for part 2 is analogous to that for part 1. Therefore, we need
only prove part 1. From the assumption that A ∈ Cn×mr (P,Q), we have A = PAQ,
where P and Q are, by definition, generalized reflection matrices and thus

P = P ∗ = P−1 and Q = Q∗ = Q−1.

Since rank(A) = m, A+ can be expressed as

A+ = (A∗A)−1A∗ = (QA∗PPAQ)−1QA∗P
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= (QA∗AQ)−1QA∗P = Q(A∗A)−1QQA∗P

= QA+P.

It follows that if b = Pb, we have

x̃ = A+b = QA+Pb = QA+b = Qx̃

and

r̃ = b−Ax̃ = Pb− PAQQx̃ = P (b−Ax̃) = P r̃.

Analogously, if b = −Pb, then

x̃ = A+b = QA+Pb = −QA+b = −Qx̃
and

r̃ = b−Ax̃ = −Pb− PAQ(−Qx̃) = −P (b−Ax̃) = −P r̃.
This completes our proof.

Remark 1. Note that the converse of (5), (6), (7), and (8) does not hold in
general. For example, let b be some vector that is neither reflexive nor antireflexive
with respect to P , i.e., b 6∈ Cnr (P ) and b 6∈ Cna(P ). From a special application of
Theorem 3.2 for vectors, however, we can decompose b into b1 and b2, both nonzero,
such that b1 ∈ Cnr (P ) and b2 ∈ Cna(P ). Let

x̃1 = A+b1 and x̃2 = A+b2.

We have

x̃ = A+b = A+(b1 + b2) = x̃1 + x̃2,

where x̃1 ∈ Cmr (Q) and x̃2 ∈ Cma (Q). Now, if b2 lies in the null space of A∗, then

x̃ = x̃1 ∈ Cmr (Q)

since A+b2 = (A∗A)−1A∗b2 = 0. Likewise, if b1 lies in the null space of A∗, then

x̃ = x̃2 ∈ Cma (Q).

Remark 2. If the matrix A is rank deficient, then least-squares solutions other
than the minimal-norm solution might not have the property shown in this theorem.
It is not difficult to construct such examples. One of the simplest cases would be to
allow A to have some columns filled with zeros.

Theorems 3.2 and 3.5 yield all the important information we need to decompose
a linear least-square problem whose coefficient matrix is generalized reflexive with
respect to (P,Q) into two independent and smaller subproblems once P and Q are
known. Two simple examples are given in the next section to demonstrate the basic
ideas.

To close this section, we show that the generalized SAS (or anti-SAS) property of
a matrix is invariant under any signed permutations. By signed permutation we mean
that in addition to the permutation of given rows (columns) of the matrix, the sign of
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the elements in the rows (columns) could also be reversed. Now, suppose that a matrix
A lies in Cn×mr (P,Q) so that A is generalized reflexive with respect to to (P,Q). Let
MP and MQ be two signed permutation matrices whose dimensions are the same as
those of P and Q, respectively. Note that MP and MQ are not necessarily reflection

matrices. They are, however, orthogonal. Denoting MT
P AMQ by Ã, MT

P PMP by P̃ ,

and MT
QQMQ by Q̃, we have

Ã = MT
P AMQ = MT

P PAQMQ = MT
P P (MPM

T
P )A(MQM

T
Q)QMQ

= (MT
P PMP )(MT

P AMQ)(MT
QQMQ)

= P̃ ÃQ̃,

where we have employed the orthogonality of MP and MQ. The matrices P̃ and Q̃,
like P and Q, are again generalized reflection matrices since

P̃ = P̃ ∗ = P̃−1 and Q̃ = Q̃∗ = Q̃−1.

Therefore, the resulting matrix Ã remains generalized reflexive. In fact, the above
argument can be generalized to include unitary transformations, i.e., if A is generalized
reflexive with respect to (P,Q), then the matrix Â, Â = U∗PAUQ with UP and UQ
being unitary, is generalized reflexive with respect to (P̂ , Q̂), where P̂ = U∗PPUP and

Q̂ = U∗QQUQ.

4. Numerical examples. In this section, we provide examples to demonstrate
how to take advantage of the special properties developed in the previous section for
handling a special class of linear least-squares problems. The first example presented
is a reflexive overdetermined linear system where not only is the matrix A generalized
reflexive but the vector b is reflexive as well.

Example 1. Consider the linear least-squares solution to the following overdeter-
mined linear system:

Ax = b, where A =




4 2
1 3
2 4
3 1


 , x =

[
x1

x2

]
, and b =




16
15
16
15


 .(9)

Let

P =

[
0 I2
I2 0

]
and Q =

[
0 1
1 0

]
,

where I2 is the identity matrix of dimension 2. It is easy to see that A = PAQ and
b = Pb. From Theorem 3.5 we know that x = Qx, i.e., x1 = x2. Solving (9) is,
therefore, equivalent to solving[

6
4

] [
x1

]
=

[
16
15

]
.(10)

The least-squares solution to (10) is x1 = 3. Accordingly, the solution to the original
problem is x1 = x2 = 3, which can be verified by solving the normal equation ATAx =
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AT b. The residual r, r = b − Ax = [−2, 3, −2, 3 ]
T
, is obviously reflexive with

respect to P , as expected, since r = Pr.
It deserves mentioning that the generalized reflexivity property of the matrix A

usually comes from physical models with some sort of reflexive symmetry. The vector
b, nevertheless, could be arbitrary and will not have any special form in general.
This, however, should not impose any difficulty since given P , any vector can be
decomposed into a reflexive and an antireflexive part. Once the decomposition is
performed, Theorem 3.5 can be employed to take advantage of the reflexivity and
antireflexivity present in the problem, as shown in the next example where we choose
b to be neither reflexive nor antireflexive.

Example 2. In this example, we solve the same problem as shown in Example 1,
except that the right-hand-side vector b is now taken to be b = [19, 14, 13, 16 ]

T
,

which is neither reflexive nor antireflexive. To use the generalized reflexivity property
of A, we first decompose b into u and v so that u = Pu (reflexive) and v = −Pv (antire-

flexive). The decomposition yields u = [16, 15, 16, 15]
T

and v = [3, −1, −3, 1]
T
.

Instead of solving Ax = b directly, one can always solve Ay = u for y and Az = v for
z to obtain x since x = A+b = A+(u+ v) = A+u+A+v = y + z. Without exploiting
the generalized SAS property of A, however, this decomposition would not offer any
advantage since it doubles the amount of computational work.

Our next step is to use Theorem 3.5 to reduce the size of both Ay = u and
Az = v. Since Ay = u in this example is exactly the same as Ax = b in Example 1,
no further demonstration is necessary in this part; the solution is simply y = [ 3, 3]

T
.

The decomposition for Az = v is similar to that for Ay = u except now we have to use
the antireflexivity of v. From Theorem 3.5, we know that z = −Pz since A = PAQ
and v = −Qv. Letting z = [z1, z2]

T
, we have z1 = −z2. Therefore, solving Az = v

reduces to solving [
2

−2

] [
z1
]

=

[ −3
1

]

whose least-squares solution is z2 = −1, yielding z = [ 1, −1]
T

since z1 = −z2.
Therefore, the solution to the original problem is

x = y + z =

[
4
2

]

which can again be verified by solving the normal equation of the original system. At
this point, it is clear that by employing the special generalized SAS property of A
we can decompose the system into two smaller and independent subsystems to solve.
This completes our demonstration.

5. Applications to physical problems. As mentioned earlier, generalized re-
flexive matrices, including the special case of reflexive matrices, usually arise from
physical problems with some form of reflexive symmetry. The examples provided in
the previous section are chosen arbitrarily for demonstration purposes, without any
association with engineering/scientific applications. In this section, we present three
examples that are obtained from physical problems in three different application ar-
eas; one deals with the altitude estimation of a level network which yields a linear
least-squares problem, the second is an electric network resulting in a linear system,
and the third problem arises from structural analysis of trusses. In addition to giving
the matrices, we shall also briefly describe the physical problems that give rise to such



148 HSIN-CHU CHEN

1

2

3 4 5

d12

d14

d32

d34

d24 d52

d54

xi: altitude at point i

dij = xi − xj , x5 = 0

Fig. 1. A level network for altitude estimation.

matrices and solve the level network problem. The examples to be given are small.
However, they clearly demonstrate the frequent occurrences of generalized reflexive
matrices and illustrate the benefit and wide applicability of the proposed approach.

Example 3. In this example, we solve a linear least-squares problem that results
from the level network shown in Figure 1, on which the difference in altitude is mea-
sured. The objective is to estimate the height above sea level for points 1, 2, 3, and
4. Point 5 is known to lie at sea level.

Let dij = xi − xj , where xi and xj are the heights above sea level for points i
and j, respectively, i, j = 1, . . . , 5. This problem yields the following overdetermined
linear system: 



1 −1 0 0
0 −1 0 0
1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 −1
0 −1 1 0







x1

x2

x3

x4


 =




d12

d52

d14

d24

d34

d54

d32



.(11)

Denoting this system by Ax = b, with b assumed to take the numerical values

b =
[

50 −152 78 33 30 −123 2
]T

,

we first observe that the coefficient matrix A is a generalized reflexive matrix: A =
PAQ with

P =


 0 0 I3

0 −1 0
I3 0 0


 and Q =

[
0 I2
I2 0

]
.(12)

Note that the coefficient matrix A of this overdetermined system is simply the edge-
node incidence matrix of the network.

There are two approaches to solving overdetermined linear systems, one forming
its normal equation directly and the other using a QR decomposition instead, mainly
for stability reasons. In either approach, we decompose the problem into two inde-
pendent subproblems first by taking advantage of the generalized reflexivity property
of A. Decomposing b into u and v such that u = Pu and v = −Pv and then solving
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Ay = u and Az = v for y and z using the reduced systems, as was done in Example
2, yield



1 −1
0 −1
1 −1
0 0
1 −1
0 −1
1 −1



[
y1

y2

]
=




40.0
−137.5

40.0
0.0

40.0
−137.5

40.0




and




1 −1
0 −1
1 1
0 2

−1 1
0 1

−1 −1



[
z1
z2

]
=




10.0
−14.5

38.0
33.0

−10.0
14.5

−38.0




(13)

which are now equivalent to


 1 −1

0 −1
1 −1


[ y1

y2

]
=


 40.0
−137.5

40.0


 and




1 −1
0 −1
1 1
0 2√

2



[
z1
z2

]
=




10.0
−14.5

38.0
33.0√

2


 ,(14)

respectively, since the last three rows of (13) are identical to the first three in both
systems. Note that in removing these equations, the fourth one in the second reduced
system must be scaled by a factor of

√
2 as shown in (14) so that the 2-norm of the

right-hand side in (14) is consistent with that in (13), i.e.,

‖ v ‖2
2= 2

(
v2
1 + v2

2 + v2
3 +

(
v4√
2

)2
)
.

This scaling is necessary and in fact comes from premultiplying both sides of the
system by the orthogonal matrix X:

X =
1√
2


 I3 0 −I3

0
√

2 0
I3 0 I3


 ,

where I3 is an identity matrix of order 3. The scaling has no effect on the fourth
equation in the first reduced system since it is a dummy and can simply be removed.

The solution to (11) can now be obtained with ease from (14) which gives[
y1

y2

]
=

[
177.5
137.5

]
and

[
z1
z2

]
=

[
24.0
15.1

]
,

yielding 


x1

x2

x3

x4


 =




y1

y2

y1

y2


+




z1
z2

−z1
−z2


 =




201.5
152.6
153.5
122.4


 .

The correctness of this solution can be verified by solving the normal equation of the
original system, which obviously requires many more arithmetic operations than this
approach.

In the following two examples, we use Jk to denote the cross-identity matrix of
dimension k:

Jk(i, j) =

{
1 if i+ j = k + 1, i, j = 1, . . . , k,
0 otherwise.
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R1 R4

R8

R2

R3

R5

R6

e7

(a)

1 2

3

4 5

0

1̂

2̂

3̂

4̂

5̂

6̂

7̂

8̂

(b)

Fig. 2. An electrical network (a) and its graph numbering (b).

The identity matrix of dimension k is denoted by Ik, as usual.
Example 4. We now consider the electrical network shown in Figure 2, where

Ri, the resistances of resistors, and e7, a current source, are constants. The matrix
A given below is the node-edge incidence matrix (or the transpose of the edge-node
incidence matrix) associated with this network:

A =




1 1 0 0 0 0 0 0
−1 0 1 0 0 0 1 0

0 0 −1 0 0 −1 0 1
0 0 0 −1 0 1 −1 0
0 0 0 1 1 0 0 0


 .

This incidence matrix is involved in the well-known Kirchhoff’s current law (KCL)
and Kirchhoff’s voltage law (KVL) equations for circuits: Aeb = 0 and AT vn = vb,
respectively, where eb is the branch current vector, vb is the branch voltage vector,
and vn is the node voltage vector [Dire75, pp. 283–291].

Let P and Q be the following two reflection matrices:

P = J5 and Q =




0 I3
I3 0

−1 0
0 1


 ,

where the unshown entries in the matrix are zero. It is simple practice to observe that
A = PAQ, i.e., generalized reflexive with respect to (P,Q). Let Y be the diagonal
matrix that represents the physical properties of the circuit. In our example,

Y = diag

(
1

R1
,

1

R2
,

1

R3
,

1

R4
,

1

R5
,

1

R6
, 0,

1

R8

)
.

The branch current-voltage relationship can be expressed as

eb = Y vb + ϕb,(15)

where ϕb is a vector representing branch current sources. Substitution of vb in the
KVL equation into (15) and then eb into the KCL equation yields the following linear
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f1

f4f6 f3f2

f5

p5

p6

p1

p2

p3

p4

p7

p8

r3

r4

r1

r2

pi: nodal forces

fi: member forces

ri: reactions

Fig. 3. Force components of a four-node six-member rectangular truss structure.

system:

AY AT vn = bn, where bn = −Aϕb.(16)

If R1 = R4, R2 = R5, and R3 = R6, then the matrix Y is reflexive with respect
to Q since Y = QY Q. This will be the case when this circuit has reflexive symmetry.
Accordingly, the system admittance matrix K = AY AT is reflexive with respect to
P . In this case, K is also a centrosymmetric matrix. Whatever bn is, (16) can be de-
composed into two decoupled subsystems using the same approach already discussed.
Details are omitted.

It deserves mentioning that the reflection matrix P is obtained solely from the
numbering of nodes, yet Q is determined by both the numbering and the orientation of
the branches of the graph shown in Figure 2. Reordering of nodes and branches or re-
orientation of branches will certainly change the incidence matrixA. The (generalized)
SAS property associated with the problem, however, will never be destroyed. All we
need to change are just the reflection matrices P and Q.

Example 5. In our last example, we give matrices that arise in the stress analysis
of a rectangular truss structure employing the force method. The truss and its force
components are shown in Figure 3, where the horizontal members are assumed to be
four feet long and the vertical members are three feet long.

Let f , p, and r be the vectors that consist of the element forces fi, external nodal
force components pi, and reaction components ri, respectively. The force equilibrium
equations of a structure can generally be expressed as [Prze68, pp. 206–209]

[
Af Ar

] [ f
r

]
= p,

where Af and Ar are rectangular matrices whose coefficients are the direction cosines
relating the element forces f and the reaction components r, respectively, to the
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external forces p. In our example, this relation gives rise to the following matrix A:

A =
[
Af | Ar

]
=




1 c 0 0 0 0 | 0 0 0 0
0 s 1 0 0 0 | 0 0 0 0
0 0 0 c 1 0 | 0 0 0 0
0 0 −1 −s 0 0 | 0 0 0 0

−1 0 0 −c 0 0 | 0 0 1 0
0 0 0 s 0 1 | 0 0 0 1
0 −c 0 0 −1 0 | 1 0 0 0
0 −s 0 0 0 −1 | 0 1 0 0



,

c = 4
5 ,

s = 3
5 .

Let P , Qf , and Qr be the reflection matrices given below:

P =




0 S2

S2 0
0 S2

S2 0


 , Qf =

[
J5 0
0 1

]
, and Qr =

[
0 S2

S2 0

]
,

where S2 = diag (1, −1). We have

Af = PAfQf , Ar = PArQr, and A = PAQ,

where

Q =

[
Qf 0
0 Qr

]
.

In other words, the matrices Af , Ar, and A are all generalized reflexive matrices and,
therefore, the proposed approach applies.

6. Conclusions. In this paper, we have introduced two new special classes of
rectangular matrices A and B, A, B ∈ Cn×m, that have the relations

A = PAQ and B = −PBQ,
where P and Q are two generalized reflection matrices. They are generalizations of
reflexive matrices U and antireflexive matrices V , U, V ∈ Cn×n, that take the form

U = PUP and V = −PV P
and, therefore, have more general properties. The matrices A (B) are referred to as
generalized reflexive (antireflexive) matrices in this paper. Many computationally im-
portant and interesting special properties associated with these new classes of matrices
have been exploited. This exploitation allows linear least-squares problems (and linear
systems as well) with generalized reflexive coefficient matrices to be decomposed into
smaller and independent subproblems to solve, yielding computational efficiency and
large-grain parallelism at the same time. An efficient decomposition method based
on the exploited special properties has also been proposed and illustrated.

Although it is not trivial to realize the existence of generalized reflexive matri-
ces from the matrix point of view, this new class of matrices indeed arise very often
in many application disciplines. In this paper, three examples obtained from physi-
cal problems in distinct application areas have been presented to demonstrate their
frequent occurrences. Our investigation indicates that generalized reflexive matrices
arise naturally from problems with reflexive symmetry, which account for a great
number of real-world scientific and engineering applications. Therefore, the proposed
efficient approach will certainly have widely important applications.
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Abstract. A computational method for efficient solution of linear constrained least squares
problems with Kronecker product structure is presented. The equality constraints are assumed to
be linearly independent. The computational efficiency of the method is analyzed. Conditions for
uniqueness of solutions are given.
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1. Introduction. In this paper we consider the constrained least squares prob-
lem

min
x
‖ (A1 ⊗A2)x− f‖2(1.1)

subject to (B1 ⊗B2)x = g,

where A1 ∈ Rma1×na1 , A2 ∈ Rma2×na2 , B1 ∈ Rmb1×nb1 , B2 ∈ Rmb2×nb2 , na1 = nb1,
na2 = nb2, f ∈ Rma1ma2 , the rows of B1 ⊗ B2 are linearly independent, and the
solution x ∈ Rna1na2 . Note that B1 ⊗ B2 has independent rows if and only if B1

and B2 have linearly independent rows. One example of a practical application where
these problems occur is in surface fitting with hierarchical splines [3, section 5]. It
is possible to take advantage of the Kronecker product structure to get an efficient
algorithm for the solution of the problem (1.1). The solution of the problem (1.1) is
not always unique. There exist cases where we can guarantee that the solution is not
unique only by looking at the dimensions of A1, A2, B1, and B2. These cases include
some examples where ma1ma2 +mb1mb2 > nb1nb2.

In [2] and [7] it is studied how unconstrained linear least squares problems, in-
volving Kronecker products, can be solved efficiently. Forsey and Bartels [3] present
a way to transform (1.1) to the form

A2VZA
T
1 ≈ F −A2VWAT

1(1.2)

(formula (40) in [3]), where VW is fixed by the constraints and VZ satisfies B2VZB
T
1 =

0. However, any method that takes advantage of Kronecker product structure, to
solve the problem (1.2) subject to B1VZB

T
1 = 0, cannot be found in [3]. The new

results in this paper show how to take advantage of both the Kronecker product in
the constraints and the Kronecker product in the least squares equations when solving
(1.1).

The paper is outlined as follows: section 2 describes the computational method to
solve constrained least squares problems with Kronecker product structure. Section

∗ Received by the editors November 22, 1995; accepted for publication (in revised form) by G.
Cybenko January 6, 1997.
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3 examines in which cases the solution is unique and not unique. In section 4, it is
shown how the generalized singular value decomposition (GSVD) can be applied to
these problems. In section 5, the complexity of the method is analyzed. Finally, in
section 6 we make some conclusions. We will use the following notation: ⊗ denotes
the Kronecker product; ‖ · ‖2 denotes the Euclidean vector norm; ‖ · ‖F denotes the
Frobenius norm; the superscripts T and −1 denote the transpose and the inverse,
respectively; x(i:j) denotes elements i to j of vector x; x(i:j:k) denotes elements i, i+
j, i+2j, ..., k of vector x; A(:,i:j) denotes columns i to j of matrix A. A(i:j,k:l) denotes
a submatrix consisting of rows i to j and columns k to l of matrix A (i.e., Matlab
style); In denotes the n × n identity matrix. vec(A) is the elements of A placed in
one column vector, as vec(A) = [A(:,1)TA(:,2)T . . .]T .

2. The method to solve linear constrained least squares problems with
Kronecker product structure. It is well known [3], [4, p. 25] that the equation

(A⊗B)vec(X) = vec(F )

is equivalent to the equation

BXAT = F.

This equivalence implies that (1.1) can be rewritten as

min
X

‖ A2XAT
1 − F‖F(2.1)

subject to B2XBT
1 = G,

where vec(X) = x, vec(F ) = f , and vec(G) = g. The approach we suggest is a null
space method [1, pp. 190–191], [6, Chapter 20]. We perform a change of variables that
makes it possible to divide the unknowns into two sets. One is the set determined by
the constraints and the other is the set belonging to the null space of the constraints.

Let [Lb1 0]Qb1 = B1 and [Lb2 0]Qb2 = B2 be the LQ factorizations of B1 and B2

(given by the QR factorizations of BT
1 and BT

2 ). Let Ã1 = A1Q
T
b1 and Ã2 = A2Q

T
b2.

With the change of variables[
Y11 Y12

Y21 Y22

]
= Y = Qb2XQT

b1,

where Y11 ∈ Rmb2×mb1 , Y12 ∈ Rmb2×(nb1−mb1), Y21 ∈ R(nb2−mb2)×mb1 , and Y22 ∈
R(nb2−mb2)×(nb1−mb1), the problem (2.1) takes the form

min
Y

‖ Ã2Y Ã
T
1 − F‖F(2.2)

subject to Lb2Y11L
T
b1 = G.

The submatrix Y11 is determined by the constraints. In the remaining steps, we can
consider Y11 as a known matrix.

The rest of the unknowns, Y12, Y21, and Y22 belong to the null space of the
constraints. Let Â1 = [Ã1(:,mb1 + 1 : nb1) Ã1(:, 1 : mb1)] and Â2 = [Ã2(:,mb2 + 1 :
nb2) Ã2(:, 1 : mb2)]. Let

Â1 = Qa1R
(a1), R(a1) =

[
R

(a1)
11 R

(a1)
12

0 R
(a1)
22

]
,(2.3)
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Â2 = Qa2R
(a2), R(a2) =

[
R

(a2)
11 R

(a2)
12

0 R
(a2)
22

]

be the “economy size” QR factorizations of Â1 and Â2. (In the economy size QR

factorization Q ∈ Rm×r and R ∈ Rr×n, where r = min(m,n)). In (2.3), R
(a1)
11 ∈

Rqa1×(nb1−mb1), R
(a1)
12 ∈ Rqa1×mb1 , R

(a1)
22 ∈ R(ra1−qa1)×mb1 , R

(a2)
11 ∈ Rqa2×(nb2−mb2),

R
(a2)
12 ∈ Rqa2×mb2 , R

(a2)
22 ∈ R(ra2−qa2)×mb2 , Qa1 ∈ Rma1×ra1 , and Qa2 ∈ Rma2×ra2 ,

where ra1 = min(ma1, na1), ra2 = min(ma2, na2), qa1 = min(ra1, nb1 − mb1), and
qa2 = min(ra2, nb2 −mb2). Then (2.2) has the same solution as

min
Y12,Y21,Y22

∥∥∥∥
[
R

(a2)
11 R

(a2)
12

0 R
(a2)
22

] [
Y22 Y21

Y12 Y11

] [
R

(a1)T
11 0

R
(a1)T
12 R

(a1)T
22

]
− F̃

∥∥∥∥
F

,(2.4)

where

F̃ =

[
F̃11 F̃12

F̃21 F̃22

]
= QT

a2FQa1,

where F̃11 ∈ Rqa2×qa1 , F̃12 ∈ Rqa2×(ra1−qa1), F̃21 ∈ R(ra2−qa2)×qa1 , and F̃22 ∈
R(ra2−qa2)×(ra1−qa1). Block multiplication in (2.4) gives

min

∥∥∥∥
[
M11 M12

M21 M22

] ∥∥∥∥
F

,

where

M11 = R
(a2)
11 Y22R

(a1)T
11 +R

(a2)
12 Y12R

(a1)T
11 +R

(a2)
11 Y21R

(a1)T
12 +R

(a2)
12 Y11R

(a1)T
12 − F̃11,

M12 = R
(a2)
11 Y21R

(a1)T
22 +R

(a2)
12 Y11R

(a1)T
22 − F̃12,

M21 = R
(a2)
22 Y12R

(a1)T
11 +R

(a2)
22 Y11R

(a1)T
12 − F̃21,

M22 = R
(a2)
22 Y11R

(a1)T
22 − F̃22.

In cases where R
(a1)
11 , R

(a1)
22 , R

(a2)
11 , and R

(a2)
22 are square and nonsingular or empty, it is

possible to solve uniquely for Y . Since Y11 is fixed by the constraints, the submatrix
M22 is also fixed. The submatrix Y12 can be selected such that M21 is zero. The
submatrix Y21 can be selected such that M12 is zero. When Y12, Y21, and Y11 are
determined, the submatrix Y22 can be selected such that M11 is zero. Finally, Y11,
Y12, Y21, and Y22 are inserted into Y and the problem (2.1) is solved by X = QT

b2Y Qb1.

The reason why Â1 and Â2 are QR factorized, instead of Ã1 and Ã2, is that it had
not been equally simple to solve for Y12, Y21, and Y22 if the QR factorizations of Ã1

and Ã2 had been used.

3. Cases where the solution is not unique. In cases where R(a1) or R(a2)

has zero entries in the diagonal the solution of (1.1) is not unique. Also, if R
(a1)
22 or

R
(a2)
22 has more columns than rows, then the solution is not unique. Otherwise, the

solution is unique. Note that if mb1 = nb1, then R
(a1)
11 , R

(a1)
12 , M11, M21, Y22, and
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Y12 are empty matrices and the solution can be unique even if ma2 < na2 and R(a2)

has more columns than rows. However, if mb1 < nb1, then the solution is unique only
if all columns of R(a2) are linearly independent. It is the same as if all columns of
A2 are linearly independent. Similarly, if mb2 = nb2, then the solution can be unique
even if ma1 < na1. If mb2 < nb2, then the solution is unique only if the columns of
A1 are linearly independent. This can be expressed in the following way.

Theorem 3.1. The constrained least squares problem (1.1) has a unique solution
if and only if the following two conditions are satisfied:

• mb1 < nb1 and all columns of A2 are linearly independent or mb1 = nb1 and
the nb2 −mb2 last columns of Ã2 are linearly independent, where Ã2 = A2Q

T and Q
is given by the QR factorization of BT

2 .
• mb2 < nb2 and all columns of A1 are linearly independent or mb2 = nb2 and

the nb1 −mb1 last columns of Ã1 are linearly independent, where Ã1 = A1Q
T and Q

is given by the QR factorization of BT
1 .

Consider the example ma2 = 4, ma1 = na1 = na2 = nb1 = nb2 = 5, mb1 = 3,
mb2 = 2. In this example ma1ma2 + mb1mb2 = 26 > 25 = nb1nb2. However, the

solution is not unique since R
(a2)
22 has more columns than rows (∈ R3×2). More

generally, if ma2 < na2 and mb1 < nb1, we always get more than one solution. If

ma2 + mb2 < na2, the submatrix R
(a2)
11 has more columns than rows, and hence the

solution is not unique. Similarly, we do not get unique solutions when the inequality
ma1 +mb1 < nb1 is satisfied or the inequalities mb2 < nb2 and ma1 < na1 are satisfied.
These cases are summarized in the following corollary.

Corollary 3.2. If any of the following four conditions is satisfied, then the
solution of (1.1) is not unique.

• ma1 +mb1 < na1,
• ma2 +mb2 < na2,
• mb1 < nb1 and ma2 < na2,
• mb2 < nb2 and ma1 < na1.

4. Analysis using the GSVD. Assume that ma1 ≥ na1 and ma2 ≥ na2; then
an alternative and more concise analysis of the problem can be derived using the

GSVD [1, pp. 157–158], [5, p. 471]. Assume that [
A1

B1
] and [

A2

B2
] are of full column

rank. Let the GSVD of (A1, B1) be

[
A1

B1

]
=

[
U1

V1

]



I
C1

0
· · · · · · · · ·
0

S1

I



X1,

and let the GSVD of (A2, B2) be

[
A2

B2

]
=

[
U2

V2

]



I
C2

0
· · · · · · · · ·
0

S2

I



X2.
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Then

‖A2XAT
1 − F‖F =

∥∥∥∥∥∥U2


 I C2

0


X2XXT

1


 I C1

0


UT

1 − F

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥

 I C2

0




X11 X12 X13

X21 X22 X23

X31 X32 X33




 I C1

0


−


F11 F12 F13

F21 F22 F23

F31 F32 F33



∥∥∥∥∥∥
F

,

where 
X11 X12 X13

X21 X22 X23

X31 X32 X33


 = X1XXT

2 ,


F11 F12 F13

F21 F22 F23

F31 F32 F33


 = UT

2 FU1,

and all the matrix partitions are compatible. Similarly

B1XBT
2 = G

gives


 0

S2

I




X11 X12 X13

X21 X22 X23

X31 X32 X33




 0

S1

I


 =


G11 G12 G13

G21 G22 G23

G31 G32 G33


 ,

where 
G11 G12 G13

G21 G22 G23

G31 G32 G33


 = UT

2 GU1.

The constraint is consistent if and only if G11, G12, G13, G21, and G31 are all zero

matrices or empty. The part [
X22 X23

X32 X33
] is uniquely determined by the constraints

and will in the minimization part be a constant matrix. Minimal solution is given
by X11 = F11, X12 = F12C

−1
1 , X21 = C−1

2 F21, and X13, X31 are arbitrary. It is
easily seen that when the column dimension of X13 and the row dimension of X31

are zero, there is an unique solution. This is satisfied if rank[
A1

B1
] = rank(A1) and

rank[
A2

B2
] = rank(A2). This is one of the cases where the conditions in Theorem 3.1

are satisfied.
The advantage of this GSVD approach is that it is more concise and simple than

the approach in sections 2 and 3. However, it takes more computer time to compute
two GSVDs than to solve the problem with the ideas in section 2 and check the
conditions in Theorem 3.1. Another disadvantage is that the GSVD is not defined
when ma1 < na1 or ma2 < na2. In certain cases where ma1 < na1 or ma2 < na2, the
problem (1.1) can be solved with the ideas in section 2.

5. Complexity analysis. Let us now examine how many flops are required with
the method proposed in section 2. We limit the discussion to cases where the solution
is unique, ma1 ≤ na1 = nb1 ≤ mb1 and ma2 ≤ na2 = nb2 ≤ mb2. In other cases,
the discussion below gives an overestimate of how many flops are necessary to get
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one solution. We use the new standard for flops [5, p. 19], where one flop is one
multiplication, one addition, one subtraction, or one division. A QR factorization of
an m × n matrix requires approximately 2n2(m − n/3) flops [5, p. 212]. Hence, to
LQ factorize B1 and B2 in the first step, 2m2

b1(nb1 − mb1/3) + 2m2
b2(nb2 − mb2/3)

flops are required. Then Qb1 and Qb2 will not be explicitly formed. We do not
generate Qb1 and Qb2. Instead, we store the Householder multipliers, so that the
Householder updates can be carried out as needed, without explicit formation of the
orthogonal matrices. To get Y11 we have to solve mb1 lower triangular systems of
dimension mb2 × mb2 and mb2 lower triangular systems of dimension mb1 × mb1.
This requires mb1mb2(mb1 + mb2) flops. To compute Ã1 and Ã2 we multiply A1

and A2 with Householder updates. This requires about 4(mb1ma1na1 + mb2ma2na2)
flops [5, p. 197]. The QR factorizations of Ã1 and Ã2 require 2n2

a1(ma1 − na1/3)+
2n2

a2(ma2−na2/3) flops. To compute F̃ the matrix F is changed through Householder
updates. This requires about 4na1na2(na1+na2) flops. In a practical implementation,
Y21, Y12, and Y22 can be computed in the following way:

1. Solve R
(a1)
22 T1 = FT

12.

2. T2 := TT
1 −R

(a2)
12 Y11.

3. Solve R
(a2)
11 Y21 = T2.

4. T3 := Y11R
(a1)T
12 .

5. Solve R
(a2)
22 T4 = F21.

6. T5 := (T4 − T3)
T .

7. Solve R
(a1)
11 Y T

12 = T5.

8. T6 := F11 −R
(a2)
12 T3.

9. Solve R
(a1)
11 T7 = TT

6 .

10. T8 := TT
7 −R

(a2)
12 Y12.

11. Solve R
(a2)
11 T9 = T8.

12. T10 := R
(a1)
12 Y T

21.

13. Solve R
(a1)
11 T11 = T10.

14. Y22 := T9 − TT
11.

Note that the systems we solve in steps 1, 3, 5, 7, 9, 11, and 13 are upper
triangular. An upper triangular n×n system, with p right-hand sides, can be solved in
pn2 flops. Hence, step 1 requires (nb2−mb2)m

2
b1 flops. Step 2 requires 2mb1mb2(nb1−

mb1) flops, step 3 requires (nb2−mb2)
2mb2 flops, step 4 requires 2(nb1−mb1)m

2
b2 flops,

step 5 requires (nb1−mb1)m
2
b2 flops, step 6 requires (nb1−mb1)mb2 flops, step 7 requires

mb2(nb1−mb1)
2 flops, step 8 requires 2mb2(nb1−mb1)(nb2−mb2) flops, step 9 requires

(nb1−mb1)
2(nb2−mb2) flops, step 10 requires 2(nb2−mb2)(nb1−mb1)mb1 flops, step 11

requires (nb1−mb1)(nb2−mb2)
2 flops, step 12 requires 2(nb1−mb1)mb1(nb2−mb2) flops,

step 13 requires (nb1−mb1)
2mb2 flops, and step 14 requires (nb1−mb1)(nb2−mb2) flops.

Finally, X = Qb2Y Q
T
b1 is computed by multiplication with Householder updates. It

can be done in approximately 4mb1mb2(mb1+mb2) flops. The sum of these expressions
is a complicated expression. However, in total it is always less than 35N3 flops, where
N = max(ma1, na1,ma2, na2). This should be compared with how many flops we need
if we solve (1.1) as a dense problem, which would require roughly O(N6) flops.

6. Summary and conclusions. We have presented a null space method to solve
constrained least squares problems of the form (1.1), where na1 = nb1, na2 = nb2.
After transforming the system to the form (2.2), it was trivial to take advantage of the
Kronecker product structure in the constraints. The idea to use the QR factorization
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of Â1 and Â2 (instead of, for instance, the QR factorizations of Ã1 and Ã2) makes
it possible to also take significant advantage of the Kronecker product structure of
the (A1 ⊗ A2) part. It is also possible to state least squares problems of the form
(1.1), where na1na2 = nb1nb2 but na1 6= nb1, na2 6= nb2. In such cases it is not
possible to use all the presented ideas, since it is not possible to rewrite it to the form
(2.1). Therefore, the “exploded view” (1.1) has some advantage of greater generality
over the “compact view” (2.1). However, we only know one application [3] in which
we naturally have na1 = nb1, na2 = nb2. Therefore, we have not made any further
analysis of the case na1 6= nb1, na2 6= nb2. We have also shown how the GSVD can be
used on these problems and examined the complexity of the algorithm. The ideas in
section 2 can be implemented in practically any imperative programming language.
A Matlab implementation can be obtained from the author by sending an email to
abrr@cs.umu.se.
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COMPUTING A FACTOR OF A POLYNOMIAL BY MEANS OF
MULTISHIFT LR ALGORITHMS∗
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Abstract. In this paper we deal with the numerical approximation of a factor of a polynomial.
Our approach is based on the relations between matrix transforms and functional iterations. We
show that a generalized LR algorithm applied to an n× n Hessenberg matrix A may be viewed in a
polynomial setting as an iterative method for the computation of a single factor of arbitrary degree
k < n of the characteristic polynomial of A. In its basic form our method is linearly convergent
under very mild assumptions. The convergence rate can be improved by considering the technique of
shifting; the local convergence of our method complemented with a suitable shift strategy is typically
quadratic. One iteration of the resulting algorithm can be performed at the overall cost of O(k4+nk3)
arithmetical operations and nk2 log p/p parallel steps with order-pk2 processors; therefore, it appears
to have nice computational features in the typical case where k is a prespecified integer of modest
size with respect to n. Moreover, it can be arranged to produce highly efficient parallel algorithms
because of its possibility of extensive vectorization. Finally, we confirm its effectiveness by means of
numerical experiments which are reported and discussed.

Key words. factorization of polynomials, eigenvalue computation, LR algorithms

AMS subject classifications. 65H05, 65F15
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1. Introduction. In this paper we consider the problem of the numerical ap-
proximation of a factor of degree k of a polynomial p(t) of degree n. Throughout
this discussion, the integer k should be thought of as a fixed prespecified integer of
modest size with respect to n. This topic appears, for instance, in the theory of the
simultaneous computation of all the zeros of a polynomial in the presence of clusters.
In this case, root-finding algorithms usually present a very slow linear convergence
and so we expect to improve the convergence behavior by turning on the numerical
factorization [5], [16]. Furthermore, the requirement of effective numerical algorithms
for the approximate factorization (over the complex field) of a univariate polynomial is
also motivated by the observation that in the practice of computation, the coefficients
are frequently available only within certain truncation errors, and then the problem
of computing the factorization is better conditioned than the zero-finding one.

Our approach relies on the relations between matrix transforms and functional
iterations. It is in fact a standard approach to compute the roots of a given polynomial
p(t) by computing the eigenvalues of an n × n Hessenberg matrix A having p(t) as
characteristic polynomial. The LR iteration applied to a starting matrix A = A1

defines a sequence of similar matrices by

As − σsI = LsRs,

As+1 − σsI = RsLs, s ≥ 1,(1)

where Ls is unit lower triangular, Rs is upper triangular, and σs is a scalar called
the shift parameter. Under suitable conditions the sequence {As}s∈N will tend to
upper triangular, or at least block triangular form, yielding information about the
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eigenvalues [20]. Dekker and Traub [6], [7] proved that iteration (1) may be viewed in
a functional setting as an iterative scheme to obtain globally convergent algorithms for
polynomials. Jenkins and Traub [11], [12] explicitly formed these schemes by obtaining
an effective numerical algorithm which has been implemented in the NAPAK library.
More recently, the search for methods particularly suited to the parallel architectures
has been at the bottom of the increasing interest in the multishift implementation of
the matrix LR and QR iterations [19], [1], [8]. Watkins and Elsner [19] studied the
convergence properties of the following multishift LR iteration:

ps(As) = LsRs,

As+1 = L−1
s AsLs, s ≥ 1,(2)

where ps(t) is a polynomial of arbitrary degree ks. If we set ps(t) as the characteristic
polynomial of the k × k trailing principal submatrix of As, then the convergence of
the iteration generally results in the separation of a trailing principal submatrix of
order close to k which provides for the deflation of a factor of p(t).

Now, let us assume that A = A1 is a lower Hessenberg matrix with unit su-

perdiagonal entries, and denote as ψ
(s)
i (t) and ρ

(s)
i (t), respectively, the characteristic

polynomial of the i×i leading principal submatrix of As and the characteristic polyno-

mial of the i×i trailing principal submatrix of As. Moreover, set ψ
(s)
0 (t) = ρ

(s)
0 (t) = 1.

We may then prove that the matrix iteration (2) is equivalent in a polynomial setting
to the following iterative schemes:



ps(t)ψ
(s+1)
0 (t) =

∑ks
i=0 b

(s)
0,iψ

(s)
i (t);

. . . . . . . . . ;

. . . . . . . . . ;

ps(t)ψ
(s+1)
n−2 (t) = b

(s)
n−2,n−2ψ

(s)
n−2(t) + b

(s)
n−2,n−1ψ

(s)
n−1(t) + g

(s)
n−2(t)p(t);

ps(t)ψ
(s+1)
n−1 (t) = b

(s)
n−1,n−1ψ

(s)
n−1(t) + g

(s)
n−1(t)p(t),

(3)

and 


ps(t)ρ
(s)
n−1(t) = c

(s)
n−1,n−1ρ

(s+1)
n−1 (t) + f

(s)
n−1(t)p(t);

ps(t)ρ
(s)
n−2(t) = c

(s)
n−2,n−2ρ

(s+1)
n−2 (t) + c

(s)
n−2,n−1ρ

(s+1)
n−1 (t) + f

(s)
n−2(t)p(t);

. . . . . . . . . ;

. . . . . . . . . ;

ps(t)ρ
(s)
0 (t) =

∑ks
i=0 c

(s)
0,iρ

(s+1)
i (t),

(4)

where c
(s)
i,j and b

(s)
i,j are suitable scalars and f

(s)
n−i(t) and g

(s)
n−i(t) are suitable polynomials

of degree ks− i. The first equation of (4) represents a modification of the well-known
Sebastião e Silva method for finding a single zero of p(t). The last equality of (3)
reduces to the Jenkins and Traub method in the case where ks = 1. The relation of
the Jenkins and Traub globally convergent algorithm to the work of Sebastião e Silva,
which was already observed in a different perspective in Householder’s book [14], is
also made clear.

In the stationary case where p1(t) = ps(t) for any s, we are able to show the
convergence of the iterative schemes (3) and (4) under very mild assumptions. Specif-
ically, if we assume that

|p1(t1)| ≥ |p1(t2)| ≥ · · · ≥ |p1(tn−k)| > |p1(tn−k+1)| ≥ · · · |p1(tn)| > 0,
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where ti denote the eigenvalues of A1, that is, the zeros of p(t), then for almost any
starting matrix A1 the iterative schemes (3) and (4) can be constructed for any s.
Moreover, we have that

∥∥∥∥∥ρ(s+1)
k (t)−

n∏
i=n−k+1

(t− ti)

∥∥∥∥∥
∞

= O(εs+1)

and ∥∥∥∥∥ψ(s+1)
n−k (t)−

n−k∏
i=1

(t− ti)

∥∥∥∥∥
∞

= O(εs+1),

where ε is any number satisfying

|p1(tn−k+1)/p1(tn−k)| < ε < 1.

In this way, the iterative schemes (3) and (4) provide the means for developing
a numerical method for the approximation of a factor of degree k < n of p(t) given
a starting approximation p1(t). The computation of the characteristic polynomials

ψ
(s+1)
n−i (t), 1 ≤ i ≤ k, by using the last k equalities of (3) can be performed in a

stable way at the cost of O(k4 + nk3) arithmetical operations and O(nk) storage.
In a parallel model of computation we easily obtain the upper bound O(nk2 log p/p)
parallel steps with order-pk2 processors. According to Brent’s scheduling principle
for parallel computing, we may decrease the number of processors by a factor s by
slowing down parallel computations by O(s) times. On the contrary, no comparable
reduction both in cost and in storage can be achieved for the algorithms based on the
eigenvalue computation in the case k � n. Furthermore, as the matrix formulation of
(3) and (4) suggests, we can improve the convergence rate by considering a suitable

shift strategy. After m steps we replace p1(t) with the polynomial η
(s)
k (t) defined as

a quotient by the division of p(t) by ψ
(s)
n−k(t). For an appropriate selection of the

parameter m, then we find that the local convergence of the resulting algorithm is
typically quadratic.

The iterative schemes (3) and (4) address some of the stability problems of the
LR iterations (1) and (2) by avoiding the explicit computation of the entries which
define the triangular decomposition. Despite this, the occurrence of breakdowns or
near breakdowns in the LR iteration (1) can most severely impact the accuracy of the

computed approximations ψ
(s+1)
n−i (t). Namely, very small changes in the coefficients

of the polynomials ψ
(s)
n−i(t) could in fact lead to substantially larger changes in the

coefficients of the polynomials ψ
(s+1)
n−i (t). However, since the updating procedure em-

ploys the original polynomial p(t), poor results produced at a certain step might be
corrected in practice in the successive iterations at the cost of increasing the number
of iterations.

The paper is organized as follows. In section 2 we give the background on the LR
iteration and we describe the basic properties of the numerical schemes which yield
its polynomial representation. Section 3 presents a numerical implementation of our
algorithm for the numerical approximation of a factor of a polynomial. We confirm
its effectiveness by means of numerical experiments which are reported and discussed.
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2. Methods. Let p(t) be a monic complex polynomial of degree n such that

p(t) =

n−1∑
i=0

pit
i + tn =

n∏
i=1

(t− ti).

Let us consider an n×n lower Hessenberg matrix with unit superdiagonal entries

A1 =




a
(1)
1,1 1

a
(1)
2,1 a

(1)
2,2 1

...
...

. . .
. . .

a
(1)
n−1,1 a

(1)
n−1,2 . . . . . . 1

a
(1)
n,1 a

(1)
n,2 . . . . . . a

(1)
n,n




(5)

such that

p(t) = det(tI −A1).(6)

The standard LR algorithm with explicit shift [15] defines a sequence of similar
matrices by

As − σsI = LsRs,

As+1 = σsI +RsLs, s ≥ 1,(7)

where Ls is unit lower triangular, Rs is upper triangular, and σs is some shift of the
origin of the spectrum of As.

Watkins and Elsner [19] proposed the following generalization of (7):

ps(As) = LsRs,

As+1 = L−1
s AsLs, s ≥ 1,(8)

where ps(t) is a monic polynomial of degree ks less than n. Writing ps(t) in factored
form, we find that the scheme (8) corresponds with ks steps of (7) where the shifts
are the roots of ps(t). In this way, a representation of the multishift scheme (8) in a
polynomial setting can be obtained by considering a generic step of (7).

Let us define the polynomials ψ
(s)
i (t) and ρ

(s)
i (t) by means of the following equa-

tions:

ψ
(s)
i (t) = det(tI − Âs,i), 1 ≤ i ≤ n− 1,(9)

and

ρ
(s)
i (t) = det(tI −As,i), 1 ≤ i ≤ n− 1,(10)

where

As =

(
Âs,n−k Cs,k

Bs,k As,k

)

with Âs,n−k ∈ C(n−k)×(n−k) and As,k ∈ Ck×k.
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The polynomial vector (ψ
(s)
0 (t), . . . , ψ

(s)
n−1(t))

T , ψ
(s)
0 (t) = 1, satisfies the equation

t



ψ

(s)
0 (t)
...

ψ
(s)
n−1(t)


 = As



ψ

(s)
0 (t)
...

ψ
(s)
n−1(t)


+




0
...
0
p(t)


 .(11)

Similarly, given a polynomial vector (ψ
(s)
0 (t), . . . , ψ

(s)
n−1(t))

T such that ψ
(s)
i (t) is a

monic polynomial of degree i, there is a unique lower Hessenberg matrix As satisfying
relation (11) [13]. By replacing the matrix As with the matrix JAT

s J , where J denotes
the n × n permutation matrix having unit antidiagonal entries, we find that the

polynomial vector (ρ
(s)
0 (t), . . . , ρ

(s)
n−1(t))

T , ρ
(s)
0 (t) = 1, is such that

t



ρ
(s)
n−1(t)

...
ρ
(s)
0 (t)




T

=



ρ
(s)
n−1(t)

...
ρ
(s)
0 (t)




T

As +



p(t)
0
...
0




T

.(12)

In this way, since we have

t



ψ

(s+1)
0 (t)

...
ψ

(s+1)
n−1 (t)


 = L−1

s AsLs



ψ

(s+1)
0 (t)

...
ψ

(s+1)
n−1 (t)


+




0
...
0
p(t)


 ,(13)

we find that 

ψ

(s+1)
0 (t)

...
ψ

(s+1)
n−1 (t)


 = L−1

s



ψ

(s)
0 (t)
...

ψ
(s)
n−1(t)


 .

By replacing As in (11) with σsI + LsRs, we obtain

(t− σs)



ψ

(s+1)
0 (t)

...
ψ

(s+1)
n−1 (t)


 = Rs



ψ

(s)
0 (t)
...

ψ
(s)
n−1(t)


+




0
...
0
p(t)


 .

According to the Hessenberg form of As, then Rs is an upper bidiagonal matrix
with unit superdiagonal entries

Rs =



r
(s)
1 1

. . .
. . .
. . . 1

r
(s)
n


 .(14)

This means that the sth step of (7) defines the following scheme:


(t− σs)ψ
(s+1)
0 (t) = r

(s)
1 ψ

(s)
0 (t) + ψ

(s)
1 (t);

. . . . . . . . . ;

. . . . . . . . . ;

(t− σs)ψ
(s+1)
n−1 (t) = r

(s)
n ψ

(s)
n−1(t) + p(t),

(15)
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which gives 


(t− σs)ψ
(s+1)
0 (t) = −(ψ

(s)
1 (σs)/ψ

(s)
0 (σs))ψ

(s)
0 (t) + ψ

(s)
1 (t);

. . . . . . . . . . . . ;

. . . . . . . . . . . . ;

(t− σs)ψ
(s+1)
n−1 (t) = −(p(σs)/ψ

(s)
n−1(σs))ψ

(s)
n−1(t) + p(t).

(16)

In the same manner we obtain the following transformation rules for the polyno-

mial vector (ρ
(s)
0 (t), . . . , ρ

(s)
n−1(t))

T :


(t− σs)ρ
(s)
n−1(t) = r

(s)
1 ρ

(s+1)
n−1 (t) + p(t);

. . . . . . . . . ;

. . . . . . . . . ;

(t− σs)ρ
(s)
0 (t) = r

(s)
n ρ

(s+1)
0 (t) + ρ

(s+1)
1 (t).

(17)

By performing ks steps of (15) and (17), it can be easily seen that the general-
ized LR iteration (8) is equivalent in a polynomial setting to the following iterative
schemes:



ps(t)ψ
(s+1)
0 (t) =

∑ks
i=0 b

(s)
0,iψ

(s)
i (t);

. . . . . . . . . ;

. . . . . . . . . ;

ps(t)ψ
(s+1)
n−2 (t) = b

(s)
n−2,n−2ψ

(s)
n−2(t) + b

(s)
n−2,n−1ψ

(s)
n−1(t) + g

(s)
n−2(t)p(t);

ps(t)ψ
(s+1)
n−1 (t) = b

(s)
n−1,n−1ψ

(s)
n−1(t) + g

(s)
n−1(t)p(t),

(18)

and 


ps(t)ρ
(s)
n−1(t) = c

(s)
n−1,n−1ρ

(s+1)
n−1 (t) + f

(s)
n−1(t)p(t);

ps(t)ρ
(s)
n−2(t) = c

(s)
n−2,n−2ρ

(s+1)
n−2 (t) + c

(s)
n−2,n−1ρ

(s+1)
n−1 (t) + f

(s)
n−2(t)p(t);

. . . . . . . . . ;

. . . . . . . . . ;

ps(t)ρ
(s)
0 (t) =

∑ks
i=0 c

(s)
0,iρ

(s+1)
i (t),

(19)

where c
(s)
i,j and b

(s)
i,j are suitable scalars and f

(s)
n−i(t) and g

(s)
n−i(t) are suitable monic

polynomials of degree ks − i.
The first equation of (19) defines the well-known Sebastião e Silva method for

finding a single zero of p(t). Stewart [18] gave a systematic theoretical description of
this method. The last equation of (18) leads to a suitable modification of the Jenkins
and Traub globally convergent algorithm for computing a single zero of a polynomial
[11], [12]. The relation of Jenkins and Traub algorithm to the work of Sebastião e
Silva was already observed in a different perspective in Householder’s book [14].

In the basic version of the iterative schemes (18) and (19), we may choose a
starting shift p1(t) of degree k1 = k and, then, we may set ps(t) = p1(t) ∀s ≥ 1; we
will refer to this case as the stationary case. If p1(t) separates h zeros of p(t) from
the remaining ones, namely,

|p1(t1)| ≥ |p1(t2)| ≥ · · · ≥ |p1(th)| > |p1(th+1)| ≥ · · · |p1(tn)| > 0,(20)

where

|p1(th+1)|
|p1(th)| � |p1(th+j+1)|

|p1(th+j)| , 1 ≤ j ≤ n− h− 1,
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then the convergence of the matrix iterations generally results in the separation of a
trailing principal submatrix of order close to n − h which provides for the deflation
of a factor of p(t). This suggests to us to consider the following stationary process,
called stationary iteration, as a means of approximating a factor of p(t).

Stationary iteration.

Let p1(t) be a polynomial of degree k < n satisfying (20); moreover, let ψ
(0)
n−j(t),

1 ≤ j ≤ n− h, be n− h monic polynomials such that ψ
(0)
n−j(t) has degree n− j;

for s = 1, 2, . . .

compute the polynomials ψ
(s)
n−j(t), 1 ≤ j ≤ n − h, by means of the last n − h

equalities of (18);
set ps+1(t) = p1(t) .
end
By a mathematical point of view, we may analogously consider an iterative scheme

which uses the first n − h equations of (19). However, as the Jenkins and Traub
algorithm has better numerical behavior with respect to the Sebastião e Silva method,

we prefer a formulation in terms of the polynomials ψ
(s)
n−j(t).

As we know, Gaussian elimination fails unless the first n−1 leading principal sub-
matrices are nonsingular. This means that the matrix iteration (7) and its polynomial
formulation (16) can break down. More specifically, they break down for a certain

s ∈ N if and only if there exists an index j, 0 ≤ j ≤ n− 1, such that ψ
(s)
j (σs) = 0. In

this case the matrix As − σsI has the leading principal minor of order j + 1 which is
zero and, therefore, its LR factorization does not exist. Now, we observe that in the

stationary case where the shift is fixed, the coefficients of ψ
(s)
j (t) are rational functions

of the coefficients both of ψ
(s−1)
j+1 (t) and of ψ

(s−1)
j+2 (t), where we denote ψ

(i)
n (t) = p(t)

for any i. By induction, we find that the coefficients of ψ
(s)
j (t) are rational functions of

the coefficients of ψ
(0)
j+h(t) for 1 ≤ h ≤ n−j. Thus, we finally obtain that ψ

(s)
j (σs) = 0

if and only if the starting polynomial vector belongs to a subset of Cn(n−1)/2 with
zero Lebesgue measure. Roughly speaking, for almost any starting matrix A1 or,

equivalently, for almost any choice of the polynomials ψ
(0)
j (t), 1 ≤ j ≤ n − 1, the

polynomial vectors (ψ
(s+1)
0 (t), . . . , ψ

(s+1)
n−1 (t))T and (ρ

(s+1)
0 (t), . . . , ρ

(s+1)
n−1 (t))T can be

constructed for any s ∈ N.
In order to investigate the convergence properties of the stationary iteration we

will frequently use the following lemma [10].
Lemma 2.1. If A and E are n × n matrices such that A is nonsingular and

||A−1E||∞ = r < 1, then A+ E is nonsingular

||(A+ E)−1 −A−1||∞ ≤ ||E||∞||A−1||2∞
1− r

.

We first assume that the polynomial p(t) has n distinct zeros such that the in-

equalities (20) hold. By evaluating the polynomial vector (ψ
(s+1)
0 (t), . . . , ψ

(s+1)
n−1 (t))T

at the zeros ti of p(t), 1 ≤ i ≤ n, we find that

B(s)



ψ

(s)
n−1(ti)

...
ψ

(s)
0 (ti)


 = p1(ti)



ψ

(s+1)
n−1 (ti)

...
ψ

(s+1)
0 (ti)


 ,
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where

B(s) =




b
(s)
n−1,n−1

b
(s)
n−2,n−1 b

(s)
n−2,n−2

...
...

. . .

b
(s)
n−k−1,n−1 . . . . . .

. . .

. . . . . . . . .
. . .

O
. . .

. . .

b
(s)
0,k . . . . . . b

(s)
0,0



.

Inductively, we obtain



ψ

(s+1)
n−1 (ti)

...
ψ

(s+1)
0 (ti)


 =

(
1

p1(ti)

)s+1



d
(s)
n−1,n−1

d
(s)
n−2,n−1 d

(s)
n−2,n−2

...
...

. . .

d
(s)
0,n−1 . . . d

(s)
0 0





ψ

(0)
n−1(ti)

...
ψ

(0)
0 (ti)


 .(21)

By using the Newton interpolation formula with nodes ti, 1 ≤ i ≤ h, we can write

ψ
(s+1)
h (t)−

h∏
i=1

(t− ti) =
h∑
i=1

ψ
(s+1)
h [t1, . . . , ti]

i−1∏
j=1

(t− tj),(22)

where ψ
(s+1)
h [t1, . . . , ti] denotes the (i− 1)st order divided difference of ψ

(s+1)
h (t). We

recall that the following formula holds:

ψ
(s+1)
h [t1, . . . , ti] =

i∑
j=1

ψ
(s+1)
h (tj)∏i

l=1,l 6=j(tj − tl)
.(23)

Thus, by evaluating (22) at t = tm, h+ 1 ≤ m ≤ n, there follows that

ψ
(s+1)
h (tm) =

h∑
i=1




i∑
j=1

ψ
(s+1)
h (tj)∏i

l=1,l 6=j(tj − tl)




i−1∏
j=1

(tm − tj) +
h∏
i=1

(tm − ti),

which gives

ψ
(s+1)
h (tm) =

h∑
i=1

ψ
(s+1)
h (ti)qi,m +

h∏
i=1

(tm − ti),(24)

where the coefficients qi,m are rational expressions depending on the zeros of p(t) only.
From (21) there follows that

ψ
(s+1)
h (ti) = (1/p1(ti))

s+1
n−h∑
l=1

d
(s)
h,n−lψ

(0)
n−l(ti), 1 ≤ i ≤ n.(25)

By replacing (25) in (24) we obtain the equalities(
1

p1(tm)

)s+1 n−h∑
l=1

d
(s)
h,n−lψ

(0)
n−l(tm)−

h∏
i=1

(tm − ti)

=

h∑
i=1

{(
1

p1(ti)

)s+1 n−h∑
l=1

d
(s)
h,n−lψ

(0)
n−l(ti)

}
qi,m,
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which, for m ranging from h+ 1 to n, define an (n− h)× (n− h) linear system in the

n− h variables d
(s)
h,n−l, 1 ≤ l ≤ n− h. Namely, we find that

n−h∑
l=1

d
(s)
h,n−lδ

(s)
m−h,l =

h∏
i=1

(tm − ti), h+ 1 ≤ m ≤ n,(26)

where the coefficient matrix ∆(s) = (δ
(s)
i,j ) is given by

δ
(s)
m−h,l =

ψ
(0)
n−l(tm)

p1(tm)s+1
−

h∑
i=1

ψ
(0)
n−l(ti)qi,m
p1(ti)s+1

.(27)

This means that there exists a constant K > 0, which depends on p(t) and on the

starting polynomials ψ
(0)
n−i(t) only, such that

δ
(s)
i,j =

1

p1(ti+h)s+1
{ψ(0)

n−j(ti+h) + ε
(s)
i,j }, 1 ≤ i, j ≤ n− h,(28)

where

|ε(s)i,j | ≤ K

∣∣∣∣p1(ti+h)

p1(th)

∣∣∣∣
s+1

.

Let us denote as Pn−h the (n − h) × (n − h) matrix which has the i, j entry, 1 ≤
i, j ≤ n − h, equal to ψ

(0)
n−j(ti+h). Lemma 2.1 yields the following representation of

the solution of the linear system (26):

d
(s)
h,n−l =

n−h∑
j=1

(
p1(th+j)

s+1
h∏
i=1

(th+j − ti)

)(
γl,j +O

(∣∣∣∣ p1(th+1)

p1(th)s+1

∣∣∣∣
s+1
))

,(29)

whenever Pn−h is nonsingular and P−1
n−h = (γi,j).

By replacing (29) in (25), we finally obtain that∥∥∥∥∥ψ(s+1)
h (t)−

h∏
i=1

(t− ti)

∥∥∥∥∥
∞

= O(|p1(th+1)/p1(th)|s+1),

where we set ||p(t)||∞ = max0≤i≤n |pi|, pn = 1. Similarly, we can show that∥∥∥∥∥ρ(s+1)
n−h (t)−

n∏
i=h+1

(t− ti)

∥∥∥∥∥
∞

= O(|p1(th+1)/p1(th)|s+1).

In this way we arrive at the following convergence result for the stationary itera-
tion.

Theorem 2.2. Let p(t) be a polynomial of degree n with n distinct zeros numbered
in such a way that

|p1(t1)| ≥ |p1(t2)| ≥ · · · ≥ |p1(th)| > |p1(th+1)| ≥ · · · |p1(tn)| > 0,

where p1(t) is a given polynomial of degree k < n. Then, for almost any choice of the

polynomials ψ
(0)
n−j(t), 1 ≤ j ≤ n − h, the stationary iteration doesn’t break down for

any s ∈ N. Moreover, we have that∥∥∥∥∥ψ(s+1)
h (t)−

h∏
i=1

(t− ti)

∥∥∥∥∥
∞

= O(|p1(th+1)/p1(th)|s+1).
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In matrix form the above theorem states that As tends to a block triangular form
and, therefore, it implies the linear convergence of the generalized LR iteration (8) in
the stationary case whenever A1 has n distinct eigenvalues. A suitable modification
of the Sebastião e Silva method has been introduced in [3] for the simultaneous ap-
proximation of all the zeros of a polynomial. The convergence analysis presented in
[3, Proposition 3.1] easily yields a convergence result for the generalized LR iteration
(8) when applied to a starting matrix A1 in tridiagonal form.

Virtually any polynomial has distinct zeros; however, in order to cover all of the
cases, we describe below a generalization of Theorem 2.2 which deals with multiple
zeros.

For the sake of notational simplicity, assume that (20) is satisfied and, moreover,
the zeros ti, 1 ≤ i ≤ n, of p(t) are such that ti 6= tj if and only if i, j 6∈ {h− 1, h} and
i, j 6∈ {h + 1, h + 2}. Now, (22) still holds when we consider the classical extension
of the divided differences to the case in which some of the nodes coincide. Under our
assumptions we find that

ψ
(s+1)
h [t1, . . . , th] =

h−2∑
j=1

ψ
(s+1)
h (tj)∏h

l=1,l 6=j(tj − tl)
+ g1ψ

(s+1)
h (th) + g2ψ

(s+1)
h

′
(th),

where g1 and g2 are rational expressions depending only on the zeros of p(t) and,
moreover, p′(t) denotes the first derivative of p(t). There follows that

ψ
(s+1)
h (tm) =

h−1∑
i=1

ψ
(s+1)
h (ti)q̃i,m + ψ

(s+1)
h

′
(th)q̃h,m +

h∏
i=1

(tm − ti),(30)

where the coefficients q̃i,m are rational expressions depending on the zeros of p(t) only

and m = h+ 2, . . . , n. Further, by evaluating ψ
(s+1)
h

′
(t), we find that

ψ
(s+1)
h

′
(th+1) =

h−1∑
i=1

ψ
(s+1)
h (ti)q̃i,h+1 + ψ

(s+1)
h

′
(th)q̃h,h+1 + q̃h+1,h+1,(31)

where the coefficients q̃i,h+1 are rational expressions depending on the zeros of p(t)
again. It can be easily seen that (18) and (21) inductively yield the following formula:

ψ
(s+1)
h

′
(t̄ ) =

n−h∑
l=1

d
(s)
h,n−l


ψ

(0)
n−l

′
(t̄ )

p1(t̄ )
s+1 −

ψ
(0)
n−l(t̄ )(s+ 1)p1

′(t̄ )

p1(t̄ )
s+2


 ,(32)

where t̄ = th, th+1. By replacing (25) and (32) in both (31) and (30), we arrive at an

(n−h)× (n−h) linear system in the n−h variables d
(s)
h,n−l. For the coefficient matrix

∆(s) = (δ
(s)
i,j ), we now have

δ
(s)
1,l =

ψ
(0)
n−l

′
(th+1)

p1(th+1)
s+1 −

ψ
(0)
n−l(th+1)(s+ 1)p1

′(th+1)

p1(th+1)
s+2 −

h−1∑
i=1

ψ
(0)
n−l(ti)q̃i,h+1

p1(ti)s+1

−q̃h,h+1


ψ

(0)
n−l

′
(th)

p1(th)
s+1 −

ψ
(0)
n−l(th)(s+ 1)p1

′(th)

p1(th)
s+2


 , 1 ≤ l ≤ n− h,
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and, moreover,

δ
(s)
m−h,l =

ψ
(0)
n−l(tm)

p1(tm)s+1
−

h−1∑
i=1

ψ
(0)
n−l(ti)q̃i,m
p1(ti)s+1

− q̃h,m

{
ψ

(0)
n−l

′
(th)

p1(th)
s+1 −

ψ
(0)
n−l(th)(s+ 1)p1

′(th)

p1(th)
s+2

}
,

for h+ 2 ≤ m ≤ n and 1 ≤ l ≤ n− h. These equations imply the following estimates:

δ
(s)
1,l =

1

p1(th+1)s+1

{
ψ

(0)
n−l

′
(th+1)−

ψ
(0)
n−l(th+1)(s+ 1)p1

′(th+1)

p1(th+1)

+O

(
(s+ 1)

∣∣∣∣∣p1(th+1)

p1(th)

∣∣∣∣∣
s+1)}

,

and

δ
(s)
i,l =

1

p1(th+i)s+1

{
ψ

(0)
n−l

′
(th+i) +O

(
(s+ 1)

∣∣∣∣∣p1(th+i)

p1(th)

∣∣∣∣∣
s+1)}

.

Let P̃n−h be the (n − h) × (n − h) matrix which has the i, j entry equal to

ψ
(0)
n−j

′
(th+1) if i = 1 and ψ

(0)
n−j(th+i) otherwise. Moreover, let us denote as un−h the

vector with entries ψ
(0)
n−l(th+1)(s + 1)(p1

′(th+1)/p1(th+1)), 1 ≤ l ≤ n − h. Observe

that un−h is parallel with the second column of P̃T
n−h. Hence, if we assume that P̃n−h

is nonsingular, an application of the Sherman–Morrison formula says that P̃T
n−h −

un−heT1 is nonsingular and

(P̃T
n−h − un−heT1 )−1 =

(
I +

(s+ 1)p1
′(th+1)

p1(th+1)
e2e

T
1

)
P̃−Tn−h.

By applying Lemma 2.1, we conclude that∥∥∥∥∥ψ(s+1)
h (t)−

h∏
i=1

(t− ti)

∥∥∥∥∥
∞

= O((s+ 1)2|p1(th+1)/p1(th)|s+1).

The next theorem generalizes Theorem 2.2 to the case where no assumptions about
the multiplicity of the zeros of p(t) are made.

Theorem 2.3. Let p(t) be a polynomial of degree n. Assume that its zeros ti,
1 ≤ i ≤ n, are numbered so that

|p1(t1)| ≥ |p1(t2)| ≥ · · · ≥ |p1(th)| > |p1(th+1)| ≥ · · · |p1(tn)| > 0,

where p1(t) is a given polynomial of degree k < n. Then, for almost any choice of the

polynomials ψ
(0)
n−j(t), 1 ≤ j ≤ n − h, the stationary iteration doesn’t break down for

any s ∈ N. Moreover, we have that∥∥∥∥∥ψ(s+1)
h (t)−

h∏
i=1

(t− ti)

∥∥∥∥∥
∞

= O(εs+1),

where ε is any number satisfying

|p1(th+1)/p1(th)| < ε < 1.
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Theorems 2.2 and 2.3 say that the stationary iteration can be used in order to
construct iterative methods for approximating a factor of p(t) of degree n − h = k
whenever a starting approximation p1(t) of degree k satisfying (20) is available. To be

specific, denote as {ψ(s)
n−k(t)}s∈N a polynomial sequence generated by the stationary

iteration. Introduce the polynomials η
(s)
k (t) which are defined as a quotient by the

division of p(t) by ψ
(s)
n−k(t), that is,

p(t) = η
(s)
k (t)ψ

(s)
n−k(t) + θ(s)(t),(33)

where the degree of θ(s)(t) is less than the degree of ψ
(s)
n−k(t). In the case where

ψ
(s)
n−k(t) approaches the polynomial

∏n−k
i=1 (t− ti), the quotient η

(s)
k (t) should converge

to the polynomial
∏n

i=n−k+1(t − ti). The following iterative process exploits this
observation.

Stationary factor iteration.

Let p1(t) be a polynomial of degree k < n satisfying (20) with h = n−k; moreover,

let ψ
(0)
n−j(t), 1 ≤ j ≤ k, be k monic polynomials such that ψ

(0)
n−j(t) has degree n− j;

for s = 1, 2, . . .

compute the polynomials ψ
(s)
n−j(t), 1 ≤ j ≤ k, by means of the last k equalities of

(18);

compute η
(s)
k (t) and check for its convergence;

set ps+1(t) = p1(t) .

end

The convergence of the stationary factor iteration is typically linear as the next
theorem shows.

Theorem 2.4. Let p(t) be a polynomial of degree n. Assume that its zeros ti,
1 ≤ i ≤ n, are numbered so that

|p1(t1)| ≥ |p1(t2)| ≥ · · · ≥ |p1(tn−k)| > |p1(tn−k+1)| ≥ · · · |p1(tn)| > 0,

where p1(t) is a given polynomial of degree k < n. Then, for almost any choice of the

polynomials ψ
(0)
n−j(t), 1 ≤ j ≤ k, the stationary factor iteration doesn’t break down for

any s ∈ N. Moreover, we have that∥∥∥∥∥η(s+1)
k (t)−

n−k∏
i=1

(t− ti)

∥∥∥∥∥
∞

= O(εs+1),

where ε is any number satisfying

|p1(tn−k+1)/p1(tn−k)| < ε < 1.

Proof. By viewing (33) in matrix form, we find that the coefficients of η
(s)
k (t)

solve a linear system. The coefficient matrix is an upper triangular Toeplitz matrix

determined by the coefficients of the polynomial ψ
(s)
n−k(t); the known vector consists of

the coefficients of p(t). Hence, the thesis follows by combining the results of Theorem
2.3 and of Lemma 2.1.

In order to improve the linear convergence rate, the matrix formulation of (18)
and (19) suggests to us to consider the shift strategies which have been used with
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success in matrix iteration theory. Roughly speaking, Theorem 2.4 says that η
(s)
k (t)

is a good separator of the spectrum of p(t), that is,

|η(s)
k (tn−k+1)|
|η(s)
k (tn−k)|

� 1,

for all sufficiently large s. This motivates the following modification of the stationary
factor iteration which includes a generalized shift strategy.

Shifted factor iteration.

Let p1(t) be a polynomial of degree k < n satisfying (20) with h = n−k; moreover,

let ψ
(0)
n−j(t), 1 ≤ j ≤ k, be k monic polynomials such that ψ

(0)
n−j(t) has degree n− j;

for s = 1, 2, . . .

compute the polynomials ψ
(s)
n−j(t), 1 ≤ j ≤ k, by means of the last k equalities of

(18);

set ps+1(t) = p1(t) if 0 ≤ s ≤ m. Otherwise, if s > m, compute η
(s)
k (t) as defined

by (33) and check for its convergence; then, set ps+1(t) = η
(s)
k (t).

end

At this point, we do not discuss how to choose the parameter m and we assume
that we have a well-defined criterion which says whether s > m or not. We will return
to this topic in the next section.

The local convergence of the shifted factor iteration is typically quadratic as stated
in the next theorem.

Theorem 2.5. Let p(t) be a polynomial of degree n with n distinct zeros numbered
so that

|p1(t1)| ≥ |p1(t2)| ≥ · · · ≥ |p1(tn−k)| > |p1(tn−k+1)| ≥ · · · |p1(tn)| > 0,

where p1(t) is a given polynomial of degree k < n. For a given choice of the start-

ing polynomials ψ
(0)
n−j(t), 1 ≤ j ≤ k, assume that the shifted factor iteration does

not break down for any selection of m. Moreover, assume that the k × k matrix

Pk = (ψ
(0)
n−j(ti+n−k)) is nonsingular. Then the local convergence of the shifted factor

iteration is quadratic in the following sense: ∃n̄ ∈ N such that ∀m ≥ n̄ ∃ Mm such
that ∥∥∥∥∥η(s+1)

k (t)−
n∏

i=n−k+1

(t− ti)

∥∥∥∥∥
∞
≤Mm

∥∥∥∥∥η(s)
k (t)−

n∏
i=n−k+1

(t− ti)

∥∥∥∥∥
2

∞

is fulfilled ∀s > m.

Proof. Assume that the cumulative polynomial shift
∏s

l=1 pl(t) satisfies

maxn−k+1≤j≤n
∏s

l=1 |pl(tj)|
min1≤j≤n−k

∏s
l=1 |pl(tj)|

≤ ε

for a sufficiently small ε > 0. By viewing the proof of Theorem 2.2, we find that the

entries δ
(s−1)
i,j of (28) are now defined by

δ
(s−1)
i,j =

1∏s
l=1 pl(ti+n−k)

{ψ(0)
n−j(ti+n−k) + ε

(s−1)
i,j }, 1 ≤ i, j ≤ k,
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where the small perturbations ε
(s−1)
i,j are bounded by

|ε(s)i,j | ≤ Kε

for the same constant K. Hence, we have that∥∥∥∥∥ψ(s)
n−k(t)−

n−k∏
i=1

(t− ti)

∥∥∥∥∥
∞
≤ C1ε,

where C1 is a suitable constant which depends on p(t) and the starting polynomials

ψ
(0)
i (t). Following the proof of Theorem 2.4, we are able to show that there exists a

constant C2 > 0 depending only on p(t) such that∥∥∥∥∥η(s)
k (t)−

n∏
i=n−k+1

(t− ti)

∥∥∥∥∥
∞
≤ C1C2ε.

In this way, we are able to show that there exists a constant C3 > 0, which depends
only on p(t) again, such that

|η(s)
k (tω(n−k+1))| ≤ C1C2C3ε,

and ∣∣∣∣∣η(s)
k (tσ(n−k))−

n∏
i=n−k+1

(tσ(n−k) − ti)

∣∣∣∣∣
∞
≤ C1C2C3ε.

Here σ and ω are suitable permutations of {1, . . . , n − k} and {n − k + 1, . . . , n},
respectively; they are defined by

|η(s)
k (tσ(1)| ≥ · · · ≥ |η(s)

k (tσ(n−k))| > |η(s)
k (tω(n−k+1))| ≥ · · · |η(s)

k (tω(n))| ≥ 0.

Thus, we conclude that

maxn−k+1≤j≤n
∏s+1

l=1 |pl(tj)|
min1≤j≤n−k

∏s+1
l=1 |pl(tj)|

≤ Cε2,

where C is a suitable constant which depends on p(t) and the starting polyno-

mials ψ
(0)
i (t). This implies the local quadratic convergence of the shifted factor itera-

tion.
The shifted factor iteration reduces to the Jenkins–Traub methods [11], [12] in

the case where we look for a linear factor (k = 1). Some computational experience
with the algorithms developed here for the numerical approximation of a factor of a
polynomial is the subject of the following section.

3. Computational results. In this section, we discuss a preliminary numerical
implementation of the shifted factor iteration for approximating a factor

p?(t) =
k∏
i=1

(t− tn−k+i)
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of a monic complex polynomial

p(t) =
n−1∑
i=0

pit
i + tn =

n∏
i=1

(t− ti)

given a starting approximation p1(t) of degree k which satisfies the condition (20),
namely,

|p1(t1)| ≥ |p1(t2)| ≥ · · · ≥ |p1(tn−k)| > |p1(tn−k+1)| ≥ · · · |p1(tn)| > 0.(34)

By a computational point of view, the proposed algorithm has several advantages over
more traditional approaches based on the eigenvalue computation. In the case where
k is an integer of modest size with respect to n, one step of the resulting algorithm
can be performed at a sequential cost which is almost linear with respect to n. The
storage needed is also linear with respect to n. Furthermore, our implementation
is particularly suited to the parallel architectures because of its possibility of exten-
sive vectorization. One iteration requires nk2 log p/p parallel steps with order-pk2

processors.

On the other hand, there still exist some numerical difficulties which stand in
the way of a robust implementation of the methods previously developed. First, the
separation between the spectrum of p?(t) and the remaining zeros of p(t) seems to
affect the conditioning of the factorization problem. In fact, the equation p(t) =
p?(t)p̂(t) can be seen as a nonlinear equation in the coefficients of the two factors. A
linearization technique such as the Newton method requires us to solve a linear system
with the Jacobian matrix as the coefficient matrix. In this case the Jacobian matrix at
the solution is the resultant of p?(t) and p̂(t) which is singular if and only if p?(t) and
p̂(t) have at least one common zero [9]. Second, the recovery of the coefficients of the

polynomials ψ
(s+1)
i (t) generated by the LR iteration applied to a Hessenberg matrix,

which has the polynomials ψ
(s)
i (t) as characteristic polynomials of its leading principal

submatrices, can be an ill-conditioned problem. More specifically, a very small change

in the coefficients of the polynomials ψ
(s)
i (t) can in fact lead to substantially larger

changes in the coefficients of ψ
(s+1)
i (t) whenever a near breakdown occurs in the

triangular factorization. However, since the updating procedure employs the original
polynomial p(t), poor results produced at a certain step might be corrected in practice
in the successive iterations at the cost of increasing the number of iterations.

One step of the shifted factor iteration can be organized into three phases:

1. compute the polynomials ψ
(s)
n−j(t), 1 ≤ j ≤ k;

2. compute the polynomial η
(s)
k (t) defined by (33);

3. check for the convergence of η
(s)
k (t) and decide whether to start with the shift

strategy.

Concerning the first phase, we express the last k equations of (18) in matrix form.
In this way, we are able to reduce the computation of the coefficients of the polynomial

ψ
(s+1)
n−i (t), 1 ≤ i ≤ k, to find the solution of a suitable linear system Ax = b, where

A ∈ C(n+k−i)×(n+k−i). The coefficient matrix A can be partitioned into a block form
as follows:

A =

(
T1 T2

T3 T4

)
,
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where T1 ∈ Ck×k and T4 ∈ Cn−i×n−i is a band upper triangular Toeplitz matrix with
bandwidth k. Let

b =

(
b1
b2

)

be the corresponding partition of the known vector b. In view of the block triangular
decomposition

A =

(
Ik T2T

−1
4

0 In−i

)(
T1 − T2T

−1
4 T3 0

T3 T4

)
,

we solve the linear system Ax = b by performing the following two steps:
1. we compute the vector(

b̂1
b̂2

)
=

(
Ik T2T

−1
4

0 In−i

)−1(
b1
b2

)
;

2. we solve the lower block triangular system(
T1 − T2T

−1
4 T3 0

T3 T4

)
x =

(
b̂1
b̂2

)
.

Since we have (
Ik T2T

−1
4

0 In−i

)−1

=

(
Ik −T2T

−1
4

0 In−i

)
,

the first step amounts to solving a linear system with coefficient matrix T4 and,
therefore, it requires O(nk) arithmetical operations or nk2 log p/p parallel steps with
order-p processors [4]. Concerning the second step, we have firstly to compute the
matrix T−1

4 T3 by solving k linear systems with coefficient matrix T4 at the overall
cost of O(nk2) arithmetical operations or nk2 log p/p parallel steps with order-pk pro-
cessors. Then, we finally solve the linear system with coefficient matrix T1−T2T

−1
4 T3

by determining its QR factorization at the cost of O(k3) arithmetical operations and
k2 parallel steps with order-k processors. Pivoting and balancing are performed in
order to improve the stability of the QR decomposition. Therefore, we compute the

coefficients of ψ
(s+1)
n−i (t) in a stable way at the cost of O(k3 + nk2) arithmetical oper-

ations or nk2 log p/p parallel steps with order-pk processors. This yields the overall
cost of O(k4+nk3) arithmetical operations or nk2 log p/p parallel steps with order-pk2

processors for executing the first phase of the shifted factor iteration.

The computation of the coefficients of η
(s)
k (t) defined by (33) amounts to solving

a k×k Toeplitz linear system. This task can be accomplished in a stable way by using
O(k3) arithmetical operations or k2 parallel steps with order-k processors. In brief,
we perform one step of the shifted factor iteration at the overall cost of O(k4 + nk3)
arithmetical operations or nk2 log p/p parallel steps with order-pk2 processors.

The major decision of our algorithm concerns the selection of the parameter
m. The well-known results on the convergence of both the LR algorithm [20] and
the Jenkins–Traub algorithms [11], [12] have shown that it is efficient to start with
a shift strategy only after a very weak test for the convergence has been passed.
However, some difficulties arise when the degree k of the desired factor is greater than

two. In fact, for the convergence we should guarantee that the polynomials η
(s+1)
k (t),
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Table 1

i cond

1 1013

2 1021

3 1017

4 1013

5 1015

s > m, satisfy the condition (34). This means that the selection of the parameter
m needs some preliminary information about the root distribution in the complex
plane, that is, about the separation between the wanted and unwanted spectrum.
Our implementation performs the shift strategy described in the above section when

|||η(s+1)
k (t)||∞ − ||η(s)

k (t)||∞| ≤ η,

where, at present, ad hoc choices are made for η. The algorithm is halted when either
we find that

||η(s+1)
k (t)− η

(s)
k (t)||∞ ≤ ε (n+ k)||p(t)||∞,(35)

where ε denotes here the machine precision, or the number of iterations exceeds a
fixed value itmax. In the latter case the program reports failure.

We have implemented our algorithm by using MathematicaTM on Macintosh with
low-precision arithmetic, i.e., about 18 decimal digits. We performed numerical exper-
iments for checking the convergence behavior of our algorithm when either approxima-
tions of the coefficients or approximations of the zeros are known. The latter situation
is particularly interesting for complementing the root-finding algorithms based on the
simultaneous approximation of the roots in the presence of clusters.

The first example consists of the following polynomial which is used as test poly-
nomial for the root-finding methods:

p(t) = (t− 2)10(t− 1.5)
4∏

i=1

(t− 1− ai),

where a = 0.01. The classical Wilkinson’s analysis about the sensitivity of the poly-
nomial roots indicates that the conditioning of computing a root α, that is, a linear
factor, depends on the value p′(α) and, therefore, it depends on the separation be-
tween α and the remaining spectrum of p(t). In this case most of the roots of p(t) are
ill conditioned. On the other hand, if we measure the conditioning of splitting p(t) in
two factors p?(t) and p̂(t) by means of the spectral condition number, that is, the ratio
of the largest singular value to the smallest one, of the resultant matrix generated by
p?(t) and p̂(t), then Table 1 shows that no advantage is achieved by passing from the

root-finding problem to the factorization one. We denote p?i (t) =
∏i

j=1(t − tn−j+1),

where the zeros ti of p(t) are numbered so that (34) holds with p1(t) = (t − 1)i.
For i = 1, . . . , 5 we compute the spectral condition number cond of the resultant
matrix generated by p?i (t) and p(t)/p?i (t) by means of the MathematicaTM function
SingularV alues.

Special attention should be given to the case i = 5. Although the spectrum of
p?5(t) is well separated from the remaining zeros of p(t), the corresponding factorization
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problem is extremely ill conditioned. This resembles what happens for the polynomial
roots. We made use of our algorithm in order to approximate the factor p?5(t) of p(t).
We considered different choices of η and itmax. In all of the cases our program reports
failure.

The second example is a suitable modification of the first one. We consider the
polynomial

p(t) = (t10 − 210)(t− 1.5)
4∏

i=1

(t− 1− ai),

where a = 0.01 and p1(t) = (t − 1)5. The conditioning of factoring p(t) as p?(t)p̂(t),
where

p?(t) = (t− 1.5)
4∏

i=1

(t− 1− ai),

is now of order 106. If we set η = 0.01 and itmax = 100, our implementation reports

failure. However, if we denote as η
(s)
5 (t) the computed approximations of p?(t), the

condition

||η(s+1)
5 (t)− η

(s)
5 (t)||∞ ≤ 10−11

is satisfied already for s = 8. Moreover, we find that

||η(9)
5 (t)− p?(t)||∞ ≤ 10−11.

This means that the stopping criterion (35) is generally rather inadequate. A more
reliable one should take into account some information about the conditioning of
the problem. How to find this information in a fast way is an open question and
its solution seems to need the extension of classical theorems on the sensitivity of
polynomial roots to the case where factors of arbitrary degree are considered. Some
results on this topic can be found in [17].

The previous examples deal with polynomials which are pathological in a certain
sense. The problem of factoring polynomials of low or moderate degree having random
complex coefficients uniformly distributed is usually a well-conditioned problem. In
order to substantiate our belief numerically, we have used the proposed algorithm for
determining an approximate factor of degree 4 of 20 monic complex polynomials of
degree 15 with random coefficients a+ ib, where i2 = −1 and a and b are drawn from
the uniform distribution in the interval [0, 1]. We set p1(t) = (t− 1)4 and, therefore,
we look for the 4 zeros of p(t) which are the nearest to 1. For any polynomial p(t) we
compute these zeros by means of the MathematicaTM function NRoots. We multiply
the corresponding linear factor and then we refer to the resulting polynomial of degree
4 as to p?(t). The spectral condition number cond of the resultant matrix generated
by p?(t) and p(t)/p?(t) is approximately of order 103 on average. We initialize the

program with η = 0.01 and itmax = 100; moreover, the monic polynomials ψ
(0)
n−l(t),

1 ≤ l ≤ 4, coincide with the normalized derivatives of p(t) of appropriate order. The
algorithm reached the modified convergence condition

||η(s+1)
4 (t)− η

(s)
4 (t)||∞ ≤ cond ε (n+ 4)||p(t)||∞
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Table 2

k n = 50 n = 100 n = 150 n = 200
5 6 6 6 7

10 18 19 20 20

in all of the cases. The medium number of iterations is about 16. If we denote
as η

(s̄)
4 (t) the approximation of p?(t) produced as output by the program, then the

condition

||η(s̄)
4 (t)− p?(t)||∞ ≤ cond ε (n+ 4)2||p(t)||∞

is always satisfied. As we increase the polynomial degree to 20, the spectral condition
number increases to the order of 104 on average. Our program reports failure in two
cases where the separation ratio |p1(t17)/p1(t16)| is greater than 0.95. Similar results
have been obtained for polynomials with random coefficients with normal distribution
with mean 0 and standard deviation 1.

Now, to exhibiting behavior on polynomials of high degree, we considered the
following two sets of test polynomials.

1. The first set consists of polynomials p(t) such that

p(t) = p̂(t)p?(t), p?(t) = (t− 3)k + 10−4
k−1∑
j=0

tj ,

where p̂(t) is a complex polynomial having randomly generated coefficients
with real and imaginary parts between −1 and 1. We considered the cases
k = 5 and k = 10. For each fixed value of k, we generate 100 polynomials

s(t) with degrees 50, 100, 150, and 200. The monic polynomials ψ
(0)
n−j(t),

1 ≤ j ≤ k, coincide with the normalized derivatives of p(t) of appropriate
order. For each fixed value of k, we use the polynomial

p1(t) =
k∏

j=1

(t− 3− 10−4wj), w = cos(π/k) + i sin(π/k), i2 = −1,

as the starting approximation of p?(t). We chose η = 10−2 and itmax =
50. In all cases the computation has been carried out successfully and our
implementation always reaches the stopping condition (35). This fact is a
manifestation of the well conditioning of the considered factorization problem.

If we denote as η
(s̄)
k (t) the approximation of p?(t) produced as output by the

program, then we find that the inequality

||η(s̄)
k (t)− p?(t)||∞ ≤ Cε (n+ k)||p(t)||∞

is satisfied in all of the cases. Here C is a constant of moderate size, say
C ≤ 10. Table 2 reports the average number of iterations rounded to the
nearest integer. This table clearly shows that the convergence properties of
our method are completely independent of the degree n of p(t).

2. The second set consists of polynomials p(t) such that

p(t) = p̂(t)p?(t), p?(t) =
2∏

j=−2, j 6=0

(t− a+ 0.1 j)(t− a+ 0.1 i j),
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Table 3

a n = 50 n = 100 n = 150 n = 200
2 6 6 6 6

1.5 16 18 11 11

where i2 = −1 and p̂(t) is a complex polynomial having randomly generated
coefficients with real and imaginary parts between −1 and 1. We generate
100 polynomials p̂(t) for each of the following values of the degree n, n ∈
{50, 100, 150, 200}. In order to approximate the coefficients of the factor of
p(t) which contains the 8 zeros of p(t) nearest to the value a, we chose

p1(t) = (t− a)8

as a starting approximation. Again, the monic polynomials ψ
(0)
n−l(t), 1 ≤ l ≤

8, coincide with the normalized derivatives of p(t) of appropriate order. We
observe that usually all the zeros of p̂(t) are clustered in a small circle around
the origin in the complex plane and numerical difficulties arise when the value
of a approaches this circle which contains the remaining zeros of p(t). For
example, when a = 1.2 and n = 200 the spectral condition number of the
resultant matrix generated by s(t) and p?(t) is of order 1011 on average. Table
3 reports the average number of iterations in the cases a = 2, a = 1.5, where
we set η = 10−2 and itmax = 200.

4. Conclusions. In conclusion, it seems that this is quite a promising approach.
A representation of the multishift LR matrix iteration in a polynomial setting has
been established. This provides the means for obtaining a globally convergent algo-
rithm for the approximation of the coefficients of a factor of degree k of a polynomial
of degree n. The complexity of our algorithm complemented with a suitable shift
strategy is linear with respect to n; moreover, the storage needed is also linear with
respect to n. In this way, from a computational point of view, the proposed algorithm
compares favorably with more traditional approaches based on the reduction to the
eigenvalue computation, especially when we consider polynomials of high degree. The
computational results are clearly preliminary. In general, our experiments indicate
that the algorithm has a good performance for moderate values of k. Moreover, the
convergence behavior depends on the separation between the wanted and unwanted
spectrum. Future research on this topic might include the use of our algorithm as a
tool for treating the cluster case in the root-finding algorithms based on simultane-
ous approximations of the roots (the Durand–Kerner algorithm implemented in the
CMLIB library and Aberth’s method implemented by Bini [2]). In this respect a
more rigorous criterion for choosing the value of η is also required. Investigations of
the use of our algorithm in a multiprecision floating point arithmetic would also be
interesting.
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Let N be the set of n × n nonnegative matrices. If A ∈ N , by the Perron–
Frobenius theory [5] A has at least one nonnegative eigenvalue ρ and a nonnegative
left eigenvector x 6= 0 as well as a nonnegative right eigenvector y 6= 0. Thus,

xA = ρx and Ay = ρy.

A stochastic vector is a nonnegative vector with entries summing to one. Through-
out this paper we assume, without loss of generality, that x and y are stochastic
eigenvectors.

Of course, there can be many matrices which have x and y as their eigenvectors.
Define a slice of N as

S(x, y) = {A ∈ N : A has left eigenvector x and right eigenvector y}.
Thus, it is clear that N = ∪S(x, y), where the union is over all stochastic vectors x
and y. So, N can be seen as a union of slices. A similar set is studied in [3], [12].

In this paper we give some geometrical description of a slice as well as how slices
fit together to form N . A model is drawn for the 2 × 2 matrices and we show how
this model gives a qualitative view of eigenvector behavior for a perturbed matrix.
In studying problems posed in n-space it is often helpful to study small-dimensional
cases for insight as well as for testing grounds for ideas and conjectures. See [10], [11]
for related work.

Results. It is clear that N is a closed convex cone and its dimension [1], [2], or [4]
is n2. Any slice is also a closed convex cone. We determine its dimension below.

To this end, we define the intermediate convex set

S1(x, y) = {A ∈ S(x, y): xA = x and Ay = y}.
By simultaneous permutation of rows and columns of the matrices in S1(x, y) we can
assume that

x = (x1, x2, 0, 0) and y =




0
y1

y2

0


 ,
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where
(i) each of x and y are partitioned into subvectors having n1, n2, n3, n4 compo-

nents. In this description, zero components are allowed.
(ii) No entry in x1, x2, y1, y2 is zero.
If we partition the matrices in S1(x, y) compatibly to the vectors and observe the

equations

xA = x,

Ay = y for any A ∈ S1(x, y),

we note that

A =



B 0 0 0
C D 0 0
X F G W
Y 0 0 Z


 ,

where the main diagonal blocks are n1 × n1, n2 × n2, n3 × n3, n4 × n4, respectively.
Of course, some of these blocks may not appear.

The equations in the subblocks of A must satisfy

(1) (x1, x2)

[
B

C

]
= x1,

(2) x2D = x2,

(3) Dy1 = y1,

(4) [F G]

(
y1

y2

)
= y2.

Conversely, any matrices which satisfy (1) through (4) can be used to construct,
in the obvious way, a matrix A ∈ S1(x, y).

Define

(1′) B = {M : M is an (n1 + n2)× n1 matrix},
(2′) D = {M : M is an n2 × n2 matrix},
(3′) E = {M : M is an n3 × (n2 + n3) matrix},
(4′) X = {M : M is an (n3 + n4)× (n1 + n4) matrix},

and, finally,

A ={M : M is an n× n matrix having the same zero submatrices

as that of the partitioned matrix A}.
Note that all these sets are vector spaces and thus so is the direct sum B ⊕D ⊕

E ⊕ X . Define

ϕ: A −→ B ⊕D ⊕ E ⊕ X by

ϕ(A) =

([
B
C

]
, D, [F,G],

[
X W
Y Z

])
,

where A is partitioned as before,

A =



B 0 0 0
C D 0 0
X F G W
Y 0 0 Z


 .
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It is easy to see that ϕ: A −→ B ⊕ D ⊕ E ⊕ X is an isomorphism and this isomor-
phism preserves convex sets and dimension. Thus, we can compute dimS1(x, y) by
computing dimϕ(S1(x, y)), which we do. In our formula we use the notation

B+ = {M : M is nonnegative and satisfies equation (1)},
D+ = {M : M is nonnegative and satisfies both equations (2) and (3)},
E+ = {M : M is nonnegative and satisfies equation (4)},
X+ = {M : M is nonnegative and in X}.

Theorem 1. dim S1(x, y) = dimB+ + dimD+ + dim E+ + dimX+.
Proof. Note that

ϕ(S1(x, y)) = B+ ⊕D+ ⊕ E+ ⊕K+.

It is known that the dimension of a direct sum is the sum of the individual dimensions.
The result follows.

We now give formulas for the dimensions of B+, D+, E+, and X+.
Theorem 2. Assuming the sets below are nonempty, dimB+ = n1(n1 + n2 − 1),

dimD+ = (n2−1)(n2−1), dim E+ = n3(n2+n3−1), and dimX+ = (n3+n4)(n1+n4).
Proof. We need only compute the dimensions of each of the corresponding sets of

nonnegative matrices. In doing this, we use that if z = (zi) is a vector, diag z is the
diagonal matrix with main diagonal entries z1, . . . , zn, respectively.

Case for B+ and E+: Define X = diag(x1, x2) and X1 = diag x1. A straightfor-

ward calculation shows that
[
B
C

]
satisfies (1) if and only if X

[
B
C

]
X−1

1 has all its

column sums equal to one. Now, as shown in [7], the set of (n1 +n2)×n1 nonnegative
matrices with all column sums one has dimension n1(n1 + n2 − 1). Since the map
θ(M) = XMX−1

1 is an isomorphism, dimB+ = n1(n1 + n2 − 1).
The same argument can be used to prove that dim E+ = n3(n2 + n3 − 1).
Case for D+: Define X2 = diag x2 and Y1 = diag y1. A direct calculation shows

that D ∈ D+ if and only if D is nonnegative and X2DY1 has row sum and column
sum vectors x2Y1 and X2y1, respectively. In [7], it is shown that the dimension of the
set of nonnegative matrices, with row sum and column sum vectors x2Y1 and X2y1,
respectively, is (n2 − 1)(n2 − 1). Since the map θ(M) = X2MY1 is an isomorphism,
dimD+ = (n2 − 1)(n2 − 1).

Case for X+: It is clear that this set has dimension (n3 + n4)(n1 + n4).
Putting these together yields the result.
To simplify some of the computations which follow, we now introduce a result

about convex sets. This result requires a few technical descriptions.
Let M be the set of r×s matrices. A convex set F of nonnegative matrices in M

is called a flat if there is a linear functional ϕ on M and a nonzero constant c such
that ϕ(A) = c for all A ∈ F .

For any convex set of nonnegative matrices K, K 6= {0}, define

Kc = ∪ρK, where ρ ≥ 0

and ρK = {ρk: k ∈ K}. It is easily seen that Kc is a convex cone.
Vectors w0, . . . , wn are independent provided that w1−w0, . . . , wn−w0 are linearly

independent (equivalently, we could have subtracted wi for any i). It is known that
convex {w0, . . . , wn}, called a simplex, is a convex polytope with vertices w0, . . . , wn.
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The dimension of this simplex is n. Further, the dimension of a convex set C is
precisely the dimension of the largest, in dimension, simplex which is a subset of C.

The following result is intuitively clear.
Lemma 1. Let F be a nonzero flat. Then dimF c = dimF + 1.
Proof. Suppose dimF = d. Then F has d+1 independent vectors, say A0, . . . , Ad.

We show, arguing by contradiction, that these vectors are linearly independent.
Suppose there are scalars, not all zero, satisfying

α0A0 + · · ·+ αdAd = 0.

Without loss of generality, suppose α0 6= 0. Solving for A0 yields

A0 = β1A1 + · · ·+ βdAd,

where βi = −αi/α0. Since F is a flat, there is a linear functional and a nonzero
constant c such that ϕ(A) = c for all A ∈ F . Thus, computing ϕ of both sides of the
equation yields

ϕ(A0) = β1ϕ(A1) + · · ·+ βdϕ(Ad) or

c = β1c+ · · ·+ βdc.

Hence, β1 + · · ·+βd = 1. But now we can write the initial equation involving the βi’s
as

0 = β1(A1 −A0) + · · ·+ βd(Ad −A0)

which implies that A0, A1, . . . , Ad is not an independent set of vectors. This is a
contradiction from which it follows that A0, A1, . . . , Ad is a linearly independent set.

Now, using that A0, A1, . . . , Ad is a linearly independent set it follows that 0,
A0, . . . , Ad is an independent set in F c. Thus, dimF c ≥ d + 1. We will show that
equality holds.

Consider W = span{A0, A1, . . . , Ad}. If F c 6⊆ W , then there is a vector Ad+1 ∈
F c such that Ad+1 /∈ W . By scaling, we can assume that Ad+1 ∈ F . But then
A0, A1, . . . , Ad+1 is a set of linearly independent vectors in F and thus dimF > d,
which is a contradiction. Thus, F c ⊆ W . Since dimW = d + 1 it then follows that
dimF c = d+ 1.

We now apply this result to compute the dimensions of several convex sets.
Corollary 1. dim S(x, y) ≡ dimS1(x, y) + 1.
Proof. Define ϕ on the set of n×n matrices by ϕ(A) = xAe, where e is the vector

all of whose entries are one. Then ϕ is a linear functional. Further, if A ∈ S1(x, y),
then ϕ(A) = xAe = xe = 1. Thus, S1(x, y) is a flat.

Now, noting that S1(x, y)
c = S(x, y), the result follows from the theorem.

Define

S#(x, y) =


A ∈ T : ‖A‖ =

∑
i,j

aij = 1


 .

It is clear that S#(x, y) is a convex set. (In general, a subscript # in set notation will
indicate that subset whose matrices have entries summing to one.)

Corollary 2. dim S#(x, y) = dimS1(x, y).
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Proof. Define ϕ on the set of n× n matrices by ϕ(A) =
∑

i,j aij . This is a linear
functional. And ϕ(A) = 1 for all A ∈ S#(x, y), so S#(x, y) is a flat. The corollary
follows by noting that S#(x, y)c = S(x, y).

This completes our work on individual slices. To see how these slices fit together
to form N , we need to introduce a connecting set. Define the set of rank one matrices

R = {A:A = yx, where x, y are 1× n and n× 1 stochastic vectors, respectively.}
We show R intersects each S(x, y).
Theorem 3. The set R intersects S(x, y) at A = yx.
Proof. Note that xA = x(yx) = (xy)x and that Ay = (yx)y = y(xy). Since xy is

a scalar, A ∈ S(x, y). Thus, R intersects S(x, y) at A.
We now give a description of R.
Theorem 4. R is convex in x and convex in y.
Proof. We show that R is convex in y. For this let y, ȳ be n×1 stochastic vectors

and x be a 1× n stochastic vector. Then [αy + (1− α)ȳ]x = αyx+ (1− α)ȳx. Thus,
R is convex in y.

In the next theorem we compute the manifold dimension of R.
Theorem 5. R is a manifold, with boundary, of dimension 2(n− 1).
Proof. Let α1, . . . , αn−1, β1, . . . , βn−1 be nonnegative variables. Set α = α1 +

· · ·+ αn−1 and β = β1 + · · ·+ βn−1. Define

H = {(α1, . . . , αn−1, β1, . . . , βn−1): α ≤ 1 and β ≤ 1} ⊆ R2(n−1).

Then H is a manifold, with boundary, such that its dimension is 2(n− 1). The map

f(α1, . . . , αn−1, β1, . . . , βn−1)

=




α1β1 α1β2 . . . α1βn−1 α1(1− β)
α2β1 α2β2 . . . α2βn−1 α2(1− β)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(1− α)β1 (1− α)β1 . . . (1− α)βn−1 (1− α)(1− β)




shows that R is a manifold as described in the lemma.
We now describe how N is put together using slices and R.
We know N is the union of slices, each slice being a closed convex cone. The

dimensions of the slices can vary; however, the dimensions of slices corresponding to
positive eigenvectors are the same dimension (n− 1)2 + 1. These slices are precisely
those that intersect the interior of N . Further, by the Perron–Frobenius theory,
nonnegative matrices with positive stochastic eigenvectors cannot have additional
nonnegative stochastic eigenvectors. Thus, slices which intersect the interior of N can
not intersect each other. Yet, each S(x, y) intersects R at yx and to some extent this
shows how the slices lie together. As given below, if the intersections of two slices
with R are close, so are the corresponding eigenvectors, and vice versa. To show this,
we use the `1-norm and the `∞-norm. Recall

‖A‖1 = max
w 6=0

‖wA‖1
‖w‖1 , ‖A‖∞ = max

w 6=0

‖wA‖∞
‖w‖∞ .

And ‖A‖1 = maxi
∑

k |aik|, ‖A‖∞ = maxj
∑

k |akj |.
Theorem 6. Let x, x̄ be n× 1 and y, ȳ be 1× n stochastic vectors, respectively.

(i) If max{‖xy − x̄ ȳ‖∞, ‖xy − x̄ ȳ‖1} = ε, then ‖y − ȳ‖∞ ≤ ε and ‖x− x̄‖∞ ≤ ε.
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Table 1
Comparisons of dimensions of various convex sets.

n N# R S#(x, y)
2 3 2 1
3 8 4 4
4 15 6 9
5 24 8 16

(ii) If ‖x− x̄‖1 ≤ ε and ‖y − ȳ‖1 ≤ δ, then ‖yx− ȳ x̄‖1 ≤ ε+ δ.
Proof. For (i),

ε ≥ ‖xy − x̄ ȳ‖∞ ≥ ‖w(xy − x̄ ȳ)‖∞, where

w = (1, 1, . . . , 1). Thus, since wx = wx̄ = 1, ε ≥ ‖y − ȳ‖∞.
Further,

ε ≥ ‖xy − x̄ ȳ‖1 = ‖(xy)t − (x̄ ȳ)t‖∞
= ‖ytxt − ȳtx̄t‖∞
≥ ‖xt − x̄t‖∞ as shown previously.

So, ε ≥ ‖x− x̄‖∞.
For (ii), set x̄− x = ε and ȳ − y = d. Then

‖yx− ȳ x̄‖1 = ‖yx− (y + d)(x+ ε)‖1
= ‖yε+ dx̄‖1
≤ ‖yε‖1 + ‖dx̄‖1
≤ ‖ε‖1 + ‖d‖1
≤ ε+ δ.

To obtain a model of the description of N in terms of slices, it is best to look at

N# = {A ∈ N : ‖A‖ = 1}.
This is a convex set and its dimension can be calculated, as in the corollaries, as
n2 − 1.

Before proceeding, it is helpful to look at Table 1 to compare dimensions of the
various convex sets.

By examining the table it is clear that we should be able to provide a sketch
of how the slices fit in N# when n = 2. Here N# = ∪S#(x, y), the union over all
stochastic vectors x and y.

The set N# is a 3-simplex with vertices diagrammed in Fig. 1.
The manifold R is two-dimensional and can be viewed as those points obtained

by moving the segment AB to the segment CD, keeping the endpoints at the same
distance from A to D as from B to C. (So we have a twisted sheet.)

We now put in the slices S#(x, y), over all stochastic vectors x and y. Note that

E =
[

1/2 0
0 1/2

]
is in all of the slices. We will call it the anchor. The matrix yx ∈

S#(x, y), and since dimS#(x, y) = 1, S#(x, y) is the line segment in N# beginning
at E and passing through yx (see Fig. 2).

To use this model in a qualitative study of perturbation, choose P ∈ N#. Then
P ∈ S#(x, y) for some stochastic eigenvectors x and y of P . Thus, P is on the segment
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Fig. 1. A drawing of N#.

Fig. 2. S#(x, y) placed in N#. The manifold R is the twisted sheet determined by the solid lines.

in N# determined by E and yx. Perturb P to P ∈ N#. Then P ∈ S#(x̄, ȳ) is on the
segment in N# containing E and ȳ x̄. Now to see the effect of this perturbation we
see how far ȳ x̄ is from yx. (If ȳ x̄ is close to yx, then ȳ is close to y and x̄ is close to
x.)

We now provide some examples showing how to use N# and slices to study per-
turbation of eigenvectors in a qualitative way.

Example. For n = 2, let P be on the opposite side of R from the anchor E, e.g.,

P = [
0 1/2

1/2 0
]. Suppose P ∈ S#(x, y).

Fig. 3. View of sensitive areas in N#.

Then perturbing P to P ′ ∈ S#(x′, y′) shows that y′x′ is not perturbed from
yx as much as if P and P ′ were on the same side of R as the anchor E, e.g., if

P = [
1/2− ε ε

ε 1/2− ε
] for small ε (see Fig. 3).
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Example. An interesting observation can be made for n = 2. Let P = [
1
2
− ε 2ε

0 1
2
− ε

].

Note that P has eigenvalues λ1 = λ2 = 1
2 − ε. Viewing the segment in N# determined

by P and E and its intersection yx with R, then perturbing that segment shows that
when ε is close to zero, the corresponding eigenvectors are sensitive while if ε is close
to 1

2 , the corresponding eigenvectors are not that sensitive. Yet, the perturbed matrix
has eigenvalues which can be very close. Recall that close eigenvalues can indicate
sensitive eigenvectors (see Fig. 4).

Fig. 4. View of perturbation of matrices with close eigenvalues.

Example. For an example with n larger, we will fix x = (1, . . . , 1)t and set
N(x) = {A ∈ N : A has right eigenvector x} and R(x) = N(x) ∩ R which, using
Theorem 4, is convex. Note that if A ∈ N#(x), then A has all its row sums equal to
1
n . Thus, using well-known results about stochastic matrices, dimN#(x) = n(n− 1).

For n = 2, N(x) and R(x) are shown below (see Fig. 5). A similar view is given
in [6].

Fig. 5. Sketch of N#(x).

In [8] it is shown that if A ∈ S#(x, y), then y is sensitive to changes in A if and
only if A has a subdominant eigenvalue close to 1

n . And, in [9] it is shown that if
A ∈ S#(x, y) has a subdominant eigenvalue close to 1

n , then A nearly has two isolated
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main diagonal submatrices, e.g.,

A =


A11 E12 E13

E21 A22 E23

A31 A32 A33


 ,

where the Eij are small. Thus, y is sensitive precisely when A nearly has two isolated
main diagonal submatrices.

To see this phenomenon we will observe a simpler case below (see Fig. 6).

Fig. 6. Partial sketch of N#(x).

Here Y1 has rows 1
n (y1, 0) where y1A11 = 1

ny1, Y2 has rows 1
n (0, y2) where y2A22 =

1
ny2, and y1, y2 are both stochastic vectors. Note that A,B ∈ S#(x, (y1, 0)) and
A,C ∈ S#(x, (0, y2)). From this we see that if small changes are made in A, staying
in the convex set determined by A,B, and C, then there are large changes in the
corresponding left eigenvectors, as described by the results in [8] and [9].

In conclusion, drawings that provide a qualitative view are important in areas
where everything is given quantitatively. The work in this paper does some of that in
the study of matrix perturbation on eigenvectors. In addition, this paper can provide
an outline for techniques in developing other such drawings.

Additional material on this subject can be found in the references.
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Abstract. Because the spectral radius is only an asymptotic measure of the rate of convergence
of a linear iterative method, Golub and dePillis [Toward an effective two-parameter method, in
Iterative Methods for Large Linear Systems, Academic Press, New York, 1990] have raised in a
recent paper the question of determining, for each k ≥ 1, a relaxation parameter ω ∈ (0, 2) and a
pair of relaxation parameters ω1 and ω2 which minimize the Euclidean norm of the kth power of the
SOR and MSOR iteration matrices, respectively, associated with a real symmetric positive definite
matrix with “Property A.” Here we use a reduction of these operators which they derived from the
SVD of the associated block Jacobi matrix to obtain the minimizing relaxation parameters for the
case k = 1 for both operators. We conclude the paper with two brief sections in which we assess
what our results imply.
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1. Introduction and preliminaries. In a relatively recent paper, Golub and
dePillis [1] raise, in light of new reductions of the SOR and MSOR iteration matrices,
the recurring question of minimizing the Euclidean norm of the kth power of the SOR
and MSOR operators as a function of the relaxation parameter(s). This question is of
interest because for small values of k, it is the norm of the kth power of the iteration
matrix which governs the rate of convergence in the initial stages of the iteration rather
than the spectral radius of the iteration matrix which is an asymptotic measure.

The new reductions of the SOR and MSOR iteration operators which Golub and
dePillis carry out are achieved using the SVD (see, e.g., [2]). It is based on an idea
of Lanczos [4] who used SVD to reduce a real symmetric positive definite matrix
possessing “Property A.” Golub and dePillis derive explicit expressions for both the
block SOR and the block MSOR operators associated with the 2×2 block partitioning
of A denoted by Lω and Lω1,ω2 , respectively. As a by-product of their analysis they
also derive Young’s famous relationship (see, e.g., [7], [6], and [10])

(λ+ ω − 1)2 = ω2µ2λ(1)

connecting the eigenvalues µ and λ of the block Jacobi operator B and of the block
SOR operator Lω associated with A, and also the more general relationship (see, e.g.,
[8] and [10])

(λ+ ω1 − 1)(λ+ ω2 − 1) = ω1ω2µ
2λ(2)

relating the eigenvalues µ and λ of the block Jacobi operator B and the block MSOR
operator Lω1,ω2

, respectively. In (1) and (2), ω, and ω1 and ω2 are the relaxation
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parameters associated with the SOR and MSOR methods, respectively. In this work
we adopt much of the notation used in [1]. Let

A =

[
Ip −M

−MT Iq

]
=: I −B ∈ R

n,n,(3)

where M ∈ R
p,q with p+ q = n and p ≥ q. Suppose that

M = UΣV(4)

is the SVD of M , where U ∈ R
p,p and V ∈ R

q,q are orthogonal matrices and Σ ∈ R
p,q

is the (diagonal) matrix of singular values si, i = 1, . . . , q, with s1 ≥ s2 ≥ · · · ≥ sq ≥ 0,
which has the form

Σ =




s1 0 · · · 0
0 s2 0
...

. . .

0 · · · sq
...

...
0 0 · · · 0



.(5)

Then Jacobi, SOR, and MSOR operators associated with the block partitioning of A
in (3) are the matrix B defined via (3), the matrix

Lω =

[
(1− ω)Ip ωM

ω(1− ω)MT (1− ω)Iq + ω2MTM

]
,(6)

and the matrix

Lω1,ω2 =

[
(1− ω1)Ip ω1M

ω2(1− ω1)M
T (1− ω2)Iq + ω1ω2M

TM

]
,(7)

respectively. Golub and dePillis apply the SVD factorization of M given in (4), with
Σ in (5), to obtain

Lω = QPT∆(ω)PQT and Lω1,ω2 = QPT∆(ω1, ω2)PQ
T ,(8)

where Q = diag(U, V ) and P is an appropriate permutation matrix. The matrices
∆(ω) and ∆(ω1, ω2) in (8) have the block diagonal forms

∆(ω) =




∆1(ω)
. . .

∆q(ω)
(1− ω)Ip−q


 ,(9)

∆(ω1, ω2) =




∆1(ω1, ω2)
. . .

∆q(ω1, ω2)
(1− ω1)Ip−q


 ,
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where

∆i(ω) =

[
1− ω ωsi
ω(1− ω)si 1− ω + ω2s2i

]
,(10)

∆i(ω1, ω2) =

[
1− ω1 ω1si
ω2(1− ω1)si 1− ω2 + ω1ω2s

2
i

]
, i = 1, . . . , q.

Note. If q ≥ p, then the roles of p and q in (9) and (10) and also that of ω1 and
ω2 in the last diagonal blocks of (9) are interchanged.

In view of (6)–(10), the questions from [1] cited at the beginning of this paper
can be recast as follows:

Problem I. Determine

min
ω∈(0,2)

‖ Lk
ω ‖2 = min

ω∈(0,2)
‖ ∆k(ω) ‖2

= min
ω∈(0,2)

{
max

{
max

1≤i≤min{p,q}
‖ ∆k

i (ω) ‖2, |1− ω|k
}}

.
(11)

Problem II. Determine

min
ω1,ω2(0,2)

‖ Lk
ω1,ω2

‖2 = min
ω1,ω2∈(0,2)

‖ ∆k(ω1, ω2) ‖2

= min
ω1,ω2∈(0,2)

{
max

{
max

1≤i≤min{p,q}
‖ ∆k

i (ω1, ω2) ‖2, |1− ω1|k or |1− ω2|k
}}

.
(12)

The restrictions on the relaxation factors ω, ω1, and ω2 to the interval (0,2) come,
of course, from the necessary and sufficient conditions for the powers of the iteration
matrices Lω and Lω1,ω2

associated with the 2-cyclic consistently ordered and real
symmetric positive definite matrix A in (3) to converge (see Theorems 6.2.2 and 8.3.2
in Young [10]) to the zero matrix. Also, only one of the terms |1− ω1|k, |1− ω2|k is
needed in (12), depending on whether p ≥ q or q ≥ p.

In this paper we completely settle Problems I and II in the case k = 1. For this
case Young [8], [9], [10], Young and Kincaid [11], and Young, Wheeler, and Downing
[12] have found some very interesting initial results and observations, some of which,
although analyzed and studied in Young’s book [10], have gaps in their proofs or are
only based on numerical evidence. Thus, motivated by the work of Golub and dePillis
[1] and using as a guide the analysis in the works by Young and Young and coauthors,
we have sought to generalize and extend the existing results further and also to fill in
the gaps in the analysis. This we do in section 2 for the SOR operator and in section
3 for the MSOR operator.

In section 4 we provide lower bounds for the minima of Problems I and II in terms
of the solution to these problems when, instead of the minimization in the Euclidean
norm, the minimization is done with respect to the energy norm. Actually, these
bounds can be found in Young [10] but seem relatively unknown, and they have a
somewhat negative implication concerning the minimum established for Problem I,
namely, that the minimum is bounded below by the spectral radius ρ(B) of the Jacobi
iteration matrix. This is not so with respect to the minimum established for Problem
II, namely, that this minimum is bounded above by ρ(B).

Finally, in section 5 we compare a numerical example that is given in [1], where
‖ L50

ω1,ω2
‖2 was minimized computationally, with the minimum of ‖ Lω1,ω2

‖50
2 , where

‖ Lω1,ω2 ‖2 is minimized using the results of this paper. The comparison shows that
the former value is only very slightly better than the latter one. This may indicate
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that, at least in cases of practical interest and when the spectral radius of the Jacobi
iteration matrix is close to one, in order to save unnecessary calculations it is better to
use directly the theoretical results of this paper regarding the value of the minimum of
‖ Lω1,ω2 ‖2 rather than try and determine the minimum value of ‖ Lk

ω1,ω2
‖2 for large

k. Actually, our theoretical results indicate that performing the first few iterations
with the iteration operator whose Euclidean norm has been minimized as a function
of the relaxation parameter(s), rather than its spectral radius, is only beneficial if the
MSOR operator is to be used and when the spectral radius of the Jacobi operator
is close to one. Thus, for example, accelerating the initial iteration using the SOR
iteration matrix whose Euclidean norm is minimal does not seem to yield much benefit
over the use of the SOR iteration operator whose spectral radius is optimal.

2. Euclidean norm minimization of the SOR operator. For k = 1, Prob-
lem I in (11) was studied by Young on pages 245–247 in [10]. The result relevant to
the work in this section is as follows: Under the assumptions made and the notation

introduced so far, ‖ Lω ‖2< 1 if and only if ω < 2(1−t)1/2
t+(1−t)1/2 , where t := ρ2(B).

In this section we solve completely Problem I as stated in (11) for the case k = 1.
Our solution requires Lemma 2.1 and Theorem 2.2. The proof of Lemma 2.1 is
relatively easy, while the proof of the main Theorem 2.2 is based, among others, on
a series of intermediate results that can be found in [5] and to which the interested
reader is referred.

Lemma 2.1. Let A ∈ R
n,n be a symmetric positive definite matrix having “Prop-

erty A” and the block form (3). Then, Problem I for k=1 is equivalent to the deter-
mination of the quantity

δ̂2 := δ2(ω̂) ≡ min
ω∈(0,2)

δ2 ≡ min
ω∈(0,2)

1

2

[
T (t) +

[
T 2(t)− 4C

] 1
2

]
,(13)

where

δ := δ(ω) ≡ ρ
1
2 (∆T (ω)∆(ω)),(14)

T (t) := T (ω, t) ≡ (1− ω)2(1 + ω2t) + ω2t+ (1− ω + ω2t)2,(15)

C := C(ω) ≡ (1− ω)4,(16)

and where t (= ρ2(B) = s21) is the square of the spectral radius of the associated block
Jacobi iteration matrix B in (3) (and also equals the square of the largest singular
value of the matrix M in (4)–(5)).

Proof. In case t = 0, we immediately have that δ2 = (1 − ω)2 and therefore

δ̂ = ρ(B) = 0 for ω̂ = 1. Thus, in what follows we shall assume that t ∈ (0, 1).
From the structure of the matrix ∆(ω) in (9)–(10) and the expressions in (13)–

(16), we have that

δ2 = ||∆(ω)||22 = ρ
(
∆T (ω)∆(ω)

)
= max

{
max

i=1,...,min{p,q}
||∆i(ω)||22, (1− ω)2

}

= max

{
max

i=1,...,min{p,q}
ρ(∆T

i (ω)∆i(ω)), (1− ω)2
}

(17)

= max
i=1,...,min{p,q}

1

2

[
T (ti) +

[
T 2(ti)− 4C

] 1
2

]
.
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For fixed ω ∈ [0, 2], the function T is a strictly increasing function of ti = s2i ∈
[0, 1), i = 1, . . . ,min{p, q}, because

∂T (ω, t)

∂t
= ω2[(2− ω)2 + 2ω2t] ≥ 0,(18)

an observation made by Young (see pages 246–247 in [10]), which implies the mono-
tonicity of ||∆(ω, ti)||22 as a function of ti = s2i ≥ 0. But ||∆(ω, ti)||22 ≥ ||∆(ω, 0)||22 =
(1− ω)2. Therefore, in view of (17)–(18) and the previous discussion, the problem of
finding ω̂ ∈ (0, 2) with ||L

ω̂
||2 = minω∈(0,2) ||Lω||2 boils down to minimizing in (13),

namely, to the minimization of δ2, where

δ2 = ||∆(ω)||22 = ρ(∆T
1 (ω)∆1(ω)) =

1

2

[
T (t) +

[
T 2(t)− 4C

] 1
2

]
=: L(ω)(19)

as a function of ω ∈ (0, 2), where t = ρ2(B) is fixed in (0, 1).
We are now in a position to determine the ω̂ which minimizes (13).
Theorem 2.2. Under the assumptions of Lemma 2.1 and for any fixed t ∈ (0, 1),

the value of ω, call it ω̂, which yields the minimum in (13) is the unique real positive
root in (0, 1) of the quartic equation

f(ω) := (t2 + t3)ω4 +(1−4t2)ω3 +(−5+4t+4t2)ω2 +(8−8t)ω+(−4+4t) = 0.(20)

In fact ω̂ ∈ (0, ω∗), where ω∗ is the unique real positive root in (0, 1) of the cubic

g(ω) := (t+ t2)ω3 − 3tω2 + (1 + 2t)ω − 1.(21)

Proof. The function L(ω) = δ2(ω) in (19) is differentiable in (0, 2). This follows
immediately from the strictly increasing nature of T since

T 2(ω, t)− 4C(ω) ≥ T 2(ω, 0) = 0,

where equality occurs only for ω = 0. Thus, L(ω) attains its minimum value either
at the endpoints of (0, 2) or at the zeros of its first derivative. For the endpoints, we
have (see the second part of Lemma 2.9 in [5]) that

L(2) = 1 + 8t2 + 4t
√

1 + 4t2 > 1 = L(0).(22)

Also, it can be found that (see (2.20) of Lemma 2.6 in [5])

lim
ω→0+

∂L

∂ω
= −4(1−√

t) < 0.(23)

In view of (22) and (23) there is no global minimum of L(ω) at either ω = 0 or ω = 2.
For ω ∈ (0, 2) elementary but lengthy computations show (see proofs of Lemmas

2.5–2.7 in [5]) that ∂L
∂ω |ω=1 = ∂T

∂ω |ω=1 = 4t2 > 0 and so ∂L
∂ω = 0 is equivalent to

f(ω) := t3ω4 + (t2ω2 + ω − 1)(2− ω)2 + 4t(ω − 1)2 = 0.(24)

By inspection, there holds that f(ω) > 0 for ω ∈ [1, 2]. Expanding (24) and rearrang-
ing terms gives (20). To prove the uniqueness of ω̂ ∈ (0, 1), the zero of f(ω), note that
f(0) = −4(1 + t) < 0 and f(1) = t2(1 + t) > 0. Furthermore, to show that f ′(ω) > 0
for ω ∈ (0, 1), more complicated yet elementary arguments, including Descartes’ rule
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of signs, are required (see proofs of Lemmas 2.7 and 2.10 in [5]). It can actually be
shown that ω̂ < ω∗ < 1, where ω∗ denotes the (unique) zero of ∂T

∂ω in (0, 2), given by
(21) (see proofs of Lemmas 2.5 and 2.6 in [5]).

Remark. It is worth mentioning that the table on page 247 of Young’s book
[10] gives, among other items, the values of ω̂ and the corresponding ‖ L

ω̂
‖2 for√

t = 0, .1, . . . , 1. According to Young, these values were found numerically. Our
results in Theorem 2.2 now confirm, theoretically, Young’s findings.

3. Euclidean norm minimization of the MSOR operator. We now turn to
Problem II in (12) and, for k = 1, we completely resolve this minimization problem.
On pages 283–288 of Young’s book [10], the following theorem is given.

Theorem 3.1 (see Young [10, Theorem 8.4.1]). If A is a positive definite matrix
of the form (3) and if the spectral radius ρ(B) of B of (3) satisfies

t := ρ2(B) ∈
[
1

3
, 1

)
,(25)

then

‖ L
ω̂1,ω̂2

‖2 =
1 + t

3− t
,(26)

where

(ω̂1, ω̂2) =

(
4

5 + t
,

4

3− t

)
(27)

and, unless ω1 = ω̂1 and ω2 = ω̂2,

‖ Lω1,ω2 ‖2 > ‖ L
ω̂1,ω̂2

‖2 .(28)

The proof of Theorem 3.1, whose statement is practically that of Problem II, for
k = 1, defined in (12), is given in [12] (see also [10]). However, it is partly evidential
and, in any case, covers only the case when t ∈ [ 13 , 1). In this section we develop quite
a different approach from that of [12] and [10] which allows us to extend the analysis
to the whole interval [0, 1).

We begin with Lemma 3.2 which is analogous to Lemma 2.1. The proof of our
main result in Theorem 3.3, whose statement immediately follows Lemma 3.2, requires
a series of lemmas which are presented here without proof. Their proofs can be found
in [5].

Lemma 3.2. Let A ∈ R
n,n be a symmetric positive definite matrix with “Prop-

erty A” and of the block form (3). Then, Problem II for k=1 is equivalent to the
determination of the quantity

δ̂2 := δ2(ω̂1, ω̂2) ≡ min
ω1,ω2∈(0,2)

δ2

= min
ω1,ω2∈(0,2)




max{(1− ω1)
2, (1− ω2)

2} if T (0) ≥ T (t),

1
2

[
T (t) +

[
T 2(t)− 4C

] 1
2

]
if T (t) ≥ T (0),

(29)

where

δ := δ(ω1, ω2) ≡ ρ
1
2

(
∆T (ω1, ω2)∆(ω1, ω2)

)
(30)
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with ∆(ω1, ω2) given in (9)–(10),

T (t) := T (ω1, ω2, t) ≡ (1− ω1)
2 + (1− ω1)

2ω2
2t+ ω2

1t+ (1− ω2 + ω1ω2t)
2,(31)

C := C(ω1, ω2) ≡ (1− ω1)
2(1− ω2)

2,(32)

and where t is the square of the spectral radius of the associated block Jacobi iteration
matrix B in (3).

Proof. Working as in the proof of Lemma 2.1 but using the matrix ∆(ω1, ω2) given
in (9)–(10) and the expression (30) for δ, we have that the characteristic equation of
∆T (ω1, ω2)∆(ω1, ω2) is given by

[
λ− (1− ωj)

2
]|p−q| q∏

i=1

[
λ2 − T (s2i )λ+ C

]
, s2i ∈ [0, t],(33)

where j = 1, whenever p ≥ q, and j = 2 otherwise. In (33), s2i are the squares
of the eigenvalues of the block Jacobi iteration matrix B. Compared to [10, equa-
tions (8.4.8)–(8.4.9), p. 284], the characteristic equation (33) has an extra factor, the
leftmost. Now for t ∈ [0, 1), T (t) = T (s2) := T (ω1, ω2, s

2) ≥ 0 ∀ s2 = s2i ∈ [0, t],

i = 1, . . . ,min{p, q}. On the other hand, ∂2T (s2)
∂(s2)2 = 2ω2

1ω
2
2 > 0, implying that ∂T (s2)

∂s2

is strictly increasing. Consequently, T (s2) is a convex function on [0, t] whose max-
imum is attained at one of the endpoints of the interval [0, t]. Following Young [10]
we introduce the notations

R := {(ω1, ω2) ∈ R | (ω1, ω2) ∈ (0, 2)× (0, 2)} ,

RI := {(ω1, ω2) ∈ RI | (ω1, ω2) ∈ R and T (0) ≥ T (t)} ,

RII := {(ω1, ω2) ∈ RII | (ω1, ω2) ∈ R and T (t) ≥ T (0)} ,

Γ := RI ∩ RII.

(34)

Except for the leftmost factors, the roots of each factor in the products (33) are given
by the expressions

λ =
1

2

[
T (s2)± [T 2(s2)− 4C

] 1
2

]
∀ s2 = s2i ∈ [0, t].(35)

For each s2 = s2i , the largest of the two roots is the one with the plus sign in front
of the radical. Moreover, because T (·) attains its maximum at one of the endpoints
of the interval [0, t], the overall maximal root λ corresponds to the larger of T (t) and
T (0). Since T (0) = (1 − ω1)

2 + (1 − ω2)
2, it is readily seen that for (ω1, ω2) ∈ RI,

the largest of the eigenvalues in (33) is given by the first expression in (29). For
(ω1, ω2) ∈ RII, this eigenvalue is

1

2

[
T (t) +

[
T 2(t)− 4C

] 1
2

]
≥ 1

2

[
T (0) +

[
T 2(0)− 4C

] 1
2

]
= max{(1− ω1)

2, (1− ω2)
2}.

(36)
Therefore, the largest of the eigenvalues in (33) is given by the second expression in
(29). These results are almost identical to the results in the first part of the proof of
Theorem 8.4.1 in [10].
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We are now ready to state the main result of this section.
Theorem 3.3. Under the assumptions of Lemma 3.2 and for any fixed t ∈ [0, 1),

the pair (ω1, ω2), call it (ω̂1, ω̂2), which yields the minimum δ̂ in (29) is as follows:
for t ∈ [0, 1

3 ]

(ω̂1, ω̂2) =

(
1

1 + t
,

1

1− t

)
,(37)

when

δ̂ =

√
t

1 + t
,(38)

while for t ∈ [ 13 , 1)

(ω̂1, ω̂2) =

(
4

5 + t
,

4

3− t

)
,(39)

when

δ̂ =
1 + t

3− t
.(40)

Note. To find which of T (0) and T (t) is the largest in Lemma 3.2, we consider
the difference

D := T (t)− T (0) =
[
(1 + t)ω2

2 + 1
]
ω2

1 − 2(2ω2 − 1)ω2ω1 + ω2
2(41)

as a function of ω1. The discriminant d = 4ω3
2 [(3− t)ω2 − 4] of D is negative, zero,

or positive depending on whether ω2 ∈ (0, 4
3−t ), ω2 = 4

3−t , or ω2 ∈ ( 4
3−t , 2), in

which case D has none, one, or two real zeros, respectively. Observing that for any
t ∈ [0, 1), ω2 = 4

3−t (∈ [43 , 2]) yields, by (41), D = 0 and so ω1 = 4
5+t (∈ [23 ,

4
3 ]) and

(ω1, ω2) =
(

4
5 ,

4
3

) ∈ R. We conclude that neither of the two regions RI and RII is
empty. To obtain an idea about the shape of the boundary curve Γ, we give the
following lemma whose proof can be found in [5].

Lemma 3.4. For any fixed t ∈ [0, 1) and any ω2 ∈ ( 4
3−t , 2), the quadratic (41)

has two distinct real roots ω′1 < ω′′1 such that 0 < ω′1 < ω′′1 < 2.
In Figure 1 the curve Γ, which is the boundary between RI and RII, and its

position in R is drawn for the values t = 0.6, 0.75, and 0.9. Note the similarity of the
curve Γ to the graph shown in Figure 4.1 on page 285 of [10].

To complete the proof of Theorem 3.3 we must examine two basic cases, starting
with case (ω1, ω2) ∈ RI. The following lemma can be proved.

Lemma 3.5. For any fixed t ∈ [0, 1) and any (ω1, ω2) ∈ RI, the solution to the
optimization problem (29) occurs at the point (ω̂1, ω̂2) = ( 4

5−t ,
4

3−t ) and the corre-

sponding minimum value of δ is δ̂ = 1+t
3−t .

Proof. For the proof see Lemma 3.6 in [5].
We now examine the case when (ω1, ω2) ∈ RII. Its proof is harder than the

previous case and requires the following sequence of lemmas which are presented
without proof.

Lemma 3.6. Suppose that ω1 and ω2 are not equal to one. Then, for any fixed
t ∈ (0, 1), the points (ω1, ω2) ∈ RII at which the root function

λ := λ(ω1, ω2, t) ≡ 1

2

[
T (t) + [T 2(t)− 4C]

1
2

]
(42)
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Fig. 1. The boundary curves Γ for the regions RI and RII.

of the quadratic

λ2 − T (t)λ+ C = 0(43)

attains its minimum value occur at stationary points of (42). Moreover, these sta-
tionary points are the common roots of the two quadratics in ω1:

P1(ω1) := a1ω
2
1 + b1ω1 + c1 = 0(44)

and

P2(ω1) := a2ω
2
1 + b2ω1 + c2 = 0,(45)

where

a1 := a1(ω2) = (t3 − t)ω4
2 + (t2 + t)ω3

2 + (2t2 + t− 1)ω2
2

+(t+ 1)ω2 + (t+ 1),
b1 := b1(ω2) = (−3t2 + 2t+ 1)ω4

2 + (2t2 − 4t− 2)ω3
2

+(−2t+ 2)ω2
2 + (2t− 2)ω2,

c1 := c1(ω2) = (2t− 2)ω4
2 + (−3t+ 5)ω3

2 + (t− 3)ω2
2 ,

(46)

and

a2 := a2(ω2) = (t2 + t)ω2 + (t+ 1),
b2 := b2(ω2) = (−t2 + t)ω2

2 − 4tω2 − 2,
c2 := c2(ω2) = (t− 1)ω2

2 + 2ω2.
(47)



200 APOSTOLOS HADJIDIMOS AND MICHAEL NEUMANN

Note. The value t = 0 is not included in the interval under consideration in
the lemma because, when t = 0, the root function λ in (42) equals, via (31)–(32),

max{(1 − ω1)
2, (1 − ω2)

2}. However, when λ is so, the optimal values for δ̂, ω̂1, and
ω̂2 have already been found in (40) and (39), respectively.

Proof. For the proof see Lemma 3.7 in [5].
Lemma 3.7. The quadratic equations (44) and (45) of Lemma 3.6 share a common

root if their resultant P vanishes, that is, if

P := P (ω2) ≡ (a1c2 − a2c1)
2 − (a1b2 − a2b1)(b1c2 − b2c1) = 0(48)

or, equivalently, if

(49)

P := t11ω
11
2 + t10ω

10
2 + t9ω

9
2 + t8ω

8
2 + t7ω

7
2 + t6ω

6
2 + t5ω

5
2 + t4ω

4
2 + t3ω

3
2 + t2ω

2
2 = 0,

where

t11 = −t8 + 5t7 − 9t6 + 5t5 + 5t4 − 9t3 + 5t2 − t,
t10 = t8 − 11t7 + 34t6 − 39t5 + 39t3 − 34t2 + 11t− 1,
t9 = 2t7 − 22t6 + 58t5 − 46t4 − 26t3 + 62t2 − 34t+ 6,
t8 = 4t7 − 27t6 + 40t5 + 13t4 − 60t3 + 23t2 + 16t− 9,
t7 = 20t6 − 104t5 + 140t4 + 16t3 − 148t2 + 88t− 12,
t6 = 4t6 + 16t5 − 108t4 + 112t3 + 60t2 − 128t+ 44,
t5 = 24t5 − 56t4 − 16t3 + 80t2 − 8t− 24,
t4 = 52t4 − 104t3 − 16t2 + 104t− 36,
t3 = 48t3 − 48t2 − 48t+ 48,
t2 = 16t2 − 16.

(50)

Furthermore, for t ∈ (0, 1), the 11 roots of the resultant (49) are as follows:

0, 0, 1, −1
t ,

1
1−t ,

2
1−t ,

2
1−t ,

−( 2
1−t

) 1
2 , −( 2

1−t
) 1

2 ,
(

2
1−t

) 1
2 ,

(
2

1−t
) 1

2 .
(51)

Moreover, the distinct values of ω2 ∈ (0, 2) \ {1} given in (51) which are admissible
as ordinates of possible stationary points of the function λ of Lemma 3.6 are the
following:

ω2 =
1

1− t
,

(
2

1− t

) 1
2

∀ t ∈
(

0,
1

2

)
.(52)

Proof. For the proof see Lemmas 3.8–3.10 in [5].
Lemma 3.8. The common roots of the quadratics (44) and (45) in Lemma 3.6

given by the expression

− a1c2 − a2c1
a1b2 − a2b1

(53)

are the following:


(ω1, ω2)1 =
(

1
1+t ,

1
1−t

)
∀ t ∈ (0, 1

2

)
,

(ω1, ω2)2 =


 2(5−3t)−(7−t)(2−2t)

1
2

(1+t)

[
3−t−2(2−2t)

1
2

] ,( 2
1−t

) 1
2


 ∀ t ∈ (0, 1

2

)
.

(54)
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Moreover, of the above points only

(ω1, ω2)1 =
(

1
1+t ,

1
1−t

)
∀ t ∈ (0, 1

3 ](55)

lies in RII.

Proof. For the proof see Lemma 3.11 in [5].

We are now ready for the proof of Theorem 3.3.

Proof of Theorem 3.3. We begin with the case where ω1 and/or ω2 are different
than one, a case that was excluded from the last few lemmas. From the results of
Lemmas 3.6–3.8, it is clear that we need to determine the value of λ in (42) for the
pair (ω1, ω2)1 in (55). For this we are required to evaluate T (ω1, ω2, t) and C(ω1, ω2)
at (ω1, ω2)1 for all t ∈ (0, 1

3 ]. It can be found that

(56)

T

(
1

1 + t
,

1

1− t
, t

)
=

t(1− 2t+ 2t2)

(1 + t)(1− t)2
and C

(
1

1 + t
,

1

1− t

)
=

t4

(1 + t)2(1− t)2
,

implying that

λ =
t

1 + t
∀ t ∈

(
0,

1

3

]
.(57)

To complete the proof we need to consider the cases where ω1 and/or ω2 are equal
to one. Starting with ω1 = 1, we find that D = T (t) − T (0) > 0 if and only if

ω2 ∈ (0, 1+
√

3−t
2−t ) and t ∈ (0, 3

4 ). Minimizing T (t) as function of ω2 yields that T (t)

attains a minimum at ω2 = 1
1−t provided that t ∈ (0, 1

2 ). For t ∈ [ 12 ,
3
4 ), minT (t) ≥ t,

for all ω2 ∈ (0, 2). Therefore,

T

(
1,

1

1− t
, t

)
= t > λ =

t

1 + t
∀ t ∈

(
0,

1

3

]
.

On the other hand and in view of Lemma 3.5, it can be found that

T (1, ω2, t) ≥ t >

(
1 + t

3− t

)2

∀ ω2 ∈ (0, 2) and ∀ t ∈
(

1

3
,
3

4

)
.

Suppose next that ω2 = 1. Then we find that D = T (t)−T (0) > 0. Minimizing T (t)
as function of ω1 yields that T (t) attains a minimum at ω1 = 1

1+t for all t ∈ (0, 1).
Therefore,

T

(
1

1 + t
, 1, t

)
= t > λ =

t

1 + t
∀ t ∈

(
0,

1

3

]
,

while from Lemma 3.5 we have that

T

(
1

1 + t
, 1, t

)
= t >

(
1 + t

3− t

)2

∀ t ∈
[
1

3
, 1

)
.

This, together with the results of Lemma 3.5, completes the theorem’s proof.
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4. Energy norm minimization of the SOR and MSOR operators. Under
the assumptions of Lemmas 2.1 and 3.2 we give two theorems below concerning the
energy norms of the SOR and MSOR operators which can actually be found in Young’s
book [10] but seem not to be well known among the researchers working in the area.
We include them here for completeness and for the sake of comparison with the results
obtained in sections 2 and 3. Also, based on the reductions in (9)–(10) obtained by
Golub and dePillis in [1], we were able to give a much simpler proof of Theorem 15.2.1
in [10] which can be found in Theorem 4.1 in [5].

Theorem 4.1. Under the assumptions of Lemma 2.1,

min
ω∈(0,2)

‖ Lω‖
A

1
2

= min
ω∈(0,2)

‖ A 1
2LωA

− 1
2 ‖2 =‖ L1‖

A
1
2

= ρ(B),(58)

where B is the block Jacobi iteration matrix associated with A.
Corollary 4.2. Under the assumptions of Lemma 2.1,

min
ω∈(0,2)

‖ Lω ‖
A

1
2

= ‖ L1 ‖
A

1
2

= ρ(B) ≤ ‖ L
ω̂
‖2 = min

ω∈(0,2)
‖ Lω ‖2,(59)

where ω̂ is the value of the optimal ω of Theorem 2.2 and where equality in (59) holds
only in the trivial case when

√
t = ρ(B) = 0.

As is seen, the energy norm of the SOR operator gives a better minimum value
than that of the Euclidean norm.

For the energy norm of the corresponding MSOR operator we simply state part
of Theorem 8.5.1 in [10]. It is based on results in [11] and [9].

Theorem 4.3. Under the assumptions of Lemma 3.2,

min
ω1,ω2∈(0,2)

‖ Lω1,ω2 ‖A 1
2
=‖ L1,1 ‖

A
1
2

= ρ(B).(60)

Corollary 4.4. Under the assumptions of Lemma 3.2,

min
ω1,ω2∈(0,2)

‖ Lω1,ω2 ‖A 1
2

= ‖ L1,1 ‖
A

1
2

= ρ(B)

≥ min
ω1,ω2∈(0,2)

‖ Lω1,ω2
‖2 = ‖ L

ω̂1,ω̂2
‖2,

(61)

where (ω̂1, ω̂2) is the pair (37) or (39), whichever applies, and where equality in (61)
holds only in the trivial case when

√
t = ρ(B) = 0.

As is seen, the values of the minimum energy norms of the SOR and MSOR
operators are identically the same and this value is larger than the minimum value
of the Euclidean norm of the MSOR operator. Consequently, of the four minimum
values presented in this work, and more specifically in Theorems 2.2, 3.3, 4.1, and
4.3, the best minimum is that which was found in Theorem 3.3. We shall have more
to say about this in the next section.

5. Concluding remarks. We believe that, in part, the question which was
raised by Golub and dePillis and which was reiterated at the beginning of the pa-
per was motivated by a phenomenon in SOR theory called the “hump.” This phe-
nomenon occurs when an eigenvalue ν of the SOR iteration matrix whose modulus
is equal to the spectral radius has a nonlinear (quadratic) elementary divisor and it
can also result from the relatively large distance of the SOR iteration matrix from a
normal matrix. This can cause the relative error for a small number of iterations m to
actually increase since then the convergence is governed by the term m|ν|m−1. It is in
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such a situation when it might, in fact, become beneficial to begin the iteration using
relaxation parameters which are not optimal for the spectral radius. For a discussion
of the hump phenomenon see Chapter 7.1 in Young’s book [10].

In section 4 of [1] there is a numerical example regarding the MSOR iteration
operator associated with the matrix

A = tridiag

(
−1

2
, 1,−1

2

)
∈ R

100,100.

It is well known that here t1/2 = ρ(B) = cos(π/101) ≈ .999516282. Using numer-
ical minimization Golub and dePillis obtain that the pair (ω1, ω2) which minimizes
||L50

ω1,ω2
||2 is given by

(ω̃1, ω̃2) ≈ (0.6961, 2.0000)(62)

and the corresponding value of the Euclidean norm of L50

ω̃1,ω̃2
is given by

||L50

ω̃1,ω̃2
||2 ≈ 0.9508.(63)

For this particular example, using the optimal results of the present work in Theorem
3.3, which in this case coincide with the results in [10] because ρ2(B) > 1

3 , we have

(ω̂1, ω̂2) ≈ (0.666774151, 1.999033267).(64)

But then

||L
ω̂1,ω̂2

||2 ≈ 0.999033267(65)

which gives that

||L
ω̂1,ω̂2

||502 ≈ 0.9528.(66)

We see that after 50 iterations the optimal result found numerically in [1] for the
Euclidean norm of the 50th power of the MSOR iteration operator is only 0.21%
better than the 50th power of the optimal Euclidean norm of the first(!) power of
the MSOR iteration operator found theoretically. This might suggest that at least in
some cases of practical interest, where the values of ρ(B) are close to one, it would
be better to minimize the Euclidean norm of the MSOR iteration operator based on
a numerical approximation obtained for ρ(B) rather than to estimate the optimal
Euclidean norm of the kth power of the same operator for large k. This is because
the latter minimization has to be done computationally and so the extra number of
calculations may well outweigh the gain by only a slight improvement in the reduction
factor.

Consider the example on page 88 of Young’s book [10]. There ρ(L
ω̂
) = 0.8, from

which we can find out that t = ρ2(B) = 80
81 ≈ 0.987654321. From either Theorem 3.1

(which is Young’s) or our Theorem 3.3 we find that

(ω̂1, ω̂2) ≈ (0.668041237, 1.987730061)

and so

||L
ω̂1,ω̂2

||2 =
1 + t

3− t
≈ 0.987730061.
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On numerically solving the inequality(
||L

ω̂1,ω̂2
||2
)m

−m
(
ρ
(Lω1,opt,ω2,opt

))m−1
< 0,

where ω1,opt and ω2,opt are the relaxation parameters which give the spectral radius
of the MSOR operator a minimum (and which, in this case, according to Young are
equal to the common value 2

1+
√

1−t and yield ρ
(Lω1,opt,ω2,opt

)
= 0.8), we find that

the inequality holds for m ≤ 13. This says then that, in the case of a hump, we
should start with 13 iterations or so using the MSOR iteration operator with the
relaxation parameters given in (39). Further experiments that we have carried out on
examples in which the spectral radius of the Jacobi matrix is even closer to one show
that even more iterations should be initially performed using the MSOR iteration
operator when its Euclidean norm is minimal before switching to the SOR or MSOR
iteration operators whose spectral radius is optimal. Thus, in situations when the
value of ρ(B) is not available precisely but is known to be very close to one, (39)
tells us that the optimal pair (ω̂1, ω̂2) is very close to

(
2
3 , 2

)
. We therefore suggest

performing initially 15 to 20 iterations using, for example, (ω̂1, ω̂2) = (0.667, 1.99),
before switching to an adaptive SOR method (see, e.g., Hageman and Young [3]).

Concerning the viability of starting the iterations with the SOR operator with
the relaxation parameter giving its Euclidean norm a minimum as found in Theorem
2.2 or doing the same with the MSOR operator, when a Jacobi iteration matrix has a
spectral radius ρ2(B) < 1

3 , with the relaxation parameters chosen to give its Euclidean
norm a minimum as found in Theorem 3.3, our numerical experiments indicate a poor
advantage in speeding up the convergence using the above approach.

Acknowledgment. The authors express their thanks to Professor Michael Eier-
mann and the two referees for their constructive criticism and valuable suggestions
toward the improvement of the presentation of the results of this paper.
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Abstract. The matrix sign function has several applications in system theory and matrix
computations. However, the numerical behavior of the matrix sign function, and its associated divide-
and-conquer algorithm for computing invariant subspaces, are still not completely understood. In
this paper, we present a new perturbation theory for the matrix sign function, the conditioning of its
computation, the numerical stability of the divide-and-conquer algorithm, and iterative refinement
schemes. Numerical examples are also presented. An extension of the matrix-sign-function-based
algorithm to compute left and right deflating subspaces for a regular pair of matrices is also described.
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1. Introduction. Since the matrix sign function was introduced in the early
1970s, it has been the subject of numerous studies and used in many applications.
For example, see [30, 31, 11, 26, 23] and references therein. Our main interest here is
to use the matrix sign function to build parallel algorithms for computing invariant
subspaces of nonsymmetric matrices, as well as their associated eigenvalues. It is
a challenge to design a parallel algorithm for the nonsymmetric eigenproblem that
uses coarse grain parallelism effectively, scales for larger problems on larger machines,
does not waste time dealing with the parts of the spectrum in which the user is not
interested, and deals with highly nonnormal matrices and strongly clustered spectra.
In the work of [2], after reviewing the existing approaches, we proposed a design of a
parallel nonsymmetric eigenroutine toolbox, which includes the basic building blocks
(such as LU factorization, matrix inversion, and the matrix sign function), standard
eigensolver routines (such as the QR algorithm), and new algorithms (such as spectral
divide-and-conquer using the sign function). We discussed how these tools could be
used in different combinations on different problems and architectures, for extracting
all or some of the eigenvalues of a nonsymmetric matrix, and/or their corresponding
invariant subspaces. Rather than using “black box” eigenroutines such as provided
by EISPACK [32, 21] and LAPACK [1], we expect the toolbox approach to allow
us more flexibility in developing efficient problem-oriented eigenproblem solvers on
high-performance machines, especially on parallel distributed memory machines.
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However, the numerical accuracy and stability of the matrix sign function and
divide-and-conquer algorithms based on it are poorly understood. In this paper, we
will address these issues. Much of this work also appears in [3].

Let us first restate some of basic definitions and ideas to establish notation. The
matrix sign function of a matrix A is defined as follows [30]: let

A = Xdiag(J+, J−)X−1

be the Jordan canonical form of a matrix A ∈ Cn×n, where the eigenvalues of J+ lie
in the open right half-plane (C+) and those of J− lie in the open left half-plane (C−).
Then the matrix sign function of A is

sign(A) = Xdiag(I,−I)X−1.

We assume that no eigenvalue of A lies on the imaginary axis; otherwise, sign(A)
is not defined. It is easy to show that the spectral projection corresponding to the
eigenvalues of A in the open right and left half-planes are P± = 1

2 (I ± sign(A)),
respectively. Let the leading columns of an orthogonal matrix Q span the range space
of P+ (for example, Q may be computed by the rank-revealing QR decomposition of
P+). Then Q yields the spectral decomposition

QTAQ =

(
A11 A12

0 A22

)
,(1)

where λ(A11) are the eigenvalues of A in C+, and λ(A22) are the eigenvalues of A
in C−. The algorithm proceeds in a divide-and-conquer fashion by computing the
eigenvalues of A11 and A22.

Rather than using the Jordan canonical form to compute sign(A), it can be shown
that sign(A) is the limit of the following Newton iteration:

Ak+1 =
1

2
(Ak +A−1

k ) for k = 0, 1, 2, . . . , with A0 = A.(2)

The iteration is globally and ultimately quadratic convergent. There exist different
scaling schemes to speed up the convergence of the iteration, and make it more suit-
able for parallel computation. By computing the matrix sign function of a Möbius
transformation of A, the spectrum can be divided along arbitrary lines and circles,
rather than just along the imaginary axis. See report [2] and references therein for
more details.

Unfortunately, in finite precision arithmetic, the ill conditioning of a matrix Ak

with respect to inversion and rounding errors may destroy the convergence of the
Newton iteration (2) or cause convergence to the wrong answer. Consequently, the
left bottom corner block of the matrix QTAQ in (1) may be much larger than u‖A‖,
where u denotes machine precision. This means that it is not numerically stable to
approximate the eigenvalues of A by the eigenvalues of A11 and A22, as we would like.

In this paper, we will first study the perturbation theory of the matrix sign func-
tion, its conditioning, and the numerical stability of the overall divide-and-conquer
algorithm based on the matrix sign function. We realize that it is very difficult to give
a complete and clear analysis. We only have a partial understanding of when we can
expect the Newton iteration to converge and how accurate it is. In a coarse analysis,
we can also bound the condition numbers of intermediate matrices in the Newton iter-
ation. Artificial and possibly very pathological test matrices are constructed to verify
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our theoretical analysis. Besides these artificial tests, we also test a large number of
eigenvalue problems of random matrices, and a few eigenvalue problems from appli-
cations, such as electrical power system analysis, numerical simulation of chemical
reactions, and aerodynamics stability analysis. Through these examples, we conclude
that the most bounds for numerical sensitivity and stability of matrix sign function
computation and its based algorithms are reachable for some very pathological cases,
but they are often very pessimistic. The worst cases happen rarely.

In addition, we discuss iterative refinement of an approximate invariant subspace
and outline an extension of the matrix-sign-function-based algorithms to compute
both left and right deflating subspaces for a regular matrix pencil A− λB.

The rest of this paper is organized as follows. Section 2 presents a new perturba-
tion bound for the matrix sign function. Section 3 discusses the numerical condition-
ing of the matrix sign function. The backward error analysis of computed invariant
subspace and remarks on the matrix-sign-function-based algorithm versus the QR
algorithm are presented in section 4. Section 5 presents some numerical examples
for the analysis of sections 2, 3, and 4. Section 6 describes the iteration refinement
scheme to improve an approximate invariant subspace. Section 7 outlines an extension
of the matrix-sign-function-based algorithms for the generalized eigenvalue problem.
Concluding remarks are presented in section 8.

2. A perturbation bound for the matrix sign function. When a matrix
A has eigenvalues on the pure-imaginary axis, its matrix sign function is not defined.
In other words, the set of ill-posed problems for the matrix sign function is the set
of matrices with at least one pure-imaginary eigenvalue. Computationally, we have
observed that when there are the eigenvalues of A close to the pure-imaginary axis,
the Newton iteration and its variations are very slowly convergent and may be mis-
convergent. Moreover, even when the iteration converges, the error in the computed
matrix sign function could be too large to use. It is desirable to have a perturbation
analysis of the matrix sign function related to the distance from A to the nearest
ill-posed problem.

Perturbation theory and condition number estimation of the matrix sign function
are discussed in [25, 23, 29]. However, none of the existing error bounds explicitly
reveals the relationship between the sensitivity of the matrix sign function and the
distance to the nearest ill-posed problem. In this section, we will derive a new pertur-
bation bound which explicitly reveals such relationship. We will denote all the eigen-
values of A with positive real part by λ+(A), i.e., λ+(A) = {λ|λ ∈ λ(A),<(λ) > 0}.
σmin(A) denotes the smallest singular value of A. In addition, we recall the well-known
inequality

‖(I −X)−1‖ ≤ 1

1− ‖X‖ if ‖X‖ < 1,(3)

where ‖ · ‖ is the matrix 2-norm.
Theorem 2.1. Suppose A has no pure-imaginary and zero eigenvalues, A + δA

is a perturbation of A, and ε ≡ ‖δA‖. Let

ω = max
τ∈R

‖(iτI −A)−1‖ =
1

min
τ∈R

σmin(iτI −A)
≡ 1

dA
.(4)

Then

‖sign(A)‖ ≤ 4

π
ω‖A‖+ 3.(5)
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Furthermore, if

ωε < 1,(6)

then

‖sign(A+ δA)− sign(A)‖ ≤ 4

π

ω2ε

1− ωε
(‖A‖+ ε) + 2

ε

‖A‖ .(7)

O
Re

Im

r

-r

r

Fig. 1. The semicircle Γ.

Proof. We only prove the bound (7). The bound (5) can be proved by using a
similar technique. Following Roberts [30] (or Kato [24]), the matrix sign function can
also be defined using Cauchy integral representation:

sign(A) = 2 sign+(A)− I,(8)

where

sign+(A) =
1

2πi

∫
Γ

(ζI −A)−1dζ,

Γ is any simple closed curve with positive direction enclosing λ+(A). sign+(A) is
the spectral projector for λ+(A). Here, without loss of generality, we take Γ to be a
semicircle with radius r = 2 max{‖A‖, ‖A+ δA‖} (see Figure 1). From the definition
(8) of sign(A), it is seen that to study the stability of the matrix sign function of A
to the perturbation δA, it is sufficient to just study the sensitivity of the projection
sign+(A).

Let sign+(A + δA) be the projection corresponding to λ+(A + δA), from the
condition (6), no eigenvalues of A are perturbed across or on the pure imaginary axis,
and the semicircle Γ also encloses λ+(A+ δA). Therefore, we have

sign+(A+ δA)− sign+(A) =
1

2πi

∫
Γ

[(ζI −A− δA)−1 − (ζI −A)−1]dζ

=
1

2πi

∫ r

−r
[(iτI −A− δA)−1 − (iτI −A)−1]idτ

+
1

2πi

∫ π/2

−π/2
[(reiθI −A− δA)−1 − (reiθI −A)−1]ireiθdθ

≡ I1 + I2,
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where the first integral, denoted I1, is the integral over the straight line of the semi-
circle Γ, the second integral, denoted I2, is the integral over the curved part of the
semicircle Γ. Now, by taking the spectral norm of the first integral term, and noting
the definition of ω, the condition (6), and the inequality (3), we have

‖I1‖ ≤ 1

2π

∫ r

−r
‖[(iτI −A− δA)−1 − (iτI −A)−1]‖ |dτ |

=
1

2π

∫ r

−r
‖[(iτI −A− δA)−1δA(iτI −A)−1]‖ |dτ |

=
1

2π

∫ r

−r
‖(I − (iτI −A)−1δA)−1(iτI −A)−1δA(iτI −A)−1‖ |dτ |

≤ 1

2π

∫ r

−r

‖(iτI −A)−1‖2‖δA‖
1− ‖(iτI −A)−1δA‖ |dτ |

≤ 1

2π

ω2‖δA‖
1− ω‖δA‖ 2r.

By taking the spectral norm of the second integral term I2, we have

‖I2‖ ≤ 1

2π

∫ π/2

−π/2
‖(reiθI −A− δA)−1δA(reiθI −A)−1‖ r |dθ|

≤ 1

2π

∫ π/2

−π/2

∥∥∥∥∥
(
I − A+ δA

reiθ

)−1
∥∥∥∥∥ ‖δA‖

∥∥∥∥∥
(
I − A

reiθ

)−1
∥∥∥∥∥ 1

r
|dθ|

≤ 1

2π

(
1

1− ‖A+ δA‖/r
)
‖δA‖

(
1

1− ‖A‖/r
)

1

r
π

≤ 2‖δA‖
r

≤ ‖δA‖
‖A‖ ,

where the third inequality follows from (3) and the fourth follows from the choice of
the radius r of the semicircle Γ. The desired bound (7) follows from the bounds on
‖I1‖ and ‖I2‖ and the identity

sign(A+ δA)− sign(A) = 2(sign+(A+ δA)− sign+(A)).

A few remarks are in order:
1. In the language of pseudospectra [35], the condition (6) means that the ‖δA‖-

pseudospectra of A do not cross the pure-imaginary axis.
2. From the perturbation bound (7), we see that the stability of the matrix sign

function to the perturbation requires not only the ‖δA‖-pseudospectra of the
A to be bounded away from the pure-imaginary axis but also ω2 = 1/d2

A to
be small (recall that dA is the distance from A to the nearest matrix with a
pure-imaginary eigenvalue).

3. It is natural to take ω2 = 1/d2
A as the condition number of the matrix sign

function. Algorithms for computing dA and related problems can be found
in [14, 9, 8, 12].

4. The bound (7) is similar to the bound of the norm of the Fréchet derivative
of the matrix sign function of A at X given by Roberts [30]:

‖F(sign(A), X)‖ ≤ lΓ
2π

(
max
ζ on Γ

‖(ζI −A)−1‖2
)
‖X‖,
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where lΓ is the length of the closed contour Γ.
Recently, an asymptotic perturbation bound of sign(A) was given by Byers, He,

and Mehrmann [13]. They show that to first order in δA

‖sign(A+ δA)− sign(A)‖ ≤ 4

δ

(
1 +

‖A12‖
δ

)2

‖δA‖,(9)

where A is assumed to have the form of (1), ‖δA‖ is sufficiently small, and

δ = sep(A11, A22) = σmin(I ⊗A11 −AT
22 ⊗ I),(10)

the separation of the matrices A11 and A22 [33]. ⊗ is the Kronecker product. Com-
paring the bounds (7) and (9), we note that first the bound (7) is a global bound and
(9) is an asymptotic bound. Second, the assumption (6) for the bound (7) has a sim-
ple geometric interpretation (see remark 2 above). It is unspecified how to interpret
the assumption on sufficiently small ‖δA‖ for the bound (9).

3. Conditioning of matrix sign function computation. In [2], we point out
that it may be much more efficient to compute S = sign(A) to half-machine preci-
sion only, i.e., to compute S with an absolute error bounded by u1/2‖S‖. To avoid
ill conditioning in the Newton iteration and achieve the half-machine precision, we
believe that the matrix A must have condition number less than u−1/2. If A is ill
conditioned, say having singular values less than u1/2‖A‖, we need to use a prepro-
cessing step to deflate small singular values by a unitary similarity transformation,
and obtain a submatrix having condition number less than u−1/2, and then compute
the matrix sign function of this submatrix. Such a deflation procedure may be also
needed for the intermediate matrices in the Newton iteration in the worst case.

We now look more closely at the situation of near convergence of the Newton
iteration and relate the error to the distance to the nearest ill-posed problem [18].
As before, the ill-posed problems are those matrices with pure-imaginary eigenvalues.
Without loss of generality, let us assume A is of the form

A =

(
A11 A12

0 A22

)
,(11)

where λ(A11) ∈ C+ and λ(A22) ∈ C−. Otherwise, for any matrix B, by the Schur
decomposition, we can write B = QHAQ, where A has the above form, and then
sign(B) = QHsign(A)Q. Let R be the solution of the Sylvester equation

A11R−RA22 = −A12,(12)

which must exist and be unique since A11 and A22 have no common eigenvalues. Then
it is known that the spectral projector P corresponding to the eigenvalues of A11 is

P =

(
I R
0 0

)
,

and ‖P‖ =
√

1 + ‖R‖2. The following lemma relates R and the norm of the projection
P to sign(A) and its condition number.

Lemma 3.1. Let A and R be as above. Let ρ = ‖R‖+
√

1 + ‖R‖2. Then

1. S ≡ sign(A) =
(

I −2R
0 −I

)
.
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2. ‖S‖ = ‖S−1‖ = ρ, and, therefore, κ(S) = ρ2.
Proof.

1. Let X =
(

I R
0 I

)
. It is easy to verify that if R satisfies (12), then X−1AX =

diag(A11, A22). Therefore,

sign(A) = sign(Xdiag(A11, A22)X
−1) = Xsign(diag(A11, A22))X

−1

= Xdiag(I,−I)X−1 =

(
I −2R
0 −I

)
.

2. Using the singular value decomposition (SVD) of R URV H = Σ = diag(σi),
one can reduce computing the SVD of S to computing the SVD of(

U 0
0 V

)
S

(
UH 0
0 V H

)
=

(
I −2Σ
0 −I

)
which, by permutations, is equivalent to computing the SVDs of the 2 × 2

matrices
(

1 −2σj
0 −1

)
. This is, in turn, a simple calculation.

We note that for the solution R of the Sylvester equation (12) we have

‖R‖ ≤ ‖A12‖
sep(A11, A22)

,

where the equality is attainable [33]. From Lemma 3.1, we see that the conditioning of
the matrix sign function computation is closely related to the norm of the projection P ,
therefore the norm of R, which in turn is closely related to the quantity sep(A11, A22).
Specifically, when ‖R‖ is large,

‖S‖ = ‖sign(A)‖ ≤ 2‖A12‖
sep(A11, A22)

(13)

and

κ(S) ≤ 4‖A12‖2
sep2(A11, A22)

.

If ‖A12‖ is moderate, an ill-conditioned matrix sign function means large ‖R‖, which
in turn means small sep(A11, A22). Following Stewart [33], it means that it is harder
to separate the invariant subspaces corresponding to the matrices A11 and A22.

The following theorem discusses the conditioning of the eigenvalues of sign(A)
and the distance from sign(A) to the nearest ill-posed problem.

Theorem 3.2. Let A and R be as in Lemma 3.1. Then we have the following:
1. Let δS have the property that S + δS has a pure-imaginary eigenvalue. Then

δS may be chosen with ‖δS‖ = 1/‖S‖ but no smaller. In the language of [35],
the ε-pseudospectrum of S excludes the imaginary axis for ε < 1/‖S‖, and
intersects it for ε ≥ 1/‖S‖.

2. The condition number of the eigenvalues of S is ‖P‖. In other words, perturb-
ing S by a small δS perturbs the eigenvalues by at most ‖P‖ ‖δS‖+O(‖δS‖2).

3. If A is close to S and κ(S) < u−1/2, then Newton iteration (2) in floating
point arithmetic will compute S with an absolute error bounded by u1/2‖S‖.
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Proof.
1. The problem is to minimize σmin(S − iζI) over all real ζ, where σmin is

the smallest singular value of S − iζI. Using the same unitary similarity
transformation and permutation as in the part 1 of Lemma 3.1, we see that
this is equivalent to minimizing

σmin

((
1− iζ −2σj

0 −1− iζ

))
over all σj and real ζ. This is a straightforward calculation, with the minimum
being obtained for ζ = 0 and σj = ‖R‖.

2. The condition number of a semisimple eigenvalue is equal to the secant of the
acute angle between its left and right eigenvectors [24, 17]. Using the above
reduction to 2 × 2 subproblems (this unitary transformation of coordinates
does not changes angles between vectors), this is again a straightforward
calculation.

3. Since ‖S‖ = ‖S−1‖, the absolute error δS in computing 1
2 (S+S−1) is bounded

essentially by the error in computing S−1:

‖δS‖ <∼ u(‖S‖ · ‖S−1‖)‖S−1‖ = u‖S‖3 < u1/2‖S‖.
For the Newton iteration to converge, δS cannot be so large that S + δS
has pure-imaginary eigenvalues; from the result 1, this means ‖δS‖ < ‖S‖−1.
Therefore, if u1/2‖S‖ < ‖S‖−1, i.e., κ(S) < u−1/2, then Newton iteration (2)
will compute S with an absolute error bounded by u1/2‖S‖.

It is naturally desired to have an analysis from which we know the conditioning of
the intermediate matrices Ak in the Newton iteration. It will help us in addressing the
question of how to detect the possible appearance of pure-imaginary eigenvalues and
to modify or terminate the iteration early if necessary. Unfortunately, it is difficult to
make a clean analysis far from convergence because we are unable to relate the error
in each step of the iteration to the conditioning of the problem. We can do a coarse
analysis, however, in the case that the matrix is diagonalizable.

Theorem 3.3. Let A have eigenvalues λj (none pure imaginary or zero), right
eigenvectors xj, and left eigenvectors yj normalized so ‖xj‖ = ‖yj‖ = 1. Let sj =
sign(<(λj)), and

σ = min
j

|yHj xj |
n

· |λj + sj | − |λj − sj |
|λj + sj |+ |λj − sj | .(14)

Let Ak be the matrix obtained at the kth Newton iteration (2). Then for all k,
σmax(Ak) ≤ 1/σ and σmin(Ak) ≥ σ, i.e.,

κ(Ak) =
σmax(Ak)

σmin(Ak)
≤ 1

σ2
.(15)

Proof. We may express the eigendecomposition of A as A =
∑n

j=1 λjxjy
H
j /y

H
j xj .

Then Ak =
∑n

j=1 λj,kxjy
H
j /y

H
j xj , where λj,k = 1

2 (λ−1
j,k−1 + λj,k−1) with λj,0 = λj .

We wish to bound |λj,k| from above and below for all k. This is easily done by noting
that

λj,k+1 − sj
λj,k+1 + sj

=

(
λj,k − sj
λj,k + sj

)2
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so that all λj,k lie inside a disk defined by∣∣∣∣λj,k − sj
λj,k + sj

∣∣∣∣ ≤ ∣∣∣∣λj − sj
λj + sj

∣∣∣∣ ≡ cj < 1.

This disk is symmetric about the real axis, so its points of minimum and maximum
absolute value are both real. Solving for these extreme points yields

1− cj
1 + cj

≤ |λj,k| ≤ 1 + cj
1− cj

.

This means

σmax(Ak) = ‖Ak‖ =

∥∥∥∥∥∥
n∑

j=1

λj,k
xjy

H
j

yHj xj

∥∥∥∥∥∥ ≤
n∑

j=1

|λj,k|
|yHj xj |

≤ max
j

n

|yHj xj |
· 1 + cj
1− cj

.

Similarly

σ−1
min(Ak) = ‖A−1

k ‖ =

∥∥∥∥∥∥
n∑

j=1

λ−1
j,k

xjy
H
j

yHj xj

∥∥∥∥∥∥ ≤
n∑

j=1

|λ−1
j,k|

|yHj xj |
≤ max

j

n

|yHj xj |
· 1 + cj
1− cj

,

which proves the bound (15).
As we know, the error introduced at each step of the iteration is mainly caused

by the computation of matrix inverse, which is approximately bounded in norm by

u(κ(Ak)‖A−1
k ‖+ ‖Ak‖) ≤ u(σ−3 + σ−1) ≈ uσ−3

when σ � 1. If uσ−3 < σmin(Ak), then this error cannot make an intermediate Ak

become singular and cause the iteration to fail. Our analysis shows that if uσ−3 < σ,
or σ > u1/4, then the iteration will not fail. This very coarse bound generalizes result
3 of Theorem 2.

We note that if A is symmetric, by the orthonormal eigendecomposition of A =∑n
j=1 λjqjq

T
j , where qTj qj = 1, qTj qk = 0 if j 6= k, then from Theorem 3 we have

σ = min
j

{ 1
|λj | if |λj | ≥ 1,

|λj | if |λj | < 1.

Therefore,

κ(Ak) ≤ max
j

{
λ2
j if |λj | ≥ 1,
1
λ2
j

if |λj | < 1.
(16)

It shows that when A is symmetric, the condition number of the intermediate ma-
trices Ak, which affects the numerical stability of the Newton iteration, is essentially
determined by the square of the distance of the eigenvalues to the imaginary axis.1

When A is nonsymmetric and diagonalizable, from Theorem 3.3, we also see
that the condition number of the intermediate matrices Ak is related to the norms

1 A referee predicted that in the symmetric case, the condition number of Ak might be determined
only by the distance, not the square of the distance. We were not able to prove such prediction.



214 ZHAOJUN BAI AND JAMES DEMMEL

of the spectral projectors Pj = xjy
H
j /(y

H
j xj) corresponding to the eigenvalues λj

(‖Pj‖ = 1/|yHj xj |) and the quantities of the form

σ̃j =
|λj + sj | − |λj − sj |
|λj + sj |+ |λj − sj | ,

where sj = sign(<(λj)). If we write λj = αj+iβj , by a simple algebraic manipulation,
we have

σ̃j =
1

2|αj |
[
1 + α2

j + β2
j −

√
(α2

j − 1)2 + 2(1 + α2
j )β

2
j + β4

j

]
.

From this expression, we see that if there is an eigenvalue λj of A very near to the
pure imaginary axis, i.e., αj is small, then by the first-order Taylor expansion of σ̃j
in terms of αj , we have

σ̃j =
|αj |

1 + β2
j

+O(α2
j ).(17)

Therefore, to first order in αj , the condition numbers of the intermediate matrices Ak

satisfy

κ(Ak) ≤ 1

σ2
= max

j

(
|αj |

n‖Pj‖(1 + β2
j )

+O
(

α2
j

‖Pj‖

))−2

.(18)

This implies that even if the eigenvalues of A are well conditioned (i.e., the ‖Pj‖ are
not too large), if there are also eigenvalues of A closer to the imaginary axis than u1/2,
then the condition number of Ak could be large, κ(Ak) ≥ u−1, and so the Newton
iteration could fail to converge.

4. Backward stability of computed invariant subspace. As discussed in
the previous section, because of possible ill conditioning of a matrix with respect to
inversion and rounding errors during the Newton iteration, we generally only expect
to be able to compute the matrix sign function to the square root of the machine
precision, provided that the initial matrix A has condition number smaller than u−1/2.
This means that when Newton iteration converges, the computed matrix sign function
Ŝ satisfies

Ŝ = S + F with ‖F‖ ≤ O(
√

u)‖S‖.(19)

Under this assumption, P̂ = 1
2 (Ŝ + I) is an approximate spectral projection corre-

sponding to λ+(A). Therefore, if ` = rank(P̂ ), the first ` columns Q̂1 of Q̂ ≡ Q+δQ =

(Q̂1, Q̂2) in the rank revealing QR decomposition of P̂ span an approximate invariant

subspace. Q̂HAQ̂ has the form

Q̂HAQ̂ = (Q+ δQ)HA(Q+ δQ) =

(
Â11 Â12

E21 Â22

)

with λ(Â11) being the approximate eigenvalues of A in C+, and λ(Â22) being the
approximate eigenvalues of A in C−. Since we expect the computed matrix sign
function to be of half-machine precision, it is reasonable to expect computing the
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invariant subspace to half-precision too. This in turn means that the backward error
‖E21‖ in the computed decomposition Q̂HAQ̂ is bounded by O(

√
u)‖A‖, provided

that the problem is not very ill conditioned. In this section, we will try to justify such
expectation.

To this end, we first need to bound the error in the space spanned by the leading
` = rank(P ) columns of the transformation matrix Q, i.e., we need to know how much
a right singular subspace of the exact projection matrix P = 1

2 (S + I) is perturbed
when P is perturbed by a matrix of norm η. Since P is a projector, the subspace is
spanned by the right singular vectors corresponding to all nonzero singular values of
P (call the set of these singular values S). In practice, of course, this is a question of
rank determination. From the well-known perturbation theory of the singular value
decomposition [34, page 260], the space spanned by the corresponding singular vectors
is perturbed by at most O(η)/gapS , where gapS is defined by

gapS ≡ min
σ ∈ S
σ̄ 6∈ S

|σ − σ̄| .

To compute gapS , we note that there is always a unitary change of basis in which

a projector is of the form
(

I Σ
0 0

)
, where Σ = diag(σ1, . . . , σl) is diagonal with

σ1 ≥ · · · ≥ σl ≥ 0. By straightforward calculation, we find that the singular val-
ues of the projector are {

√
1 + σ2

1 , . . . ,
√

1 + σ2
` , 1, . . . , 1, 0, . . . , 0}, where the num-

ber of ones in the set of singular values is equal to max{2` − n, 0}. Since S =
{
√

1 + σ2
1 , . . . ,

√
1 + σ2

` , 1, . . . , 1}, we have

gapS =

{ √
1 + σ2

` if 2` ≤ n,
1 if 2` > n.

Thus, the error δQ in Q is bounded by

‖δQ‖ ≤ O(‖F‖)
gapS

≤ O(
√

u)‖S‖
gapS

.(20)

Hence, the backward error in the computed spectral decomposition is bounded by

‖E21‖ ≤ ‖(Q+ δQ)HA(Q+ δQ)−QHAQ‖
= ‖δQHAQ+QHAδQ+ δQHAδQ‖
≤ 2‖δQ‖ ‖A‖+O(ε2),

where O(ε2) is the second-order perturbation term of ‖δQ‖. Therefore, if 2` ≤ n, we
have the following first-order bound on the backward stability of computed invariant
subspace:

‖E21‖
‖A‖ ≤ O(

√
u)‖S‖

gapS
=
O(
√

u)‖S‖√
1 + σ2

`

.(21)

If we use the bound (5) of the matrix sign function S, then from (21) we have

‖E21‖
‖A‖ ≤ O(

√
u)‖A‖

dA
√

1 + σ2
`

,(22)
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where dA, defined in (4), is the distance to the ill-posed problem. On the other hand,
if we use the bound (13) for the matrix sign function S, then from (21) again we have

‖E21‖
‖A‖ ≤ O(

√
u)‖A‖

δ
√

1 + σ2
`

,(23)

where δ = sep(A11, A22) is the separation of the matrices A11 and A22, if A is assumed
to have the form (11). We note that the error bound (23) is essentially the same as
the error bound given by Byers, He, and Mehrmann [13], although we use a different
approach. In [13], it is assumed that ‖F21‖ <∼ O(u)‖S‖ in (19), where F21 is the (2,1)
block of the matrix F . Therefore, the O(

√
u) term in (23) is replaced by O(u).

The bounds (22) and (23) reveal two important features of the matrix-sign-
function-based algorithm for computing the invariant subspace. First, they indicate
that the backward error in the computed approximate invariant subspace appears no
larger than the absolute error in the computed matrix sign function, provided that
the spectral decomposition problem is not very ill conditioned (i.e., dA or δ is not
tiny). Second, if 2` ≤ n, the backward error is a decreasing function of σl. If σ` is
large, this means σ1 and so ‖P‖ =

√
1 + σ2

1 are large, and this in turn means the
eigenvalues close to the imaginary axis are ill conditioned. It is harder to divide these
eigenvalues. Of course as they become ill conditioned, dA decreases at the same time,
which must counterbalance the increase in σ` in a certain range.

It is interesting to ask which error bound (22) and (23) is sharper, i.e., which
one of the quantities dA and δ = sep(A11, A22) is larger. In [13], an example of a
2 × 2 matrix is given to show that the quantity δ is larger than the quantity dA.
However, we can also devise simple examples to show that dA can be larger than
δ = sep(A11, A22). For example, let A = diag(A11, A22) with

A11 =

 η 2 3
0 η 2
0 0 η

 , A22 =

 −η 2 3
0 −η 2
0 0 −η

 .

When η = 10−3, we have dA ≈ 2.50 × 10−10, and δ = sep(A11, A22) ≈ 2.81 × 10−16.
More generally, by choosing A11 to be a large Jordan block with a tiny eigenvalue,
and A22 = −A11, dA is close to the square root of δ. dA is computed using “numerical
brute force” to plot the function dA(τ) on a wide range of τ ∈ R, and search for the
minimal value.

Note that by modifying A to be A − σI, where σ is a (sufficiently small) real
number, dA will change but δ will not. Thus, dA and δ are not completely comparable
quantities. We believe dA to be a more natural quantity to use than δ, since δ does not
always depend on the distance to the nearest ill-posed problem. This is reminiscent
of the difference between the quantities δ = sep(A11, A22) and sepλ(A11, A22) [18].

In practice, we will use the a posteriori bound ‖E21‖/‖A‖ anyway, since if we

block upper triangularize Q̂HAQ̂ by setting the (2, 1) block to zero, ‖E21‖/‖A‖ is
precisely the backward error we introduce.

Before ending this section, let us comment on the stability of the matrix-sign-
function-based algorithm versus the QR algorithm. The QR algorithm is a numerical
backward stable method for computing the Schur decomposition of a general non-
symmetric matrix A. The computed Schur form T̂ and Schur vectors Q̂ by the QR
algorithm satisfy

Q̂H(A+ E)Q̂ = T̂ ,
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where E is of the order of u‖A‖. Numerical software for the QR algorithm is available
in EISPACK [32] and LAPACK [1]. Although nonconvergent examples have been
found, they are quite rare in practice [6, 16]. We note that the eigenvalues on the

(block) diagonal of T̂ may appear in any order. Therefore, if an application requires
an invariant subspace corresponding to the eigenvalues in a specific region in complex
plane, a second step of reordering eigenvalues on the diagonal of T̂ is necessary. A
guaranteed stable implementation of this reordering is described in [7].

The matrix-sign-function-based algorithm can be regarded as an algorithm to
combine these two steps into one. If the matrix sign function can be computed
within the order of u‖S‖, then the analysis in this section shows that the matrix-sign-
function-based algorithm could be as stable as the QR algorithm plus reordering.
Unfortunately, if the matrix is ill conditioned with respect to matrix inversion (which
does not affect the QR algorithm), numerical instability is anticipated in the computed
matrix sign function. Therefore, in general, the matrix sign function is less stable than
the QR algorithm plus reordering.

5. Numerical experiments. In this section, we will present numerical exam-
ples to verify the above analysis. We will see the numerical stability of the Newton
iteration (2) and the backward accuracy of computed spectral decomposition (1) un-
der the influence of the conditioning of the matrix A with respect to inversion, the
condition number κ(S) of S = sign(A), and the distance ∆(A) of the eigenvalues
of A to the pure-imaginary axis, where ∆(A) = mini |<(λi(A))|. We use the easily
computed quantity ∆(A) as a surrogate of the quantity dA in (4).

Let us recall that the analysis of sections 3 and 4 essentially claims the following:
(1) If ∆(A) < u1/2, then the Newton iteration may fail to converge or fail to

compute the matrix sign function within the absolute error u1/2‖S‖, even
when the matrix sign function is well conditioned. See (18).

(2) If κ(S) > u−1/2, then even the distance ∆(A) is not small, and the Newton
iteration may still fail to compute the matrix sign function in the absolute
error of O(u1/2‖S‖). See part 3 of Theorem 3.2.

(3) In general, the backward error in the computed spectral decomposition will
be smaller than the absolute error in the computed matrix sign function. See
(21).

The following numerical examples will illustrate these claims. Our numerical ex-
periments were performed on a SUN workstation 10 with machine precision εM =
2.2204×10−16 ≈ u. All the algorithms are implemented in Matlab 4.0a. We use the
simple Newtion iteration (2) to compute the matrix sign function with the stopping
criterion

‖Ak+1 −Ak‖ ≤ 10nεM‖Ak‖.

The maximal number of iterations is set to be 70. At the convergence, we have
limk→∞Ak = Ŝ, the computed matrix sign function. We use the QR decomposition
with column pivoting as the rank revealing scheme. 1

2 (Ŝ + I) = Q̂R̂Π, and finally
compute

Q̂HAQ̂ =

(
Â11 Â12

E21 Â22

)
,

where the first ` = rank(R̂) columns of Q̂ spans the invariant subspaces corresponding
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Table 1
Numerical results for Example 1.

c ∆(A) = s κ(A) κ(S) iter ‖S−S̄‖
‖S‖

‖E21‖
‖A‖

10 1.0e + 00 1.9e + 03 2.7e + 03 7 2.9e− 14 3.9e− 17
1.0e− 02 8.6e + 02 1.5e + 02 13 8.4e− 14 8.4e− 16
1.0e− 04 3.8e + 01 8.1e + 01 20 1.3e− 11 1.3e− 13
1.0e− 06 4.7e + 02 9.0e + 02 30 4.1e− 09 4.1e− 12

1.0e− 08 4.3e + 02 1.0e + 03 33 2.8e− 07 2.8e− 10
1.0e− 09 2.8e + 02 1.8e + 03 36 8.0e− 06 8.0e− 09
1.0e− 10 3.6e + 01 3.7e + 02 40 2.2e− 05 2.2e− 07
1.0e− 12 5.5e + 01 1.0e + 03 46 4.0e− 03 4.0e− 06

103 1.0e− 06 7.8e + 06 1.7e + 07 26(10−11) 2.1e− 06 5.4e− 12
1.0e− 08 1.7e + 06 1.0e + 07 33(10−11) 5.1e− 04 1.8e− 09

to λ(Â11), which are the approximate eigenvalues of A in C+. ‖E21‖/‖A‖ is the
backward error committed by the algorithm.

All our test matrices are constructed of the form

A = UT

(
A11 A12

0 A22

)
U,(24)

where U is an orthogonal matrix generated from the QR decomposition of a random
matrix with normal distribution having mean 0.0 and variance 1.0. We will choose dif-
ferent submatrices A11, A22, and A12 so that the generated matrices A have different
specific features in order to observe our theoretical results in practice.

The exact matrix sign function S = sign(A) of A and the condition number of S
are computed as described in Lemma 3.1. The condition number of A is computed
by Matlab function cond.

In the following tables, iter is the number of iterations of the Newton iteration.
A number 10α in parenthesis next to an iteration number iter indicates that the
convergence of the Newton iteration was stationary about O(10α) from the iterth

iteration forward, and failed to satisfy the stopping criterion even after the allowed
maximal number of iterations.

We have experimented with numerous matrices with different pathological ill con-
ditioning in terms of the distance to the pure-imaginary axis, the condition numbers
of κ(A) and κ(S), and the different values of sep(A11, A22) and so on. Two selected
examples presented here are typical of behaviors we observed.

Example 1. In this example, the matrices A are of the form (24) with

A11 =

(
s 1

−1 s

)
, A22 =

( −s 1
−1 −s

)
,

and A12 = −(A11R − RA22), where R is a random 2 × 2 matrix with normal distri-
bution (0, 1) multiplying by a parameter c. The generated matrix A has two complex
conjugate eigenpairs s± i and −s± i. As s→ 0, the distance ∆(A) = s→ 0 too. The
size of the parameter c will adjust the conditioning of the resulted matrix A and its
matrix sign function.

Table 1 reports the computed results for different values of ∆(A) = s. From
the table, we see that when the matrices are well conditioned and the corresponding
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Table 2
Numerical results of Example 2.

d ∆(A) κ(A) κ(S) iter ‖S−S̄‖
‖S‖

‖E21‖
‖A‖

1.0 1.2e− 01 5.8e + 02 6.4e + 01 9 1.4e− 14 1.7e− 15
0.7 6.5e− 02 1.3e + 04 1.3e + 04 10 2.0e− 13 1.6e− 14
0.5 8.5e− 02 3.4e + 04 2.2e + 05 10(10−13) 9.5e− 12 1.7e− 13
0.3 2.0e− 02 3.9e + 06 5.9e + 08 10(10−09) 3.5e− 09 4.6e− 11
0.25 6.2e− 03 2.9e + 07 1.2e + 09 13(10−10) 2.8e− 08 1.5e− 10
0.09 1.1e− 02 4.9e + 09 5.5e + 13 12(10−06) 3.0e− 03 1.0e− 07

matrix sign function is also well conditioned, as stated in the claim (1), the conver-
gence rate and accuracy of the Newton iteration is clearly determined by the distance
∆(A). When the distance becomes smaller, there is a steady increase in the number
of Newton iterations required to convergence and the loss of the accuracy in the com-
puted matrix sign function and, therefore, the desired invariant subspace. From the
table, we also see that when both ∆(A) and κ(S) are moderate, the Newton iteration
fails to compute the matrix sign function in half-machine precision. Nevertheless, the
computed invariant subspace seems to still have half-machine precision; see the claim
(3).

Example 2. In this example, the test matrices A are of the form (24). A12 are 5×5
(1, 0) normally distributed random matrices. The submatrices A11 and A22 are first
set by 5× 5 (1, 0) normally distributed random upper tridiagonal matrices, and then
the diagonal elements of A11 and A22 are replaced by d|aii| and −d|aii|, respectively,
where aii(1 ≤ i ≤ n) are random numbers with normal distribution (0, 1), d is a
positive parameter. A12 are 5× 5 (1, 0) normally distributed random matrices.

The numerical results are reported in Table 2. For the given parameter d, the
eigenvalues are well separated away from the pure-imaginary axis (∆(A) is not small),
however, as stated in the claim (2), we see the influence of the condition numbers
κ(S) to the convergence of the Newton iteration and, therefore, the accuracy of the
computed matrix sign function and the invariant subspace.

6. Refining estimates of approximate invariant subspaces. When we use
the matrix-sign-function-based algorithm to deflate an invariant subspace of matrix
A, we end up with the form

Q̂HAQ̂ = (Q̂1, Q̂2)
HA(Q̂1, Q̂2) =

(
Â11 Â12

E21 Â22

)
,(25)

where the size of ‖E21‖/‖A‖ reveals the accuracy and backward stability of computed

invariant subspace spanning by Q̂1 of A. If higher accuracy is desired, we may use
iterative refinement techniques to improve the accuracy of computed invariant sub-
space. The methods are due to Stewart [33], Dongarra, Moler, and Wilkinson [20],
and Chatelin [15]. Even though these methods all apparently solve different equations,
as shown by Demmel [19], after changing variables, they all solve the same Riccati
equation in the inner loop.

Let us follow Stewart’s approach to present the first class of methods. From (25),

we know that Q̂1 spans an approximate invariant subspace and Q̂2 spans an orthogonal
complementary subspace. If we let the true invariant subspace be represented by
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Q̂1 + Q̂2Y and, therefore, its orthogonal complementary subspace as Q̂2 − Q̂1Y
H ,

then Y is derived as follows: Q̂1 + Q̂2Y will be an invariant subspace if and only if
the lower left block of

(Q̂1 + Q̂2Y, Q̂2 − Q̂1Y
H)−1A(Q̂1 + Q̂2Y, Q̂2 − Q̂1Y

H)

is zero, i.e., if the lower left corner of

(
I −Y H

Y I

)(
Â11 Â12

E21 Â22

)(
I Y H

−Y I

)

is zero. Thus, Y must satisfy the equation

Â22Y − Y Â11 = E21 − Y Â12Y,

which is the well-known algebraic Riccati equation. We may use the following two
iterative methods to solve it:

1. the simple Newton iteration

Â22Yk − YkÂ11 = E21 − Yk−1Â12Yk−1(26)

with Y0 = 0, k = 1, 2, . . . ;
2. the modified Newton iteration

(Â22 − Yk−1Â12)Yk − Yk(Â11 + Â12Yk−1) = −E21 − Yk−1Â12Yk−1(27)

with Y0 = 0, k = 1, 2, . . . .

Therefore, we only need to solve a Sylvester equation in the inner loop of the iterative
refinement.

In the following numerical example, we only use the simple Newton iteration (26)
to refine the approximate invariant subspace computed by the matrix-sign-function-
based algorithm, with the following stopping criterion:

‖Yk − Yk−1‖1 ≤ 10nεM‖Yk−1‖1.

Example 3. We continue Example 2. Table 3 lists the sep(A11, A22), the number of
iterative refinement steps, and the backward accuracy of improved invariant subspace.

As shown in the convergence analysis for the iterative solvers (26) and (27) of the
Riccati equation by Stewart [33] and Demmel [18], if we let

κ = (‖Â12‖F ‖E21‖F )/sep2(Â11, Â22),

then under the assumptions k < 1/4 and k < 1/12, the iterations (26) and (27)

converge, respectively. Therefore, sep(Â11, Â22) is a key factor to the convergence of
the iterative refinement schemes. The above examples verify such analysis. From the
analysis of section 3, we recall that sep(Â11, Â22) also affects the backward stability
of the computed invariant subspace by the matrix-sign-function-based algorithm in
the first place (before iterative refinement).
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Table 3
Iterative refinement results of Example 2.

d sep(A11, A22) iter
‖E′

21‖
‖A‖

1.0 2.4e− 2 2 6.6e− 31
0.7 2.4e− 3 3 6.3e− 30
0.5 2.3e− 3 3 1.1e− 28
0.3 2.0e− 5 4 2.0e− 25
0.25 3.8e− 5 4 2.5e− 25
0.09 5.1e− 7 5(10−12) 1.1e− 21

7. Extension to the generalized eigenproblem. In this section, we outline
a scheme to extend the matrix-sign-function-based algorithm to solve the generalized
eigenvalue problem of a regular matrix pencil A − λB. A matrix pencil A − λB is
regular ifA−λB is square and det(A−λB) is not identically zero. In [22], Gardiner and
Laub have considered an extension of the Newton iteration for computing the matrix
sign function to a matrix pencil for solving generalized algebraic Riccati equations.
Here we discuss another possible approach, which includes the computation of both
left and right deflating subspaces.

For the given matrix pencil A − λB, the problem of the spectral decomposition
is to seek a pair of left and right deflating subspaces L and R corresponding to the
eigenvalues of the pencil in a specified region D in complex plane. In other words,
we want to find a pair of unitary matrices QL and QR so that if QL = (QL1, QL2),
span(QL1) = L and QR = (QR1, QR2), span(QR1) = R, then

QH
LAQR =

(
A11 A12

0 A22

)
, QH

LBQR =

(
B11 B12

0 B22

)
,(28)

where the eigenvalues of A11−λB11 are the eigenvalues of A−λB in a selected region
D in complex plane. Here, we will only discuss the region D to be the open right half-
complex plane. As the same treatment in the standard eigenproblem, by employing
Möbius transformations (αA + βB)(γA + δB)−1 and divide-and-conquer, D can be
the union of intersections of arbitrary half-planes and (complemented) disks, and so
a rather general region.

To this end, by directly applying the Newton iteration to AB−1, we have

Yk+1 =
1

2
(Yk + Y −1

k ), k = 0, 1, 2, . . . , Y0 = AB−1.

At convergence, Y∞ = sign(AB−1). In practice, we do not want to invert B if it is ill
conditioned. Hence, by letting Zk = YkB, then the above iteration becomes

Zk+1B
−1 =

1

2
(ZkB

−1 +BZ−1
k ) =

1

2
(Zk +BZ−1

k B)B−1.

This leads to the following iteration:

Zk+1 =
1

2
(Zk +BZ−1

k B)

for k = 0, 1, 2, . . . with Z0 = A. Zj converges quadratically to a matrix Z∞. Then
Z∞B−1 = Y∞ = sign(AB−1). Next, to find the desired deflating subspace, we use
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the rank revealing QR decomposition to calculate the range space of the projection
P = 1

2 (I +Z∞B−1) corresponding to the spectral in the open right half-plane, which
has the same range space as 2PB = Z∞+B. Thus, by computing the rank revealing
QR decomposition of Z∞+B = QLRLΠL, we obtain the invariant subspace of AB−1

without inverting B, i.e.,

QH
LAB

−1QL =

(
CR C12

0 CL

)
,(29)

where λ(CR) are the eigenvalues of the pencil A − λB in the open right half-plane,
λ(CL) are the ones of A−λB in the open left half-plane. Therefore, we have obtained
the left deflating subspace of A− λB.

To compute the right deflating subspace of A− λB, we can apply the above idea
to AH − λBH , since transposing swaps right and left spaces. The Newton iteration
implicitly applying to AHB−H turns out to be

Z̃k+1 =
1

2
(Z̃k +BH Z̃−1

k BH)

for k = 0, 1, 2, . . . with Z0 = AH . Z̃j converges quadratically to a matrix Z̃∞. Using
the same arguments as above, after computing the rank revealing QR decomposition
of Z̃∞ −B = Q̃RRRΠR, we have

Q̃H
RA

HB−HQ̃R =

(
DL D12

0 DR

)
,

where λ(DL) are the eigenvalues of the pencil A−λB in the open left half-plane, λ(DR)
are the ones of A−λB in the open right half-plane. Note that for the desired spectral
decomposition, after transposing, we need to first compute the deflating subspace
corresponding to the eigenvalues in the open left half-plane. Let QR = Q̃RΠ̃, where
Π̃ is an antidiagonal identity matrix2; then we have

QH
RA

HB−HQR =

(
DR 0
D12 DL

)
.(30)

From (29) and (30), we immediately have

QH
LAQR =

(
CR C12

0 CL

)
QH
LBQR,(31)

QH
LAQR = QH

LBQR

(
DH
R DH

12

0 DH
L

)
.(32)

Let QH
LAQR and QH

LBQR have the partitions

QH
LAQR =

(
A11 A12

A21 A22

)
, QH

LBQR =

(
B11 B12

B21 B22

)
;

we have (
CR C12

0 CL

)(
B11 B12

B21 B22

)
=

(
B11 B12

B21 B22

)(
DH
R DH

12

0 DH
L

)
.

2 The permutation Π̃ can be avoided if we use the rank revealing QL decomposition.
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Then B21 satisfies

CLB21 −B21D
H
R = 0.

Note that λ(CL) are the eigenvalues of the pencil A− λB in the open left half-plane,
λ(DR) are the eigenvalues of the pencil A−λB in the open right half-plane. Therefore,
the above homogeneous Sylvester equation has only the solution B21 = 0. From (31)
or (32), we have A21 = 0. The computed unitary orthogonal matrices QL and QR

give the desired spectral decomposition (28).

8. Closing remarks. In this paper, we have presented a number of new results
and approaches to further analyze the numerical behavior of the matrix sign function
and algorithms using it to compute spectral decompositions of nonsymmetric matri-
ces. From this analysis and numerical experiments, we conclude that if the spectral
decomposition problem is not ill conditioned, the algorithm is a practical approach to
solve the nonsymmetric eigenvalue problem. Performance evaluation of the matrix-
sign-function-based algorithm on parallel distributed memory machines, such as the
Intel Delta and CM-5, is reported in [4].

During the course of this work, we have discovered a new approach which es-
sentially computes the same spectral projection matrix as the matrix sign function
approach does, and also uses basic matrix operations, namely, matrix multiplication
and the QR decomposition. However, it avoids the matrix inverse. From the point
of view of accuracy, this is a more promising approach. The new approach is based
on the work of Bulgakov and Godunov [10] and Malyshev [27, 28]. In [5], we have
improved their results in several important ways, and made it a truly practical and
inverse-free highly parallel algorithm for both the standard and generalized spectral
decomposition problems. In brief, the difference between the matrix sign function and
inverse-free methods is as follows. The matrix sign function method is significantly
faster than the inverse-free method when it converges, but there are some very diffi-
cult problems where the inverse-free algorithm gives a more accurate answer than the
matrix sign function algorithm. The interested reader may see paper [5] for details.
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Abstract. We characterize all weighted trees whose Laplacian has a group inverse which is an M-
matrix. Actually, only a very narrow set of weighted trees yields such Laplacians. Our investigation
involves analyzing circumstances under which a certain Z-matrix, derived from the tree and whose
order is one less than the number of vertices in the tree, is an M-matrix. Our work here is motivated
by a recent paper of Styan and Subak-Sharpe [Linear Algebra Appl., 250 (1997), pp. 349–370] and
by an earlier question of Deutsch and Neumann [J. Math. Anal. Appl., 102 (1984), pp. 1–29].
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1. Introduction. Motivated by (i) a paper of Styan and Subak-Sharpe [9], who
asked when the impedance matrix of a resistive electrical network, subject to both
Kirchoff’s current and voltage laws, is an M-matrix and hence an admittance matrix
in its own right, and (ii) an earlier question of Deutsch and Neumann [5], who asked
when the group inverse of a singular and irreducible M-matrix is again an M-matrix,
we characterize here the set of all weighted trees whose Laplacian has a group inverse
which is an M-matrix.

As is well known (see Campbell and Meyer [3], Styan and Subak-Sharpe [9], and
references cited therein), a resistive electrical network subject to Kirchoff’s laws results
in a consistent linear system i = Y v, where Y is a symmetric positive semidefinite
M-matrix with zero row and column sums, the so-called admittance matrix for the
network. The Moore–Penrose generalized inverse of Y is then the impedance matrix
for the network.

Continuing, it is known from the theory of generalized inverses (see Ben-Israel
and Greville [1] and Campbell and Meyer [3]) that for a symmetric matrix A, its
group inverse, which exists, and its Moore–Penrose generalized inverse coincide. We
refer the reader to these texts for more background material on generalized inverses
and to the book by Berman and Plemmons [2] for background material concerning
nonnegative matrices and M-matrices. In fact, all terminology and notations used in
this paper come from the books just mentioned.

An undirected weighted graph on n vertices is a graph G each of whose edges e has
been labeled by a positive real number w(e) which is called the weight of the edge e.
Taking the vertices of G to be 1, 2, . . . , n, the Laplacian matrix of the weighted graph
G is the n×n matrix L = (`i,j) whose ith diagonal entry equals the sum of the weights
of the edges incident with vertex i and whose (i, j)th off-diagonal entry equals zero if
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there is no edge joining vertices i and j and otherwise is given by −w(e), where e is
the edge joining vertices i and j.

Suppose now that T is a weighted tree on n vertices and recall that any two
vertices i and j are joined by a unique path Pi,j . We define the inverse weighted
distance from vertex i to vertex j as the sum

d̃(i, j) =
∑

e∈Pi,j

1

w(e)
,

that is, d̃(i, j) is the sum of the reciprocals of the weights of the edges on the path
Pi,j . We define d̃i,i = 0 for all i = 1, . . . , n. For any vertex i, we define the inverse
status of vertex i as the sum

d̃i =
∑
u∈T

d̃(u, i).

In a sequence of papers Kirkland, Neumann, and Shader [6], [7], [8] investigate
applications of the group inverse of the Laplacian, such as to the determination of
the algebraic connectivity of the graph. In this paper we shall make use of several
results from [7] to show that there is a very limited set of weighted trees which yield a
Laplacian whose group inverse is an M-matrix. A result which is particularly relevant
to our investigation here is Corollary 3.8 in [7] which states that a weighting of T
yields that L# is an M–matrix if and only if for any adjacent vertices i and j, with
the edge e between them, we have

d̃i + d̃j ≤ n

w(e)
+

1

n

n∑
k=1

d̃k.(1.1)

We shall show that the set of all trees whose corresponding Laplacian has a group
inverse which is an M-matrix consists only of certain weighted stars, which can be
found in any order, and of certain weighted paths on four vertices. To arrive at our
results we reformulate the conditions in (1.1) to show that the group inverse of the
Laplacian is an M-matrix if and only if a certain (n − 1) × (n − 1) Z-matrix derived
from the tree is an M-matrix. We then show that this is only possible in the restricted
instances just mentioned.

2. Main results. Let T be a tree on n vertices. If e is an edge in T , then T \ e
denotes the graph obtained from T by removing e. If i is a vertex of T , then we
define βi(e) to be the set of vertices in the connected component of T \ e which does
not contain vertex i.

Recall next that for an n × n matrix Q, the unique n × n matrix X, if it exists,
which satisfies the matrix equation QXQ = Q, XQX = X, and QX = XQ is called
the group (generalized) inverse of Q. It is known (see, for example, Ben-Israel and
Greville [1] or Meyer and Campbell [3]) that the group inverse of Q exists if and only
if the Jordan blocks of Q corresponding to the eigenvalue zero, if any, are all 1 × 1.
In what follows we shall denote, as is customary, the group inverse of Q by Q#.

We begin with a result in which we recast the conditions in (1.1).
Theorem 2.1. Let T be a tree on n vertices. Label the vertices 1, . . . , n and label

the edges e1, . . . , en−1 with vertex i incident with edge ei, 1 ≤ i ≤ n−1. Then there is
a weighting of T whose Laplacian L has the property that L# is an M-matrix if and
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only if the (n− 1)× (n− 1) matrix

A =




[
n|β1(e1)| − |β1(e1)|2

] −|β1(e2)|2 · · · −|β1(en−1)|2
−|β2(e1)|2

[
n|β2(e2)| − |β2(e2)|2

] · · · −|β2(en−1)|2
... · · · . . .

...
−|βn−1(e1)|2 · · · · · · ·




(2.1)

is an M-matrix.
Proof. Let i and j be adjacent vertices joined by the edge e. Then on examining

the contribution of any edge f to the summand on the left-hand side of (1.1), we find
that

d̃i + d̃j =


∑

f 6=e

|βi(f)|
w(f)


+

|βi(e)|
w(e)

+


∑

f 6=e

|βj(f)|
w(f)


+

|βj(e)|
w(e)

= 2


∑

f 6=e

|βi(f)|
w(f)


+

n

w(e)
.

Thus, (1.1) holds if and only if

2
∑
f 6=e

|βi(f)|
w(f)

≤ 1

n

n∑
i=1

d̃k.

Now, according to [7, Theorem 3.5],

n∑
i=1

d̃k = 2
∑
f∈T

|βi(f)|(n− |βi(f)|)
w(f)

,

from which we see that (1.1) holds if and only if

∑
f 6=e

|βi(f)|
w(f)

≤
∑
f∈T

|βi(f)|
w(f)

− 1

n

∑
f∈T

(|βi(f)|)2
w(f)

or, equivalently, if and only if

∑
f∈T

(|βi(f)|)2
w(f)

≤ n
|βi(e)|
w(e)

.

Consequently, L# is an M-matrix if and only if for any vertex i incident with edge e
we have

n
|βi(e)|
w(e)

−
∑
f∈T

(|βi(f)|)2
w(f)

≥ 0.

Using our labeling, this gives the condition

n
|βm(em)|
w(em)

−
n−1∑
k=1

|βm(ek)|
w(ek)

≥ 0, 1 ≤ m ≤ n− 1,(2.2)
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as being necessary and sufficient for L# to be an M-matrix.
Finally, note that in terms of the matrix A in (2.1), condition (2.2) means that




[
n|β1(e1)| − |β1(e1)|2

] −|β1(e2)|2 · · · −|β1(en−1)|2
−|β2(e1)|2

[
n|β2(e2)| − |β2(e2)|2

] · · · −|β2(en−1)|2
... · · · . . .

...
−|βn−1(e1)|2 · · · · · · ·







1
w(e1)

...

...
1

w(en−1)




≥ 0.

Thus, according to Berman and Plemmons [2, Chapter 6, Theorem 4.16], we can
conclude that T admits a weighting so that L# is an M-matrix if and only if there
exists a positive vector x so that




[
n|β1(e1)| − |β1(e1)|2

] −|β1(e2)|2 · · · −|β1(en−1)|2
−|β2(e1)|2

[
n|β2(e2)| − |β2(e2)|2

] · · · −|β2(en−1)|2
... · · · . . .

...
−|βn−1(e1)|2 · · · · · · ·


x ≥ 0

or, equivalently, because of irreducibility, if and only if the matrix in (2.1) is an
M-matrix.

In our next result, which is key to solving the M-matrix group inverse problem
for weighted trees, we use Theorem 2.1 to determine which weighted trees, which are
not stars, can possibly yield a Laplacian whose group inverse is an M-matrix. Note
that if a tree is not a star, then necessarily it contains a path of length three as an
induced subgraph.

Theorem 2.2. Suppose that T is a tree on n vertices which is not the star. Let
u be a pendant vertex such that

r
u

r
v

r
w

r
x

is a path of length three. Then the matrix in (2.1) can be an M-matrix only if the set
of vertices consisting of v and its branches which do not contain u or w has cardinality
at least (n− 2)/2.

Proof. Since the tree under consideration has a path of length three with a vertex
on this path being a pendant vertex, without loss of generality, we can assume that
we have the following situation:

s

t + 3 et+2
s

t + 2

s

et+1

�
��

s

t + 1 e2
s

��
��

...

2 k2
������e1

s1��
��

k1

��
��

kt

HHHHHHet st

Here the circles on the right represent branches at t + 1 containing vertices 1, . . . , t,
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with the cardinality of the branch containing i being ki, i = 1, . . . , t. Similarly, s is
the cardinality of the set of vertices consisting of vertex t+2 along with the branches
at t+ 2 which contain neither t+ 1 nor t+ 3.

The proof will be done if we can show that

s ≥ n− 2

2
.

We note that

t∑
i=1

ki = n− s− 2.

Moreover, |βi(ei)| = n − ki for all 1 ≤ i ≤ t, |βi(ej)| = kj for all i 6= j such that
1 ≤ i, j ≤ t, |βi(et+1)| = s + 1 for all 1 ≤ i ≤ t, and |βi(et+2)| = 1 for all 1 ≤ i ≤ t.
Also,

|βt+1(ej)| =




kj if 1 ≤ j ≤ t,

s+ 1 if j = t+ 1 ,

1 if j = t+ 2

and

|βt+2(ej)| =




kj if 1 ≤ j ≤ t,

n− 1− s if j = t+ 1 ,

n− 1 if j = t+ 2.

It now follows that the principal submatrix of A determined by the indices 1, . . . , t+2
is

B =




nD − JD2 −(s+ 1)21 −1

−1TD2 (s+ 1)(n− s− 1) −1

−1TD2 −(n− 1− s)2 (n− 1)



,

where D = diag(k1, . . . , kt), where 1 is the t-vector of all ones, and where J = 1T1.
If A is an M-matrix, then, necessarily, so is B and, in particular according to a result
of Crabtree [4], so is the Schur complement of B on its last two rows and columns.
Note that 1TD1 =

∑t
i=1 ki = n− s− 2. Now,
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(
nD − JD2

)−1
=

1

n
D−1

(
I +

1

s+ 2
JD

)
,

where I is the t× t identity matrix, and we find that


1TD2

1TD2


 1

n
D−1

(
I +

1

s+ 2
JD

)[
(s+ 1)21 1

]

=
1

n




1TD

(
1 +

n− s− 2

s+ 2

)

1TD

(
1 +

n− s− 2

s+ 2

)



[

(s+ 1)21 1
]

=
n− s− 2

s+ 2


 (s+ 1)2 1

(s+ 1)2 1


 .

Hence, our Schur complement is given by
 (s+ 1)(n− s− 1) −1

−(n− 1− s)2 (n− 1)


− (n− s− 2)

s+ 2


 (s+ 1)2 1

(s+ 1)2 1




=
1

s+ 2


 (s+ 1)n −n
{−(s+ 2)

[
n2 − 2n(s+ 1)

]− n(s+ 1)2
}

n(s+ 1)




=
n

s+ 2


 s+ 1 −1

−(s+ 2) [n− 2(s+ 1)]− (s+ 1)2 s+ 1


 .

But the last matrix displayed is an M-matrix if and only if

(s+ 1)2 − (s+ 2) [n− 2(s+ 1)]− (s+ 1)2 ≥ 0,

that is, if and only if 2(s + 1) − n ≥ 0 or, equivalently, if and only if s ≥ (n − 2)/2
which is the desired inequality.

We can now apply the results of Theorem 2.2 to characterize all weighted trees
whose Laplacian has a group inverse which is an M-matrix.

Theorem 2.3. Let T be a tree on n vertices. Then T admits a weighting such
that L# is an M-matrix if and only if either n ≤ 4 or n ≥ 5 and T is a star. The
weightings for the n star which yield an M-matrix are of the form

[
1

w(e1)
· · · 1

w(en−1)

]T
= (I + J)y

for some nonzero nonnegative vector y. For n = 4, there is just one class of weightings
of the path which yields an M-matrix given by[

w(e1) w(e2) w(e3)
]

= θ
[

1 2 1
]
, θ > 0,
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where e1 and e3 are the pendant edges.

Proof. First suppose that n ≥ 5 and that T is not the star. Then, necessarily,
there are two pendant vertices u and v joined by a path of length l ≥ 3. Suppose that
u0 is adjacent to u and v0 is adjacent to v:

u
r r

u0
r . . .v0

r
v
r

By Theorem 2.2, in T the set of vertices consisting of u0 and its branches con-
taining neither u nor v has cardinality (n− 2)/2, and similarly for v0. If l ≥ 4, we get
a contradiction to the number of vertices in T . Hence, T can have paths of length at
most three. It follows that in T there are exactly (n − 2)/2 vertices at u0, so n has
to be even, and T has the following structure:

The matrix which must then be considered is, by Theorem 2.1,




nI − J −n2

4 1

−1T n2

4


 .

The Schur complement for the (n− 1, n− 1)-entry is given by

n2

4

[
1− 1T (nI − J)−11

]
=

n2

4

[
1− 1T

(
1

n
I +

1

2n
J

)
1

]

=
n2

4

(
1− n− 2

2

)

=
(4− n)n2

8
< 0.

Thus, this tree does not yield an M-matrix so that, if n ≥ 5, only the star might
admit an M-matrix weighting for L#.

We now find the admissible weightings for the star on n vertices:
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We want weights w(ei), 1 ≤ i ≤ n− 1, such that

(nI − J)




1
w(e1)

...
1

w(en)


 = y

for some nonzero nonnegative vector y or, equivalently,




1
w(e1)

...
1

w(en)


 =

1

n
(I + J)y

for some nonzero nonnegative vector y. Consequently, we have to select the weights
so that

w(ei) =
1

yi +
∑n−1

j=1 yj
, i = 1, . . . , n− 1,

for some vector y as mentioned.
Finally, to check the only tree which is not a star and has an admissible weighting,

we consider the path on four vertices:

r
1

θ1

r
2

θ2

r
3

θ3

r
4

By Theorem 2.1, we have that


 3 −4 −1
−1 4 −1
−1 −4 3




 1/θ1

1/θ2
1/θ3


 ≥ 0.

But

A :=


 3 −4 −1
−1 4 −1
−1 −4 3
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is a singular and irreducible M-matrix and therefore the only nonzero nonnegative
(column) vectors which it maps to nonnegative vectors are nonnegative nonzero null
vectors. As the nullspace of A is spanned by the vector [2 1 2]T , we see that

[
θ1 θ2 θ3

]
= θ

[
1 2 1

]
for some θ > 0.
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Abstract. We formulate and solve a new parameter estimation problem in the presence of data
uncertainties. The new method is suitable when a priori bounds on the uncertain data are available,
and its solution leads to more meaningful results, especially when compared with other methods
such as total least-squares and robust estimation. Its superior performance is due to the fact that
the new method guarantees that the effect of the uncertainties will never be unnecessarily over-
estimated, beyond what is reasonably assumed by the a priori bounds. A geometric interpretation
of the solution is provided, along with a closed form expression for it. We also consider the case in
which only selected columns of the coefficient matrix are subject to perturbations.

Key words. least-squares estimation, regularized least-squares, ridge regression, total least-
squares, robust estimation, modeling errors, secular equation

AMS subject classifications. 15A06, 65F05, 65F10, 65F35, 65K10, 93C41, 93E10, 93E24

PII. S0895479896301674

1. Introduction. The central problem in estimation is to recover, to good ac-
curacy, a set of unobservable parameters from corrupted data. Several optimization
criteria have been used for estimation purposes over the years, but the most im-
portant, at least in the sense of having had the most applications, are criteria that
are based on quadratic cost functions. The most striking among these is the linear
least-squares criterion, which was first developed by Gauss (ca. 1795) in his work on
celestial mechanics. Since then, it has enjoyed widespread popularity in many diverse
areas as a result of its attractive computational and statistical properties (see, e.g.,
[4, 8, 10, 13]). Among these attractive properties, the most notable are the facts
that least-squares solutions can be explicitly evaluated in closed forms, they can be
recursively updated as more input data is made available, and they are also maximum
likelihood estimators in the presence of normally distributed measurement noise.

Alternative optimization criteria, however, have been proposed over the years
including, among others, regularized least-squares [4], ridge regression [4, 10], total
least-squares [2, 3, 4, 7], and robust estimation [6, 9, 12, 14]. These different formula-
tions allow, in one way or another, incorporation of further a priori information about
the unknown parameter into the problem statement. They are also more effective in
the presence of data errors and incomplete statistical information about the exogenous
signals (or measurement errors).

Among the most notable variations is the total least-squares (TLS) method, also
known as orthogonal regression or errors-in-variables method in statistics and system
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identification [11]. In contrast to the standard least-squares problem, the TLS formu-
lation allows for errors in the data matrix. But it still exhibits certain drawbacks that
degrade its performance in practical situations. In particular, it may unnecessarily
overemphasize the effect of noise and uncertainties and can, therefore, lead to overly
conservative results.

More specifically, assume A ∈ Rm×n is a given full rank matrix with m ≥ n,
b ∈ Rm is a given vector, and consider the problem of solving the inconsistent linear
system Ax̂ ≈ b in the least-squares sense. The TLS solution assumes data uncertain-
ties in A and proceeds to correct A and b by replacing them by their projections, Â
and b̂, onto a specific subspace and by solving the consistent linear system of equa-
tions Âx̂ = b̂. The spectral norm of the correction (A − Â) in the TLS solution is
bounded by the smallest singular value of [A b]. While this norm might be small for
vectors b that are close enough to the range space of A, it need not always be so. In
other words, the TLS solution may lead to situations in which the correction term is
unnecessarily large.

Consider, for example, a situation in which the uncertainties in A are very small,
say, A is almost known exactly. Assume further that b is far from the column space of
A. In this case, it is not difficult to visualize that the TLS solution will need to rotate
(A, b) into (Â, b̂) and may therefore end up with an overly corrected approximant for
A, despite the fact that A is almost exact.

These facts motivate us to introduce a new parameter estimation formulation with
prior bounds on the size of the allowable corrections to the data. More specifically, we
formulate and solve a new estimation problem that is more suitable for scenarios in
which a priori bounds on the uncertain data are known. The solution leads to more
meaningful results in the sense that it guarantees that the effect of the uncertainties
will never be unnecessarily overestimated, beyond what is reasonably assumed by the
a priori bounds.

We note that, while preparing this paper, the related work [1] has come to our
attention, where the authors have independently formulated and solved a similar esti-
mation problem by using (convex) semidefinite programming techniques and interior-
point methods. The resulting computational complexity of the proposed solution is
O(nm2 +m3.5), where n is the smaller matrix dimension.

The solution proposed in this paper proceeds by first providing a geometric for-
mulation of the problem, followed by an algebraic derivation that establishes that the
optimal solution can in fact be obtained by solving a related regularized problem. The
parameter of the regularization step is further shown to be obtained as the unique
positive root of a secular equation and as a function of the given data. In this sense,
the new formulation turns out to provide automatic regularization and, hence, has
some useful regularization properties: the regularization parameter is not selected by
the user but rather determined by the algorithm. Our solution involves an SVD step,
and its computational complexity amounts to O(mn2 + n3), where n is again the
smaller matrix dimension. A summary of the problem and its solution is provided in
section 3.4. (Other problem formulations are studied in [15].)

2. Problem formulation. Let A ∈ Rm×n be a given matrix with m ≥ n and
b ∈ Rm a given vector, both of which are assumed to be linearly related via an
unknown vector of parameters x ∈ Rn,

b = Ax+ v .(2.1)
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The vector v ∈ Rm denotes measurement noise and it explains the mismatch between
Ax and the given vector (or observation) b.

We assume that the “true” coefficient matrix is A + δA and that we only know
an upper bound on the 2-induced norm of the perturbation δA,

‖δA‖2 ≤ η ,(2.2)

with η being known. Likewise, we assume that the “true” observation vector is b+ δb
and that we know an upper bound ηb on the Euclidean norm of the perturbation δb,

‖δb‖2 ≤ ηb .(2.3)

We then pose the problem of finding an estimate that performs “well” for any allowed
perturbation (δA, δb). More specifically, we pose the following min-max problem.

Problem 1. Given A ∈ Rm×n, with m ≥ n, b ∈ Rm, and nonnegative real
numbers (η, ηb), determine, if possible, an x̂ that solves

min
x̂

max
{‖ (A+ δA) x̂− (b+ δb)‖2 : ‖δA‖2 ≤ η, ‖δb‖2 ≤ ηb

}
.(2.4)

The situation is depicted in Fig. 2.1. Any particular choice for x̂ would lead to
many residual norms,

‖ (A+ δA) x̂− (b+ δb)‖2 ,
one for each possible choice of A in the disc (A + δA) and b in the disc (b + δb). A
second choice for x̂ would lead to other residual norms, the maximum value of which
need not be the same as the first choice. We want to choose an estimate x̂ that
minimizes the maximum possible residual norm. This is depicted in Fig. 2.2 for two
choices, say x̂1 and x̂2. The curves show the values of the residual norms as a function
of (A+ δA, b+ δb).

Fig. 2.1. Geometric interpretation of the new least-squares formulation.

We note that if η = 0 = ηb, then problem (2.4) reduces to a standard least-squares
problem. Therefore we shall assume throughout that η > 0. (It will turn out that the
solution to the above min-max problem is independent of ηb.)

2.1. A geometric interpretation. The min-max problem admits an interest-
ing geometric formulation that highlights some of the issues involved in its solution.

For this purpose, and for the sake of illustration, assume we have a unit-norm
vector b, ‖b‖2 = 1, with no uncertainties in it (ηb = 0). Assume further that A is
simply a column vector, say a, with η 6= 0. That is, only A is assumed to be uncertain
with perturbations that are bounded by η in magnitude (as in (2.2)). Now consider
problem (2.4) in this context, which reads as follows:

min
x̂

(
max

‖δa‖2≤η
‖ (a+ δa) x̂− b‖2

)
.(2.5)
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Fig. 2.2. Two illustrative residual-norm curves.

This situation is depicted in Fig. 2.3. The vectors a and b are indicated in thick
black lines. The vector a is shown in the horizontal direction and a circle of radius η
around its vertex indicates the set of all possible vertices for a+ δa.

Fig. 2.3. Geometric construction of the solution for a simple example.

For any x̂ that we pick, the set {(a+δa)x̂} describes a disc of center ax̂ and radius
ηx̂. This is indicated in the figure by the largest rightmost circle, which corresponds
to a choice of a positive x̂ that is larger than one. The vector in {(a + δa)x̂} that
is furthest away from b is the one obtained by drawing a line from b through the
center of the rightmost circle. The intersection of this line with the circle defines a
residual vector r3 whose norm is the largest among all possible residual vectors in the
set {(a+ δa)x̂}.

Likewise, if we draw a line from b that passes through the vertex of a, it will
intersect the circle at a point that defines a residual vector r2. This residual will have
the largest norm among all residuals that correspond to the particular choice x̂ = 1.

More generally, any x̂ that we pick will determine a circle, and the corresponding
largest residual is obtained by finding the furthest point on the circle from b. This is
the point where the line that passes through b and the center of the circle intersects
the circle on the other side of b.

We need to pick an x̂ that minimizes the largest residual. For example, it is clear
from the figure that the norm of r3 is larger than the norm of r2. The claim is that
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in order to minimize the largest residual we need to proceed as follows: we drop a
perpendicular from b to the lower tangent line denoted by θ1. This perpendicular
intersects the horizontal line in a point where we draw a new circle (the leftmost
circle) that is tangent to both θ1 and θ2. This circle corresponds to a choice of x̂
such that the furthest point on it from b is the foot of the perpendicular from b to θ1.
The residual indicated by r1 corresponds to the desired solution (it has the minimum
norm among the largest residuals).

To verify this claim, we refer to Fig. 2.4, where we have only indicated two circles,
the circle that leads to a largest residual that is orthogonal to θ1 and a second circle
to its left. For this second leftmost circle, we denote its largest residual by r4. We
also denote the segment that connects b to the point of tangency of this circle with θ1
by r. It is clear that r is larger than r1 since r and r1 are the sides of a right triangle.
It is also clear that r4 is larger than r by construction. Hence, r4 is larger than r1. A
similar argument will show that r1 is smaller than residuals that result from circles
to its right.

Fig. 2.4. Geometric construction of the solution for a simple example.

The above argument shows that the minimizing solution can be obtained as fol-
lows: drop a perpendicular from b to θ1. Pick the point where the perpendicular
meets the horizontal line and draw a circle that is tangent to both θ1 and θ2. Its
radius will be ηx̂, where x̂ is the optimal solution. Also, the foot of the perpendicular
on θ1 will be the optimal b̂.

The projection b̂ (and consequently the solution x̂) will be nonzero as long as b
is not orthogonal to the direction θ1. This imposes a condition on η. Indeed, the
direction θ1 will be orthogonal to b only when η is large enough. This requires that
the circle centered around a has radius aT b, which is the length of the projection of
a onto the unit norm vector b. This is depicted in Fig. 2.5.
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Fig. 2.5. Geometric condition for a nonzero solution.

Hence, the largest value that can be allowed for η in order to have a nonzero
solution x̂ is

η < |aT b| .

Indeed, if η were larger than or equal to this value, then the vector in the set (a+ δa)
that would always lead to the maximum residual norm is the one that is orthogonal
to b, in which case the solution will be zero again. The same geometric argument will
lead to a similar conclusion had we allowed for uncertainties in b as well.

For a nonunity b, the upper bound on η would take the form

η <
|aT b|
‖b‖2 .

We shall see that in the general case a similar bound holds, for nonzero solutions, and
is given by

η <
‖AT b‖2
‖b‖2 .

We now proceed to an algebraic solution of the min-max problem. A final statement
of the form of the solution is given in section 3.4.

3. Reducing the min-max problem to a minimization problem. We start
by showing how to reduce the min-max problem (2.4) to a standard minimization
problem. To begin with, we note that

‖ (A+ δA) x̂− (b+ δb)‖2 ≤ ‖Ax̂− b‖2 + ‖δA‖2 · ‖x̂‖2 + ‖δb‖2 ,
≤ ‖Ax̂− b‖2 + η‖x̂‖2 + ηb ,

which provides an upper bound for ‖ (A+ δA) x̂− (b + δb)‖2. But this upper bound
is in fact achievable, i.e., there exist (δA, δb) for which

‖ (A+ δA) x̂− (b+ δb)‖2 = ‖Ax̂− b‖2 + η‖x̂‖2 + ηb .
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To see that this is indeed the case, choose δA as the rank one matrix

δAo =
(Ax̂− b)

‖Ax̂− b‖2
x̂T

‖x̂‖2 η ,

and choose δb as the vector

δbo = − (Ax̂− b)

‖Ax̂− b‖2
ηb .

For these choices of perturbations in A and b, it follows that

(Ax̂− b) , δAox̂ , and δbo ,

are collinear vectors that point in the same direction. Hence,

‖ (A+ δAo) x̂− (b+ δbo)‖2 = ‖(Ax̂− b) + δAox̂− δbo‖2 ,
= ‖Ax̂− b‖2 + ‖δAox̂‖2 + ‖δbo‖2 ,
= ‖Ax̂− b‖2 + η‖x̂‖2 + ηb ,

which is the desired upper bound. We therefore conclude that

max
‖δA‖2≤η ,‖δb‖2≤ηb

‖ (A+ δA) x̂− (b+ δb)‖2 = ‖Ax̂− b‖2 + η‖x̂‖2 + ηb ,(3.1)

which establishes the following result.
Lemma 3.1. The min-max problem (2.4) is equivalent to the following minimiza-

tion problem. Given A ∈ Rm×n, with m ≥ n, b ∈ Rm, and nonnegative real numbers
(η, ηb), determine, if possible, an x̂ that solves

min
x̂

(‖Ax̂− b‖2 + η‖x̂‖2 + ηb) .(3.2)

3.1. Solving the minimization problem. To solve (3.2), we define the cost
function

L(x̂) = ‖Ax̂− b‖2 + η‖x̂‖2 + ηb .

It is easy to check that L(x̂) is a convex continuous function in x̂, and hence, any
local minimum of L(x̂) is also a global minimum. But at any local minimum of L(x̂),
it either holds that L(x̂) is not differentiable or its gradient 5L(x̂) is 0. In particular,
note that L(x̂) is not differentiable only at x̂ = 0 and at any x̂ that satisfies Ax̂−b = 0.

We first consider the case in which L(x̂) is differentiable and, hence, the gradient
of L(x̂) exists and is given by

5L(x̂) =
1

‖Ax̂− b‖2A
T (Ax̂− b) +

η

‖x̂‖2 x̂ ,

=
1

‖Ax̂− b‖2
((
ATA+ αI

)
x̂−AT b

)
,

where we have introduced the positive real number

α =
η‖Ax̂− b‖2

‖x̂‖2 .(3.3)
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By setting 5L(x̂) = 0 we obtain that any stationary solution x̂ of L(x̂) is given by

x̂ =
(
ATA+ αI

)−1
AT b .(3.4)

We still need to determine the parameter α that corresponds to x̂ and which is defined
in (3.3).

To solve for α, we introduce the singular value decomposition (SVD) of A,

A = U

[
Σ
0

]
V T ,(3.5)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ = diag(σ1, . . . , σn) is diago-
nal, with

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

being the singular values of A. We further partition the vector UT b into[
b1
b2

]
= UT b,(3.6)

where b1 ∈ Rn and b2 ∈ Rm−n.
In this case, the expression (3.4) for x̂ can be rewritten in the equivalent form

x̂ = V (Σ2 + αI)−1Σb1 ,(3.7)

and, hence,

‖x̂‖2 = ‖Σ (Σ2 + αI
)−1

b1‖2 .

Likewise,

b−Ax̂ = U

(
UT b−

(
Σ
0

)(
Σ2 + αI

)−1
Σb1

)
,

= U

[
b1 − Σ2

(
Σ2 + αI

)−1
b1

b2

]
,

= U

[
α
(
Σ2 + αI

)−1
b1

b2

]
,

which shows that

‖b−Ax̂‖2 =

√
‖b2‖22 + α2‖ (Σ2 + αI)

−1
b1‖22 .

Therefore, (3.3) for α reduces to the following nonlinear equation that is only a func-
tion of α and the given data (A, b, η):

α =
η
√
‖b2‖22 + α2‖ (Σ2 + αI)

−1
b1‖22

‖Σ (Σ2 + αI)
−1

b1‖2
.(3.8)

Note that only the norm of b2, and not b2 itself, is needed in the above expression.
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Remark. We have assumed in the derivation so far that A is full rank. If this
were not the case, i.e., if A (and hence Σ) were singular, then (3.8) can be reduced to
an equation of the same form but with a nonsingular Σ of smaller dimension. Indeed,
if we partition

Σ =

[
Σ̂ 0
0 0

]
,

where Σ̂ ∈ Rk×k is nonsingular, and let b̂1 ∈ Rk be the first k components of b1,
b̃1 ∈ Rn−k be the last n− k components of b1, and let

‖b̂2‖22 = ‖b2‖22 + ‖b̃1‖22,

then (3.8) reduces to

α =
η

√
‖b̂2‖22 + α2‖

(
Σ̂2 + αI

)−1

b̂1‖22

‖Σ̂
(
Σ̂2 + αI

)−1

b̂1‖2
,(3.9)

which is the same form as (3.8). From now on, we assume that A is full rank and,
hence, Σ is invertible:

A full rank is a standing assumption in what follows .

3.2. The secular equation. Define the nonlinear function in α,

G(α) = bT1
(
Σ2 − η2I

) (
Σ2 + αI

)−2
b1 − η2

α2
‖b2‖22 .(3.10)

It is clear that α is a positive solution to (3.8) if, and only if, it is a positive root of
G(α). Following [4], we refer to the equation

G(α) = 0(3.11)

as a secular equation.
The function G(α) has several useful properties that will allow us to provide

conditions for the existence of a unique positive root α. We start with the following
result.

Lemma 3.2. The function G(α) in (3.10) can have at most one positive root. In
addition, if α̂ > 0 is a root of G(α), then α̂ is a simple root and G′(α̂) > 0.

Proof. We prove the second conclusion first. Partition[
Σ 0
0 0

]
=

[
Σ1 0
0 Σ2

]
∈ R(n+1)×(n+1) ,

where the diagonal entries of Σ1 ∈ Rk×k are those of Σ that are larger than η, and
the diagonal entries of Σ2 ∈ R(n+1−k)×(n+1−k) are the remaining diagonal entries of
Σ and one 0. It follows that (in terms of the 2-induced norm for the diagonal matrices
(Σ2

2 + αI) and (Σ2
1 + αI))

‖Σ2
2 + αI‖2 · ‖

(
Σ2

1 + αI
)−1 ‖2 < 1(3.12)
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for all α > 0.
Let u ∈ Rk be the first k components of

√
Σ2 − η2I · b1 and let v ∈ Rn+1−k be

the last n+ 1− k components of[ √
η2I − Σ2 0

0 η

] [
b1

‖b2‖2
]
.

It follows that we can rewrite G(α) as the difference

G(α) = uT
(
Σ2

1 + αI
)−2

u− vT
(
Σ2

2 + αI
)−2

v

and, consequently,

G′(α) = −2
(
uT
(
Σ2

1 + αI
)−3

u− vT
(
Σ2

2 + αI
)−3

v
)
.

Let α̂ > 0 be a root of G(α). This means that

uT
(
Σ2

1 + α̂I
)−2

u = vT
(
Σ2

2 + α̂I
)−2

v ,

which leads to the following sequence of inequalities:

uT
(
Σ2

1 + α̂I
)−3

u ≤ ‖ (Σ2
1 + α̂I

)−1 ‖2 · uT ·
(
Σ2

1 + α̂I
)−2

u

= ‖ (Σ2
1 + α̂I

)−1 ‖2 · vT ·
(
Σ2

2 + α̂I
)−2

v

<
1

‖ (Σ2
2 + αI) ‖2 · v

T · (Σ2
2 + α̂I

)−2
v

≤ vT
(
Σ2

2 + α̂I
)−3

v .

Combining this relation with the expression for G′(α), it immediately follows that
G′(α̂) > 0. Consequently, α̂ must be a simple root of G(α).

Furthermore, we note that G(α) is a sum of n + 1 rational functions in α and
hence can have only a finite number of positive roots. In the following we show by
contradiction that G(α) can have no positive roots other than α̂. Assume to the
contrary that α̂1 is another positive root of G(α). Without loss of generality, we
further assume that α̂ < α̂1 and that G(α) does not have any root within the open
interval (α̂, α̂1). It follows from the above proof that

G′(α̂) > 0 and G′(α̂1) > 0 .

But this implies that G(α) > 0 for α slightly larger than α̂ and G(α) < 0 for α slightly
smaller than α̂1, and consequently, G(α) must have a root in the interval (α̂, α̂1); a
contradiction to our assumptions. So G(α) can have at most one positive root.

Now we provide conditions for G(α) to have a positive root. (The next result was
in fact suggested earlier by the geometric argument of Fig. 2.3.) Note that Ax̂ can be
written as

Ax̂ = U

[
Σ
0

]
V T x̂ .

Therefore solving Ax̂ = b, when possible, is equivalent to solving[
Σ
0

]
V T x̂ = UT b =

[
b1
b2

]
.



PARAMETER ESTIMATION WITH UNCERTAIN DATA 245

This shows that a necessary and sufficient condition for b to belong to the column
span of A is b2 = 0.

Lemma 3.3. Assume η > 0 (a standing assumption) and b2 6= 0, i.e., b does
not belong to the column span of A. Then the function G(α) in (3.10) has a unique
positive root if and only if

η <
‖AT b‖2
‖b‖2 .(3.13)

Proof. We note that

lim
α→0+

(
α2G(α)

)
= −η2‖b2‖22 < 0 ,

and that

lim
α→+∞

(
α2G(α)

)
= bT1

(
Σ2 − η2I

)
b1 − η2‖b2‖22 ,

= ‖AT b‖22 − η2‖b‖22 ,(3.14)

= bT1 Σ2b1 − η2‖b‖22 .

First we assume that condition (3.13) holds. It follows then that G(α) changes
sign on the interval (0,+∞) and therefore has to have a positive root. By Lemma 3.2
this positive root must also be unique.

On the other hand, assume that

η >
‖AT b‖2
‖b‖2 .

This condition implies, in view of (3.14), that G(α) < 0 for sufficiently large α. We
now show by contradiction that G(α) does not have a positive root. Assume to the
contrary that α̂ is a positive root of G(α). It then follows from Lemma 3.2 that G(α)
is positive for α slightly larger than α̂ since G′(α̂) > 0, and hence G(α) must have a
root in (α̂,+∞), which is a contradiction according to Lemma 3.2. Hence G(α) does
not have a positive root in this case.

Finally, we consider the case

η =
‖AT b‖2
‖b‖2 .

We also show by contradiction that G(α) does not have a positive root. Assume to
the contrary that α̂ is a positive root of G(α). It then follows from Lemma 3.2 that
α̂ must be a simple root and a continuous function of the coefficients in G(α). In
particular, α̂ is a continuous function of η. Now we slightly increase the value of η so
that

η >
‖AT b‖2
‖b‖2 .

By continuity, G(α) has a positive root for such values of η, but we have just shown
that for η > ‖AT b‖2/‖b‖2 this is not possible. Hence, G(α) does not have a positive
root in this case either.
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We now consider the case b2 = 0, i.e., b lies in the column span of A. This case
arises, for example, when A is a square invertible matrix (m = n).

Define

τ1 =
‖Σ−1b1‖2
‖Σ−2b1‖2 and τ2 =

‖Σb1‖2
‖b1‖2 .

It follows from b2 = 0 that (cf. (3.13))

τ2 =
‖AT b‖2
‖b‖2 .

Now note that

bT1 b1 = bT1 ΣΣ−1b1 .

Therefore, by using the Cauchy–Schwarz inequality, we have

‖b1‖2‖b1‖2 ≤ ‖Σb1‖2 ‖Σ−1b1‖2 ,

and we obtain, after applying the Cauchy–Schwarz inequality one more time, that

τ2 =
‖Σb1‖2
‖b1‖2 ≥ ‖b1‖2

‖Σ−1b1‖2 ≥
‖Σ−1b1‖2
‖Σ−2b1‖2 = τ1 .(3.15)

Lemma 3.4. Assume η > 0 (a standing assumption) and b2 = 0, i.e., b lies in the
column span of A. Then the function G(α) in (3.10) has a positive root if and only if

τ1 < η < τ2 .(3.16)

Proof. It is easy to check that

lim
α→0+

G(α) =
(
τ2
1 − η2

)
bT1 Σ−4b1 ,

and that

lim
α→+∞

(
α2G(α)

)
=
(
τ2
2 − η2

)
bT1 b1 .

If η > τ2, then

lim
α→0+

G(α) < 0 and lim
α→+∞

(
α2G(α)

)
< 0 .

Arguments similar to those in the proof of Lemma 3.3 show that G(α) does not have
a positive root. Similarly G(α) does not have a positive root if η < τ1. Continuity
arguments similar to those in the proof of Lemma 3.3 show that G(α) does not have
a positive root if η = τ2 or τ1.

However, if τ1 < η < τ2, then

lim
α→0+

G(α) < 0 and lim
α→+∞

(
α2G(α)

)
> 0 .

So G(α) must have a positive root. By Lemma 3.2 this positive root is unique.
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3.3. Finding the global minimum. We now show that whenever G(α) has a
positive root α̂, the corresponding vector x̂ in (3.4) must be the global minimizer of
L(x̂).

Lemma 3.5. Let α̂ be a positive root of G(α) and let x̂ be defined by (3.4) for
α = α̂. Then x̂ is the global minimum of L(x̂).

Proof. We first show that

4L(x̂) > 0 ,

where 4L(x̂) is the Hessian of L at x̂. We take the gradient of L,

5L(x̂) =
1

‖Ax̂− b‖2A
T (Ax̂− b) +

η

‖x̂‖2 x̂ .

Consequently,

4L(x̂) =
1

‖Ax̂− b‖2A
TA− 1

‖Ax̂− b‖32
(
ATAx̂−AT b

) (
ATAx̂−AT b

)T
+

η

‖x̂‖2 I −
η

‖x̂‖32
x̂x̂T .

We now simplify this expression. It follows from (3.4) that(
ATA+ α̂I

)
x̂ = AT b ,

and, hence,

ATAx̂−AT b = −α̂x̂ .
Substituting this relation into the expression for the Hessian matrix 4L(x̂), and
simplifying the resulting expression using (3.3), we obtain

4L(x̂) =
1

‖Ax̂− b‖2

((
ATA+ α̂I

)− x̂x̂T

x̂T x̂

(
α̂+ η2

))
.

Observe that the matrix
(
ATA+ α̂I

)
is positive definite since α̂ > 0. Hence

4L(x̂) can have at most one nonpositive eigenvalue. This implies that 4L(x̂) is
positive definite if and only if det (4L(x̂)) > 0. Indeed,

det (4L(x̂)) ‖Ax̂− b‖n2
det (ATA+ α̂I)

= det

(
I −

(
ATA+ α̂I

)−1
x̂x̂T

x̂T x̂

(
α̂+ η2

))

= 1− x̂T
(
ATA+ α̂I

)−1
x̂

x̂T x̂

(
α̂+ η2

)
=

1

x̂T x̂

(
x̂T x̂− (α̂+ η2

) (
x̂T
(
ATA+ α̂I

)−1
x̂
))

.

The last expression can be further rewritten, using the SVD of A and (3.8),

det (4L(x̂)) ‖Ax̂− b‖n2
det (ATA+ α̂I)

=
1

x̂T x̂
bT1 Σ2

(
Σ2 + α̂I

)−2
b1

− α̂+ η2

x̂T x̂
bT1 Σ2

(
Σ2 + α̂I

)−3
b1
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=
1

x̂T x̂

η2
(
‖b2‖22 + α̂2‖ (Σ2 + α̂I

)−1
b1‖22

)
α̂2

− α̂+ η2

x̂T x̂
bT1 Σ2

(
Σ2 + α̂I

)−3
b1

=
α̂

x̂T x̂

(
η2‖b2‖22
α̂3

+ bT1
(
η2 − Σ2

) (
Σ2 + α̂I

)−3
b1

)
.

Comparing the last expression with the function G(α) in (3.10), we finally have

det (4L(x̂)) ‖Ax̂− b‖n2
det (ATA+ α̂I)

=
α̂

2x̂T x̂
G′(α̂) .

By Lemma 3.2, we have that G′(α̂) > 0. Consequently, 4L(x̂) must be positive
definite, and hence x̂ must be a local minimizer of L(x̂). Since L(x̂) is a convex
function, this also means that x̂ is a global minimizer of L(x̂).

We still need to consider the points at which L(x̂) is not differentiable. These
include x̂ = 0 and any solution of Ax̂ = b.

Consider first the case b2 6= 0. This means that b does not belong to the column
span of A and, hence, we only need to check x̂ = 0. If condition (3.13) holds, then it
follows from Lemma 3.3 that G(α) has a unique positive root α̂, and it follows from
Lemma 3.5 that

x̂ =
(
ATA+ α̂I

)−1
AT b

is the global minimum. On the other hand, if condition (3.13) does not hold, then it
follows from Lemma 3.3 that G(α) does not have any positive root and hence

x̂ = 0

is the global minimum.
Now consider the case b2 = 0, which means that b lies in the column span of

A. In this case L(x̂) is not differentiable at both x̂ = 0 and x̂ = V Σ−1b1 = A†b. If
condition (3.16) holds, then it follows from Lemma 3.4 that G(α) has a unique positive
root α̂ and it follows from Lemma 3.5 that

x̂ =
(
ATA+ α̂I

)−1
AT b

is the global minimum. On the other hand, if η ≤ τ1, then

L (V Σ−1b1
)− L(0) = η‖Σ−1b1‖2 − ‖b1‖2 ,

≤ ‖Σ−1b1‖2
(‖Σ−1b1‖2
‖Σ−2b1‖2 −

‖b1‖2
‖Σ−1b1‖2

)
,

≤ 0 ,

where we have used the Cauchy–Schwarz inequality. It follows that

x̂ = V Σ−1b1

is the global minimum in this case. Similarly, if η ≥ τ2, then

x̂ = 0



PARAMETER ESTIMATION WITH UNCERTAIN DATA 249

is the global minimum.
We finally consider the degenerate case τ1 = τ2 = η. Under this condition, it

follows from (3.15) that

‖Σ−1b1‖2‖Σb1‖2 = ‖b1‖2 · ‖b1‖2 .
Hence,

L (V Σ−1b1
)− L(0) = η‖Σ−1b1‖2 − ‖b1‖2

=
‖Σ−1b1‖2
‖b1‖2 · ‖Σ−1b1‖2 − ‖b1‖2 = 0 .

This shows that L (V Σ−1b1
)

= L(0). But since L(x̂) is a convex function in x̂, we
conclude that for any x̂ that is a convex linear combination of 0 and V Σ−1b1, say

x̂ = βV Σ−1b1, for any 0 ≤ β ≤ 1 ,(3.17)

we also obtain L(x̂) = 0. Therefore, when τ1 = τ2 = η there are many solutions x̂
and these are all scaled multiples of V Σ−1b1 as in (3.17).

3.4. Statement of the solution of the min-max problem. We collect, in
the form of a theorem, the conclusions of our earlier analysis.

Theorem 3.6. Given A ∈ Rm×n, with m ≥ n and A full rank, b ∈ Rm, and
nonnegative real numbers (η, ηb). The following optimization problem

min
x̂

max
{‖ (A+ δA) x̂− (b+ δb)‖2 : ‖δA‖2 ≤ η, ‖δb‖2 ≤ ηb

}
(3.18)

always has a solution x̂. The solution(s) can be constructed as follows.
• Introduce the SVD of A,

A = U

[
Σ
0

]
V T ,(3.19)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ = diag(σ1, . . . , σn)
is diagonal, with

σ1 ≥ σ2 ≥ · · · ≥ σn > 0

being the singular values of A.
• Partition the vector UT b into [

b1
b2

]
= UT b,(3.20)

where b1 ∈ Rn and b2 ∈ Rm−n.
• Introduce the secular function

G(α) = bT1
(
Σ2 − η2I

) (
Σ2 + αI

)−2
b1 − η2

α2
‖b2‖22 .(3.21)

• Define

τ1 =
‖Σ−1b1‖2
‖Σ−2b1‖2 and τ2 =

‖AT b‖2
‖b‖2 .



250 CHANDRASEKARAN, GOLUB, GU, AND SAYED

First case: b does not belong to the column span of A.
1. If η ≥ τ2, then the unique solution is x̂ = 0.
2. If η < τ2, then the unique solution is x̂ = (ATA+ α̂I)−1AT b, where α̂ is the

unique positive root of the secular equation G(α) = 0.
Second case: b belongs to the column span of A.
1. If η ≥ τ2, then the unique solution is x̂ = 0.
2. If τ1 < η < τ2, then the unique solution is x̂ = (ATA + α̂I)−1AT b, where α̂

is the unique positive root of the secular equation G(α) = 0.
3. If η ≤ τ1, then the unique solution is x̂ = V Σ−1b1 = A†b.
4. If η = τ1 = τ2, then there are infinitely many solutions that are given by

x̂ = βV Σ−1b1 = βA†b, for any 0 ≤ β ≤ 1.
The above solution is suitable when the computation of the SVD of A is feasible.

For large sparse matrices A, it is better to reformulate the secular equation as follows.
Squaring both sides of (3.3) we obtain

‖(ATA+ αI)−1AT b‖2 α2 = η2‖A(ATA+ αI)−1AT b − b‖2 .(3.22)

After some manipulation, we are led to

dT (C + αI)−2d =
η2

α2

[
bT b− dT (C + αI)−1d− αdT (C + αI)−2d

]
,

where we have defined C = ATA and d = AT b. Therefore, finding α reduces to finding
the positive root of

H(α)
∆
= dT (C + αI)−2d

− η2

α2

[
bT b− dT (C + αI)−1d− αdT (C + αI)−2d

]
.(3.23)

In this form, one can consider techniques similar to those suggested in [5] to find α
efficiently.

4. Restricted perturbations. We have so far considered the case in which all
the columns of the A matrix are subject to perturbations. It may happen in practice,
however, that only selected columns are uncertain, while the remaining columns are
known precisely. This situation can be handled by the approach of this paper, as we
now clarify.

Given A ∈ Rm×n, we partition it into block columns,

A =
[
A1 A2

]
,

and assume, without loss of generality, that only the columns of A2 are subject to
perturbations while the columns of A1 are known exactly. We then pose the following
min-max problem.

Given A ∈ Rm×n, with m ≥ n and A full rank, b ∈ Rm, and nonnegative real
numbers (η2, ηb), determine x̂ such that

min
x̂

max
{‖ [ A1 A2 + δA2

]
x̂− (b+ δb)‖2 : ‖δA2‖2 ≤ η2, ‖δb‖2 ≤ ηb

}
.(4.1)

If we partition x̂ accordingly with A1 and A2, say

x̂ =

[
x̂1

x̂2

]
,



PARAMETER ESTIMATION WITH UNCERTAIN DATA 251

then we can write

‖ [ A1 A2 + δA2

]
x̂− (b+ δb)‖2 = ‖(A2 + δA2)x̂2 − (b−A1x̂1 + δb)‖2 .

Therefore, following the argument at the beginning of section 3, we conclude that the
maximum over (δA2, δb) is achievable and is equal to

‖A2x̂2 − (b−A1x̂1)‖2 + η2‖x̂2‖2 + ηb .

In this way, statement (4.1) reduces to the minimization problem

min
x̂1,x̂2

(∥∥∥∥[ A1 A2

] [ x̂1

x̂2

]
− b

∥∥∥∥
2

+ η2‖x̂2‖2 + ηb

)
.(4.2)

This statement can be further reduced to the problem treated in Theorem 3.6 as
follows. Introduce the QR decomposition of A, say

A = QR = Q


 R11 R12

0 R22

0 0


 ,

where we have partitioned R accordingly with the sizes of A1 and A2. Define
 b̄1A

b̄2A
b̄2


 = QT b .

Then (4.2) is equivalent to

min
x̂1,x̂2



∥∥∥∥∥∥

 R11 R12

0 R22

0 0


[ x̂1

x̂2

]
−

 b̄1A

b̄2A
b̄2



∥∥∥∥∥∥

2

+ η2‖x̂2‖2 + ηb


 ,(4.3)

which can be further rewritten as

min
x̂1,x̂2



∥∥∥∥∥∥

 R11x̂1 +R12x̂2 − b̄1A

R22x̂2 − b̄2A
b̄2



∥∥∥∥∥∥

2

+ η2‖x̂2‖2 + ηb


 .(4.4)

This shows that once the optimal x̂2 has been determined, the optimal choice for x̂1

is necessarily the one that annihilates the entry R11x̂1 +R12x̂2 − b̄1A. That is,

x̂1 = R−1
11

[
b̄1A −R12x̂2

]
.(4.5)

The optimal x̂2 is the solution of

min
x̂2

(∥∥∥∥
[
R22

0

]
x̂2 −

[
b̄2A
b̄2

]∥∥∥∥
2

+ η2‖x̂2‖2 + ηb

)
.(4.6)

This optimization is of the same form as the problem stated earlier in Lemma 3.1

with x̂ replaced by x̂2, η replaced by η2, A replaced by
[
R22

0

]
, and b replaced by[

b̄2A
b̄2

]
.

Therefore, the optimal x̂2 can be obtained by applying the result of Theorem 3.6.
Once x̂2 has been determined, the corresponding x̂1 follows from (4.5).
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5. Conclusion. In this paper we have proposed a new formulation for parameter
estimation in the presence of data uncertainties. The problem incorporates a priori
bounds on the size of the perturbations and admits a nice geometric interpretation. It
also has a closed form solution that is obtained by solving a regularized least-squares
problem with a regression parameter that is the unique positive root of a secular
equation.

Several other interesting issues remain to be addressed. Among these, we state
the following:

1. A study of the statistical properties of the min-max solution is valuable for a
better understanding of its performance in stochastic settings.

2. The numerical properties of the algorithm proposed in this paper need also
be addressed.

3. Extensions of the algorithm to deal with perturbations in submatrices of A
are of interest and will be studied elsewhere.

We can also extend the approach of this paper to other variations that include
uncertainties in a weighting matrix, multiplicatives uncertainties, etc. (see, e.g., [15]).
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pp. 309–347.

[13] L. L. Scharf, Statistical Signal Processing: Detection, Estimation and Time Series Analysis,
Addison–Wesley, Reading, MA, 1991.

[14] U. Shaked and Y. Theodor, H∞−optimal estimation: A tutorial, in Proc. IEEE Conference
on Decision and Control, Tucson, AZ, December 1992, IEEE Computer Society Press, Los
Alamitos, CA, pp. 2278–2286.

[15] S. Chandrasekaran, G. Golub, M. Gu, and A. H. Sayed, Parameter estimation in the
presence of bounded modeling errors, IEEE Signal Processing Letters, 4 (1997), pp. 195–
197.



A GENERALIZED HILBERT MATRIX PROBLEM AND
CONFLUENT CHEBYSHEV–VANDERMONDE SYSTEMS∗

HAO LU†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 253–276, January 1998 017

Abstract. This paper deals with fast solution of the generalized Hilbert matrix problem and
confluent Chebyshev–Vandermonde systems. First, two methods for the generalized Hilbert matrix
problem are presented. One is for the case where the points involved in the generalized Hilbert
matrices satisfy a TH-relation introduced in the present paper, which include equidistant points,
clustered points, and Chebyshev points. The approach is based on an O(n logn) fast multiplica-
tion of a Toeplitz plus Hankel matrix with a vector. The other method is to reduce the general-
ized Hilbert matrix problem to products of confluent Vandermonde-like matrices and dual confluent
Vandermonde-like matrices with vectors by using J-matches and links of polynomials. Second, two
strategies for confluent Chebyshev–Vandermonde systems are considered. Based on the result of the
solution of confluent Vandermonde-like systems, the solution of confluent Chebyshev–Vandermonde
systems for Chebyshev σ-points, i.e., the zeros of T (λ) − σ with |σ| < 1, where T (λ) is the Cheby-
shev polynomial of the first kind, is reduced to fast Fourier transforms (FFT) or to sine or cosine
transforms by special choices of J-matches and links of Chebyshev polynomials, and hence we ob-
tain some O(n logn) algorithms for the systems. The solution of Chebyshev–Vandermonde systems
is also reduced to the generalized Hilbert matrix problem by using J-matches, links of Chebyshev
polynomials, and the inversion of a class of generalized Hilbert matrices. This yields an O(n logn)
algorithm for Chebyshev–Vandermonde systems for another class of practical points. Third, the
results obtained are applied to related problems, for example, confluent Chebyshev–Vandermonde
systems for near Chebyshev σ-points, Hermite interpolation in terms of Chebyshev polynomials, and
a class of generalized Hilbert systems. Finally, numerical examples show quite accurate results even
for large systems of equations.
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1. Introduction. Let Hp(t, r) be an n× n generalized Hilbert matrix with the
(k, j) entry

(Hp(t, r))kj =


1/(tk − rj)

p, k 6= j,

1/(tk − rk)
p, tk 6= rk,

0, tk = rk,

(1)

where p is a positive integer, and tk and rk are points in the complex plane satisfying
tk 6= tj , rk 6= rj , tk 6= sj for k 6= j, k, j = 1, 2, . . . , n. For the case p = 1 and rk = tk,
denote G = H1(t, t). Let b be any n-vector. In 1985, Golub [11] posed Trummer’s
problem as follows.

Give an algorithm for computing Gb in less than O(n2) multipli-
cations. If this is impossible, show that it cannot be done.

The generalized Hilbert matrix problem is a generalization of Trummer’s problem
defined by the computation of the multiplications of generalized Hilbert matrices
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with vectors

H1(t, r)b, H2(t, r)b, . . . , Hp(t, r)b.(2)

The problem is also called generalized Trummer’s problem in [24]. Various applica-
tions of the problem can be found in the computation of conformal mappings [30], the
numerical evaluation of singular integrals [8], [27], and particle simulations [12], [28].

In 1987, Gerasoulis, Grigoriadis, and Sun proposed an O(n log2 n) algorithm for
Trummer’s problem, henceforth called the GGS algorithm [9]. Extending the GGS
algorithm to include the matrices defined by (1) in the case tk 6= rj , k, j = 1, 2, . . . , n,
Gerasoulis showed the existence of a fast algorithm with O(n log2 n) time complex-
ity for the multiplications of generalized Hilbert matrices with vectors H1(t, r)b,
H2(t, r)b [8]. For the case tk 6= rj , k, j = 1, 2, . . . , n, for any positive integer p,
an O(np logn lognp) algorithm for the multiplication Hp(t, r)b was given by Lu in
1990 [22]. Based on the divide and conquer method and the fast polynomial arith-
metic, an O(np logn log n

p ) asymptotically fast algorithm for the generalized Hilbert

matrix problem and an O(np lognp + n log2 n) algorithm for computing multiplica-
tion Hp(t, r)b in the case tk 6= rj , k, j = 1, 2, . . . , n were recently derived in [24]. For
some special points we have much better results. Gerasoulis [8] derived an O(n logn)
algorithm for H1(t, r)b if tk = cos((2k−1)π/2n) and rk = cos(kπ/n), k = 1, 2, . . . , n.
For the original Trummer’s problem, Reichel presented an O(n logn) algorithm for
the case when tk are equidistant points on a circle [27]. He proposed an approxima-
tion for the problem if there is a smooth 2π-periodic bijective function t such that
tj = t(2π(j − 1)/n), j = 1, 2, . . . , n.

Let f , g be functions defined on S ⊂ |C: → |C and k ∈ S, tk = f(k) and rk = g(k)
for k = 1, 2, . . . , n. If there are functions d1, d2, q1, q2 on S such that f(x)− g(y) =
d1(x)d2(y)q1(x + y)q2(x − y), we say that points {t1, t2, . . . , tn} and {r1, r2, . . . , rn}
have a TH-relation. It is straightforward to show that equidistant points, clustered
points, and Chebyshev points satisfy a TH-relation. The first part of this paper deals
with fast computation of the generalized Hilbert matrix problem for various point
distributions. Two methods are proposed. The first one deals with the case where tk
and rk satisfy a TH-relation. The generalized Hilbert matrix problem is reduced to p
multiplications of Toeplitz plus Hankel matrices with vectors. This yields an O(pn(p+
logn)) algorithm for the generalized Hilbert matrix problem (2) and an O(pn logn)
for the product Hp(t, r)b. The approach is based on an O(n logn) algorithm for the
multiplication of a Toeplitz plus Hankel matrix with a vector given in the present
paper. The second method deals with the generalized Hilbert matrix problem for the
case where either tk or rk are Chebyshev σ-points, i.e., zeros of T (λ) − σ, where σ
is a constant satisfying |σ| < 1 and T (λ) is the Chebyshev polynomial of the first
kind. For the case p� n, for example, p = 1, 2, or 3, the method yields an O(n logn)
algorithm for the generalized Hilbert matrix problem.

Let t1, . . . , tp be p complex numbers, n1, . . . , np be p positive integers, and p(λ) =
(p1(λ), . . . , pn(λ))T , where n =

∑p
i=1 ni, and P (λ) = {p1(λ), p2(λ), . . . , pn(λ)} is a

basis of the linear space |Cn−1[λ] of all complex polynomials of degree at most n− 1.
The confluent Vandermonde-like matrix (see [17]), denoted by Vc(p), is given by

Vc(p) = (B1, B2, . . . , Bp),(3)

where Bk is an n × nk matrix with the (i, j) entry
(
pi(λ)

)(j−1)∣∣
λ=tk

. In the case of

n1 = n2 = · · · = np = 1, Vc(p) yields a Vandermonde-like matrix [7], [16]. We denote
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the Vandermonde-like matrix by V (p). Consider confluent Vandermonde-like systems

Vc(p)x = b.(4)

These systems are associated with the construction of quadrature formulae [1],[13],
[20], [26] and the approximation of linear functionals [2], [29]. Study of fast solution
of Vandermonde systems started with some O(n2) algorithms in the early 1970s by
Björck, Elfving, and Pereyra [3], [4]. Many O(n2) algorithms for Vandermonde sys-
tems, Vandermonde-like systems, and confluent Vandermonde-like systems are avail-
able in the literature. See the historical surveys in [19] or [25] for further details.
Error analysis for some algorithms is presented by Higham in [15], [17]. The O(n2)
complexity of algorithms for the systems is not optimal. O(n log2 n) algorithms are
derived by Lu [21], [23], [24], and [25] based on J-matches and links of polynomials.

If pk(λ) are Chebyshev polynomials, then Vc(P) is called the confluent Chebyshev–
Vandermonde matrix. The second part of this paper focuses on the practicality of
the approach in [25] for confluent Chebyshev–Vandermonde systems for various dis-
tributions of points ti. In section 4, we present O(n logn) algorithms for confluent
Chebyshev–Vandermonde linear systems for Chebyshev σ-points by using the result
of confluent Vandermonde-like systems given in [25] with special choices of J-matches
and links for Chebyshev polynomials. In section 5, relations between the solution of
Chebyshev–Vandermonde systems and the generalized Hilbert matrix problem are dis-
cussed by using J-matches and links of Chebyshev polynomials based on the inversion
of a class of generalized Hilbert matrices [6]. The solution of Chebyshev–Vandermonde
systems is reduced to the generalized Hilbert matrix problem. For the case where

tk = cos (k−1)π+α
n for Chebyshev–Vandermonde systems, we obtain an O(n logn) al-

gorithm by using the result in section 3 for the generalized Hilbert matrix problem.
In section 6, we consider applications of the results in the previous sections to some
related problems: (a) solution of confluent Chebyshev–Vandermonde systems for near
Chebyshev σ-points, i.e., most points of t1, t2, . . . , tp are zeros of Tp(λ)− σ; (b) dual
confluent Chebyshev–Vandermonde systems, i.e., Hermite interpolation of polynomi-

als in terms of Chebyshev polynomials, for Chebyshev σ-points or tk = cos ((k−1)+α)π
n ;

and (c) solution of generalized Hilbert systems H1(r, t)x = b if tk and rj satisfy a
TH-relation. An O(n logn) algorithm is derived for the generalized Hilbert systems.
Numerical examples are presented in section 7. Finally, conclusions are made in sec-
tion 8.

2. Fast computation for the generalized Hilbert matrix problem I. The
aim of this section is to construct a fast algorithm for the generalized Hilbert matrix
problem for the case where the points ti and rj satisfy a TH-relation. The approach
is based on the product of a Toeplitz plus Hankel matrix with a vector.

An n×n matrix T is a Toeplitz matrix if the (i, j) entry of T satisfies (T )ij = tj−i.
An n× n circulant matrix C is a special Toeplitz matrix satisfying (C)ij = cj−i and
c−k = cn−k for k = 1, . . . , n − 1, or briefly C = circ(c0, c1, . . . , cn−1). Circulant
matrices are diagonalized by the Fourier matrix Fn (see Davis [5, Theorem 3.2.2]),
i.e.,

C = Fndiag(λ0, λ1, . . . , λn−1)F
∗
n ,(5)

where (Fn)kj = ω
(k−1)(j−1)
n /

√
n, ωn = exp(−2πi/n) is the primitive nth root of

unity and λk =
∑n−1

j=0 cjω
kj
n . An n × n Hankel matrix H is a matrix with the (i, j)
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entry (H)ij = hi+j−2. An n × n skew-circulant matrix S is a special Hankel ma-
trix satisfying (S)ij = si+j−2 and sn+k = sk for k = 0, . . . , n − 2, or briefly, S =
scirc(s0, s1, . . . , sn−1). For a Toeplitz matrix T denote T (k) = tk, k = 0,±1, . . . ,±(n−
1) and for a Hankel matrix H denote H(k) = hk, k = 0, 1, . . . , 2n− 2. It is straight-
forward to see that the product Tb can be computed by embedding T into a 2n× 2n
circulant matrix. Therefore, the multiplication Tb is computed by an FFT of order
2n three times as well as the multiplication of a Hankel matrix with a vector. This
yields an O(n logn) algorithm for the multiplication of a Toeplitz plus Hankel matrix
with a vector. To further reduce the arithmetic operations, we now present an algo-
rithm by using an FFT of order 2n four times instead of six. To this end, we need
the following property of skew-circulant matrices.

Lemma 2.1. Let S = scirc(a0, a1, . . . , an−1). Then

S = FnΛF ∗n ,

where (Fn)kj = ω
(k−1)(j−1)
n /

√
n, k, j = 1, 2, . . . , n, ωn = exp(−2πi/n) is the primitive

nth root of unity and

Λ = qdiag(λ0, λ1, . . . , λn−1) ≡


λ0 0 . . . 0 0
0 . . . 0 0 λn−1

. . . 0 0 λn−2 0

. . . . . . . . . . . . . . .
0 0 λ2 0 . . .
0 λ1 0 . . . 0


with λk =

∑n−1
j=0 ajω

kj, k = 0, 1, . . . , n− 1.

Proof. Let E = scirc(1, 0, . . . , 0). An elementary computation shows E−1 = E.
Since ES = circ(a0, a1, . . . , an−1), applying (5) shows that

ES = Fndiag(λ0, λ1, . . . , λn−1)F
∗
n .

Therefore, S = EFnEEdiag(λ0, λ1, . . . , λn−1)F
∗
n . It is straightforward to check that

EFnE = Fn and Ediag(λ0, λ1, . . . , λn−1) = Λ, which imply the desired result.
Now we embed an n × n Toeplitz matrix T into a 2n × 2n circulant matrix

C =
(

C11 C12

C21 C22

)
with C11 = T and embed an n × n Hankel matrix H into a

2n × 2n skew-circulant matrix S =
(

S11 S12

S21 S22

)
with S11 = H. Let b̃ =

(
b
0

)
.

We then obtain (T + H)b from (C + S)b̃. Denote C = circ(c0, c1, . . . , c2n−1) and
S = scirc(s0, s1, . . . , s2n−1). It follows from (5) and Lemma 2.1 that C+S = F2nΓF ∗2n,
where Γ = diag(µ0, µ1, . . . , µ2n−1) + qdiag(β0, β1, . . . , β2n−1) and

µk =
2n−1∑
j=0

cjω
kj
2n, βk =

2n−1∑
j=0

sjω
kj
2n.(6)

Hence, we compute (T +H)b as follows.
Algorithm 1. Let T and H be n×n Toeplitz and Hankel matrices, respectively,

and let b be a vector. This algorithm computes (T +H)b. The result overwrites b.
1. b(1 : n) = b, b(n+ 1 : 2n) = zeros(1, n), h = (H(0), H(1), . . . , H(2n− 2), 0),

t = (T (0), . . . , T (n− 1), 0, T (1− n), . . . , T (−1)).
2. b = ifft(b); t = fft(t);

h = fft(h).
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3. b(1) = (t(1) + h(1)) ∗ b(1).
b(2 : 2n) = t(2 : 2n). ∗ b(2 : 2n) + h(2n : −1 : 2). ∗ b(2n : −1 : 2).

4. b=fft(b).
5. b=b(1:n).

The dominant computation of the algorithm is to perform an FFT of order 2n
four times, and hence the algorithm needs O(n logn) operations.

Definition 2.2. Let f , g be functions defined on S ⊂ |C: → |C. If there are
functions d1, d2, q1, q2 on S such that

f(x)− g(y) = d1(x)d2(y)q1(x+ y)q2(x− y),(7)

we call that f and g satisfy a TH-relation on S. If k ∈ S, tk = f(k), and rk = g(k)
for k = 1, . . . , n, we say that points {t1, t2, . . . , tn} and {r1, r2, . . . , rn} have a TH-
relation.

We consider the generalized Hilbert matrix problem (2) if tk and rk satisfy a TH-
relation. It is straightforward to check that the following pairs satisfy TH-relations.

1. f(x) = ax+ b, g(x) = ax+ c.
2. f(x) = (ax+ b)2 + d, g(x) = (ax+ c)2 + d.
3. f(x) = c cos(ax+ b), g(x) = c cos(ax+ d).
4. f(x) = c sin(ax+ b), g(x) = c sin(ax+ d).
5. f(x) = c cos(ax+ b), g(x) = c sin(ax+ d).
6. f(x) = c tan(ax+ b), g(x) = c tan(ax+ d).
7. f(x) = abx, g(x) = cbx.

Equidistant points, clustered points, and Chebyshev points can be obtained from
the first three function pairs. It is not hard to find other function pairs satisfying
TH-relations. For example, except for number 2, for the function pairs mentioned
above the corresponding function pairs (f2, g2) have TH-relations.

Proposition 2.3. Assume that function pair (f, g) satisfies a TH-relation and
all functions in equation (7) are differentiable. Then for f(x) 6= g(y),

f ′(x)

f(x)− g(y)
=

q′1(x+ y)

q1(x+ y)
+
q′2(x− y)

q2(x− y)
+
d′1(x)

d1(x)
,(8)

g′(y)
f(x)− g(y)

=
q′1(x+ y)

q1(x+ y)
− q′2(x− y)

q2(x− y)
+
d′2(y)
d2(y)

.(9)

Proof. Computing derivative for x in (7) we have

f ′(x) = d′1(x)d2(y)q1(x+ y)q2(x− y)

d1(x)d2(y)q
′
1(x+ y)q2(x− y) + d1(x)d2(y)q1(x+ y)q′2(x− y).

Hence, (8) follows immediately. The equality (9) follows in a similar way.
If f ′(x) 6= 0, by induction based on (8) it is easy to show the fundamental formula

1

(f(x)− g(y))m+1
=

(−1)m

m!

(
m∑
i=0

umi(x)(h(i)(x+ y) + t(i)(x− y)) + vm(x)

)
(10)

for reducing the generalized Hilbert matrix problem to products of Toeplitz plus
Hankel matrices with vectors, provided functions q1(x), q2(x), and d1(x) satisfy the
conditions required, where

umm(x) = um−1,m−1(x)/f ′(x), um0(x) = u′m−1,0(x)/f ′(x),
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umi(x) = (um−1,i−1(x) + u′m−1,i(x))/f ′(x), vm = v′m−1(x)/f ′(x),

u00(x) = 1/f ′(x), v0(x) = d′1(x)/(d1(x)f ′(x)),

h(x) = q′1(x)/q1(x), t(x) = q′2(x)/q2(x).

Assume that the function pair (f, g) satisfies a TH-relation and tk = f(k), rj =
g(j). Under the condition rk 6= tj for k 6= j, k, j = 1, 2, . . . , n we find that q1(2k) 6= 0
for 1 < k < n. For convenience assume that f ′(k) 6= 0 for k = 1, 2, . . . , n. Define a
Toeplitz matrix Ti by

Ti(0) =

{
0, if q2(0) = 0,

t(i)(0), otherwise,

and Ti(k) = t(i)(k) for |k| = 1, . . . , n− 1, and define a Hankel matrix Hi by

Hi(2k − 2) =

{
0, if q1(2k) = 0 or q2(0) = 0,

h(i)(2k), otherwise,

for k = 1, n and Hi(k) = h(i)(k + 2) for k = 1, . . . , 2n− 3. It follows from (10) that

Hm+1(t, r) =
(−1)m

m!

(
m∑
i=0

Dmi(Hi + Ti) +DmJ +Gm

)
,(11)

where J is the matrix with all entries 1,

Dmi = diag(umi(1), . . . , umi(n)), i = 0, 1, . . . ,m,

Dm = diag(vm(1), . . . , vm(n)), Gm = diag(gm1, . . . , gmn),

gmk =


−

m∑
i=0

umi(k)Hi(2k − 2), q2(0) = 0,

−
m∑
i=0

umi(k)Ti(0), k = 1, n and q1(2k) = 0,

0, otherwise.

Therefore, Algorithm 1 for the product of a Toeplitz plus Hankel matrix with a
vector is efficient for the generalized Hilbert matrix problem (2). In practice, p is
considerable small. If we ignore the computational cost for functions umi, vm, t(i),
h(i), m = 1, . . . , p, i = 0, 1, . . . ,m, it is readily seen that the number of operations
is O(pn(p + logn)) for the generalized Hilbert matrix problem (2) and O(pn logn)
for the product Hpb. If g′(x) 6= 0, one can also derive a method for the generalized
Hilbert matrix problem by using (9) if q1(x), q2(x), and d2(x) satisfy the corresponding
conditions required. An application of the approach in this section to a class of
generalized Hilbert systems will be given in section 6.3.

3. Fast computation for the generalized Hilbert matrix problem II. In
this section we consider a new method for the generalized Hilbert matrix problem (2)
based on J-matches and links of polynomials. This new approach is more efficient for
some practical cases, for example, tk or rk are Chebyshev σ-points.

Let P (λ) = {p1(λ), . . . , pn(λ)} be a basis of the linear space |Cn−1[λ] of all complex
polynomials of degree at most n − 1, and Q(λ) = {q1(λ), . . . , qn(λ)} is a J-match of
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P (λ) with a link p(λ), i.e.,

p(λ)− p(µ)

λ− µ
=

n∑
i=1

pi(λ)qn−i+1(µ).(12)

See [25] for details. For any basis {p1(λ), . . . , pn(λ)} of the space |Cn−1[λ], the proof
of Theorem 2.1 in [25] for the existence of a J-match shows, actually, the following
stronger result than the theorem.

Corollary 3.1. Let P (λ) = {p1(λ), . . . , pn(λ)} be a basis of the linear space
|Cn−1[λ] of all complex polynomials of degree at most n−1 and let p(λ) be a polynomial
of degree n. Then there exists a unique J-match of P (λ) with the link p(λ).

Calculating the mth derivatives for λ and µ in (12), respectively, shows that

m−1∑
i=0

(−1)im!p(m−i)(λ)

(m− i)!(λ− µ)i+1
+ (−1)mm!

p(λ)− p(µ)

(λ− µ)m+1
=

n∑
i=1

p
(m)
i (λ)qn−i+1(µ),(13)

−
m−1∑
i=0

m!p(m−i)(µ)

(m− i)!(λ− µ)i+1
+m!

p(λ)− p(µ)

(λ− µ)m+1
=

n∑
i=1

p(λ)q
(m)
n−i+1(µ),(14)

which implies that if p(λ) = p(µ) for λ 6= µ,

m−1∑
i=0

(−1)i(m+ 1)!p(m+1−i)(λ)

(m+ 1− i)!(λ− µ)i+1
+

(−1)m(m+ 1)!p′(λ)

(λ− µ)m+1
(15)

=
n∑
i=1

p
(m+1)
i (λ)qn−i+1(µ),

−
m−1∑
i=0

(m+ 1)!p(m+1−i)(µ)

(m+ 1− i)!(λ− µ)i+1
−!

(m+ 1)!p′(µ)

(λ− µ)m+1
=

n∑
i=1

pi(λ)q
(m+1)
n−i+1(µ).(16)

Proposition 3.2. Let p, pi, qi, i = 1, . . . , n be sufficiently smooth functions. If

p(x)− p(y) = (x− y)

n∑
i=1

pi(x)qn−i+1(y),(17)

then for a positive integer m,
n∑
i=1

p
(m−1)
i (x)qn−i+1(x) = p(m)(x)/m,(18)

n∑
i=1

pi(x)q
(m−1)
n−i+1(x) = p(m)(x)/m.(19)

Proof. By computing the mth derivative for x in (17) and then replacing y by x,
(18) follows immediately. The equality (19) follows in a similar way.

Let p(λ) be a link of {P (λ), Q(λ)}. It follows from Corollary 2.2 in [25] that
deg(p(λ)) = n. Assume p(ri) = ν, where ν is a constant. Then p(ti) 6= ν if ti 6= ri,
and p′(ti) 6= 0 if ti = ri simply because the polynomial p(λ)− ν of degree n has just
n distinct zeros r1, r2, . . . , rn. Let

V (q) =


q1(r1) q1(r2) · · · q1(rn)
q1(r2) q2(r2) · · · q2(rn)
· · · · · · · · · · · ·
qn(r1) qn(r2) · · · qn(rn)
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and Ṽ (m)(p) = (v1,v2, . . . ,vn)T , where

vk =

{
(p

(m)
n (tk), . . . , p

(m)
2 (tk), p

(m)
1 (tk))

T , if tk 6= rk,

(p
(m+1)
n (tk), . . . , p

(m+1)
2 (tk), p

(m+1)
1 (tk))

T , if tk = rk.

Applying (13), (15), and (18) shows that

Hm+1(t, r) = (−1)mD1

(
1

m!
D2(Ṽ

(m)(p)V (q)−D3)−
m−1∑
i=0

DmiHi+1(t, r)

)
,(20)

where D1 = diag(a1, a2, . . . , an), D2 = diag(b1, b2, . . . , bn), D3 = diag(c1, c2, . . . , cn),

and Dmi = (−1)i

(m−i)!diag(dmi(1), dmi(2), . . . , dmi(n)),

ak =

{
1/(p(tk)− ν), if tk 6= rk,

1/p′(tk), if tk = rk,
bk =

{
1, if tk 6= rk,

1/(m+ 1), if tk = rk,

ck =


0, if tk 6= rk,

p(m+2)(tk)

m+ 2
, if tk = rk,

dmi(k) =


p(m−i)(tk), if tk 6= rk,

p(m+1−i)(tk)
m+ 1− i

, if tk = rk.

If p(tk) = ν, k = 1, 2, . . . , n, denote

Ṽ (p) =


pn(t1) · · · p2(t1) p1(t1)
pn(t2) · · · p2(t2) p1(t2)
· · · · · · · · · · · ·
pn(tn) · · · p2(tn) p1(tn)


and V (m)(q) = (u1,u2, . . . ,un), where

uk =

{
(q

(m)
0 (rk), q

(m)
1 (rk), . . . , q

(m)
n−1(rk))

T , if rk 6= tk,

(q
(m+1)
0 (rk), q

(m+1)
1 (rk), . . . , q

(m+1)
n−1 (rk))

T , if rk = tk.

Similarly, using (14), (16), and (19) we formulate

Hm+1(t, r) =

(
m−1∑
i=0

Hi+1D̃mi +
1

m!
(Ṽ (p)V (m)(p)−D3)D2

)
D̃1,(21)

where D̃1 = diag(ã1, ã2, . . . , ãn) and D̃mi = 1
(m−i)!diag(d̃mi(1), d̃mi(2), . . . , d̃mi(n)),

ãk =

{
1/(ν − p(rk)), if rk 6= tk,

−1/p′(rk), if rk = tk,
d̃mi(k) =


p(m−i)(rk), if rk 6= tk,

p(m+1−i)(rk)
m+ 1− i

, if rk = tk.

If rk or tk are roots of p(λ) − ν and the arithmetic operations of matrix-vector

products Ṽ (m)(p)V (q)b or Ṽ (p)V (m)(q)b do not exceed C(n), using (20) or (21)
we can compute the generalized Hilbert matrix problem by using O(p(pn + C(n)))
operations and matrix-vector product Hp(t, r)b by O(p(n + C(n))) operations. If
p � n, for example, p = 1, 2, or 3, consider the cases where (i) tk are Chebyshev
σ1-points and rk are Chebyshev σ2-points; (ii) tk are Chebyshev σ-points and rk =

cos (k−1)π+α
n ; or (iii) tk = cos (k−1)π+α

n and rk are Chebyshev σ-points. We choose
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pk(λ) = Tk−1(λ) and qk(λ) = 2 ∗ Uk−1(λ) for k < n and qn(λ) = Un−1(λ), where
Tk(λ) = cos(k arccos(λ)) is the Chebyshev polynomial of the first kind of degree k
and Uk(λ) = sin((k+1) arccos(λ))/sin(arccos(λ)) is the Chebyshev polynomial of the
second kind of degree k. It follows from [10] or [25] that

Tn(λ)− Tn(µ)

λ− µ
= 2

n−2∑
k=0

Tn−k−1(λ)Uk(µ) + T0(λ)Un−1(µ),(22)

which implies that {q1(λ), . . . , qn(λ)} is the J-match of {p1(λ), . . . , pn(λ)} with the
link Tn(λ). For these three cases it is not hard to check that the corresponding

Ṽ (m)(p)V (q)b and Ṽ (p)V (m)(q)b can be computed by FFT or sine or cosine trans-
forms. Therefore, our approach yields an O(n logn) algorithm for the generalized
Hilbert matrix problem. An application of this result to Chebyshev–Vandermonde
systems will be given in section 5.

4. Solution of confluent Chebyshev–Vandermonde systems for Cheby-
shev σ-points. If pk(λ) = Tk−1(λ) are Chebyshev polynomials of the first kind, the
matrix Vc(p), denoted by Vc,t, is called the confluent Chebyshev–Vandermonde matrix
of the first kind. If pk(λ) = Uk−1(λ) are Chebyshev polynomials of the second kind,
the matrix Vc(p), denoted by Vc,u, is called the confluent Chebyshev–Vandermonde
matrix of the second kind. Based on the results of confluent Vandermonde-like sys-
tems given in [25], the solution of confluent Chebyshev–Vandermonde systems is repre-
sented by trigonometric functions. Furthermore, applications of FFT or sine or cosine
transforms yield some O(n logn) algorithms for confluent Chebyshev–Vandermonde
systems Vc,tx = b and Vc,ux = b for Chebyshev σ-points, i.e., the zeros of Tp(λ)− σ
with |σ| < 1, of the following three problems.

• Problem 1. n1 = n2 = · · · = np = 1.
• Problem 2. n1 = n2 = · · · = np = 2.
• Problem 3. n1 = n2 = · · · = np = 3.

Let A(λ) and B(λ) be two polynomials. For convenience, quot(A(λ), B(λ)) de-
notes the quotient of polynomial division A(λ)/B(λ), i.e., ignoring the remainder
R(λ): A(λ) = B(λ)quot(A(λ), B(λ)) + R(λ). For readers’ convenience, the result on
the solution of confluent Vandermonde-like systems is stated in the following theorem.

Theorem 4.1. Let Vc(p) be a confluent Vandermonde-like matrix defined by
p(λ) = (p1(λ), p2(λ), . . . , pn(λ))T via (3) with ti 6= tj, i 6= j, i, j = 1, . . . , p, where
P (λ) = {p1(λ), p2(λ), . . . , pn(λ)} is a basis of |Cn−1[λ], and

r(λ) =

p∏
i=1

(λ− ti)
ni , ri(λ) = r(λ)/(λ− ti)

ni , i = 1, . . . , p.

Then the solution of the confluent Vandermonde-like systems (4) is given by

xi =
1

(k − 1)!(nj − k)!

(
v(λ)

rj(λ)

)(nj−k)
∣∣∣∣∣
λ=tj

,(23)

i = mj + k, 1 ≤ j ≤ p, 1 ≤ k ≤ nj , m1 = 0, mj =

j−1∑
t=1

nt,

where v(λ) = quot(r(λ)b(λ), p(λ)), and the polynomial b(λ) =
∑n

i=1 biqn−i+1(λ), and
Q(λ) = {q1(λ), . . . , qn(λ)} is a J-match of P (λ), and p(λ) is a link of {P (λ), Q(λ)}.

If Q(λ) = {q1(λ), . . . , qn(λ)} is a J-match of P (λ), Q(λ) is occasionally called a
J-match of the matrix Vc(p) or the systems Vc(p)x = b.
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4.1. Problem 1. Let p(λ) be a link of {P (λ), Q(λ)} and assume that there are n
distinct zeros t1, t2, . . . , tn of p(λ)−σ, where σ is a constant. Consider Vandermonde-
like systems V (p)x = b. Then p(λ) − σ = dr(λ), v(λ) = d−1b(λ), and rk(tk) =
d−1p′(tk), where d is a nonzero constant. Theorem 4.1 shows that the solution of the
systems is given by

xk = b(tk)/p
′(tk).(24)

The equality (22) implies that the basis {2U0(λ), . . . , 2Un−2(λ), Un−1(λ)} and
the basis {T0(λ), 2T1(λ), . . . , 2Tn−1(λ)} are J-matches of {T0(λ), T1(λ), . . . , Tn−1(λ)}
and {U0(λ), U1(λ), . . . , Un−1(λ)} with the link Tn(λ), respectively. If tk are zeros of
Tn(λ) − σ with |σ| < 1, then tk = cosk−αkp π, where αk = 1 − α if k is odd, αk = α
if k is even, and 0 < α < 1 is a constant satisfying cosαπ = σ. For the systems
Vc,tx = b, by choosing the J-match {2U0(λ), . . . , 2Un−2(λ), Un−1(λ)} with the link
Tn(λ) it follows from Theorem 4.1 that the solution of the linear systems Vc,tx = b
is given by

xj =
(−1)j−1

n sinαπ

(
b1(−1)j−1sinαπ + 2

n∑
k=2

bksin
(n− k + 1)(j − αj)π

n

)
.(25)

We choose the J-match {T0(λ), 2T1(λ), . . . , 2Tn−1(λ)} with the link Tn(λ) for the
linear systems Vc,ux = b. Applying Theorem 4.1 yields the solution

xj =
(−1)j−1sin((j − αj)π/n)

n sinαπ

(
bn + 2

n−1∑
k=1

bn−kcos
k(j − αj)π

n

)
.(26)

4.2. Problem 2. For this problem the order of the linear systems is n = 2p.
Because T2p(λ) = 2T 2

p (λ)− 1, it follows immediately from (22) that

(Tp(λ)− σ)2 − (Tp(µ)− σ)2

λ− µ
=

T 2
p (λ)− T 2

p (µ)

λ− µ
− 2σ

Tp(λ)− Tp(µ)

λ− µ

=

2p−2∑
k=0

T2p−k−1(λ)Uk(µ) +
1

2
T0(λ)U2p−1(µ)

− 4σ

p−2∑
k=0

Tp−k−1(λ)Uk(µ)− 2σT0(λ)Up−1(µ).

This equality shows that

{Û0(λ), Û1(λ), . . . , Û2p−1(λ)} =

{
U0(λ), . . . , Up−1(λ),

Up(λ)− 4σU0(λ), . . . , U2p−2(λ)− 4σUp−2(λ),
1

2
U2p−1(λ)− 2σUp−1(λ)

}
is the J-match of {T0(λ), T1(λ), . . . , Tn−1(λ)} with the link (Tp(λ)− σ)2 and

{T̂0(λ), T̂1(λ), . . . , T̂2p−1(λ)} =

{
1

2
T0(λ), T1(λ), . . . , Tp−1(λ),

Tp(λ)− 2σT0(λ), Tp+1(λ)− 4σT1(λ), . . . , T2p−1(λ)− 4σTp−1(λ)

}
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is the J-match of {U0(λ), U1(λ), . . . , Un−1(λ)} with the link (Tp(λ)−σ)2. It is readily
checked that r(λ) = 2−2p+2(Tp(λ)− σ)2. Hence, for the linear systems Vc,tx = b,

v(λ) = 2−2p+2(b1Û2p−1(λ) + b2Û2p−2(λ) + · · ·+ b2p−1Û1(λ) + b2pÛ0(λ)),

and for the linear systems Vc,ux = b,

v(λ) = 2−2p+2(b1T̂2p−1(λ) + b2T̂2p−2(λ) + · · ·+ b2p−1T̂1(λ) + b2pÛ0(λ)).

Now our duty is to compute (v(λ)/rj(λ))(k) for λ = tj and k = 0, 1. Denote the
polynomial qj(λ) = (λ− t1) · · · (λ− tj−1)(λ− tj+1) · · · (λ− tp). It is straightforward
to show that rj(λ) = q2

j (λ) and qj(λ)(λ− tj) = 2−p+1(Tp(λ)−σ). Therefore, qj(tj) =

2−p+1T ′p(tj) and q′j(tj) = 2−pT ′′p (tj). Applying Theorem 4.1 we obtain the solution of
Vc,tx = b and Vc,ux = b,

x2j−1 =
b′(tj)

(T ′p(tj))2
− T ′′p (tj)b(tj)

(T ′p(tj))3
,(27)

x2j =
b(tj)

(T ′p(tj))2
, j = 1, 2, . . . , p,(28)

where

b(λ) =

{
b1Û2p−1(λ) + · · ·+ b2p−1Û1(λ) + b2pÛ0(λ) for Vc,tx = b,

b1T̂2p−1(λ) + · · ·+ b2p−1T̂1(λ) + b2pT̂0(λ) for Vc,ux = b.

4.3. Problem 3. For Problem 3, n = 3p. Because T3p(λ) = 4T 3
p (λ)− 3Tp(λ), it

follows from (22) that

(Tp(λ)− σ)3 − (Tp(µ)− σ)3

λ− µ
=

1

4

T3p(λ)− T3p(µ)

λ− µ

− 3

2
σ
T2p(λ)− T2p(µ)

λ− µ
+

(
3σ2 +

3

4

)
Tp(λ)− Tp(µ)

λ− µ

=
1

2

3p−2∑
k=0

T3p−k−1(λ)Uk(µ) +
1

4
T0(λ)U3p−1(µ)− 3σ

2p−2∑
k=0

T2p−k−1(λ)Uk(µ)

− 3σ

2
T0(λ)U2p−1(µ) +

(
6σ2 +

3

2

) p−2∑
k=0

Tp−k−1Uk(µ) +

(
3σ2 +

3

4

)
T0(λ)U3p−1(µ).

Therefore,

{Ũ0(λ), Ũ1(λ), . . . , Ũ3p−1(λ)} =

{
1

2
U0(λ), . . . ,

1

2
Up−1(λ),

1

2
Up(λ)− 3σU0(λ), . . . ,

1

2
U2p−1(λ)− 3σUp−1(λ),

1

2
U2p(λ)− 3σUp(λ)

+

(
6σ2 +

3

2

)
U0(λ), . . . ,

1

2
U3p−2(λ)− 3σU2p−2(λ) +

(
6σ2 +

3

2

)
Up−2(λ),

1

4
U3p−1(λ)− 3σ

2
U2p−1(λ) +

(
3σ2 +

3

4

)
Up−1(λ)

}
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is the J-match of {T0(λ), . . . , T3p−1(λ)} with the link (Tp(λ)− σ)3 and

{T̃0(λ), T̃1(λ), . . . , T̃3p−1(λ)} =

{
1

4
T0(λ),

1

2
T1(λ), . . . ,

1

2
Tp−1(λ),

1

2
Tp(λ)− 3σ

2
T0(λ),

1

2
Tp(λ)− 3σT1(λ), . . . ,

1

2
T2p−1(λ)− 3σTp−1(λ),

1

2
T2p−1(λ)− 3σTp−1(λ) +

(
3σ2 +

3

4

)
T0(λ),

1

2
T2p(λ)− 3σTp(λ)

+

(
6σ2 +

3

2

)
T1(λ), . . . ,

1

2
T3p−1(λ)− 3σT2p−1(λ) +

(
6σ2 +

3

2

)
Tp−1(λ)

}
is the J-match of {U0(λ), U1(λ), . . . , U3p−1(λ)} with the link (Tp(λ) − σ)3. For this
problem, r(λ) = 2−3p+3(Tp(λ)− σ)3, which implies that for linear systems Vc,tx = b

v(λ) = 2−3p+3(b1Ũ3p−1(λ) + · · ·+ b3p−1Ũ1(λ) + b3pŨ0(λ)),

and for linear systems Vc,ux = b,

v(λ) = 2−3p+3(b1T̃3p−1(λ) + · · ·+ b3p−1T̃1(λ) + b3pT̃0(λ)).

Since rj(λ) = q3
j (λ), applying Theorem 4.1 yields the solution of the systems

x3j−2 =
1

2

(
v(λ)

rj(λ)

)′′ ∣∣∣
λ=tj

=
1

2

(
b′′(tj)

(T ′p(tj))3
− 3b′(tj)T ′′p (tj) + T ′′′p (tj)b(tj)

(T ′p(tj))4
+

3b(tj)(T
′′
p (tj))

2

(T ′p(tj))5

)
,

x3j−1 =

(
v(λ)

rj(λ)

) ∣∣∣
λ=tj

=
b′(tj)

(T ′p(tj))3
− 3

2

b(tj)T
′′
p (tj)

(T ′p(tj))4

x3j =
1

2

b(tj)

(T ′p(tj))3
, j = 1, 2, . . . , p,

where

b(λ) =

{
b1Ũ3p−1(λ) + · · ·+ b3p−1Ũ1(λ) + b3pŨ0(λ) for Vc,tx = b,

b1T̃3p−1(λ) + · · ·+ b3p−1T̃1(λ) + b3pT̃0(λ) for Vc,ux = b,

Hence, for Problems 1, 2, and 3 the solution of confluent Chebyshev–Vandermonde
systems Vc,tx = b or Vc,ux = b for Chebyshev σ-points is reduced to FFT or sine or
cosine transforms, which yields O(n logn) algorithms. A detail implementation for
Problem 2 of the systems Vc,tx = b by FFT will be given in the appendix.

5. Application of the generalized Hilbert matrix problem to the so-
lution of Chebyshev–Vandermonde systems. In this section, we consider an
application of the generalized Hilbert matrix problem to the solution of Chebyshev–

Vandermonde systems of the first and the second kinds if the points tk = cos (k−1+α)π
n ,

k = 1, . . . , n, 0 ≤ α < 1. If α = 1/2, then tk become zeros of Tn(λ). The correspond-
ing systems are solved by the method in section 4.1. We assume that α 6= 1/2. If
α = 0, tk become extreme points of Tn(λ). To this end, we need the following re-
sult on the inversion of a class of generalized Hilbert matrices [6]. An alternative
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proof by using the J-match and the link of polynomials is given here for the readers’
convenience.

Corollary 5.1. Let H(r, t) be a generalized Hilbert matrix with the (k, j) entry
(H(r, t))kj = 1/(rk − tj), k, j = 1, 2, . . . , n, where rk, tj are distinct points in the
complex plane. Then H(r, t) is nonsingular and

H−1(r, t) = D1H(t, r)D2,(29)

where

D1 = diag(s(t1)/l
′(t1), s(t2)/l′(t2), . . . , s(tn)/l′(tn)),

D2 = diag(l(r1)/s
′(r1), l(r2)/s′(r2), . . . , l(rn)/s′(rn)),

l(λ) = (λ− t1)(λ− t2) · · · (λ− tn), s(λ) = (λ− r1)(λ− r2) · · · (λ− rn).

Proof. Denote li(λ) = l(λ)/(λ− ti). Then {li(λ)}ni=1 is a basis of |Cn−1[λ]. For the
polynomial s(λ), applying Corollary 3.1 shows that there exists a unique basis pi(λ),
i = 1, 2, . . . , n, of |Cn−1[λ] such that

n∑
k=1

lk(λ)pn−k+1(µ) =
s(λ)− s(µ)

λ− µ
.(30)

Putting λ = ti in (30) shows that pn−i+1(µ) = (s(µ)−s(ti))/((µ− ti)li(ti)). Choosing
λ = ri and µ = rj in (30) yields that

n∑
k=1

lk(ri)
s(tk)

(tk − rj)lk(tk)
=

{
s′(ri), if i = j,

0, if i 6= j.
(31)

On the other hand,

H(r, t) = diag(1/l(r1), . . . , 1/l(rn))


l1(r1) l2(r1) · · · ln(r1)
l1(r2) l2(r2) · · · ln(r2)
· · · · · · · · · · · ·

l1(rn) l2(rn) · · · ln(rn)

 ,

which, together with (31), yields the desired result.

Now consider Chebyshev–Vandermonde systems V x = b with tk = cos (k−1)π+α
n ,

where V is the Chebyshev–Vandermonde matrix of the first or second kind. Let rk
be zeros of Tn(λ)− ν, where the constant ν = cosβπ is chosen such that |ν| < 1 and
Tn(ti) 6= ν. Denote

Ṽ =


qn(r1) qn−1(r1) · · · q1(r1)
qn(r2) qn−1(r2) · · · q1(r2)
· · · · · · · · · · · ·

qn(rn) qn−1(rn) · · · q1(rn)

 ,

where {q1(λ), q2(λ), . . . , qn(λ)} is the J-match of the systems with the link Tn(λ) given

by (22). Applying Lemma 3.1 in [25] shows that Ṽ is nonsingular. Therefore, x is the
solution of V x = b if and only if x is the solution of the following systems:

Ṽ V x = Ṽ b.(32)
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Using (22) shows that Ṽ V = diag(ν − Tn(t1), . . . , ν − Tn(tn))H(r, t). Furthermore,
applying Corollary 5.1 and (20) with a simple computation yields the solution of (32),

x = −21−nD̃1Ṽ (p)V (q)D2Ṽ b,(33)

where D̃1 = diag( 1
l′(t1)(Tn(t1)−cos βπ) , . . . ,

1
l′(tn)(Tn(tn)−cos βπ) ) and D2 is the same as

in Corollary 5.1. The products of matrices involved in (33) with a vector can be
computed by FFT or sine or cosine transforms. An elementary calculation shows that
s′(rk) = 21−n(−1)k−1 sinβπ/ sin((k−βk)π/n), where βk = 1−β if k is odd, βk = β if

k is even. For tk = cos (k−1+α)π
n , values of l′(tk) and l(rk) are considerably small even

for a moderate n. Directly computing them leads easily to underflow. To obtain an
accurate solution we compute diagonal matrices 21−nD̃1 and D2 globally instead of
computing l′(tk) and l(rk). The approach is similar to the computation of s(ti)/l

′(ti)
and l(ri)/s

′(ri) for generalized Hilbert systems in section 6.3. This is fulfilled by O(n)
operations. We delete further details. Therefore, the overall arithmetic operations for
solution (33) are O(n logn).

6. Applications. In this section we consider applications of the results from the
previous sections to some related problems.

6.1. Solution of confluent Chebyshev–Vandermonde systems for near
Chebyshev σ-points. Distinct points {t1, t2, . . . , tp} are near Chebyshev σ-points
if there are only m (m � p) points ti which are not zeros of Tp(λ) − σ. Confluent
Chebyshev–Vandermonde systems with these kind of points often occur in practice,
for example, m = 1, 2. For Problems 1, 2, and 3 of the systems for near Cheby-
shev σ-points, J-matches and links are chosen the same as used in section 4. Let
{r1, r2, . . . , rp} are all zeros of Tp(λ)− σ and assume

{t1, t2, . . . , tp} \ {r1, r2, . . . , rp} = {t1, . . . , tm},
{r1, r2, . . . , rp} \ {t1, t2, . . . , tp} = {r1, . . . , rm}.

For Problem k (k = 1, 2, 3) it follows from the discussion in section 4 that

v(λ) = 2−n+kquot((q̃(λ))kb(λ), (p̃(λ))k),

where q̃(λ) = (λ − t1) · · · (λ − tm) and p̃(λ) = (λ − r1) · · · (λ − rm). The polynomial
b(λ) is easily represented by

b(λ) =

{
dn−1Un−1(λ) + · · ·+ d0U0(λ) for Vc,tx = b,

d̃n−1Tn−1(λ) + · · ·+ d̃0T0(λ) for Vc,ux = b,
(34)

in O(n) arithmetic operations. We consider linear systems Vc,tx = b only. In order
to represent v(λ) in terms of {Ui(λ)}n−1

i=0 we need the following lemma.
Lemma 6.1. Let p(λ), q(λ), r(λ) be polynomials, p(λ) = p1(λ)p2(λ), and q(λ) =

q1(λ)q2(λ) with deg(p2(λ)) ≤ deg(q2(λ)), s1(λ) = quot(p1(λ)r(λ), q1(λ)), and s(λ) =
quot(p2(λ)s1(λ), q2(λ)). Then s(λ) = quot(p(λ)r(λ), q(λ)).

Proof. Assume p1(λ)r(λ) = s1(λ)q1(λ)+r1(λ) and p2(λ)s1(λ) = s(λ)q2(λ)+r2(λ),
where deg(r1(λ)) < deg(q1(λ)) and deg(r2(λ)) < deg(q2(λ)). Then

p(λ)r(λ) = p2(λ)p1(λ)r(λ) = p2(λ)s1(λ)q1(λ) + p2(λ)r1(λ)

= s(λ)q(λ) + r2(λ)q1(λ) + p2(λ)r1(λ).
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Under the assumption it is readily seen that deg(r2(λ)q1(λ)+p2(λ)r1(λ)) < deg(q(λ)).
Therefore, s(λ) = quot(p(λ)r(λ), q(λ)).

Now we consider the computation of quot(b(λ)(λ− a), λ− d), where a and d are
constants. Denoting ci = dia, i = 0, 1, . . . , n− 1, we have

(λ− a)b(λ) = dn−1λUn−1(λ) + dn−2λUn−2(λ) + · · ·+ d0λU0(λ)

− cn−1Un−1(λ)− cn−1Un−2(λ)− · · · − c0U0(λ)

= dn−1(λ− d)Un−1(λ) + dn−2λUn−2(λ) + · · ·+ d0λU0(λ)

+ (dn−1d− cn−1)Un−1(λ)− cn−2(λ)Un−2(λ)− · · · − c0U0(λ)

= dn−1(λ− d)Un−1(λ) + (dn−2 + 2(dn−1d− cn−1))λUn−2(λ)

+ dn−3λUn−3(λ) + · · ·+ d0λU0(λ)− cn−2Un−2(λ)

− (cn−3 + dn−1d− cn−1)Un−3(λ)− cn−4Un−4(λ)− · · · − c0U0(λ),

because Ui(λ) = 2λUi−1(λ)−Ui−2(λ) for i ≥ 2. Therefore, quot((λ− a)b(λ), x− d) is
computed as follows.

Algorithm 2. Let b(λ) = dn−1Un−1(λ) + · · ·+ d0U0(λ). Algorithm 2 represents
quot((λ−a)b(λ), x−d) in term of the basis {Ui(λ)}n−1

i=0 , where a and d are constants.
ci = dia, i = 1, . . . , n− 1.
For i = n− 2 : −1 : 0

di = di + 2(di+1d− ci+1)
if i > 1 then

ci−1 = ci−1 + di+1d− ci+1

endif
endfor i.

We then have quot((λ− a)b(λ), x− d) =
∑n−1

k=0 dkUk(λ). Algorithm 2 needs O(n)
arithmetic operations. Using Algorithm 2 km times we represent v(λ) in terms of the
basis {Ui(λ)}n−1

i=0 for problem k of the systems Vc,tx = b. Similarly, the polynomial
v(λ) for Problem k of Vc,ux = b can be represented in terms of {Ti(λ)}n−1

i=0 in O(mn)
arithmetic operations. Using the same notation in section 4 we have ri(λ) = (qi(λ))k

for problem k and

qi(λ)(λ− ti) = 2−p+1 (λ− t1) · · · (λ− tm)

(λ− r1) · · · (λ− rm)
(Tp(λ)− σ).

By using Theorem 4.1, the same approach in section 4 is applicable to the problems
in this subsection. If m � n, it is readily seen that all components of the solution
determined by the zeros of Tp(λ)− σ can be computed in O(mn+n logn) arithmetic
operations while the rest are computed in O(nm) operations. We omit further details.
The total operations are O(nm + n logn). Clearly, Algorithm 2 is applicable to any
points for confluent Chebyshev–Vandermonde systems. This approach yields a new
O(n2) algorithm for any choice of tk.

6.2. Dual confluent Chebyshev–Vandermonde systems. The results in
sections 4 and 5 are applicable to the corresponding dual Chebyshev–Vandermonde
systems, which are equivalent to Hermite interpolating problems in terms of basis
{Tk(λ)}n−1

k=0 or {Uk(λ)}n−1
k=0 .

Consider dual Chebyshev–Vandermonde systems V Tx = b with tk = cos (k−1)π+α
n ,

where V is the Chebyshev–Vandermonde matrix of the first or the second kind. It fol-
lows from (33) that V −1 = −21−nD̃1Ṽ (p)V (q)D2Ṽ . Hence, the solution of V Tx = b
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is given by

x = −21−n(Ṽ )TD2(V (q))T (Ṽ (p))T D̃1b,

which can also be computed in O(n logn) arithmetic operations by FFT or sine or
cosine transforms.

For Problem 1 of dual Chebyshev–Vandermonde systems for Chebyshev σ-points,
it straightforwardly follows from (25) that

V −1
c,t =

1

n sinαπ
diag(1,−1, . . . , (−1)n−1)

sinα1π 2sin (n−1)(1−α1)π
n 2sin (n−2)(1−α1)π

n . . . 2sin (1−α1)π
n

−sinα2π 2sin (n−1)(2−α2)π
n 2sin (n−2)(2−α2)π

n . . . 2sin (2−α2)π
n

· · · · · · · · · · · · · · ·
(−1)n−1sinαnπ 2sin (n−1)(n−αn)π

n 2sin (n−2)(n−αn)π
n . . . 2sin (n−αn)π

2n

 .

Therefore, the solution of the dual Vandermonde–Chebyshev linear systems V T
c,tx = b

is given by

x1 =
1

n

n∑
k=1

bk, xj =
2

n sinαπ

n∑
k=1

(−1)k−1bksin
(n− j + 1)(k − αk)π

n
, j > 1.

Similarly, it follows from (26) that the solution for V T
c,ux = b for Problem 1 of Cheby-

shev σ-points is given by

xj =
2

n

n∑
k=1

dkcos
(n− j)(k − αk)π

n
, j < n, xn =

1

n

n∑
k=1

dk,

where (d1, d2, . . . , dn)T = 1
sinαπDb and

D = diag(sin(1− α1)π/n,−sin(2− α2)π/n, . . . , (−1)n−1sin(n− αn)π/n).

For Problems 2 and 3 of dual confluent Chebyshev–Vandermonde systems for
Chebyshev σ-points, we can solve them in similar ways. Based on the solution of
confluent Chebyshev–Vandermonde systems in section 4, it is not hard to obtain the
inversion of Vc,t and Vu,t by choosing the right-hand side ei = (δi1, δi2, . . . , δin)T

for i = 1, . . . , n, where δij is the Kronecker δ-function. Another way to obtain the
inversion of Vc,t and Vu,t is to use Corollary 3.4 in [25]. Then the solution of V T

c,tx =

b and V T
c,ux = b for Problems 2 and 3 are given by x = ((Vc,t)

−1)Tb and x =

((Vc,u)−1)Tb, respectively. Both can be computed by FFT or sine or cosine transforms
that lead to O(n logn) algorithms. We omit further details.

6.3. Solution of a class of generalized Hilbert linear systems. In this
subsection the result on the generalized Hilbert matrix problem in section 2 is applied
to a class of generalized Hilbert systems

H(r, t)x = b,(35)

where (H(r, t))i,j = 1/(ri − tj) with ri 6= tj , i, j = 1, 2, . . . , n. It is shown that there
is an O(n log2 n) algorithm for the systems in general [22]. A generalization of the
systems is found in [14]. We consider how to obtain an O(n logn) algorithm for the
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case where ti = f(i) and rj = g(j), and where function pairs (f, g), (f, f), and (g, g)
satisfy TH-relations. Applying Corollary 5.1 we have

x = D1H(t, r)D2b.

Under the assumption that (f, g), (f, f), and (g, g) satisfy TH-relations, it is

readily shown that for x 6= y there exist functions d̃1, d̃2, q̃1, q̃2, d̂1, d̂2, q̂1, q̂2 such that

f(x)− g(y)

f(x)− f(y)
= d̃1(x)d̃2(y)q̃1(x+ y)q̃2(x− y),

g(x)− f(y)

g(x)− g(y)
= d̂1(x)d̂2(y)q̂1(x+ y)q̂2(x− y).

Because ri 6= rj , ri 6= tj , and ti 6= tj for i 6= j we have d̃1(i) 6= 0, d̃2(i) 6= 0, d̂1(i) 6= 0,

d̂2(i) 6= 0, i = 1, 2, . . . , n and choosing x = i+ 1, y = i− 1 shows that for 1 < i < n,

q̃1(2i) 6= 0, q̂1(2i) 6= 0.(36)

For convenience, we assume also that (36) holds for i = 1, n. Hence,

s(ti)

l′(ti)
=

ti − ri

d̃2(i)q̃1(2i)
(d̃1(i))

n−1
n∏

j=1

d̃2(j)q̃1(i+ j)
∏
j 6=i

q̃2(i− j)

=
ti − ri

d̃2(i)q̃1(2i)
(d̃1(i))

n−1 Q̃(i+ n)

Q̃(i)
P̃ (i− 1)R̃(n− i)

n∏
j=1

d̃2(j),

l(ri)

s′(ri)
=

ri − ti

d̂1(i)q̂1(2i)
(d̂2(i))

n−1
n∏

j=1

d̂1(j)q̂1(i+ j)
∏
j 6=i

q̂2(i− j)

=
ri − ti

d̂1(i)q̂1(2i)
(d̂2(i))

n−1 Q̂(i+ n)

Q̂(i)
P̂ (i− 1)R̂(n− i)

n∏
j=1

d̂1(j),

where

Q̃(k) =

k∏
i=2

q̃1(i), Q̃(1) = 1, P̃ (k) =

k∏
i=1

q̃2(i), R̃(k) =

k∏
i=1

q̃2(−i),

Q̂(k) =

k∏
i=2

q̂1(i), Q̂(1) = 1, P̂ (k) =
k∏

i=1

q̂2(i), R̂(k) =
k∏

i=1

q̂2(−i).

For a complex number a it is well known that the power an can be computed by
O(logn) arithmetic operations. Hence, diagonal matrices D1 and D2 can be computed
in O(n logn) operations. Applying the result in section 2 for the generalized Hilbert
matrix problem yields an O(n logn) algorithm for this class of generalized Hilbert
systems.

Example 1. For the equidistant points ri = i/n and ti = (2i− 1)/2n, i = 1, . . . , n,

it is readily seen that d̃1(x) = d̃2(x) = q̃1(x) = d̂1(x) = d̂2(x) = q̂1(x) = 1 and

q̃2(x) = 1− 1

2x
, q̂2(x) = 1 +

1

2x
.

Example 2. For the clustered points ri = (i/n)2 and ti = ((2i − 1)/2n)2, i =

1, . . . , n, we have d̃1(x) = d̃2(x) = d̂1(x) = d̂2(x) = 1 and

q̃1(x) = 1 +
1

2(x− 1)
, q̃2(x) = 1− 1

2x
, q̂1(x) = 1− 1

2x
, q̂2(x) = 1 +

1

2x
.
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7. Numerical examples. In this section we present some numerical examples.
For linear systems Ax = b we determined the relative residuals

RES =
‖b−Ax(dp)‖∞

‖A‖∞‖x(dp)‖∞ + ‖b‖∞ , QRES =
‖b−Ax(dp)‖∞

‖b‖∞ ,

where x(dp) stands for the solution computed in double precision arithmetic. RES
is the ∞-norm backward error (see [19, Theorem 7.1]). The computations were per-
formed on a SUN10 using IEEE-standard double precision arithmetic for which unit
roundoff is udp = 2−53 ≈ 1.11 × 10−16. The function randn(n, 1) is used to generate
n random numbers which are normally distributed with mean 0 and variance 1. All
numerical examples are performed with the right-hand side b = ((−1).∧(0 : n− 1))T

and b = 10randn(n, 1). For b = 10randn(n, 1), we choose the maximum RES and
corresponding QRES of 10 performances.

For the first numerical experiment we consider Problem 2 of Vc,tx = b and Vc,ux =
b for Chebyshev σ-points by using the method in section 4.2 and the further discussion
in the appendix. Tables 1–4 show the corresponding residuals. If α is near to 1
or 0, some roots of Tp(λ) − σ are very close, where σ = cosαπ. The systems are
near singular. Our methods, however, still achieve accurate solutions, for example,
α = 0.999.

Since the methods for the generalized Hilbert matrix problem in sections 2 and
3 are applied to Chebyshev–Vandermonde systems and generalized Hilbert systems,
for brief display, we give numerical examples for Chebyshev–Vandermonde systems

for tk = cos (k−1+α)π
n by method in section 5 and generalized Hilbert linear systems

H(r, t)x = b for the equidistant points rk = k/n, tk = (2k−1)/(2n) and the clustered
points rk = (k/n)2, tk = ((2k − 1)/(2n))2 by the method in section 6.3. Tables 5–
10 give the numerical errors. The numerical results show that the stability of the
methods depends on point distributions. RES gets several orders of magnitude larger
than udp for some points in Tables 5, 6, 7, and 10, indicating some instability.

8. Conclusions. The approach for Chebyshev–Vandermonde systems in section
4.1 is easily extended to the systems for the case where tk are zeros of

p(λ) = a0Tn(λ) + a1Tn−i1(λ) + · · ·+ amTn−im(λ),

where a0 6= 0, i1, . . . , im are distinct positive integers, provided t1, t2, . . . , tn are dif-
ferent. Denote i0 = 0. We have

p(λ)− p(µ)

λ− µ
=

m∑
k=0

ak
Tn−ik(λ)− Tn−ik(µ)

λ− µ
.(37)

By using (22) and (37) it is not hard to derive J-matches for {T0(λ), . . . , Tn−1(λ)}
and {U0(λ), . . . , Un−1(λ)} with the link p(λ), respectively. Therefore, (24) gives the
solution of Chebyshev–Vandermonde systems if tk are zeros of p(λ). In practice, b(tk),
k = 1, . . . , n can often be computed by FFT or sine or cosine transforms, for example,

Chebyshev–Gauss–Radau points tk = cos 2(k−1)π
2n−1 , i.e., zeros of Tn(λ) + Tn−1(λ).

Based on the results in [25] the approach in section 4.1 is also applicable to other
Vandermonde-like systems. In practice, the important fact for Vandermonde-like ma-
trices and confluent Vandermonde-like matrices is that polynomials p1(λ), . . . , pn(λ)
satisfy a k-term recurrence relation

p1(λ) = 1, pi(λ) = 0, i ≤ 0,(38)
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Table 1
Numerical errors for Problem 2 of Vc,tx = b with b = ((−1).∧(0 : n− 1))T .

α = 1/4 α = 1/2 α = 0.999
k n = 2k RES QRES RES QRES RES QRES
6 64 1.2e-19 1.0e-15 3.2e-19 8.9e-16 2.1e-19 7.2e-08
8 256 8.5e-21 1.3e-15 4.7e-20 2.7e-15 2.6e-20 1.9e-07
10 1024 1.8e-21 5.4e-15 1.4e-20 1.6e-14 5.2e-21 7.5e-07
12 4096 7.9e-22 4.4e-14 3.2e-21 6.7e-14 1.3e-21 3.5e-06
14 16384 1.9e-22 1.8e-13 5.1e-22 2.0e-13 2.6e-22 1.4e-05
16 65536 5.9e-23 1.1e-12 2.4e-22 1.8e-12 1.1e-22 1.1e-04

Table 2
Numerical errors for Problem 2 of Vc,tx = b with b = 10randn(n, 1).

α = 1/4 α = 1/2 α = 0.999
k n = 2k RES QRES RES QRES RES QRES
6 64 6.6e-19 1.7e-15 1.2e-18 7.6e-16 6.6e-19 1.7e-08
8 256 8.2e-20 2.4e-15 2.9e-19 1.4e-15 8.3e-20 3.3e-08
10 1024 2.8e-20 8.4e-15 1.3e-19 8.0e-15 3.9e-20 1.8e-07
12 4096 1.2e-20 3.4e-14 3.5e-20 1.8e-14 1.1e-20 5.1e-07
14 16384 3.6e-21 1.1e-13 1.2e-20 6.0e-14 3.6e-21 1.8e-06
16 65536 3.2e-21 8.1e-13 1.4e-20 6.5e-13 2.9e-21 1.3e-05

Table 3
Numerical errors for Problem 2 of Vc,ux = b with b = ((−1).∧(0 : n− 1))T .

α = 1/4 α = 1/2 α = 0.999
k n = 2k RES QRES RES QRES RES QRES
6 64 1.2e-19 1.8e-15 1.3e-19 6.7e-16 8.5e-19 4.2e-08
8 256 1.5e-20 3.5e-15 2.4e-20 2.0e-15 1.0e-19 8.3e-08
10 1024 3.9e-21 1.4e-14 8.3e-21 1.1e-14 1.3e-20 1.7e-07
12 4096 8.3e-22 4.9e-14 2.9e-21 6.2e-14 4.1e-21 8.4e-07
14 16384 2.0e-22 1.9e-13 6.1e-22 2.1e-13 7.8e-22 2.5e-06
16 65536 1.1e-22 1.7e-12 2.4e-22 1.3e-12 2.1e-22 1.1e-05

Table 4
Numerical errors for Problem 2 of Vc,ux = b with b = 10randn(n, 1).

α = 1/4 α = 1/2 α = 0.999
k n = 2k RES QRES RES QRES RES QRES
6 64 4.4e-20 1.7e-15 7.6e-20 8.0e-16 1.7e-19 2.1e-08
8 256 1.5e-21 2.4e-15 3.2e-21 1.7e-15 3.9e-21 3.6e-08
10 1024 1.4e-22 9.7e-15 5.5e-22 6.8e-15 6.1e-22 1.7e-07
12 4096 1.7e-23 3.1e-14 4.7e-23 2.2e-14 4.9e-23 4.6e-07
14 16384 1.7e-24 8.8e-14 5.2e-24 6.9e-14 5.0e-24 1.7e-06
16 65536 4.5e-25 8.5e-13 1.5e-24 8.4e-13 1.2e-24 1.4e-05

pi+1(λ) = αi(λ− βi)pi(λ) +
k−1∑
j=2

γijpi−j+1(λ), i = 1, . . . , n,(39)

where αi 6= 0, and tk are often chosen zeros of pn+1(λ). Define a k-term recurrence
relation by

q1(λ) = 1, qi(λ) = 0, i ≤ 0,(40)
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Table 5
Numerical errors of Chebyshev–Vandermonde systems Vc,tx = b with b = ((−1).∧(0 : n− 1))T .

α = 1/4 α = 5/8 α = 7/8
k n = 2k RES QRES RES QRES RES QRES
6 64 2.9e-15 1.9e-13 9.9e-16 6.4e-14 2.4e-16 1.5e-14
8 256 2.4e-14 6.2e-12 1.1e-15 2.7e-13 1.5e-16 3.8e-14
10 1024 3.0e-13 3.1e-10 2.9e-15 2.9e-12 2.9e-16 3.0e-13
12 4096 2.3e-12 9.4e-09 7.9e-15 3.2e-11 2.1e-16 8.5e-13
14 16384 2.4e-11 3.9e-07 2.7e-14 4.5e-10 2.1e-16 3.4e-12
16 65536 1.8e-10 1.2e-05 9.8e-14 6.4e-09 5.9e-16 3.8e-11

Table 6
Numerical errors of Chebyshev–Vandermonde systems Vc,tx = b with b = 10randn(n, 1).

α = 1/4 α = 5/8 α = 7/8
k n = 2k RES QRES RES QRES RES QRES
6 64 6.6e-16 4.3e-14 3.7e-16 2.4e-14 2.0e-15 1.3e-13
8 256 1.1e-15 2.8e-13 4.8e-16 1.2e-13 1.3e-14 3.2e-12
10 1024 5.3e-15 5.4e-12 3.1e-15 3.2e-12 9.0e-14 9.3e-11
12 4096 2.9e-14 1.2e-10 9.5e-15 3.9e-11 4.0e-13 1.6e-09
14 16384 1.5e-13 2.5e-09 2.6e-14 4.3e-10 5.2e-12 8.5e-08
16 65536 7.9e-13 5.2e-08 8.3e-14 5.4e-09 3.7e-11 2.4e-06

Table 7
Numerical errors of Chebyshev–Vandermonde systems Vc,ux = b with b = ((−1).∧(0 : n− 1))T .

α = 1/4 α = 5/8 α = 7/8
k n = 2k RES QRES RES QRES RES QRES
6 64 7.8e-17 1.4e-14 1.5e-16 3.4e-14 3.4e-16 5.8e-14
8 256 9.9e-16 8.9e-13 3.0e-17 3.2e-14 1.9e-16 1.5e-13
10 1024 1.5e-15 6.4e-12 7.6e-17 3.9e-13 1.5e-16 5.6e-13
12 4096 1.8e-15 3.5e-11 4.1e-17 9.7e-13 1.0e-16 1.8e-12
14 16384 3.7e-14 3.2e-09 2.7e-17 3.0e-12 1.4e-17 1.2e-12
16 65536 7.1e-13 4.3e-08 9.3e-17 4.5e-11 2.0e-16 7.3e-11

qi+1(λ) = αn−i+1(λ− βn−i+1)qi(λ) +

k−1∑
j=2

γn−i+j,jqi−j+1(λ), i = 1, . . . , n.(41)

It is shown that pn+1(λ) = qn+1(λ) and the basis {q1(λ), . . . , qn(λ)} is the J-match of
{p1(λ), . . . , pn(λ)} with the link pn+1(λ) [25]. Let b(λ) = b1qn(λ)+· · ·+bnq1(λ). If the
zeros of pn+1(λ) are distinct, it follows from (24) that the solution of Vandermonde-
like systems V (p)x = b is given by

xk = b(tk)/p
′
n+1(tk),

which is easily computed and often gives an accurate solution.
For Vandermonde-like systems and confluent Vandermonde-like systems, the sta-

bility of numerical methods is strongly influenced by points tk. As we have seen, for
proper points tk we can obtain quite accurate results by using J-matches and links
of polynomials. For an arbitrary choice of tk a possible way to obtain an accurate
solution is to use this approach, together with iterative refinement [18] to enhance the
stability.

Appendix. Implementation of Problem 2. We now implement Problem 2
of Vc,tx = b by using FFT efficiently. For this problem of Chebyshev σ-points, i.e.,
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Table 8
Numerical errors of Chebyshev–Vandermonde systems Vc,ux = b with b = 10randn(n, 1).

α = 1/4 α = 5/8 α = 7/8
k n = 2k RES QRES RES QRES RES QRES
6 64 4.8e-17 8.9e-15 1.9e-17 4.2e-15 1.0e-16 1.7e-14
8 256 3.1e-16 2.8e-13 7.9e-18 8.5e-15 7.9e-17 6.4e-14
10 1024 1.2e-16 4.9e-13 8.0e-18 4.1e-14 6.9e-17 2.7e-13
12 4096 6.7e-17 1.3e-12 5.5e-18 1.3e-13 5.9e-17 1.0e-12
14 16384 6.6e-16 5.8e-11 8.7e-18 9.5e-13 1.1e-16 9.2e-12
16 65536 8.2e-16 3.2e-10 8.5e-18 4.2e-12 1.9e-16 6.9e-11

Table 9
Numerical errors of H(r, t)x = b for the equidistant points.

b = ((−1).∧(0 : n− 1))T b = 10randn(n, 1)
k n = 2k RES QRES RES QRES
6 64 2.2e-17 1.5e-14 1.0e-17 7.3e-15
8 256 1.0e-16 3.6e-13 5.6e-17 1.9e-13
10 1024 1.5e-16 2.5e-12 1.4e-16 2.4e-12
12 4096 1.8e-16 1.4e-11 1.9e-16 1.5e-11
14 16384 3.2e-15 1.1e-09 1.5e-15 5.5e-10
16 65536 9.4e-15 1.5e-08 4.2e-15 6.8e-09

Table 10
Numerical errors of H(r, t)x = b for the clustered points.

b = ((−1).∧(0 : n− 1))T b = 10randn(n, 1)
k n = 2k RES QRES RES QRES
6 64 7.2e-15 5.1e-12 4.8e-15 3.5e-12
8 256 3.1e-13 1.1e-09 1.6e-13 5.7e-10
10 1024 4.1e-12 7.0e-08 2.9e-12 5.0e-08
12 4096 4.1e-11 3.3e-06 2.8e-11 2.2e-06
14 16384 5.3e-09 1.9e-03 2.6e-09 9.4e-04
16 65536 1.0e-07 2.1e-01 3.9e-08 6.3e-02

the zeros of the polynomial Tp(λ)− σ = 0, where p = n/2 and σ = cosαπ, denote

dk =


b1/2, if k = 2p,
b2p−k+1, if p+ 1 ≤ k < p,
bp+1 − 2σb1, if k = p,
b2p−k+1 − 4σbp−k+1, if 1 ≤ k < p.

It follows from the discussion in section 4 that the polynomial b(λ) =
∑2p

k=1 dkUk−1(λ).
On the other hand, a simple calculation shows that

T ′p(tj) =
(−1)j−1p sinαπ

sin((j − αj)π/p)
,

T ′′p (tj) =
p((−1)j−1 cot((j − αj)π/p) sinαπ − pσ)

sin2((j − αj)π/p)
,

Uk−1(tj) =
sin(k(j − αj)π/p)

sin((j − αj)π/p)
,

U ′
k−1(tj) =

(cot((j − αj)π/p) sin(k(j − αj)π/p)− k cos(k(j − αj)π/p))

sin2((j − αj)π/p)
.
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It turns out that the solution (27), (28) becomes

x2j−1 =
(−1)j−1σ

p sin3 απ

2p∑
k=1

dk sin
k(j − αj)

p
− 1

p2 sin2 απ

2p∑
k=1

kdk cos
k(j − αj)

p
,

x2j =
sin((j − αk)π/p)

p2 sin2 α

2p∑
k=1

dk sin
k(j − αj)

p
.

For a real x, define two p-vectors u(x) = (u1, . . . , up)
T and v(x) = (v1, . . . , vp)

T by

ut+1 =

2p∑
k=1

dk sin
k(2t+ x)π

p
, vt+1 =

2p∑
k=1

kdk cos
k(2t+ x)π

p
.

Denote σ(x) = cosxπ. It follows from an elementary computation that

ut+1 =

2p∑
k=1

dk

(
sin

2tkπ

p
cos

kxπ

p
+ cos

2tkπ

p
sin

kxπ

p

)

=

p∑
k=1

(
dk cos

kxπ

p
+ dp+k cos

(p+ k)xπ

p

)
sin

2tkπ

p

+

(
dk sin

kxπ

p
+ dp+k sin

(p+ k)xπ

p

)
cos

2tkπ

p

=

p∑
k=1

(
dk cos

kxπ

p
+ σ(x)dp+k cos

kxπ

p
− dp+k sinxπ sin

kxπ

p

)
sin

2ktπ

p

+

p∑
k=1

(
dk sin

kxπ

p
+ σ(x)dp+k sin

kxπ

p
+ dp+k sinxπ cos

kxπ

p

)
cos

2ktπ

p

=

p∑
k=1

(dk + σ(x)dp+k)

(
sin

2ktπ

p
cos

kxπ

p
+ cos

2ktπ

p
sin

kxπ

p

)

+ sinxπ

p∑
k=1

dp+k

(
− sin

2ktπ

p
sin

kxπ

p
+ cos

2ktπ

p
cos

kxπ

p

)
.

To compute u(x) efficiently by FFT and make the statement clearly, let

c2 = (d2p, dp+1, . . . , d2p−1)
T , c1 = (dp, d1, . . . , dp−1)

T + σ(x)c2.

Then the vector u(x) is easily represented by

u(x) = −√p imag

(
Fpdiag

(
cosxπ, cos

xπ

p
, . . . , cos

(p− 1)xπ

p

)
c1

)
+
√
p real

(
Fpdiag

(
sinxπ, sin

xπ

p
, . . . , sin

(p− 1)xπ

p

)
c1

)
+
√
p sinxπ imag

(
Fpdiag

(
sinxπ, sin

xπ

p
, . . . , sin

(p− 1)xπ

p

)
c2

)
+
√
p sinxπ imag

(
Fpdiag

(
cosxπ, cos

xπ

p
, . . . , cos

(p− 1)xπ

p

)
c2

)
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= −√p imag

(
Fpdiag

(
exp(−xπi), exp

(
−xπi

p

)
, . . . , exp

(
− (p− 1)xπi

p

))
c1

)
+
√
p sinxπ real

(
Fp

(
exp(xπi), exp

(
xπi

p

)
, . . . , exp

(
(p− 1)xπi

p

))
c2

)
,

where i =
√−1. Similarly, let r2 = (2pd2p, (p + 1)dp+1, . . . , (2p − 1)d2p−1)

T and
r1 = (pdp, d1, . . . , (p− 1)dp−1)

T + σ(x)r2. We have

v(x) =
√
p real

(
Fpdiag

(
exp(xπi), exp

(
xπi

p

)
, . . . , exp

(
(p− 1)xπi

p

))
r1

)
+
√
p sinxπ imag

(
Fp

(
exp(−xπi), exp

(
−xπi

p

)
, . . . , exp

(
− (p− 1)xπi

p

))
r2

)
.

Let xoo, xoe, xeo and xee be subvectors of the solution x defined by

xoo = (x1, x5, . . . , x4b p−1
2 c+1)

T , xoe = (x3, x7, . . . , x4b p2 c−1)
T ,

xeo = (x2, x6, . . . , x4b p−1
2 c+2)

T , xee = (x1, x5, . . . , x4b p2 c)
T .

It is straightforward to show that

xeo =
1

p2 sin2 απ
diag

(
sin

απ

p
, . . . , sin

(2bp−1
2 c+ α)π

p

)
(u(α))

(
1 : dp

2
e
)
,

xee =
1

p2 sin2 απ
diag

(
sin

(2− α)π

p
, . . . , sin

2bp2c − α)π

p

)
(u(−α))

(
2 : dp+ 1

2
e
)
,

xoo =
σ

p sin3 απ
(u(α))

(
1 : dp

2
e
)
− 1

p2 sin2 απ
(v(α))

(
1 : dp

2
e
)
,

xoe = − σ

p sin3 απ
(u(−α))

(
2 : dp+ 1

2
e
)
− 1

p2 sin2 απ
(v(−α))

(
2 : dp+ 1

2
e
)
.

Problem 2 of Vc,ux = b and Problems 1 and 3 of Vc,tx = b and Vc,ux = b are
implemented in similar ways. We omit further details.
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In the paper (see [5]) we quote the following theorem due to Kahan [6], [4, p.
232]: Let R = (HT , BT )T , where H is Hermitian. There exists a W such that the

extended matrix A = (
H B∗
B W

) = A∗ satisfies ‖ A ‖2=‖ R ‖2= ρ.

We showed in Theorem 4.1 of [5] the following general solution formula of W for
Kahan’s theorem:

B(ρI +H)+B∗ − ρI ≤W ≤ ρI −B(ρI −H)+B∗,(1)

where the Moore–Penrose inverse of a matrix A is designated as A+.
After publication of [5] it was pointed out that (1) is similar to a result of Krein

in [2], [3] and that extensions of this result were also obtained in a later paper of
Davis, Kahan, and Weinberger [1]. Theorem 1 of [2, p. 492] is as follows: Let A be
an Hermitian transformation with closed domain D(A) 6= H and ‖ A ‖≤ 1. The set
B(A) of all self-adjoint extensions Ã of A with ‖ Ã ‖≤ 1 is nonvoid ; moreover, it
contains two transformations Aµ and AM (Aµ ≤ AM ) such that a bounded B ∈ B(A)
if and only if Aµ ≤ B ≤ AM . In the finite dimensional case, Theorem 4.1 of [5] is
thus similar to Theorem 1 of [2] and Corollaries 1.3 and 1.4 of [1].

We were, of course, unaware of [1], [2], [3] at the time [5] was published. Also,
the proofs are very different from each other, and the generalized inverse form (1) is
new. Combining (1) with Lemma 2.7 of [5], one can easily identify the sensitivity of
the data error of R to W .

From Theorem 4.1 of [5], the positive definite and semipositive definite extensions
are discussed, respectively (see Theorems 5.1 and 5.2 of [5]). Also, based on Theorem
4.1 of [5], one can easily consider the problem of constructing a Hermitian extension
W of a non-Hermitian matrix H and R = (HT , BT )T .
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Abstract. Recent research shows that structured matrices such as Toeplitz and Hankel matrices
can be transformed into a different class of structured matrices called Cauchy-like matrices using the
FFT or other trigonometric transforms. Gohberg, Kailath, and Olshevsky [Math. Comp., 64 (1995),
pp. 1557–1576] demonstrate numerically that their fast variation of the straightforward Gaussian
elimination with partial pivoting (GEPP) procedure on Cauchy-like matrices is numerically stable.
Sweet and Brent [Adv. Signal Proc. Algorithms, 2363 (1995), pp. 266–280] show that the error growth
in this variation could be much larger than would be encountered with straightforward GEPP in
certain cases. In this paper, we present a modified algorithm that avoids such extra error growth and
can perform a fast variation of Gaussian elimination with complete pivoting (GECP). Our analysis
shows that it is both efficient and numerically stable, provided that the element growth in the
computed factorization is not large. We also present a more efficient variation of this algorithm and
discuss implementation techniques that further reduce execution time. Our numerical experiments
show that this variation is highly efficient and numerically stable.

Key words. displacement equation, error analysis, fast algorithm, Toeplitz matrix

AMS subject classifications. 15A06, 65F05, 65G05

PII. S0895479895291273

1. Introduction. The Sylvester-type displacement equation for a matrix M ∈
Rn×n is

Ω ·M −M · Λ = G,(1.1)

where Ω and Λ ∈ Rn×n, and G = A ·B with A ∈ Rn×α and B ∈ Rα×n. The matrix
pair (A,B) (or the matrix G) is the generator of M with respect to Ω and Λ, α ≤ n is
the displacement rank with respect to Ω and Λ if rank(G) = α, and M is considered
to possess a displacement structure with respect to Ω and Λ if α � n. Such dis-
placement equations first appeared in [19], and the concept of displacement structure
was first introduced in [21]. The most general form of displacement structure, which
includes (1.1) as a special case, was introduced in [22].

1.1. Fast algorithms for structured matrices. The coefficient matrices in
many linear systems of equations arising from signal processing, control theory, and
interpolation applications often have such displacement structures. For example, the
Cauchy-like matrix is a matrix of the following form (see [11, 17]):

C =
(
aTi · bj
ωi − λj

)
1≤i,j≤n

(ai, bj ∈ Rα),
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where we assume that ωi 6= λj for 1 ≤ i, j ≤ n. Equivalently, we can define a
Cauchy-like matrix to be the unique solution to the displacement equation

Ω · C − C · Λ = A ·B

with

Ω = diag(ω1, . . . , ωn), Λ = diag(λ1, . . . , λn), and A =

 aT1
...
aTn

 , B = (b1, . . . , bn) .

In particular, C is a Cauchy matrix if aTi · bj = 1 for all i and j. We note that while
the rank of C can be as large as n, its displacement rank is at most α.

Other classes of structured matrices include the Toeplitz matrices and the Hankel
matrices. A Toeplitz matrix T is a matrix whose entries are constant along every diag-
onal (T = (ti−j)1≤i,j≤n), and a Hankel matrixH is a matrix whose entries are constant
along every antidiagonal (H = (hi+j−2)1≤i,j≤n). These two classes of matrices are
included in the larger class of Toeplitz-plus-Hankel matrices. A Toeplitz-plus-Hankel
matrix is the sum of a Toeplitz and a Hankel matrix.

There are many fast algorithms that solve the Toeplitz (or Hankel, or Toeplitz-
plus-Hankel) system of linear equations in O(n2) floating point operations, as opposed
to O(n3) floating point operations normally required for a general dense matrix; there
are also superfast algorithms that require only O(n log2

2 n) floating point operations.
However, all these fast and superfast algorithms are in general numerically unstable
for indefinite systems. For discussions of some of these methods, see [3, 8, 25] and the
references therein. Attempts to overcome this numerical instability using look-ahead
techniques result in algorithms that could require (n3) floating point operations in
the worst case [4, 16].

Recently, Fiedler [10], Gohberg and Olshevsky [12], and Pan [24] show that
Toeplitz and Hankel matrices can be tranformed into Cauchy-like matrices, and Go-
hberg and Olshevsky [14] present a fast variation (requiring only O(n2) floating point
operations) of the straightforward GEPP procedure to solve a Cauchy-like linear sys-
tem of equations. Heinig [17] is the first to solve the Toeplitz linear system of equa-
tions by transforming the Toeplitz matrix into a Cauchy-like matrix via fast Fourier
or trigonometric transforms, and then solving the Cauchy-like linear system of equa-
tions via a fast variation of the straightforward GEPP. Among other results, Gohberg,
Kailath, and Olshevsky [11] develop an improved version, Algorithm GKO, of Heinig’s
algorithm and demonstrate numerically that it is stable. They also transform the Han-
kel matrix and the Toeplitz-plus-Hankel matrix via fast trigonometric transforms into
Cauchy-like matrices.

Sweet and Brent [26] have done an error analysis for the algorithms of [11]. They
show that the error propagation of Algorithm GKO depends not only on the magni-
tudes of the triangular factors L and U in the LU factorization of the corresponding
Cauchy-like matrix but also on the generator for this Cauchy-like matrix. They show
that in some cases the generator can suffer large internal element growth and cause
a corresponding growth in the backward and forward error; their results imply that
Algorithm GKO is less numerically stable than the straightforward GEPP on the
Cauchy-like matrix.

1.2. Main results. In this paper, we show how to avoid such internal element
growth in the generator when factorizing the Cauchy-like matrix; we demonstrate
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how to triangular factorize this Cauchy-like matrix using a variation of GECP in
O(n2) floating point operations (see section 2). We compare a different choice of
displacement equation for the Toeplitz and Toeplitz-plus-Hankel matrices with those
in [11, 17] in terms of efficiency and numerical accuracy in factorizing the resulting
Cauchy-like matrix, and based on our analysis and with this choice, we provide a new
algorithm for factorizing a Toeplitz or Toeplitz-plus-Hankel matrix (see section 3)
that performs about 50% less floating point operations than Algorithm GKO of [11].
We report interesting numerical experiments with this new algorithm (see section 4).
And we perform an error analysis for fast Cauchy-like matrix factorization algorithms
and show that this new algorithm is numerically stable, provided that the magnitude
of the triangular factor U in the LU factorization is not large (see section 5).

We also discuss some implementation techniques that significantly reduce the
amount of memory traffic during the execution of this new algorithm. Our numerical
experiments indicate that they make the new algorithm up to a factor of 2 faster (see
section 4).

1.3. Overview. In section 2 we review the fast algorithm of [11] for Cauchy-like
matrices; we present a fast algorithm, Algorithm 2, that performs a variation of GECP
on such matrices and avoids internal element growth in the generator; and we provide
a variation of Algorithm 2 that is more efficient. In section 3 we compare different
choices of displacement equation for the Toeplitz and Toeplitz-plus-Hankel matrices
in terms of efficiency and numerical accuracy in factorizing the resulting Cauchy-like
matrix; based on Algorithm 2 and a new choice of displacement equation, we provide a
new algorithm, Algorithm 4, for solving the Toeplitz and Toeplitz-plus-Hankel system
of linear equations. In section 4 we present numerical experiments with Algorithm 4
and compare this algorithm with some other available algorithms. In section 5 we
perform an error analysis for Algorithms 2 and 4. And in section 6 we discuss some
extensions, draw conclusions, and discuss some open problems.

1.4. Notation and conventions. For a matrix A, |A| is the matrix of moduli
of the {ai,j}; Ap:q,s:k is a submatrix of A that selects rows p to q of columns s to
k; A:,s:k and As:k,: select sth through kth rows and columns, respectively; and when
s = k, we replace s : k by s. Without loss of generality we assume A to be real unless
it is specified to be complex. Our discussion for real matrices generally carries over
to the complex case.

We will use the max norm, the ∞-norm, and the 2-norm

‖A‖max = max
i,j
|ai,j |, ‖A‖∞ = max

i

∑
j

|ai,j |, ‖A‖2 = max
‖u‖2=1

‖A · u‖2,

as well as the Frobenius norm ‖A‖F =
√∑

i,j |ai,j |2. For a matrix A ∈ Rn×m, the
following inequalities hold:

‖A‖F√
n ·m ≤ ‖A‖max ≤ ‖A‖2 and

‖A‖2√
n
≤ ‖A‖∞ ≤

√
m · ‖A‖2 .(1.2)

P is a permutation matrix, and P (j, k) denotes the permutation that interchanges
the jth and kth rows of a matrix.

ε is the machine precision, and n is the order of the matrix to be factorized.
A flop is a floating point operation x◦y, where x and y are floating point numbers

and ◦ is one of +, −, ×, and ÷. Taking the absolute value or comparing two floating
point numbers is also counted as a flop.
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In our error analysis, we take the usual model of arithmetic:1

fl(x ◦ y) = (x ◦ y)(1 + η),(1.3)

where fl(x◦y) is the floating point result of the operation ◦ and |η| ≤ ε. For simplicity,
we ignore the possibility of overflow and underflow.

Let Ā = A−a ·bT , where A is a matrix and a and b are vectors, fl(Ā) is the result
of computing Ā in finite precision.

2. Gaussian elimination with pivoting for Cauchy-like matrices. Given
a matrix C ∈ Rn×n, the first step of Gaussian elimination is to zero-out the first
column of C below the diagonal entry:

C =
(
γ1 uT

r C̃2

)
=
(

1 0
l I

)
·
(
γ1 uT

0 C(2)

)
,(2.1)

where γ1 is the pivot, l = r/γ1, and C(2) = C̃2 − l · uT is the Schur complement of
γ1. Gaussian elimination then recursively applies this step to C(2). At the end of this
procedure, C is factored into C = L · U , where L is a lower triangular matrix and U
is an upper triangular matrix.

The following theorem shows that if C is a Cauchy-like matrix with displacement
rank α, so is C(2). The algorithms of Gohberg, Kailath, and Olshevsky [11] are based
on this theorem. More general forms of it appear in [11, 13, 14, 22], and a variation
of it appears in [17].

THEOREM 2.1. Let matrix C in (2.1) satisfy the displacement equation

Ω · C − C · Λ = A ·B(2.2)

with Ω = diag(ω1,Ω2) and Λ = diag(λ1,Λ2) ∈ Rn×n diagonal, A =
(aT1
Ã2

)
∈ Rn×α,

and B = (b1 B̃2) ∈ Rα×n. Assume that γ1 6= 0. Then C(2) satisfies the displacement
equation

Ω2 · C(2) − C(2) · Λ2 = A(2) ·B(2)(2.3)

with A(2) = Ã2 − l · aT1 ∈ R(n−1)×α and B(2) = B̃2 − b1 · uT /γ1 ∈ Rα×(n−1).
Hence one step of Gaussian elimination on C involves computing the first row

and column γ1, r, and u of C from (2.2) and computing the vector l. To recursively
apply this procedure to C(2), its generator (A(2), B(2)) is then computed from (2.3).

2.1. Partial pivoting. Partial pivoting is a strategy to reduce the element
growth in the LU factorization. To perform partial pivoting on the first column
of C, one finds its largest magnitude entry (kmax, 1), permute it to the (1, 1) entry to
get P (1, kmax) · C, and then applies one elimination step to P (1, kmax) · C. Let C be
a Cauchy-like matrix satisfying (2.2). Then for every k

(P (1, k) · Ω · P (1, k)) · (P (1, k) · C)− (P (1, k) · C) · Λ = (P (1, k) ·A) ·B,

where (P (1, k) · Ω · P (1, k)) is again a diagonal matrix. In particular, this implies that
P (1, kmax) · C is a Cauchy-like matrix. Algorithm 1 below performs fast GEPP for a

1This model excludes some CRAY machines that do not have a guard digit. Our error analysis
still holds for such machines with a few easy modifications.
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Cauchy-like matrix C. It is suggested by Gohberg, Kailath, and Olshevsky [11]. The
recursions for computing A and B (without explicitly computing L and U) and the
partial pivoting idea are from [17].

ALGORITHM 1. Fast GEPP for a Cauchy-like matrix.
L := 0; U := 0; P := I;
for k = 1 to n do

Lk:n,k := (Ωk:n,k:n − λkI)−1 ·Ak:n,: ·B:,k;
kmax := argmaxk≤j≤n |Lj,k|;
if kmax > k then

P := P · P (k, kmax); Ω := P (k, kmax) · Ω · P (k, kmax);
A = P (k, kmax) ·A; L:,1:k = P (k, kmax) · L:,1:k;

endif
Uk,k = Lk,k; Uk,k+1:n := Ak,: ·B:,k+1:n · (ωkI − Λk+1:n,k+1:n)−1;
Lk,k = 1; Lk+1:n,k := Lk+1:n,k/Uk,k;
Ak+1:n,: = Ak+1:n,:−Lk+1:n,k·Ak,:; B:,k+1:n = B:,k+1:n−B:,k+1·Uk,k+1:n/Uk,k.

endfor
Remark 1. If the input data A, B, Ω, and Λ are real, Algorithm 1 costs about

(4α+2.5)n2 flops; there is also potentially about n2/2 swaps of memory locations. For
a matrix transformed into a Cauchy-like matrix from a Toeplitz-plus-Hankel matrix
(see section 1 and section 3), the displacement rank α is at most 4. In this case,
Algorithm 1 costs about 18.5n2 flops.

Remark 2. If the input data are complex, Algorithm 1 costs about (16α+ 12)n2

flops2; there is also potentially about n2 swaps of memory locations. For a matrix
transformed into a Cauchy-like matrix from a Toeplitz matrix (see section 3), the
displacement rank α is at most 2. In this case, Algorithm 1 costs about 44n2 flops.

We observe that Algorithm 1 produces the same LU factorization as that of
straightforward GEPP on C. Hence, one potential problem with Algorithm 1 is the
element growth in the LU factorization. Let U be the upper triangular matrix in
the LU factorization, and let gPP ≡ ‖U‖max/‖C‖max be the element growth factor.
It is well known that gPP ≤ 2n−1 for GEPP, and although very rare, this bound is
attainable for certain dense matrices [15, pp. 115–116]. It is not clear whether this
bound is attainable for Cauchy-like matrices with low displacement rank. When large
element growth does occur, the computed LU factorizations can be very inaccurate.

2.2. Complete pivoting. Complete pivoting may in general further reduce el-
ement growth in the LU factorization. To perform complete pivoting on C, one finds
its largest magnitude entry (kmax, jmax) in the entire matrix, permute it to the (1, 1)
entry to get P (1, kmax) · C · P (1, jmax), and then applies the elimination step to this
permuted matrix. Let C be a Cauchy-like matrix satisfying equation (2.2). Then for
every 1 ≤ k, j ≤ n

(P (1, k) · Ω · P (1, k)) · (P (1, k) · C · P (1, j))
− (P (1, k) · C · P (1, j)) · (P (1, j) · Λ · P (1, j)) = (P (1, k) ·A) · (B · P (1, j)) .

In particular, this equation implies that P1,kmax ·C ·P1,jmax is still a Cauchy-like matrix.

2We count a complex addition or subtraction as 2 flops, a complex multiplication as 6 flops, a
complex division as 10 flops, and the total cost of taking absolute value and performing comparison
as 4 flops.
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However, finding the largest magnitude entry (kmax, jmax) of C costs O(n2) flops
in general. If this is done on every step of Gaussian elimination, then the total cost
will be O(n3), which is too expensive.

On the other hand, it is not absolutely necessary to use the largest magnitude
entry as pivot in order to reduce element growth. Any entry sufficiently large in
magnitude should do.

Define

ξmax = max
1≤i,j≤n

|ωi − λj | , ξmin = min
1≤i,j≤n

|ωi − λj | , and ρ =
ξmax

ξmin
.(2.4)

The following lemma tells us where to look for such an entry.
LEMMA 2.2. Let C be a Cauchy-like matrix satisfying (2.2), and let the jthmax

column be the largest 2-norm column of A ·B. Then

‖C‖max ≤
√
n · ρ · ‖C:,jmax‖∞ and ‖C‖F ≤ n · ρ · ‖C:,jmax‖∞.

Proof. Let |GiG,jmax | = ‖G:,jmax‖∞, where G = A ·B. Then for any 1 ≤ s, j ≤ n

|Cs,j | =
|Gs,j |
|ωs − λj |

≤ ‖G:,j‖2
|ωs − λj |

≤ ‖G:,jmax‖2
|ωs − λj |

≤
√
n · |GiG,jmax |
|ωs − λj |

=
√
n · |ωiG − λjmax |
|ωs − λj |

· |CiG,jmax |

≤
√
n · ξmax

ξmin
· ‖C:,jmax‖∞.

Hence, the first assertion of the lemma follows immediately.
For the second assertion we have

‖C‖2F =
∑
s,j

|Cs,j |2 =
∑
s,j

|Gs,j |2
|ωs − λj |2

≤
∑
s,j |Gs,j |2

ξ2
min

≤ n ·
∑
s |Gs,jmax |2
ξ2
min

≤ n ·
∑
s |Cs,jmax |2 · ξ2

max

ξ2
min

≤ n2 · ‖C:,jmax‖2∞ · ξ2
max

ξ2
min

.

To finish the proof, we take square roots on both sides.
To find the column jmax in Lemma 2.2, we QR factorize A to get A = A · R,

where A ∈ Rn×α is column orthogonal and R is upper triangular. We then compute
B = R ·B. It follows that

A ·B = A · B.(2.5)

Since A is column orthogonal, the jth columns of A ·B and B have the same 2-norm
for 1 ≤ j ≤ n. Algorithm 2 below differs from Algorithm 1 in that we compute
jmax by looking for the largest 2-norm column of B and we perform generator re-
decomposition (2.5). Algorithm 2 assumes that the matrix A is column orthogonal
on input.
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ALGORITHM 2. Fast GECP for a Cauchy-like matrix.
L := 0; U := 0; P := I; Q := I;
for k = 1 to n do

jmax := argmaxk≤j≤n ‖B:,j‖2;
if jmax > k then

Q := P (k, jmax) ·Q; Λ := P (k, jmax) · Λ · P (k, jmax);
B := B · P (k, jmax); U1:k,: = U1:k,: · P (k, jmax);

endif
Lk:n,k := (Ωk:n,k:n − λkI)−1 ·Ak:n,: ·B:,k;
kmax := argmaxk≤j≤n |Lj,k|;
if kmax > k then

P := P · P (k, kmax); Ω := P (k, kmax) · Ω · P (k, kmax);
A := P (k, kmax) ·A; L:,1:k := Pk,kmax · L:,1:k;

endif
Uk,k := Lk,k; Uk,k+1:n := Ak,: ·B:,k+1:n · (ωkI − Λk+1:n,k+1:n)−1;
Lk,k := 1; Lk+1:n,k := Lk+1:n,k/Uk,k;
Ak+1:n,: := Ak+1:n,:−Lk+1:n,k·Ak,:; B:,k+1:n := B:,k+1:n−B:,k+1·Uk,k+1:n/Uk,k;
Ak+1:n,: := A ·R (QR factorization of Ak+1:n,:); B := R ·B:,k+1:n;
Ak+1:n,: := A, B:,k+1:n := B.

endfor
For the rest of section 2.2, we derive an upper bound on the element growth factor

for Algorithm 2, using techniques similar to those used by Wilkinson [28] to bound the
growth factor for the straightforward GECP. In section 2.3 we will discuss Algorithm 2
in more detail, and in section 5.5 we will show that Algorithm 2 is numerically stable
provided that the U matrix is not large in norm.

Let

W(k) =

(
k

k∏
s=2

s1/(s−1)

)1/2

= O
(
k

1
2 + 1

4 ln k
)
,

which is Wilkinson’s upper bound on the growth factor for GECP on a k× k matrix.
Although W(k) is not a polynomial in k, it does not grow very fast either [28].

We will need the following well-known result.
LEMMA 2.3 (see Householder [20, p. 15]). For any C ∈ Rn×n, we have

|detC| ≤
(
‖C‖F√

n

)n
.

THEOREM 2.4. Let C be a Cauchy-like matrix satisfying (2.2), and let C =
P · L · U · Q be the LU factorization generated by Algorithm 2 in exact arithmetic.
Then the element growth factor gCP ≡ ‖U‖max/‖C‖max satisfies

gCP ≤
√
n · ρ

2+
∑n−1
k=1 1/k

· W(n).(2.6)

Proof. Without loss of generality we assume that pivoting has been done before
hand, so that Algorithm 2 does not perform any pivoting.



286 MING GU

For 1 ≤ k ≤ n, let C(k) ∈ R(n−k+1)×(n−k+1) be the Cauchy-like matrix to be
factored at the kth step in Algorithm 2, with γk being the pivot (the (1, 1) entry of
C(k)). We note that C(1) = C in this notation.

Since Algorithm 2 performs partial pivoting, we have |γk| = ‖C(k)
:,1 ‖∞, and since

the first column of the generator for C(k) has the largest column 2-norm, we have
‖C(k)‖F ≤ (n − k + 1) · ρ · |γk| according to Lemma 2.2. It follows from Lemma 2.3
that ∣∣∣det

(
C(k)

)∣∣∣ ≤ ( ‖C(k)‖F√
n− k + 1

)n−k+1

≤
(

(n− k + 1) · ρ · |γk|√
n− k + 1

)n−k+1

=
(√

n− k + 1 · ρ · |γk|
)n−k+1

.

On the other hand, ∣∣∣det
(
C(k)

)∣∣∣ = |γk| · · · |γn|.

Comparing these two relations we have

|γk| · · · |γn| ≤
(
ρ ·
√
n− k + 1 · |γk|

)n−k+1
, 1 ≤ k ≤ n.(2.7)

Since

s∑
k=1

1
(n− k)(n− k + 1)

+
1
n

=
1

n− s ,

taking the product of the (n − k)(n − k + 1)st root of (2.7) with k = 1, 2, . . . , n − 1
and the nth root of (2.7) with k = 1, we have

n−1∏
s=1

|γs|1/(n−s) · γn ≤
(
n−1∏
k=1

(
ρ
√
n− k + 1 · γk

)1/(n−k)
)
·
(
ρ
√
n · γ1

)
= ρ

1+
∑n−1
k=1 1/(n−k)

·
(
n ·

n−1∏
k=1

(n− k + 1)1/(n−k)

)1/2

·
(
n−1∏
k=1

|γk|1/(n−k)

)
· |γ1|,

which simplifies to

|γn| ≤ |γ1| · ρ
1+
∑n−1
k=1 1/k

·
(
n ·

n∏
k=2

k1/(k−1)

)1/2

= |γ1| · ρ
1+
∑n−1
k=1 1/k

· W(n).

Repeating the same argument allows us to conclude that

|γs| ≤ |γ1| · ρ
1+
∑n−1
k=1 1/k

· W(n) , 1 ≤ s ≤ n.

It now follows from Lemma 2.2 that

‖C(s)‖max ≤
√
n · ρ · |γs| ≤ |γ1| ·

√
n · ρ

2+
∑n−1
k=1 1/k

· W(n).
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To complete the proof, we observe that the sth row of the upper triangular matrix U
is the first row of C(s). Hence,

‖U‖max ≤ |γ1| ·
√
n · ρ

2+
∑n−1
k=1 1/k

· W(n).

The assertion of the theorem follows immediately from |γ1| ≤ ‖C‖max.
Remark 3. The determinant argument in the proof of Theorem 2.4 ignores the fact

that C is a Cauchy-like matrix; hence, the upper bound provided by (2.6) could be
much larger than necessary, especially for Cauchy-like matrices with low displacement
rank.

Remark 4. Since
∑n−1
k=1 1/k = lnn+O(1), the bound (2.6) simplifies to

gCP ≤ nln ρ+ 1
4 lnn+O(1).

Assume that ρ = O(nβ) for a constant β, then

gCP ≤ n
4β+1

4 lnn+O(1).

If C is transformed into a Cauchy-like matrix from a Toeplitz matrix (or a Toeplitz-
plus-Hankel matrix) via any of the transforms discussed in section 3, then 1 ≤ β ≤ 3.
Although this upper bound is much larger than W(n), it is still much smaller than
2n−1.

2.3. Further considerations. In addition to the potential element growth in
the LU factorization, Sweet and Brent [26] show that the generator (A,B) updated
as in Algorithm 1 could also grow so that

‖|Ak:n,:| · |B:,k:n|‖2 � ‖Ak:n,: ·B:,k:n‖2

for some k. And if this happens, the backward and forward error could become large.
However, such element growth in the generator can easily be avoided. Since Ak:n,:

is kept column orthogonal for all k in Algorithm 2, it follows that

‖|Ak:n,:| · |B:,k:n|‖2 ≤ ‖|Ak:n,:|‖2 · ‖|B:,k:n|‖2 ≤ ‖Ak:n,:‖F · ‖B:,k:n‖F
≤
√
α · ‖B:,k:n‖F ≤ α · ‖B:,k:n‖2 = α · ‖Ak:n,: ·B:,k:n‖2.

Hence, keeping Ak:n,: column orthogonal for all k also has the additional advantage of
avoiding potential element growth within the generator (A,B). In fact, such growth
can be avoided as long as Ak:n,: is well conditioned.

From a practical point of view, it does not seem necessary to column orthogonal-
ize Ak:n,: at every step just to keep it well conditioned, nor does it seem necessary to
perform pivoting on the columns at every step to reduce element growth. As a prac-
tical modification to Algorithm 2, the following algorithm performs these operations
only once in every K steps, where K is a user-provided positive integer. It assumes
that the matrix A is initially column orthogonal.

ALGORITHM 3. Practical modification to Algorithm 2.
L := 0; U := 0; P := I; Q := I;
for k = 1 to n do

if (mod(k,K) = 1) then
jmax := argmaxk≤j≤n ‖B:,j‖2;
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if jmax > k then
Q := P (k, jmax) ·Q; Λ := P (k, jmax) · Λ · P (k, jmax);
B := B · P (k, jmax); U1:k,: = U1:k,: · P (k, jmax);

endif
endif
Lk:n,k := (Ωk:n,k:n − λkI)−1 ·Ak:n,: ·B:,k;
kmax := argmaxk≤j≤n |Lj,k|;
if kmax > k then

P := P · P (k, kmax); Ω := P (k, kmax) · Ω · P (k, kmax);
A := P (k, kmax) ·A; L:,1:k := Pk,kmax · L:,1:k;

endif
Uk,k := Lk,k; Uk,k+1:n := Ak,: ·B:,k+1:n · (ωkI − Λk+1:n,k+1:n)−1;
Lk,k := 1; Lk+1:n,k := Lk+1:n,k/Uk,k;
Ak+1:n,: := Ak+1:n,:−Lk+1:n,k·Ak,:; B:,k+1:n := B:,k+1:n−B:,k+1·Uk,k+1:n/Uk,k;
if (mod(k,K) = 0) then

Ak+1:n,: := A ·R (QR factorization of Ak+1:n,:); B := R ·B:,k+1:n;
Ak+1:n,: := A, B:,k+1:n := B.

endif
endfor
Remark 5. The cost for recomputing Ak+1:n,: and B:,k+1:n through QR factoriza-

tions is about 5/2α2n2 flops in real arithmetic and 10α2n2 flops in complex arithmetic.
However, if α is large and if QR factorization is performed at every step, these costs
can be brought down to O(αn2) by using QR updating techniques (see [15, section
12]). Our main interest in this paper is to use Algorithm 3 to factorize the Cauchy-
like matrix that is transformed from a Toeplitz-plus-Hankel matrix (cf. section 1 and
section 3). For such matrices α is at most 4. In our implementation, we recompute
the QR factorization every K = 10 steps.

3. Factorizing Toeplitz-plus-Hankel-like matrices.

3.1. Factorizing Toeplitz-plus-Hankel-like matrices. Define

Yδ1,δ2 =



δ1 1 0 · · · 0

1 0 1 · · ·
...

0 1
. . . . . . 0

...
. . . . . . 0 1

0 · · · 0 1 δ2


,(3.1)

and Ω = Y1,1 and Λ = Y1,−1. It is easy to verify that every Toeplitz-plus-Hankel
matrix satisfies the displacement equation (1.1) with G having nonzero entries only
in its first and last rows and columns, thus a matrix of rank at most 4. Hence, the
displacement rank of a Toeplitz-plus-Hankel matrix is at most 4 (cf. [11, 18]). In
particular, these results are true for every Toeplitz or Hankel matrix.

LEMMA 3.1. Let M ∈ Rn×n be a matrix satisfying the displacement equation

Y1,1 ·M −M · Y1,−1 = A ·B,(3.2)
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where A ∈ Rn×α and B ∈ Rα×n. Then QT1,1 ·M · Q1,−1 is a Cauchy-like matrix:

D1,1 ·
(
QT1,1 ·M · Q1,−1

)
−
(
QT1,1 ·M · Q1,−1

)
· D1,1 =

(
QT1,1 ·A

)
· (B · Q1,−1) ,(3.3)

where

Q1,1 =

√
2
n
·
(
qj cos

(2k − 1)(j − 1)π
2n

)
1≤k,j≤n

and

Q1,−1 =

(√
2
n
·
(

cos
(2k − 1)(2j − 1)π

4n

))
1≤k,j≤n

are orthogonal matrices with q1 = 1
2 and qj = 1 for 2 ≤ j ≤ n; and

D1,1 = 2 · diag
(

1, cos
π

n
, . . . , cos

(n− 1)π
n

)
,

D1,−1 = 2 · diag
(

cos
π

2n
, cos

3π
2n
, . . . , cos

(2n− 1)π
2n

)
.

Proof. It can be checked that

Y1,1 = Q1,1 · D1,1 · QT1,1, Y1,−1 = Q1,−1 · D1,−1 · QT1,−1.

The lemma follows immediately by substituting the above equation into (3.2) and
multiplying by QT1,1 from the left and by Q1,−1 from the right.

We call a matrix M Toeplitz-plus-Hankel-like if it satisfies the displacement equa-
tion (3.2) with α� n (cf. [11]). To solve a Toeplitz-plus-Hankel-like linear system of
equations

M · x = z,

one can transform M into a Cauchy-like matrix using Lemma 3.1, factorize this matrix
by using any of the methods discussed in section 2 to obtain a factorization of the
form

M = QT1,1 · P · L · U ·Q · QT1,−1,(3.4)

and compute the solution to the linear system using this factorization. The idea
of transforming a Toeplitz matrix into a Cauchy-like matrix was first proposed by
Heinig [17], and the idea of transforming a Toeplitz-plus-Hankel matrix into a Cauchy-
like matrix was first proposed by Gohberg, Kailath, and Olshevsky [11].

We summarize the above in Algorithm 4, assuming that M satisfies (3.2) with A
column orthogonal.

ALGORITHM 4. Solving M · x = z.
1. Set Ω := D1,1; Λ := D1,−1; and compute A := QT1,1 ·A; B := B · Q1,−1.
2. Compute the factorization (3.4) by applying one of Algorithms 1, 2, and 3

with Ω, Λ, A, and B.
3. Compute x = Q1,−1 ·QT · U−1 · L−1 · PT · Q1,1 · z.
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Both Q1,1 and Q1,−1 are fast trigonometric transform matrices; hence, the cost
of step 1 is about O(α n log2 n) flops via 2α such transforms; similarly the cost of
step 3 is about 2n2 flops via two fast trigonometric transforms, two permutations,
and forward and backward substitution. The bulk of the cost is in step 2, factorizing
the Cauchy-like matrix in (3.3).

For a real Toeplitz-plus-Hankel matrix, the displacement rank α is at most 4
in (3.3). When Algorithm 3 is used in step 2, the cost for step 2 is about 18.5n2 +
O(n2/K) flops for a user-specified integerK (see Remark 5). Hence, Algorithm 4 takes
about 20.5n2 + O(n2/K) flops to solve a Toeplitz-plus-Hankel system of equations.
This is also true for a Toeplitz or a Hankel system of equations.

3.2. Comparison with previous methods. The Toeplitz-plus-Hankel matrix
satisfies other displacement equations, too. It is known that [11, 18] for Ω = Y0,0 and
Λ = Y1,1 every Toeplitz-plus-Hankel matrix satisfies the displacement equation (1.1)
with G having nonzero entries only in its first and last rows and columns. It is known
that matrix Y0,0 can be diagonalized using fast trigonometric transform matrices (see,
for example, [2]):

Y0,0 = Q0,0 · D0,0 · QT0,0,

where Q0,0 = 2
n+1 · (sin

kjπ
n+1 )1≤k,j≤n, and D0,0 = 2 · diag(cos π

n+1 , . . . , cos nπ
n+1 ). Go-

hberg, Kailath, and Olshevsky [11] suggest that to solve a Toeplitz-plus-Hankel system
of linear equations, one transforms the coefficient matrix to a Cauchy-like matrix C
that satisfies

D0,0 · C − C · D1,−1 = A ·B,(3.5)

with rank(A), rank(B) ≤ 4, and one then applies Algorithm 1 to C. The resulting
algorithm is named Algorithm TpH.

However, Algorithm TpH has some disadvantages over Algorithm 4. It can be
shown that the parameter ρ defined in (2.4) is O(n3) for (3.5) and O(n2) for (3.3).
Our upper bound on gCP in section 2.2 and error analysis in section 5 suggest that
the smaller ρ is, the smaller the potential element growth and backward error. Hence,
Algorithm TpH could be potentially less accurate than Algorithm 4. Another disad-
vantage for Algorithm TpH is that in order for the fast trigonometric transforms with
Q0,0 and Q1,1 to be very efficient, both n and n+ 1 must be products of small prime
numbers, whereas for Algorithm 4, it is sufficient that n be a product of small prime
numbers.

If one wants to solve a Toeplitz system of linear equations, then other displacement
structures may be used. Define

Zδ =



0 0 · · · 0 δ
1 0 · · · · · · 0

0 1
. . .

...
...

. . . . . .
...

0 · · · 0 1 0

 ,

and let Ω = Z1 and Λ = Z−1. Kailath, Kung, Morf [21] show that every Toeplitz
matrix satisfies the displacement equation (1.1) with G having nonzero entries only
in its first row and last column, a matrix of rank at most 2. Hence, the displacement
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rank of a Toeplitz matrix is at most 2 with respect to Z1 and Z−1. The following
result can be found in [17].

PROPOSITION 3.2. Let M ∈ Rn×n be a matrix satisfying the displacement equa-
tion

Z1 ·M −M · Z−1 = A ·B,(3.6)

where A ∈ Rn×α and B ∈ Rα×n. Then F ·M ·D−1
0 · F∗ is a Cauchy-like matrix

D1 · (F ·M ·D−1
0 · F∗)− (F ·M ·D−1

0 · F∗) · D−1 = (F ·A) · (B ·D∗0 · F∗) ,(3.7)

where F =
√

1
n · (e

2πi
n (k−1)(j−1))1≤k,j≤n is the normalized inverse discrete Fourier

transform matrix

D1 = diag
(

1, e
2πi
n , . . . , e

2πi
n (n−1)

)
, D−1 = diag

(
e
πi
n , e

3πi
n , . . . , e

(2n−1)πi
n

)
.

Heinig [17] suggests that for a Toeplitz matrix T , one can convert it into the
Cauchy-like matrix in (3.7), and Gohberg, Kailath, and Olshevsky [11] suggest that
one can rapidly factorize this Cauchy-like matrix using Algorithm 1. The resulting
algorithm is called Algorithm GKO in [11]. Since the cost of a fast algorithm for
factorizing a Cauchy-like matrix depends linearly on the displacement rank (see Re-
marks 1 and 2), this method is more efficient than Algorithm 4 if T is given to be a
complex matrix.

However, the situation is different if T is real (as often happens in practice).
The total cost of complex forward and backward substitution is about 8n2 flops; and
the total cost of factorizing the Cauchy-like matrix in (3.7) is about 44n2 flops for
Algorithm 1 (see Remark 2). Using the above procedure, a Toeplitz system is thus
solved in about 52n2 flops. On the other hand, by treating a Toeplitz matrix as
a Toeplitz-plus-Hankel matrix, we can solve a Toeplitz system using Algorithm 4,
which completely avoids complex arithmetic. As noted in section 3.1, the cost of
Algorithm 4 is about 20.5n2 flops for large K, less than half the cost of Algorithm
GKO. Furthermore, operating in real arithmetic reduces the storage requirements by
half, a big saving for large matrices.

On the other hand, Algorithm GKO does have an advantage over Algorithm 4: it
can be shown that the parameter ρ defined in (2.4) is O(n) for (3.7), thus Algorithm
GKO could be more accurate. We will address this issue in section 4.

4. Numerical experiments. We have implemented Algorithm 4 in Fortran
and have performed a large number of numerical experiments with it to investigate
its behavior in finite arithmetic and to compare it with other available algorithms. In
this section we discuss some implementation issues and report some of these numerical
experiments. We chose Algorithm 3 with K = 10 in step 2 of Algorithm 4.

4.1. Implementation issues. A natural way to implement Algorithm 3 is to
keep permutations P and Q in vectors and keep both L and U in a single matrix W
by storing L in the strict lower triangular part of W (excluding the diagonal) and U
upper triangular part (including the diagonal).

However, arrays are stored columnwise in Fortran. Note that U is generated
row-by-row in Algorithm 3. In order to store U , columns of W have to be moved
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TABLE 4.1
Execution times.

Matrix Order Execution Time (seconds)

type n GEPP-I GEPP-II LEVIN NEW-I NEW-II

160 .3×10−1 .3×10−1 .1×100 .3×10−1 .3×10−1

320 .2×100 .2×100 .4×100 .9×10−1 .1×100

Type 1 640 .2×101 .2×101 .2×101 .5×100 .4×100

1280 .2×102 .1×102 .7×101 .2×101 .1×101

2560 .1×103 .7×102 .3×102 .1×102 .6×101

160 .3×10−1 .3×10−1 .1×100 .2×10−1 .3×10−1

320 .2×100 .1×100 .5×100 .9×10−1 .9×10−1

Type 2 640 .2×101 .1×101 .2×101 .5×100 .4×100

1280 .2×102 .1×102 .7×101 .2×101 .1×101

2560 .1×103 .7×102 .3×102 .1×102 .6×101

160 .3×10−1 .3×10−1 .1×100 .3×10−1 .3×10−1

320 .2×100 .2×100 .5×100 .9×10−1 .9×10−1

Type 3 640 .1×101 .1×101 .2×101 .5×100 .3×100

1280 .5×101 .1×102 .7×101 .2×101 .1×101

2560 .3×102 .7×102 .3×102 .1×102 .5×101

160 .2×10−1 .2×10−1 .1×100 .3×10−1 .3×10−1

320 .1×100 .1×100 .4×100 .9×10−1 .1×100

Type 4 640 .1×101 .1×101 .2×101 .5×100 .3×100

1280 .1×102 .8×101 .7×101 .2×101 .1×101

2560 * * * .1×102 .6×101

into and brought out of fast memory for most steps of elimination for large n. This
causes a significant amount of memory traffic between slow and fast memory levels
in the memory hierarchy. For more detailed discussions on memory traffic, see, for
example, [9, section 2.6].

We reduce this memory traffic by storing rows of U columnwise in Algorithm 3.
Let S ∈ Rn×n be the matrix that is 1 on the main antidiagonal and 0 everywhere
else. For n = 2

S =
(

0 1
1 0

)
.

It follows that Ũ ≡ S · UT · S is an upper triangular matrix, whose kth column is
the (n − k + 1)st row of U in the reverse order. The backward substitution pro-
cedure for computing U−1 · y in Algorithm 3 can be rewritten as a forward sub-
stitution as S · ((ŨT )−1 · (S · y)). Our numerical experiments indicate that this
technique speeds up both Algorithm 3 and Algorithm 4 by up to a factor of 2 (see
Table 4.1).

Our numerical experiments indicate that Algorithm 2 is slightly less accurate
than straightforward GEPP in many cases. Hence, we perform one step of iterative
refinement for Algorithm 4 to get the following (see [15, section 3.5]).

ALGORITHM 5. Solving M · x = z with iterative refinement.
1. Compute the factorization M = QT1,1 · P · L · U · Q · QT1,−1 and the solution
x(1) = Q1,−1 ·QT · U−1 · L−1 · PT · Q1,1 · z using Algorithm 4.

2. Compute the residual r(1) = z −M · x(1).
3. Compute the refined solution x(2) = x(1)+Q1,−1 ·QT ·U−1 ·L−1 ·PT ·Q1,1 ·r(1).
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4. Compute kmax = argmin1≤k≤2 ‖z −M · x(k)‖.
5. Return x(kmax) as the computed solution.

The norm in step 4 can be any operator norm.
Our numerical experiments show that Algorithm 5 is in general more accurate

than Algorithm 4. Since the residual vectors z − M · x(k) can be computed in
O(n log2 n) flops using convolution (see [23]), the extra cost for computing x(kmax)

involves basically a forward and a backward substitution, about 2n2 flops, an increase
of about 10% over the cost of Algorithm 4 (see section 3.1).

4.2. Numerical results. The computations were done on an IBM RS6000 work-
station in double precision where the machine precision is ε ≈ 1.1× 10−16.

We compared the following algorithms3.
• GEPP-I: LAPACK [1] subroutines DGETRF+DGETRS for solving a general

dense linear system of equations using GEPP, with Fortran BLAS and without
iterative refinement; cost: O(n3) flops.
• GEPP-II: LAPACK routines DGETRF+DGETRS for solving a general dense

linear system of equations using GEPP, with optimized BLAS and one step
of iterative refinement; cost: O(n3) flops.

• LEVIN: The algorithm available on Netlib; cost: O(n2) flops.
• NEW-I: Implementation of Algorithm 4 by storing rows of U row-wise and

with no iterative refinement; cost: O(n2) flops.
• NEW-II: Implementation of Algorithm 4 by storing rows of U columnwise

and with one step of iterative refinement; cost: O(n2) flops.
We solve Toeplitz linear systems of equations T · x = z for random right-hand

side vectors z and the following types of Toeplitz matrices T = (tk−j)1≤k,j≤n:
• Type 1: {tk} randomly generated from uniform distribution on (0, 1). A Type

1 matrix is usually well conditioned.
• Type 2: t0 = 2ω and tk = sin(2πωk)

πk for k 6= 0. ω ∈ [0, 1/2] is a parameter.
A Type 2 matrix is also called the Prolate matrix in [11, 27]; it is very ill
conditioned for small ω. In our experiments we took ω = 0.25.
• Type 3: tk = ak

2
with 0 < a < 1. A Type 3 matrix is also called the Gauss

matrix in [11]; it is very ill conditioned for a close to 1. In our experiments
we took a = 0.95.
• Type 4: t0 is randomly generated from uniform distribution in (0.9, 1); tk =
−t0 for k > 0; tk = 0 for −n/2 < k < 0; and the rest are randomly generated
from uniform distribution in (0, 1). The straightforward GEPP produces huge
element growth on a Type 4 matrix.

Our numerical results are summarized in Tables 4.1 and 4.2. NEW-II is faster than
NEW-I by a factor of up to 2 for large n and for all four types of matrices, and is more
accurate than NEW-I for Types 1 and 4 matrices. On the other hand, GEPP-II is as
accurate as GEPP-I but is up to a factor of 2 faster. For n = 2560, NEW-II is up to
17 times faster than GEPP-I and up to 10 times faster than GEPP-II, respectively,
whereas LEVIN is only up to 3 times faster than GEPP-I and up to 2 times faster than
GEPP-II, respectively. Both NEW-I and NEW-II solve all linear systems successfully,
whereas GEPP-I, GEPP-II, and LEVIN fail on Type 4 matrices.

3This list of algorithms does not include those developed by Chandrasekaran and Sayed [5],
Gohberg, Kailath, and Olshevsky [11], and Heinig [17]. The algorithm of [5] was implemented in
matlab, the algorithm of [11] was implemented in C but was inaccessible to us, and the algorithm
of [17] was never efficiently implemented.
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TABLE 4.2
Relative residuals.

Matrix Order
‖Tx− b‖1√

n · ε · (‖T‖1 · ‖x‖1 + ‖b‖1)

Type n GEPP-I GEPP-II LEVIN NEW-I NEW-II

160 .8×10−1 .9×10−1 .4×101 .1×102 .9×10−1

320 .9×10−1 .8×10−1 .3×102 .4×102 .1×100

Type 1 640 .8×10−1 .1×100 .1×103 .4×102 .5×10−1

1280 .2×100 .2×100 .2×102 .7×102 .2×100

2560 .9×10−1 .9×10−1 .3×102 .2×103 .9×10−1

160 .8×10−1 .1×100 .1×101 .5×100 .5×100

320 .9×10−1 .9×10−1 .1×101 .4×100 .4×100

Type 2 640 .8×10−1 .1×100 .7×100 .2×100 .2×100

1280 .7×10−1 .9×10−1 .2×101 .2×100 .2×100

2560 .7×10−1 .7×10−1 .7×103 .7×100 .7×100

160 .2×10−1 .3×10−1 .8×10−1 .1×101 .1×101

320 .2×10−1 .2×10−1 .7×10−1 .9×100 .9×100

Type 3 640 .1×10−1 .2×10−1 .6×10−1 .1×101 .1×101

1280 .9×10−2 .1×10−1 .5×10−1 .5×100 .5×100

2560 .7×10−2 .9×10−2 .3×10−1 .5×100 .5×100

160 .4×1015 .4×1015 .6×1013 .3×101 .1×100

320 .2×1015 .2×1015 .4×1013 .5×101 .2×10−1

Type 4 640 .2×1015 .2×1015 .2×1013 .1×102 .4×10−1

1280 .1×1015 .1×1015 .9×1013 .5×101 .1×100

2560 * * * .4×101 .2×10−1

5. Error analysis. In this section, we do a backward error analysis for Algo-
rithms 1 through 3 by establishing an ∞-norm upper bound on the matrix H in the
equation

L̂ · Û = C +H,(5.1)

where C is the Cauchy-like matrix to be factored, L̂ · Û is the computed LU factor-
ization, and we assume that no pivoting is done. In the following, we first establish
some notation and then analyze error propagation by using induction. At the end of
this section we will briefly discuss error propagation for Algorithm 4.

5.1. Notation. At the kth step of elimination in finite arithmetic, let Ĉ(k) =

( γk (u(k))T

r(k) C̃k
) be the Cauchy-like matrix satisfying the displacement equation

Ωk · Ĉ(k) − Ĉ(k) · Λk = Â(k) · B̂(k)(5.2)

with Ωk = diag(ωk,Ωk+1) and Λk = diag(λk,Λk+1) ∈ R(n−k+1)×(n−k+1) diagonal;

Â(k) =

(
(â(k)
k )T

Ãk+1

)
=


(â(k)
k )T
...

(â(k)
n )T

 , B̂(k) =
(
b̂
(k)
k B̃k+1

)
=
(
b̂
(k)
k , · · · , b̂(k)

n

)
.
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For k = 1 we drop the superscripts so that Ĉ(1) = C, Â(1) = A, B̂(1) = B, etc., and
(5.2) reduces to (2.2).

To perform elimination we write

Ĉ(k) =
(

1 0
l(k) I

)
·
(
γk (u(k))T

0 C(k+1)

)
,

where l(k) = r(k)/γk and C(k+1) = C̃k+1 − l(k) · (u(k))T satisfies the displacement
equation

Ωk+1 · C(k+1) − C(k+1) · Λk+1 = A(k+1) ·B(k+1)

with A(k+1) = Ãk+1 − l(k) · (â(k)
k )T and B(k+1) = B̃k+1 − b̂(k)

k · (u(k))T /γk.
Let the computed γk, r(k), and u(k) be γ̂k, r̂(k), and û(k), and let l̂(k) = fl(r̂(k)/γ̂k).

For k = 1, we write r = r(1), u = u(1), l = l(1), and r̂ = r̂(1), û = û(1), l̂ = l̂(1).
Let Ḡ(k+1) = Ā(k+1) · B̄(k+1) with Ā(k+1) = Ãk+1 − l̂(k) · (â(k)

k )T and B̄(k+1) =
B̃k+1−b̂(k)

k ·(û(k))T /γ̂k. The generator at the (k+1)st step is Ĝ(k+1) = Â(k+1) ·B̂(k+1).
For Algorithm 1, Â(k+1) = fl

(
Ā(k+1)

)
and B̂(k+1) = fl

(
B̄(k+1)

)
, and for Algorithm 3,

Â(k+1) is the computed Q factor in the QR factorization of fl(Ā(k+1)) and B̂(k+1) is
the product of the R factor and fl(B̄(k+1)). We further define C̄(k+1) to be the matrix
satisfying the displacement equation

Ωk+1 · C̄(k+1) − C̄(k+1) · Λk+1 = Ḡ(k+1).(5.3)

Define

τ = max
2≤k≤n

‖Ĝ(k) − Ḡ(k)‖∞, µ = max
2≤k≤n

‖Ĉ(k)‖max;(5.4)

and

ν = max
1≤k≤i≤n

|â(k)
i |T · |b̂

(k)
k |

|γ̂k|
, ψ =

max1≤k≤n

∥∥∥|Â(k)| · |B̂(k)|
∥∥∥

max

max1≤k≤n

∥∥∥Â(k) · B̂(k)
∥∥∥

max

.(5.5)

τ is a measure of the accuracy in computing the generators; µ is a measure of element
growth in the LU factorization, since it is easy to show that

µ ≤ ‖|L̂| · |Û |‖max +O(ε);(5.6)

ψ ≥ 1 is of order 1 in general, but it could happen that ψ � 1 if both Â(k) and
B̂(k) are ill conditioned for some k. We will further discuss these four parameters in
sections 5.4 and 5.5.

LEMMA 5.1. For any 1 ≤ k ≤ i, j ≤ n

|â(k)
i |T · |b̂

(k)
j | ≤ ξmax · ψ · µ.

Proof. Let |(â(f)
s )T · b̂(f)

m | = max1≤h≤n ‖Â(h) · B̂(h)‖max. Then

|â(k)
i |T · |b̂

(k)
j | ≤ ψ · |(a(f)

s )T · b(f)
m | ≤ ψ · ‖C(f)‖max · |ωs − λm|

≤ ξmax · ψ · µ.
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5.2. Error propagation for one step of elimination. Let L̂(2) ·Û (2) = Ĉ(2)+
H(2) be the computed LU factorization of Ĉ(2). Then the computed LU factorization
of C satisfies

L̂ =
(

1 0
l̂ L̂(2)

)
and Û =

(
γ̂1 ûT

0 Û (2)

)
.

It follows that

L̂ · Û =
(

γ̂1 ûT

l̂γ̂1 L̂(2) · Û (2) + l̂ · ûT
)

=
(
γ1 uT

r C̃2

)
+
(
γ̂1 − γ1 (û− u)T

l̂γ̂1 − r H(2) + (Ĉ(2) − C̄(2)) + (C̄(2) − C̃2 + l̂ · ûT )

)
.

Since M =
(
γ1 uT

r C̃2

)
, (5.1) and the last equation imply

H =
(
γ̂1 − γ1 (û− u)T

l̂γ̂1 − r H(2) + (Ĉ(2) − C̄(2)) + (C̄(2) − C̃2 + l̂ · ûT )

)
.(5.7)

For the rest of section 5.2, we bound |γ̂1 − γ1|, |û − u|, |l̂γ̂1 − r|, |Ĉ(2) − C̄(2)|, and
|C̄(2) − C̃2 + l̂ · ûT |. We obtain an upper bound on H by induction in section 5.3.

Displacement equation (5.2) for k = 1 implies that

(5.8)
γ1 = (ω1 − λ1)−1 · aT1 · b1, r = (Ω1 − λ1I)−1 · Ã2 · b1, u = (ω1I − Λ1)−1 · B̃T2 · a1.

For both Algorithm 1 and Algorithm 3, the errors in these quantities and l can be
bounded as follows, using our model of arithmetic (1.3) and Lemma 5.1:

|γ̂1 − γ1| ≤ αη|ω1 − λ1|−1 · |a1|T · |b1| ≤
αηψµξmax

ξmin
,

|r̂ − r| ≤ αη|Ω1 − λ1I|−1 · |Ã2| · |b1| ≤
αηψµξmax

ξmin
· e,(5.9)

|û− u| ≤ αη|ω1I − Λ1|−1 · |B̃T2 | · |a1| ≤
αηψµξmax

ξmin
· e,

and |l̂ − r̂/γ̂1| ≤ η|l̂|, where4 η is a small multiple of ε, and e = (1, . . . , 1)T . These
relations imply that

|l̂γ̂1 − r| ≤ |l̂γ̂1 − r̂|+ |r̂ − r|

≤ η|γ̂1| · |l̂|+
αηψµξmax

ξmin
· e.(5.10)

Since

Ω2 · C̄(2) − C̄(2) · Λ2 = Ḡ(2) and Ω2 · Ĉ(2) − Ĉ(2) · Λ2 = Ĝ(2),

4Throughout section 5 we use the same η in several similar error bounds; hence, η is in fact the
maximum of all these different ηs.
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by subtracting these two equations we get

Ω2 ·
(
Ĉ(2) − C̄(2)

)
−
(
Ĉ(2) − C̄(2)

)
· Λ2 = Ĝ(2) − Ḡ(2).

By definition (5.4) this implies

‖Ĉ(2) − C̄(2)‖∞ ≤
τ

ξmin
.(5.11)

Finally, we bound H̄(2) ≡ C̄(2) − C̃2 + l̂ · ûT . Write l̂ = (l̂2, . . . , l̂n)T and û =
(û2, . . . , ûn)T . According to (5.2) and (5.3), the (i− 1, j− 1) entries of matrices C̄(2),
C̃, and l̂ · ûT are (aTi − l̂i · aT1 ) · (bj − b1 · ûj/γ̂1)/(ωi− λj), aTi · bj/(ωi− λj), and l̂i · ûj
for 2 ≤ i, j ≤ n. Thus

|H̄(2)
i−1,j−1| =

∣∣∣∣∣ (aTi − l̂i · aT1 ) · (bj − b1 · ûj/γ̂1)− aTi · bj
ωi − λj

+ l̂i · ûj

∣∣∣∣∣
=

∣∣∣∣∣ l̂iûj(ωi − λj + aT1 · b1/γ̂1)− l̂iaT1 · bj − ûj · aTi b1/γ̂1

ωi − λj

∣∣∣∣∣ .
Equation (5.8) implies that

aT1 · b1 = (ω1 − λ1) · γ1, a
T
1 · bj = (ω1 − λj) · uj , and aTi · b1 = (ωi − λ1) · ri.

Plugging these relations into the above and simplifying we have

|H̄(2)
i−1,j−1| =

∣∣∣∣∣∣ l̂iûj ·
(ω1−λ1)(γ1−γ̂1)

γ̂1
− l̂i(ω1 − λj)(uj − ûj)− ûj · (ωi−λ1)(ri−l̂iγ̂1)

γ̂1

ωi − λj

∣∣∣∣∣∣
≤
|l̂i| · |ûj | · |ω1−λ1|·|γ1−γ̂1|

|γ̂1| + |l̂i| · |uj − ûj | · |ω1 − λj |+ |ûj | · |ωi−λ1|·|ri−l̂iγ̂1|
|γ̂1|

ξmin
.

By relation (5.9) and definition (5.5) we have

|ω1 − λ1| · |γ1 − γ̂1|
|γ̂1|

≤ αη|a1|T · |b1|
|γ̂1|

≤ αην;

further, by using relation (5.9) we have

|ωi − λ1| · |ri − γ̂1 l̂i|
|γ̂1|

≤ η|ωi − λ1| · |l̂i|+
αη|ai|T · |b1|
|γ̂1|

≤ ηξmax · |l̂i|+ αην.

Plugging these relations into the last bound on |H̄(2)
i−1,j−1|, rewriting the result in

matrix form, and simplifying we have

|H̄(2)| ≤ αην · |l̂| · |û|T + |l̂| · |u− û|T · |ω1I − Λ2|+ ηξmax|l̂| · |û|T + αην · e · |û|T
ξmin

≤ (αν + ξmax)η
ξmin

· |l̂| · |û|T +
αη

ξmin
· |l̂| · |a1|T · |B̃2|+

ανη

ξmin
· e · |û|T ,
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where we have used relations (5.9). According to Lemma 5.1, the last relation can be
further simplified to

|H̄(2)| ≤ (αν + ξmax)η
ξmin

· |l̂| · |û|T +
αηψµξmax

ξmin
· |l̂| · eT +

ανη

ξmin
· e · |û|T

≤ αη(ν + ψ · ξmax)
ξmin

· (|l̂|+ e) · (|û|+ µ · e)T .(5.12)

5.3. Error analysis for factorizing Cauchy-like matrices. Let Xn ∈ Rn×n

and Yn ∈ Rn×n be lower and upper triangular matrices such that

Xn =


1 0 · · · 0

1 1
. . .

...
...

. . . . . . 0
1 · · · 1 1

 and Yn =


1 1 · · · 1

0 1
. . .

...
...

. . . . . . 1
0 · · · 0 1

 .

We also define

∆(k) =
n∑

s=k+1

(
0 0
0 |C̄(s) − Ĉ(s)|

)
.

The following theorem gives an upper bound on ‖H‖∞ in (5.1).
THEOREM 5.2. The backward error H in the LU factorization of a Cauchy-like

matrix C in (5.1) satisfies

‖H‖∞ ≤
αη(ν + ψ · ξmax)

ξmin
·
∥∥∥(|L̂|+Xn

)
·
(
|Û |+ µ · Yn

)∥∥∥
∞

+
n · τ
ξmin

,(5.13)

where ν, ψ, µ, and τ are defined in (5.4) and (5.5).
Proof. We shall first show that

|H| ≤ αη(ν + ψ · ξmax)
ξmin

·
(
|L̂|+Xn

)
·
(
|Û |+ µ · Yn

)
+

∆(1)

ξmin
(5.14)

by using induction on n. We shall then prove the theorem by taking∞-norm on both
sides of (5.14).

Relation (5.14) clearly holds for all Cauchy-like matrices of dimension n = 1, 2,
and we assume it holds for n− 1 as well. In light of (5.7) we have

|H| ≤
(
|γ̂1 − γ1| |û− u|T
|l̂γ̂1 − r| |H(2)|+ |Ĉ(2) − C̄(2)|+ |C̄(2) − C̃2 + l̂ · ûT |

)
.

Plugging relations (5.9) through (5.12) into the above we have

|H| ≤
(

0 0
0 |H(2)|

)
+
(
|γ̂1 − γ1| |û− u|T
|l̂γ̂1 − r| 0

)
+
(

0 0
0 |Ĉ(2) − C̄(2)|

)
+
(

0 0
0 |C̄(2) − C̃2 + l̂ · ûT |

)
≤
(

0 0
0 |H(2)|

)
+
αηψξmax

ξmin
·
(

µ µ · eT
µ · e 0

)
+ η ·

(
0 0

|l̂| · |γ̂1| 0

)
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+
(

0 0
0 |Ĉ(2) − C̄(2)|

)
+
αη(ν + ψ · ξmax)

ξmin
·
(

0 0
0 (|l̂|+ e) · (|û|+ µ · e)T

)
≤
(

0 0
0 |H(2)|

)
+
αη(ν + ψ · ξmax)

ξmin
·
(

2
|l̂|+ e

)
·
(
|γ̂1|+ µ (|û|+ µ · e)T

)
+
(

0 0
0 |Ĉ(2) − C̄(2)|

)
,(5.15)

where we have used the fact that ξmax ≥ ξmin and ψ ≥ 1. The induction hypothesis
implies that

‖H(2)| ≤ αη(ν + ψ · ξmax)
ξmin

·
(
|L̂(2)|+Xn−1

)
·
(
|Û (2)|+ µ · Yn−1

)
+

∆(2)

ξmin
.

Plugging this relation into (5.15) we have

|H| ≤ αη(ν + ψ · ξmax)
ξmin

·
(

0
|L̂(2)|+Xn−1

)
·
(

0 |Û (2)|+ µ · Yn−1

)
+
αη(ν + ψ · ξmax)

ξmin
·
(

2
|l̂|+ e

)
·
(
|γ̂1|+ µ (|û|+ µ · e)T

)
+

∆(1)

ξmin

=
αη(ν + ψ · ξmax)

ξmin
·
(

1 + 1 0
|l̂|+ e |L̂(2)|+Xn−1

)
·
(
|γ̂1|+ µ (|û|+ µ · e)T

0 |Û (2)|+ µ · Yn−1

)
+

∆(2)

ξmin

=
αη(ν + ψ · ξmax)

ξmin
·
(
|L̂|+Xn

)
· (|Û |+ µ · Yn) +

∆(1)

ξmin
.

Hence, relation (5.14) holds for all n. Taking ∞-norm on both of its sides,

‖H‖∞ ≤
αη(ν + ψ · ξmax)

ξmin
·
∥∥∥(|L̂|+Xn

)
·
(
|Û |+ µ · Yn

)∥∥∥
∞

+

∥∥∆(1)
∥∥
∞

ξmin

≤ αη(ν + ψ · ξmax)
ξmin

·
∥∥∥(|L̂|+Xn

)
·
(
|Û |+ µ · Yn

)∥∥∥
∞

+
n · τ
ξmin

.

It follows from (5.6) that µ is an upper bound on the element growth in the
computed LU factorization. Thus Theorem 5.2 shows that the backward error in the
computed LU factorization is bounded by (αη(ν + ψ · ξmax))/ξmin times the element
growth in |L̂| and |Û | plus the error in computing the generators.

5.4. Error analysis for Algorithm 1. In this subsection, we assume that
partial pivoting has been done before hand so that Algorithm 1 does not perform any
pivoting.

For Algorithm 1, the generators are computed as

Â(k+1) = fl(Ā(k+1)) and B̂(k+1) = fl(B̄(k+1)),

where Ā(k+1) = Ãk+1− l̂(k) · (â(k)
k )T and B̄(k+1) = B̃k+1− b̂(k)

k · (û(k))T /γ̂k. It follows
that

|Â(k+1) − Ā(k+1)| ≤ η
(
|Ãk+1|+ |l̂(k)| · |â(k)

k |T
)
,
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|B̂(k+1) − B̄(k+1)| ≤ η
(
|B̃k+1|+ |b̂(k)

k | · |û(k)|T /|γ̂k|
)
.

Hence,

|Ĝ(k+1) − Ḡ(k+1)| = |Â(k+1) · B̂(k+1) − Ā(k+1) · B̄(k+1)|
≤ |Â(k+1) − Ā(k+1)| · |B̄(k+1)|+ |Ā(k+1)| · |B̂(k+1) − B̄(k+1)|+O(ε2)

≤ 2η
(
|Ãk+1|+ |l̂(k)| · |â(k)

k |T
)
·
(
|B̃k+1|+ |b̂(k)

k | · |û(k)|T /|γ̂k|
)

+O(ε2)

= 2η
(
|Ãk+1| · |B̃k+1|+ (|Ãk+1| · |b̂(k)

k |/|γ̂k|) · |û(k)|T
)

+2η|l̂(k)| ·
(
|â(k)
k |T · |B̃k+1|+ (|â(k)

k |T · |b̂
(k)
k |/|γ̂k|) · |û(k)|T

)
+O(ε2).

Using definitions (5.4) and (5.5), Lemma 5.1, and the fact that |l̂(k)| ≤ e + O(ε), we
have

‖Ĝ(k+1) − Ḡ(k+1)‖max ≤ 2η
(
‖|Ãk+1| · |B̃k+1|‖max + ν‖e · |û(k)|T ‖max

)
+2η

(
‖e · |â(k)

k |T · |B̃k+1|‖max + ν · ‖e · |û(k)|T ‖max

)
+O(ε2)

≤ 2η(ψµξmax + νµ+ ψµξmax + νµ) +O(ε2)
= 4ηµ(ν + ψξmax) +O(ε2) .(5.16)

According to definition (5.4), this implies that for Algorithm 1

τ ≤ 4nηµ(ν + ψξmax) +O(ε2).

Plugging this into (5.7), and using the fact that ‖|L̂| + Xn‖∞ ≤ 2n + O(ε), we have
the following.

THEOREM 5.3. For Algorithm 1, the backward error H in the LU factorization of
C in (5.1) satisfies

‖H‖∞ ≤
2nη · (α+ 2) · (ν + ψ · ξmax)

ξmin
·
(
‖Û‖∞ + n · µ

)
+O(ε2).

One expects ψ to be of the order 1 in general. The fact that Algorithm 1 performs
partial pivoting means that

|γ̂k| =
∣∣∣∣∣fl
(

(a(k)
k )T · b(k)

k

ωk − λk

)∣∣∣∣∣ ≥
∣∣∣∣∣fl
(

(a(k)
i )T · b(k)

k

ωi − λk

)∣∣∣∣∣
for 1 ≤ k ≤ i ≤ n. Comparing this with the definition for ν in (5.5), one expects ν
to be of the order ξmax in general. Hence, Theorem 5.3 suggests that in general the
backward error for Algorithm 1 is of the order ε · ξmax/ξmin · ‖Û‖∞.

However, if both Â(k) and B̂(k) are ill conditioned for some k, it could happen
that ψ � 1 and ν � ξmax. If this happens, then the backward error for Algorithm 1
could be much larger.

On the other hand, if the straightforward GEPP is applied to C, then the back-
ward error is basically ε · ‖Û‖∞. Thus Algorithm 1 appears to be less numerically
stable than straightforward GEPP on C. These conclusions are consistent with those
of Sweet and Brent [26].
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5.5. Error analysis for Algorithm 2. In this subsection we assume that par-
tial pivoting has been done before hand, so that Algorithm 2 does not perform any
pivoting.

For Algorithm 2, Â(k+1) is the computed Q factor in the QR factorization of
fl(Ā(k+1)) and B̂(k+1) is the product of the R factor and fl(B̄(k+1)). In finite arith-
metic, let fl(Ā(k+1)) = Â(k+1) · R + E1 be the QR factorization of fl(Ā(k+1)), and
B̂(k+1) = R · fl(B̄(k+1)) + E2. It is known [15] that the error matrices satisfy

‖E1‖2 ≤ η1α · n · ‖fl(Ā(k+1))‖2 and ‖E2‖∞ ≤ η2α · ‖R‖∞ · ‖fl(B̄(k+1))‖∞,(5.17)

where η1 and η2 are small multiples of ε. We observe that, after some algebra,

Â(k+1) · B̂(k+1) − fl(Ā(k+1)) · fl(B̄(k+1)) = −E1 · fl(B̄(k+1)) + Â(k+1) · E2.(5.18)

In the following, we shall derive an upper bound for τ . To this end, we need to
derive norm bounds for some of the related quantities. Since Algorithm 2 performs
row pivoting and keeps Â(k) numerically column orthogonal at every step, we have
‖l̂(k)‖max ≤ 1 +O(ε),

‖fl(Ā(k+1))‖∞ ≤ ‖Ãk+1‖∞ + ‖l̂(k) · (â(k)
k )T ‖∞ +O(ε) ≤ 2

√
α+O(ε),(5.19)

and

‖R‖∞ = ‖(Â(k+1))T ·
(
Ãk+1 − l̂(k) · (â(k)

k )T
)
‖∞+O(ε) ≤

√
α·(
√
n+1)+O(ε).(5.20)

Since Â(k) is numerically column orthogonal, it follows that

‖(Ωk − λkI)−1 · Â(k) · b̂(k)
k ‖2 ≥

‖Â(k) · b̂(k)
k ‖2

ξmax
=
‖b̂(k)
k ‖2
ξmax

+O(ε).

The fact that Algorithm 2 performs row pivoting gives

|γ̂k| = ‖(Ωk − λkI)−1 · Â(k) · b̂(k)
k ‖max +O(ε)

≥ 1√
n
· ‖(Ωk − λkI)−1 · Â(k) · b̂(k)

k ‖2 +O(ε)

≥ ‖b̂(k)
k ‖2√

n · ξmax
+O(ε).(5.21)

With these relations we get

‖fl(B̄(k+1))‖∞ ≤ ‖B̃k+1‖∞ + ‖b̂(k)
k · (û(k))T ‖∞/|γ̂k|+O(ε)

≤
√
α · ‖B̂(k)‖2 + ‖b̂(k)

k ‖2 · ‖Û‖∞/|γ̂k|+O(ε)

=
√
α · ‖Â(k) · B̂(k)‖2 + ‖b̂(k)

k ‖2 · ‖Û‖∞/|γ̂k|+O(ε)

≤
√
α · n‖Â(k) · B̂(k)‖max +

√
n · ξmax · ‖Û‖∞ +O(ε)

≤
√
α · n · ξmax‖Ĉ(k)‖max +

√
n · ξmax · ‖Û‖∞ +O(ε)

≤
√
α · n · ξmax · µ+

√
n · ξmax · ‖Û‖∞ +O(ε).(5.22)

To obtain an upper bound on τ , we now take∞-norm on both sides of (5.18). Us-
ing relations (5.17) through (5.20) and (5.22), the right-hand side of (5.18) is bounded
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above by

‖E1‖∞ · ‖fl(B̄(k+1))‖∞ + ‖Â(k+1)‖∞ · ‖E2‖∞
≤ ‖E1‖∞ · ‖fl(B̄(k+1))‖∞ +

√
α · ‖E2‖∞ +O(ε2)

≤ η1αn‖fl(Ā(k+1))‖∞ · ‖fl(B̄(k+1))‖∞ + η2α
3
2 · ‖R‖∞ · ‖fl(B̄(k+1))‖∞ +O(ε2)

= α ·
(
η1 · n · ‖fl(Ā(k+1))‖∞ + η2 ·

√
α · ‖R‖∞

)
· ‖fl(B̄(k+1))‖∞ +O(ε2)

≤ α ·
(
2η1 · n ·

√
α+ η2 · α · (

√
n+ 1)

)
·
(√

α · n · µ · ξmax +
√
n · ‖Û‖∞ · ξmax

)
+O(ε2)

≤ 4η̄ · (α · n)
3
2 · (n · µ+ ‖Û‖∞) · ξmax +O(ε2) ,

where η̄ = max{η, η1, η2}, and we have used the fact that α ≤ n. Hence,

‖Â(k+1) ·B̂(k+1)−fl(Ā(k+1)) ·fl(B̄(k+1))‖∞ ≤ 4η̄ ·(α · n)
3
2 ·(n ·µ+‖Û‖∞) ·ξmax +O(ε2).

In addition, a derivation similar to that for (5.16) gives

‖fl(Ā(k+1)) · fl(B̄(k+1))− Ā(k+1) · B̄(k+1)‖∞ ≤ 4nηµ(ν + ψξmax) +O(ε2).

Combining these two relations we get

‖Ĝ(k+1) − Ḡ(k+1)‖∞ = ‖Â(k+1) · B̂(k+1) − Ā(k+1) · B̄(k+1)‖∞
≤ ‖Â(k+1) · B̂(k+1) − fl(Ā(k+1)) · fl(B̄(k+1))‖∞

+‖fl(Ā(k+1)) · fl(B̂(k+1))− Ā(k+1) · B̄(k+1)‖∞
≤ 4η̄ · (α · n)

3
2 · (n · µ+ ‖Û‖∞) · ξmax + 4η̄nµ(ν + ψξmax) +O(ε2).

According to definition (5.4), this implies that for Algorithm 2

τ ≤ 4η̄ · (α · n)
3
2 · (n · µ+ ‖Û‖∞) · ξmax + 4η̄nµ(ν + ψξmax) +O(ε2).(5.23)

THEOREM 5.4. For Algorithm 2, the backward error matrix H in (5.1) satisfies

‖H‖∞ ≤ 8
√
αη̄(α+ 2) · n2 · ρ ·

(
‖Û‖∞ + n · µ

)
+O(ε2),

where ρ is defined in (2.4).
Proof. We first derive upper bounds for ν and ψ, and then finish the proof

by plugging relation (5.23) and these bounds into (5.13). Since Â(k) is numerically
column orthogonal,

|â(k)
i |T · |b̂

(k)
k | ≤ ‖â

(k)
i ‖2 · ‖b̂

(k)
k ‖2 ≤ ‖b̂

(k)
k ‖2 +O(ε).

We combine this and (5.21) to get

|â(k)
i |T · |b̂

(k)
k |

|γ̂k|
≤
√
n · ξmax +O(ε).

By definition (5.5) this implies

ν ≤
√
n · ξmax +O(ε).(5.24)
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On the other hand,∥∥∥|Â(k)| · |B̂(k)|
∥∥∥

max
≤
∥∥∥|Â(k)| · |B̂(k)|

∥∥∥
2
≤ ‖|Â(k)|‖2 · ‖|B̂(k)|‖2

≤ ‖Â(k)‖F · ‖B̂(k)‖F =
√
α‖B̂(k)‖F +O(ε),

and ∥∥∥Â(k) · B̂(k)
∥∥∥

max
≥ 1
n

∥∥∥Â(k) · B̂(k)
∥∥∥
F

=
1
n
‖B̂(k)‖F +O(ε).

Consequently, ∥∥∥|Â(k)| · |B̂(k)|
∥∥∥

max∥∥∥Â(k) · B̂(k)
∥∥∥

max

≤
√
α · n+O(ε).

By definition (5.5) this implies

ψ ≤
√
α · n+O(ε).(5.25)

Plugging relations (5.23) through (5.25) into (5.13) we get

‖H‖∞ ≤
αη(ν + ψ · ξmax)

ξmin
· 2n ·

(
‖Û‖∞ + n · µ

)
+

nτ

ξmin
+O(ε2)

≤ 2nη̄(α+ 2)(ν + ψ · ξmax)
ξmin

·
(
‖Û‖∞ + n · µ

)
+

4η̄ · (α · n)
3
2

ξmin
·
(
‖Û‖∞ + n · µ

)
+O(ε2)

≤ 2nη̄(α+ 2)(
√
n · ξmax +

√
α · n · ξmax)

ξmin
·
(
‖Û‖∞ + n · µ

)
+

4η̄ · (α · n)
3
2

ξmin
·
(
‖Û‖∞ + n · µ

)
+O(ε2)

≤ 8
√
αη̄ · (α+ 2) · n2 · ρ ·

(
‖Û‖∞ + n · µ

)
+O(ε2).

Remark 6. More detailed error analysis shows that the O(ε2) term in Theorem 5.4
is bounded by p1(n)ε times the first term, where p1(n) is a low-degree polynomial
in n.

Remark 7. Throughout this analysis, we never used the fact that Algorithm 2 per-
forms pivoting on the columns as well. Hence, Theorem 5.4 still holds if Algorithm 2
is modified to only perform partial pivoting.

Remark 8. An upper bound similar to that in Theorem 5.4 holds for Algorithm 3
as well, provided that

‖|Â(k)| · |B̂(k)|‖2 ≈ ‖Â(k) · B̂(k)‖2

for all k, as is the case in our numerical experiments.
Remark 9. If C is transformed from a Toeplitz-plus-Hankel matrix via equa-

tion (3.3), then ρ = O(n2). In this case, the upper bound in Theorem 5.4 is a factor
of O(α

3
2 n2) larger than the upper bound for the backward error in straightforward
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GEPP and GECP, which is about 5ε · n2 · ‖Û‖∞ (see [15, p. 115]). Our numerical
experiments indicate that for such matrices, Algorithm 2 is sometimes less accurate
than straightforward GEPP, and the lost accuracy can be recovered by one step of
iterative refinement [15, section 3.5]. See section 4 for more details.

Finally, we perform a brief error analysis for Algorithm 4. Let M be a Toeplitz-
plus-Hankel-like matrix satisfying (3.2) with A column orthogonal. In finite arith-
metic, Algorithm 4 factorizes M by performing the following computations.

• Compute Ω̂ = fl(D1,1) and Λ̂ = fl(D1,−1).
• Compute Â = fl(QT1,1 ·A) and B̂ = fl(B · Q1,−1).
• Compute the LU factorization for Ĉ, where Ĉ is the Cauchy-like matrix that

satisfies the displacement equation

Ω̂ · Ĉ − Ĉ · Λ̂ = Â · B̂.

It is easy to show that

‖QT1,1 ·M · Q1,−1 − Ĉ‖∞ ≤ η3 · p2(n) · ‖M‖∞,

where η3 is a small multiple of ε and p2(n) is a low-degree polynomial in n. Thus
the reduction from a Toeplitz-plus-Hankel-like matrix satisfying (3.2) to a Cauchy-
like matrix satisfying (3.3) is numerically stable. In other words, Algorithm 4 is
numerically stable if and only if the algorithm it uses in step 2 (Algorithm 1, 2, or 3)
is stable.

6. Conclusions and extensions. We have presented a fast algorithm for solv-
ing Toeplitz or Toeplitz-plus-Hankel systems of linear equations and shown it to be
numerically stable, provided that the element growth in the computed factorization is
not large. We have presented practical modifications to this algorithm and discussed
implementation techniques that further improve its efficiency. Our numerical experi-
ments show that the resulting algorithm is both stable and efficient; and the cost for
performing pivoting for Cauchy-like matrices can be kept a small fraction of the total
cost.

The algorithms presented in this paper can be modified to solve mosaic Toeplitz
or block Toeplitz systems of linear equations (see [7, 11]).

Our techniques to avoid internal element growth in the generators can be easily
extended to the generalized Schur algorithm for factorizing more generally structured
matrices (see [6, 22, 23]), and so is the technique to store the rows of the U matrix
columnwise.

Recently, Chandrasekaran and Sayed [5] proposed a new fast algorithm for factor-
izing the Toeplitz matrix based on the QR factorization of a larger structured matrix
and show that it is numerically stable. This algorithm appears to perform more flops
than Algorithm 4 but does not have the potential problem of having large element
growth in the computed factorization.

We end this paper by asking two open questions.
1. The upper bounds for element growth on GEPP and the variation of GECP

in Algorithm 2 on a Cauchy-like matrix are 2n−1 and ρ
2+
∑n−1
k=1 1/k

· W(n),
respectively (see section 2). Do sharper bounds exist for Cauchy-like matrices
with low displacement rank?

2. There are superfast algorithms for solving Toeplitz or Toeplitz-plus-Hankel
systems of linear equations in O(n log2

2 n) flops, but they are unstable in
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general (see [3]). Are there numerically stable superfast algorithms for such
problems?
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Abstract. A square matrix pencil λA−B is said to be H-selfadjoint (H-unitary) if it satisfies
A∗HB = B∗HA (A∗HA = B∗HB) for some invertible Hermitian H. Attention is focused on
regular pencils (i.e., det (λA−B) 6≡ 0) for which A and B are both singular. Canonical forms for the
relation (A,B,H) ∼ (Y −1AX,Y −1BX,Y ∗HY ) are obtained in both the complex and real cases.
Also, a characterization is given for those real matrices A which are H-unitary for some H, i.e.,
ATHA = H for some invertible, real symmetric H.

Key words. symmetric pencils, canonical forms

AMS subject classifications. 15A21, 15A57
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1. Introduction. In this paper we undertake a study of canonical forms for
regular matrix pencils λA−B (i.e., det (λA−B) 6≡ 0) which are either H-selfadjoint
or H-unitary. These terms are defined as follows:

(a) A regular n × n pencil λA − B is said to be H-selfadjoint if H is an n × n
nonsingular Hermitian matrix and

(A∗HB)∗ = A∗HB.(1.1)

(b) A regular n × n pencil λL − M is said to be H-unitary if H is an n × n
nonsingular Hermitian matrix and

L∗HL = M∗HM.(1.2)

Pencils of these two varieties arise in the study of minimal realizations of rational
matrix functions in the form W (λ) = D(λA − B)−1C when W (λ) is Hermitian on
the real line (case (1.1)) and when W (λ) is Hermitian on the unit circle (case (1.2)),
(see [8]). Pencils satisfying (1.2) also arise in the study of so-called “discrete algebraic
Riccati equations” with a special choice of H, and were studied by Wimmer [13] in
1991. See Chapter 15 of [9] for a general treatment. The relationship between pencils
of the two kinds has, however, been recognized in this context for some time. In the
work of Gardiner and Laub [4] in 1986, for example, good use is made of the Cayley
transform technique to transform from one to the other. The “Hamiltonian” and
“symplectic” pencils discussed in those papers are included in our analysis. A start
is made on a more wide-ranging discussion of H-selfadjoint and H-unitary pencils
by Lancaster and Rodman [9], and it is our purpose to continue with the analysis
initiated there.

Let us briefly review some terminology used in the sequel. A number λ0 ∈ C is
an eigenvalue of pencil λA−B if λ0A−B is singular. The set of all eigenvalues of a
pencil is known as its spectrum and is written σ(A,B). As all pencils in this paper are
regular, the spectrum is a finite subset of C and contains the point at infinity when
A is singular.
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A subspace S of Cn is said to be deflating for the regular pencil λA−B if there is
a subspace T such that dimS = dim T , AS ⊆ T , and BS ⊆ T . (In particular, when
A = I, S is B-invariant.) A deflating subspace is said to be spectral if

S = Im
∫

Γ
(λA−B)−1Adλ

for some simple closed curve Γ which does not intersect σ(λA−B) (see the Appendix
for further discussion).

Now let us consider some special cases of our problem. First, and most impor-
tantly, consider the case A = I. Then λA − B is H-selfadjoint (H-unitary) means
that B∗H = HB (or H = B∗HB) and B is said to be an H-selfadjoint (or H-unitary)
matrix. Matrices of these kinds have been systematically studied in [7] and we rely
heavily on that work. Thus, when B is H-selfadjoint we seek to reduce the pair (H,B)
simultaneously by a congruence and a similarity.

X∗HX = Pε,J , X−1BX = J

or, which is equivalent, we reduce the Hermitian matrices H and HB by a simulta-
neous congruence,

X∗HX = Pε,J , X∗(HB)X = Pε,JJ.

The precise description of the canonical matrices Pε,J and (Jordan canonical form) J
can be found in Theorem I.4.1 of [7] (see also Chapter S5 of [6]). We refer to (Pε,J , J)
as a (complex) selfadjoint canonical pair for (H,B). Let us just recall that, as well
as the usual similarity invariants implicit in J , Pε,J encodes information on the sign
characteristic ε of B with respect to H (a set of +1’s and −1’s associated with the
partial multiplicities of real eigenvalues of B).

Similarly, if B if H-unitary, there is a transforming matrix X such that

X∗HX = Qε,J , X−1BX = J,

and (Qε,J , J) is a (complex) unitary canonical pair for (H,B) and they are described
in Theorem I.4.3 of [7] (see also [9]).

When B and H are real matrices and real canonical forms are required, we can
again refer to [7]. See Theorem I.5.3 for the description of real selfadjoint canonical
pairs (Pε,J , J). To our knowledge, a complete description of real unitary canonical
pairs has not been written down to date and so we avoid the use of this phrase.
(The complex case (Theorem I.4.3 of [7]) is difficult enough and, in principle, the real
unitary case can always be obtained using the techniques of [7]. The difficulty lies in
the fact that the “simplest” member of an equivalence class is still complicated, and
the specification of a “simplest” member is not obvious.)

If the pencil λA−B is an H-selfadjoint pencil and either A or B is nonsingular,
there is an underlying H-selfadjoint matrix. For example, if A−1 exists and (1.1)
holds, then H(BA−1) = (BA−1)∗H. For this reason, our attention is focused on
regular pencils for which both A and B are singular, and similarly for the unitary
case.

Another important and well-understood case is that of a selfadjoint pencil λA−B,
i.e., when A∗ = A and B∗ = B. See Theorems I.3.18 and I.5.4 of [7] for the complex
and real cases, respectively. They were also studied by Elsner and Lancaster [3], and
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were utilized in the work of Clements and Glover [1], for example. In this case we
have the following.

PROPOSITION 1.1. If A∗ = A, B∗ = B, and λA − B is regular, then there is a
nonsingular Hermitian matrix H such that (1.1) holds.

Proof. Choose a λ0 ∈ R such that λ0A − B is nonsingular and define H =
(λ0A−B)−1. Then H∗ = H and

A = AHH−1 = λ0AHA−AHB.

Since A and λ0AHA are Hermitian, so are AHB and A∗HB.
The analysis of this paper is based on strict-equivalence transformations of pencils:

λA − B → Y −1(λA − B)X, where X is also nonsingular. The selfadjoint or unitary
property of the pencil is preserved in the following sense.

PROPOSITION 1.2. If λA−B is H-selfadjoint (or H-unitary) and

Y −1(λA−B)X = λÂ− B̂,(1.3)

then λÂ− B̂ is Ĥ-selfadjoint (or Ĥ-unitary, respectively), where Ĥ = Y ∗HY .
The proof is a simple verification.
Suppose we are dealing with matrices of a fixed size n and define

U = {(A,B,H) : det (λA−B) 6≡ 0, H∗ = H, detH = 0}.

We say that (A1B1, H1), (A2, B2, H2) from U are unitarily equivalent if there exist
nonsingular X and Y such that

A1 = Y −1A2X, B1 = Y −1B2X, H1 = Y ∗H2Y,

(cf. Section 3.1 of [7]). It is easily verified that unitary equivalence is an equiva-
lence relation on U . Thus, we seek a canonical form characterizing the corresponding
equivalence classes.

Section 2 concerns some preliminaries on H-selfadjoint pencils and a careful dis-
cussion of Cayley transforms appears in section 3. Canonical forms over C are obtained
in section 4. Although the canonical form for H-unitary pencils (Theorem 4.2) could
be obtained directly, we prefer to use the Cayley transform and derive this from the
H-selfadjoint case of Theorem 4.1.

Sections 5 and 6 concern the corresponding forms over the real numbers and
show that apart from the obvious changes in real Jordan structure, there are no other
essential differences in the canonical forms for the complex and real cases.

Section 7 concerns a problem of a related but different kind. A characterization
is given of those real matrices A which are H-unitary for some real, symmetric, and
nonsingular H, i.e., for which ATHA = H for some such H. This is in contrast to the
relatively well-known H-selfadjoint case. For example, Corollary I.5.2 of [7] asserts
that every real square matrix A is H-selfadjoint for some invertible, real symmetric
matrix H. It turns out (see [8]) that this problem applies to the real realization of
matrix functions W (λ) which are Hermitian on the unit circle.

2. Preliminaries on H-selfadjoint pencils. Let us begin with another char-
acterization of regular H-selfadjoint matrix pencils.

THEOREM 2.1. Let λA−B be a regular pencil. Then λA−B is H-selfadjoint if
and only if TA and TB are Hermitian, where T = (µA∗ − B∗)H and µ is any real
number for which µA−B is nonsingular.
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Proof. Let λA − B be H-selfadjoint and use the definition A∗HB = B∗HA to
verify that, for any λ, µ ∈ C

(λA∗ −B∗)H(µA−B) = (µA∗ −B∗)H(λA−B).

Now choose a fixed µ ∈ R for which µA−B is nonsingular and define T = (µA∗−B∗)H.
Then the last displayed equation gives

(λA∗ −B∗)T ∗ = T (λA−B)(2.1)

for all λ ∈ C and hence TA and TB are Hermitian.
Conversely, we have TA and TB are Hermitian and H = T ∗(µA − B)−1. Then

we may write

H = T ∗(µTA− TB)−1T

which shows that H is nonsingular and Hermitian. Finally, because TB is Hermitian
so is

(µA∗ −B∗)HB = µA∗HB −B∗HB,

and it follows that A∗HB is Hermitian, as required.
Observe now that (2.1) yields a strict equivalence and implies that λA − B and

λA∗ −B∗ have the same spectra and partial multiplicities. Consequently, σ(A,B) is
symmetric with respect to the real line. Also, as observed in Proposition 1.1, when
A∗ = A and B∗ = B we may take H = (µA−B)−1 and T = I.

Combining Proposition 1.2 and Theorem 2.1 we have the following.
COROLLARY 2.2. If λA − B is H-selfadjoint, then λA∗ − B∗ is Ĥ-selfadjoint,

where Ĥ = WHW ∗ and

W = (T−1)∗ = (H(µA−B))−1.(2.2)

From Theorem 2.1 it can also be deduced that, for any H-selfajoint pencil λA−B,
the spectrum and systems of right eigenvectors and generalized eigenvectors are just
those of a regular Hermitian pencil λTA− TB.

Note that although Ĥ depends on the choice of µ in (2.2), the signature of Ĥ
always agrees with that of H. Also, we may write

Ĥ−1 = (µA∗ −B∗)H(µA−B).(2.3)

As an alternative to expressing Ĥ in terms of µ it is possible to determine Ĥ in
terms of a deflation of λA−B (see the Appendix), as described in the following.

PROPOSITION 2.3. If λA−B is H-selfadjoint and X, Y have the properties that
Y is nonsingular and

Y −1(λA−B)X =
[
λI − T1 0

0 λT2 − I

]
,(2.4)

where Y = [Y1 Y2] and Y1, T1 have the same number of columns, then, in Corollary
2.2, we may take

W =
[
Y ∗1 HA
Y ∗2 HB

]−1

Y ∗.(2.5)
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Proof. This follows from the proof of Theorem 2.8.1 of [9].
THEOREM 2.4. Let λA − B be H-selfadjoint, let (2.4) hold, and assume that

σ(λI − T ∗1 ) ∩ σ(λT2 − I) = ∅. Then λI − T1 and λT2 − I are H1-selfadjoint and
H2-selfadjoint, respectively, where H1 = Y ∗1 HY1, H2 = Y ∗2 HY2. Furthermore,

Y ∗HY =
[
H1 0
0 H2

]
.(2.6)

Proof. By Proposition 1.2 the pencil on the right of (2.4) is Y ∗HY -selfadjoint.
This means that if we write H3 = Y ∗1 HY2, then[

I 0
0 T ∗2

] [
H1 H3
H∗3 H2

] [
T1 0
0 I

]
=
[
T ∗1 0
0 I

] [
H1 H3
H∗3 H2

] [
I 0
0 T2

]
.

This is equivalent to the three relations

T ∗1H1 = H1T1, T ∗2H2 = H2T2,(2.7)

and H3 − T ∗1H3T2 = 0. Since σ(λI − T ∗1 ) ∩ σ(λT2 − I) = ∅ it follows from Theorem
A.4 that H3 = 0 and (2.6) holds. Since H is nonsingular, so are H1 and H2 and it
follows from (2.7) that Tj is Hj-selfadjoint for j = 1 and 2.

Let us write X = [X1 X2], as in Proposition A.3. Then Y1 = AX1 and Y2 = BX2.
Thus, the inner products in which λI − T1 and λT2 − I are selfadjoint are defined by

X∗1 (A∗HA)X1, X∗2 (B∗HB)X2,(2.8)

respectively, and (see Theorem A.2 and (A.1)) ImX1 and ImX2 are the image and
kernel of the projection P , respectively.

Notice also that if the reduced pencil of (2.4) is obtained as described in Theorem
A.2, then σ(λI − T1) ∩ σ(λT2 − I) = ∅ as well. Clearly, detT1 = 0 if and only if B
is singular and detT2 = 0 if and only if A is singular. It will be convenient for us to
suppose that (2.4) is obtained using Theorem A.2 and letting Γ contain all the finite
spectrum of λA−B. Then σ(λT2 − I) = {∞} (assuming that A is singular).

3. Cayley transforms. As in classical matrix theory, fractional linear transfor-
mations of the form λ = (αw̄ − wµ)/(α − µ), w̄ 6= w, |α| = 1, can be used to map
H-selfadjoint pencils onto H-unitary pencils as follows.

PROPOSITION 3.1.
(a) If λA−B is an H-selfadjoint pencil and w,α ∈ C with w 6= w, |α| = 1, and

if

L = wA−B, M = α(wA−B),(3.1)

then λL−M is an H-unitary pencil.
(b) If λL−M is an H-unitary pencil, w 6= w, |α| = 1, and if

A = αL−M, B = wαL− wM,(3.2)

then λA−B is an H-selfadjoint pencil.
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The proof is a straightforward verification. An analogue of Theorem 2.1 follows.
THEOREM 3.2. If λL−M is a regular H-unitary pencil, then there is a nonsingular

W such that

(W ∗)−1(λL−M)W = λM∗ − L∗.(3.3)

Proof. Define A and B as in (3.2). Then, by Proposition 3.1, λA − B is H-
selfadjoint and, by Theorem 2.1, there is a W (take W = (T ∗)−1) such that

(W ∗)−1AW = A∗, (W ∗)−1BW = B∗.

Substitute for A and B from (3.2) and, using w 6= w, it follows that

(W ∗)−1MW = −αL∗, (W ∗)−1LW = −α−1M∗.

Now choose α = −1 to obtain the result.
As (3.3) is a strict equivalence, it follows readily that the spectrum of a regular

H-unitary pencil is symmetric with respect to the unit circle. Notice in particular
that in contrast with H-unitary matrices, H-unitary pencils may have a zero eigen-
value. Combining the symmetry of the spectrum with Proposition 3.1, the following
proposition is readily proved and provides a convenient tool for the study of H-unitary
pencils.

PROPOSITION 3.3.
(a) Let λA−B be a regular H-selfadjoint pencil and w ∈ σ(λA−B), with w 6= w.

Then the pencil λL −M defined by (3.1) is H-unitary and has eigenvalues
at zero and infinity. The partial multiplicities of these two eigenvalues agree
and are equal to those of w (and of w) as an eigenvalue of λA−B.

(b) If λL −M is a regular H-unitary pencil, then O ∈ σ(λL −M) if and only
if ∞ ∈ σ(λL −M) and, in this case, these two eigenvalues have the same
partial multiplicities. Also, if a pencil λA−B is defined by (3.2) with w 6= w,
|α| = 1, then λA−B is a regular H-selfadjoint pencil and w,w ∈ σ(λA−B)
with partial multiplicities which agree with those of zero (or of ∞) as an
eigenvalue of λL−M .

4. Canonical forms over C. Let us first consider the canonical reduction of
A, B, and H when λA−B is an H-selfadjoint pencil.

THEOREM 4.1. If λA−B is a regular H-selfadjoint pencil, then there exist non-
singular matrices X and Y such that

Y −1(λA−B)X =
[
λI − J 0

0 λK − I

]
, Y ∗HY =

[
Pε1,J 0

0 Pε2,K

]
,(4.1)

where (Pε1,J , J) and (Pε2,K ,K) are selfadjoint canonical pairs and K is nilpotent.
Proof. By Theorem 2.4 there are nonsingular matrices X0 and Y0 such that

Y −1
0 (λA−B)X0 =

[
λI − T1 0

0 λT2 − I

]
, Y ∗0 HY0 =

[
H1 0
0 H2

]
,

where T2 is nilpotent, H1, H2 are defined as in (2.8), and Tj is Hj-selfadjoint for j = 1
and 2.
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Now form the canonical reductions

V −1
1 T1V1 = J, V ∗1 H1V1 = Pε1,J ,
V −1

2 T2V2 = K, V ∗2 H2V2 = Pε2,K ,

and the theorem is obtained by taking

X = X0

[
V1 0
0 V2

]
, Y = Y0

[
V1 0
0 V2

]
.

It is natural now to refer to ε := {ε1,J , ε2,K} as the sign characteristic of λA−B
with respect to H, or of the triple (A,B,H) ∈ U . The two matrices on the right of
(4.1) constitute the canonical form and are determined by J , K, and ε. They are
“canonical” in the sense that they characterize the equivalence class of U to which
(A,B,H) belong. The canonical form is unique up to ordering of the Jordan blocks
in J and K and the ordering of signs in ε corresponding to blocks of the same size
with the same eigenvalue. The formal proof of these statements is an easy extension
of the arguments in Section 3.5 of [7]. Similar remarks apply to Theorem 5.3 below.

THEOREM 4.2. Let λL−M be a regular H-unitary pencil with a zero eigenvalue
of algebraic multiplicity m; then there exist nonsingular matrices X and Y such that

Y −1(λL−M)X =

 λI − S 0 0
0 λI −N 0
0 0 λNT − I

, Y ∗HY =

 G 0 0
0 0 −iIm
0 iIm 0

 ,
(4.2)
where (G,S) is a unitary canonical pair and N is a nilpotent Jordan matrix.

Proof. Without loss of generality it is assumed throughout that m > 0. Choose
α,w ∈ C with w 6= w, |α| = 1 and, for convenience, α(w−w) = 1. Let A, B be defined
as in (3.2). Then, by Proposition 3.1, λA−B is an H-selfadjoint pencil. Furthermore,
by Proposition 3.3, w, w are eigenvalues of λA− B, each with algebraic multiplicity
m.

Now use Theorem 2.4 (followed by a canonical reduction) to obtain nonsingular
matrices X0, Y0 such that

Y −1
0 (λA−B)X0 =

[
λÂ− B̂ 0

0 λI2m − Ĵ

]
, Y ∗0 HY0 =

[
G 0
0 P̂

]
,

where

Ĵ =
[
wIm +N 0

0 wIm +N

]
, P̂ =

[
0 P
P 0

]
.

Here, N is the m × m nilpotent Jordan matrix defined by the zero eigenvalue of
λL−M , (P̂ , Ĵ) is a selfadjoint canonical pair, and λÂ− B̂ is G-selfadjoint.

Now transform back to a unitary pencil λL1−M1 using (3.1) and, because α(w−
w) = 1, we obtain L1 = Y −1

0 LX0, M1 = Y −1
0 MX0, and λL1 −M1 is

[
Ĥ 0
0 P̂

]
-unitary.

Thus,

L1 =
[
wÂ− B̂ 0

0 wI2m − Ĵ

]
, M1 = α

[
wÂ− B̂ 0

0 wI2m − Ĵ

]
.
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Observe that if we define J0 = (w − w)Im +N , then

wI2m − Ĵ =
[
−N 0

0 −J0

]
, wI2m − Ĵ =

[
−J0 0

0 −N

]
.

Multiply λL1−M1 on the right by diag [(wÂ− B̂)−1, −J−1
0 ,−J−1

0 ] and we obtain an
X1 such that

Y −1
0 (λL−M)X1 =

 λI − S 0 0
0 λNJ

−1
0 − Im 0

0 0 λIm −NJ−1
0

(4.3)

and this pencil is
[
G 0
0 P̂

]
-unitary.

The block-Toeplitz structure of J−1
0 ensures that NJ−1

0 is similar to N . Let
N = T−1(NJ−1

0 )T and

V =
[

0 P (T ∗)−1

iT 0

]
.

From the unitary property of (4.3) we deduce that P (NJ
−1
0 ) = (NJ−1

0 )∗P and hence
that

T ∗P (NJ
−1
0 )P (T ∗)−1 = T ∗(NJ−1

0 )∗(T ∗)−1 = NT .

Using this fact it is easily verified that

V −1

[
λNJ

−1
0 − I 0
0 λI −NJ−1

0

]
V =

[
λI −N 0

0 λNT − I

]
.

Also, we have

V ∗P̂ V = V ∗
[

0 P
P 0

]
V =

[
0 −iI
iI 0

]
.

Now (4.3) is transformed to the desired form of (4.2). Clearly, it may also be assumed
that G and S are in canonical form, and the theorem is proved.

Remark. The canonical form presented in (4.2) is used mainly for historical rea-
sons. It is most easily compared with Theorem 2.1 of Wimmer [13] (in which H has
the form (−i)

[ 0 I
−I 0

]
) and with the exposition of Lancaster and Rodman [9, Theo-

rem 2.9.5 and sections 8.6, 15.1], where the form of H is inherited from formulation
of properties of algebraic Riccati equations.

In other problem areas it may seem more natural to replace the second of equa-
tions (4.2) by

Y ∗HY =

 G 0 0
0 0 I
0 I 0

 .(4.4)

This is easily achieved by postmultiplying X and Y by diag [I,−iIm, Im] and has the
same form as the real case discussed below as Theorem 6.1.
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Example. The pencil λ
[1 0
0 0

]
+
[0 0
0 1

]
is selfadjoint with respect to H = I. In

Theorem 4.1 we must have PJ = PK = 1 and we may take X = Y = I. The pencil is
also H-unitary with H =

[0 1
1 0

]
. Then the first of equations (4.2) and equation (4.4)

hold with X = Y = I (and G, S do not appear).

5. Canonical forms for real H-selfadjoint pencils. Let us first summarize
a statement of the real canonical form for real matrices under similarity (see [7], for
example, for more details).

PROPOSITION 5.1. If A is a real square matrix, then there exists a nonsingular
real matrix Y such that

Y −1AY = diag [Kr,Kc,K0],

where Kr, Kc, K0 are canonical real Jordan matrices with σ(Kr) ⊂ R\{0}, σ(Kc) ⊂
C\R, and K0 is nilpotent.

We use this to confirm that there is a real form of the Kronecker reduction for
linear pencils.

PROPOSITION 5.2. If λA − B is a real regular pencil, then there exist real non-
singular matrices X and Y such that

Y −1(λA−B)X = diag [λI − Jr, λI − Jc, λJ0 − I],

where Jr, Jc, J0 are real canonical Jordan matrices with the following properties:
σ(Jr) ⊂ R, σ(Jc) ⊂ C\R, σ(J0) = {0}.

Proof. Let λ0 ∈ R with det (λ0A−B) 6= 0, and define

C = −A(λ0A−B)−1.

Apply Proposition 5.1 to C to obtain a real canonical form:

Y −1
0 CY0 := K = diag [Kr,Kc,K0].

Note also that

I + λ0K = −Y −1
0 B(λA−B)−1Y0.(5.1)

Now set X0 = −(λ0A−B)−1Y0 and we have the real strict equivalence

Y −1
0 (λA−B)X0 = diag [λKr− (I+λ0Kr), λKc− (I+λ0Kc), λK0− (I+λ0K0)].

Furthermore, the right-hand matrix is strictly equivalent over R to

diag [λI − (I + λ0Kr)K−1
r , λI − (I + λ0K0)−1, λK0(I + λ0K0)−1 − I]

and this, in turn, is strictly equivalent (in fact, similar) over R to

diag [λI − Jr, λI − Jc, λJ0 − I],

where
(a) Jr is a real Jordan form for (I + λ0Kr)K−1

r and has real spectrum;
(b) Jc is a real Jordan form for (I + λ0Kc)K−1

c with spectrum in C\R;
(c) J0 is a real Jordan form for K0(I + λ0K0)−1 so that σ(J0) = {0}.



316 ILYA KRUPNIK AND PETER LANCASTER

Notice that since Y −1AX = diag [I, I, J0], Y −1BX = diag [Jr, Jc, I], and Jc is
necessarily nonsingular, it follows that Jr and B have the same nullity, and J0 and A
have the same nullity.

Now we can prove an analogue of Theorem 4.1 for real pencils.
THEOREM 5.3. If λA − B is a real regular H-selfadjoint pencil and H is real,

then there exist real nonsingular matrices X and Y such that

Y −1(λA−B)X =
[
λI − J 0

0 λK − I

]
, Y THY =

[
Pε1,J 0

0 Pε2,K

]
,(5.2)

where (Pε1,J , J), (Pε2,K ,K) are real selfadjoint canonical pairs and K is nilpotent.
Proof. According to Proposition 5.2 there exist nonsingular real matrices X0 and

Y0 such that the first of equations (5.2) holds with J , K real Jordan matrices and K
nilpotent. By Proposition 1.2 this pencil is Y T0 HY0-selfadjoint. However, Theorem
2.4 applies and shows that Y T0 HY0 = diag [H1, H2], λI−J is H1-selfadjoint, λK−I is
H2-selfadjoint, and H1, H2 are real. Making the real canonical reductions of (H1, J)
and (H2,K) we obtain the result.

6. Canonical forms for real H-unitary pencils. It is clear that if A is H-
unitary and also real, then the spectrum of A (and also the structure of a Jordan form
for A) is symmetric with respect to both the real line and the unit circle. However,
symmetry of this kind does not ensure that A is H-unitary for a real H. For example,
if A =

[1 1
0 1

]
, then σ(A) has the necessary symmetry, but it is easily verified that

there is no real Hermitian nonsingular H such that ATHA = H (although there is
a nonsingular H with this property). We will return to the characterization of real
matrices which are H-unitary for a real H in section 7.

A canonical form real H-unitary pencils (with H real) can be obtained from the
next theorem.

THEOREM 6.1. Let λL − M be a real regular H-unitary pencil (with H real).
Then there exist real nonsingular matrices X and Y such that

Y −1(λL−M)X =

 λI − S 0 0
0 λIm −N 0
0 0 λNT − Im

 , Y THY =

 G 0 0
0 0 Im
0 Im 0

 ,
(6.1)

where N is a nilpotent Jordan matrix, m is the algebraic multiplicity of the zero
eigenvalue of λL−M (assuming m 6= 0), G is real, symmetric, and nonsingular, and
S is a real G-unitary matrix.

Proof. Using Proposition 5.2 we deduce that there exist real nonsingular matrices
X0 and Y0 such that

Y −1
0 (λL−M)X0 = diag [λI − S, λN1 − I, λI −N2],

where S is nonsingular and N1, N2 are nilpotent. However, Proposition 3.3(b) applies
and shows that N1 and N2 are similar. Thus, by applying appropriate real similarities
we find real nonsingular X1 and Y1 such that

Y −1
1 (λL−M)X1 = diag [λI − S, λNT − Im, λIm −N ],(6.2)
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where N is nilpotent and, (by Proposition 1.2), this pencil is unitary with respect to
the real matrix Y T1 HY1. Using this unitary property it is easily seen that

Y T1 HY1 =

 G 0 0
0 0 KT

0 K 0


for some real nonsingular K which commutes with NT , and S is G-unitary.

Now define the real nonsingular matrix

T =

 I 0 0
0 0 K−1

0 Im 0


and, using the fact that KNTK−1 = NT , it is found that

T−1Y −1
1 (λA−B)X1T = diag [λI − S, λIm −N,λNT − Im],

and this pencil is unitary with respect to

TT (Y T1 HY1)T =

 G 0 0
0 0 Im
0 Im 0

 .
7. Real H-unitary matrices. A question of independent interest which arose

in section 6 concerns the characterization of those real matrices A which are H-unitary
for some real nonsingular H, i.e., for which ATHA = H. It has been observed that the
spectrum and Jordan structure of A are necessarily symmetric with respect to both
the real line and the unit circle. In particular, eigenvalues can occur in the following
combinations:

1. Eigenvalues at +1 or −1.
2. Conjugate pairs of nonreal unimodular eigenvalues.
3. Pairs of real eigenvalues λ and λ−1 (λ 6= 0, λ 6= ±1).
4. Quadruples of nonreal, nonunimodular eigenvalues α, α, α−1, α−1.

THEOREM 7.1. A real square matrix A admits a real, symmetric, nonsingular
solution H of ATHA = H if and only if the spectrum of A has the necessary sym-
metry properties mentioned above and, in addition, the total number of Jordan blocks
with eigenvalues +1 and even size is even, together with a similar property for the
eigenvalue −1.

We establish the theorem via a sequence of lemmas. First, by combining the
arguments from the proof of Theorem 5.3 with the H-unitary complex case one can
get the following for A and H from Theorem 6.1.

LEMMA 7.2. Let A be an H-unitary matrix. Then
(a) there exists a real nonsingular T such that T−1AT is block diagonal with the

blocks corresponding to different subsets of the spectrum of A of types 1 to 4
above;

(b) T−1AT is TTHT unitary and TTHT has the same block structure as T−1AT .
This lemma allows us to investigate each of the subsets 1 to 4 of the spectrum of

A independently of the others.
Our attention is focused mainly on the question, Which real matrices admit (sym-

metric) nonsingular real solutions H of ATHA = H? We are also going to discuss
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the set of all such solutions. It turns out that, in some sense, the first question de-
pends on the second. We will say that a real matrix A is of class U(R) if A admits a
nonsingular real symmetric solution H of ATHA = H. A nonsingular real symmetric
solution will be said to be proper.

Notice that the matrix A =
[1 1
0 1

]
mentioned above has just one Jordan block of

even size with eigenvalue +1 and is not in U(R). However, the direct sum of two such
blocks is in U(R). These examples suggest that at least when case 1 applies, canonical
forms for real H-unitary matrices cannot be based only on the Jordan structure of A.
Some additional structure is required. This issue is postponed and the next lemma
concerns cases 3 and 4 above.

LEMMA 7.3. Let A ∈ U(R) and suppose, in addition, that the eigenvalues of A
are nonunimodular. A real matrix G is a proper solution of ATGA = G if and only
if there exists a real nonsingular matrix Q such that

Q−1AQ =
[
KT−1

0 0
0 K0

]
, QTGQ =

[
0 I
I 0

]
,(7.1)

where K0 is a real matrix corresponding to the spectral data of A in |z| < 1.
Proof. One direction immediately follows from (7.1). Conversely, given ATGA =

G with G real, symmetric, and nonsingular, and the fact that there are no unimodu-
lar eigenvalues, it follows that the real invariant subspaces of A associated with the
interior and exterior of the unit circle are G-neutral. Also, since the spectrum of A is
symmetric about the real line, there is a real nonsingular S such that

A0 = S−1AS =
[
KT

0 0
0 KT−1

0

]
,

and

G0 = STGS =
[

0 G1
GT1 0

]
.

The equality AT0 G0A0 = G0 gives us GT1 K
T
0 = K0G

T
1 . Define now

T =
[

0 GT
−1

1
I 0

]
.

Using GT1 K
T
0 = K0G

T
1 it is found that

TTG0T =
[

0 I
I 0

]
, T−1A0T =

[
KT−1

0 0
0 K0

]
.

We treat eigenvalues of case 2 in a sequence of lemmas culminating in Corol-
lary 7.7.

Real matrices of the form S =
[
a b
−b a

]
appear in real Jordan forms when case 2

applies and it will be convenient to denote the commutative algebra of all such matrices
by S2×2. As part of the “canonical real Jordan” structure used in Proposition 5.1,
we know that any real matrix having only nonreal unimodular spectrum is similar to
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a direct sum of blocks of the following kind:

F I 0 . . . 0

0 F I
...

. . . . . .
. . . I

0 . . . F


,(7.2)

where all entries are real 2× 2 matrices, F ∈ S2×2, a2 + b2 = 1, and b 6= 0.
PROPOSITION 7.4. If F ∈ S2×2, a2 + b2 = 1, b 6= 0, and B ∈ R2×2, then the

following are equivalent:
(i) FTBF −B ∈ S2×2,
(ii) FB = BF ,
(iii) B ∈ S2×2.
Proof. Note that under the given hypotheses, FT = F−1, and the equivalence of

(i) and (ii) follows immediately. Then observe that if we write B =
[
x y
z w

]
, then

FB −BF = b

[
y + z w − x
w − x −(y + z)

]
,

with b 6= 0. From the definition of S2×2 it follows immediately that FB−BF ∈ S2×2

if and only if y + z = 0 and w − x = 0. But these statements are equivalent to either
FB −BF = 0, or B ∈ S2×2.

LEMMA 7.5. Let A1 ∈ R2k1×2k1 , A2 ∈ R2k2×2k2 (k1 ≤ k2; k1, k2 ∈ N) have the
form (7.2). If for a real matrix K (∈ R2k1×2k2) the equation

AT1 KA2 = K(7.3)

holds, then K (being divided into 2 × 2 blocks (K = (Kij)k1
i=1

k2
j=1; Kij ∈ R2×2)) has

the following block-triangular form:
(a) Kij ∈ S2×2,
(b) Kij = 0 for j < k2 − i (if any).
Proof. Direct computations give us FTK11F −K11 = 0, so, by Proposition 7.4,

K11 ∈ S2×2. In the first block row we get FTK1,i−1 + FTK1iF = K1i for i ≥ 2.
Then, since K1,i−1 ∈ S2×2, proceeding step-by-step, we get the required form for
K1i. Moreover, K1,i−1 = FK1i −K1iF for 2 ≤ i ≤ k2, so we also have K1,i−1 = 0.
Thus, K11 = · · · = K1,k2−1 = 0, and K1,k2 has the required form.

In the same way we find that in the first block column K11 = · · · = Kk1−1,1 = 0
(and the required form for Kk1,1).

For the rest of the blocks (if any)

Ki−1,j−1 + FTKi,j−1 +Ki−1,jF + FTKijF = Kij .

Thus, first of all, all blocks have the required form and, moreover, have k2 − 1 zeros
in the first block row and k1 − 1 zeros in the first block column. It follows that the
ith block row has one zero block less than in the block row with number i− 1.

LEMMA 7.6. If A ∈ R2k×2k and has the form (7.2), then
(a) A ∈ U(R).
(b) All real nonsingular symmetric solutions H of ATHA = H are triangular as

described in Lemma 7.5, and the 2 × 2 blocks Ai,k−i+1 are (up to the same
multiplicative constant) orthogonal 2× 2 matrices.
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Proof. We start with k = 1, 2. These cases can be checked by direct computations:
If k = 1, then A = F , which is an orthogonal matrix.
If k = 2, A =

[
F 1
0 F

]
is
[ 0 H1
HT1 H2

]
-unitary, where H1 is a real 2 × 2 orthogonal

matrix corresponding to rotation through π/2−α, where α defines the rotation of F ,
and H2 is a scalar matrix. These two cases provide all proper solutions of ATHA = H
(up to multiplicative constants).

We now combine inductive arguments with the previous lemma in the following
way.

Let A0 be a 2k × 2k matrix of the form (7.2). Define now

A =


I I . . . 0
0
...

A0

...
I

0 . . . 0 I

 ;(7.4)

we are looking for a proper solution of ATHA = H in the following form:

H =



0 . . . 0 G0

...
0

H0

G1
...
Gk

GT0 GT1 . . . G
T
K S

 ,(7.5)

where H0 is a proper solution of the 2k × 2k equation AT0 H0A0 = H0. In such a
situation it is enough to define the last block column of H. In other words one should
equate the blocks of the last block columns of H and ATHA. Let us denote the blocks
of the last block column of H0 by L1, . . . , Lk.

The equation H = ATHA yields for the blocks mentioned above

FTG0F = G0, Li−1 + FTLi +Gi−1F + FTGiF = Gi (i = 1, . . . , k, L0 = 0),

FTGTk + Lk +GkF + FTSF = S.

According to Lemma 7.5(a) all the blocks commute, so one can rewrite the equalities
in the following way:

G0 = G0, FTL1 +G0F = 0, Li−1 + FTLi +Gi−1F = 0 (i = 2, . . . , k),

FTGTk = Lk +GkF = 0.

Finally,

G0 = −L1F
−2, G1 = −L2F

−2 − L1F
−1, . . . , Gk−1 = −LkF−2 − Lk−1F

−1.

The last equality GkF + (GkF )T + Lk = 0 requires some explanation. We see at
this step that the block S is not involved in any equation that has been considered.
According to general conditions, it must be a scalar matrix. For H0 the role of S is
played by Lk. It is also a scalar matrix. The equation GkF + (GkF )T + Lk = 0 will
always possess solutions of the required form.
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Using G0 = −L1F
−1 and (7.5), H is found to be nonsingular. All 2 × 2 blocks

Ai,k−i+1 are (up to the same multiplicative constant) defined as pairs of adjoint or-
thogonal matrices. In the odd case the central element is I.

COROLLARY 7.7. Any real matrix A for which all eigenvalues are nonreal and uni-
modular is in U(R). (Indeed, one can define H as a direct sum of blocks corresponding
to a block diagonal real Jordan form of A).

Now we pass to the remaining case: Describe the possible Jordan structures
of matrix A = I + N , where N is nilpotent and when A ∈ U(R). (The cases with
eigenvalues −1 or +1 and −1 are easily included.) According to an example mentioned
above, not every matrix I+N is in U(R), although the direct sum of two such blocks
may be in U(R).

We use the following notation for joint representation of ` Jordan chains of length
k (it is permutationally similar to a direct sum of l Jordan blocks of size k):

Jk,l :=


I I . . . 0

. . .
...

. . . I
0 . . . I

 , I ∈ Rl×l, Jk,l ∈ Rkl×kl.

Using the arguments and the methods of Lemma 7.6 and Lemma 7.5(b) one can prove
the following lemma.

LEMMA 7.8.
(a) Suppose that k1 ≤ k2 and for some real matrix K

JTk1,l1KJk2,l2 = K.

Then K (being partitioned into l1 × l2 blocks) has the following triangular
form: Kij = 0 for j ≤ k2 − i.

(b) Jk,l is in U(R) if and only if Jk+2,l is in U(R).
Remark 7.9. In the case k1 = k2, l1 = l2, K = KT block elements on the diagonal

{Ki,k−i+1}ki=1 have the same rank.
LEMMA 7.10.
(a) J2p−1,l is in U(R), (l, p ∈ N).
(b) J2p,l is in U(R), (l, p ∈ N) if and only if l is even.
Proof. According to Lemma 7.8 one can decide whether Jkl is in U(R) by consid-

ering only J1,l and J2,l.
Obviously, J1,l is in U(R). For J2,l one can write(

I 0
I I

)(
0 H1
HT

1 H2

)(
I I
0 I

)
=
(

0 H1
HT

1 H2

)
, 0, I,Hi ∈ Rl×l.

This equality holds if and only if HT
1 +H1 = 0. It is also required that

( 0 H1
HT1 H2

)
must be invertible, thus detH1 6= 0. In this case one can find a nonsingular solution of
HT

1 +H1 = 0 if and only if the size of H1 is even. (When the size is odd, HT
1 +H1 = 0

implies detH1 = −detH1.)
Now we are ready to take the final step. Any matrix A = I + N where N is

nilpotent has a unique representation by a similar matrix of the following form:

Diag (Jki,li)
s
i=1 with k1 < · · · < ks.(7.6)
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The following lemma shows that a representation of A with the form (7.6) is in
U(R) if and only if every matrix Jki,li (i = 1, . . . , s) is in U(R). An application of
Lemma 7.10 then completes the proof of Theorem 7.1.

LEMMA 7.11. Let A be in the form (7.6) and H be a nonsingular real symmetric
solution of ATHA = H. Then submatrices of H corresponding to the diagonal blocks
of A are invertible.

Proof. Let us denote by H(1), . . . , H(s) the diagonal submatrices of H in the
positions of Jk1,l1 , . . . , Jks,ls in A. Note that H(r) = (H(r))T , JTkr,lrH

(r)Jkr,lr = H(r)

(r = 1, . . . , s).
All H(r) are block triangular (Lemma 7.8) when partitioned into lr × lr blocks.

According to Remark 7.9, H(r) is invertible if and only if the last block element (we
denote it by H

(r)
1,kr (∈ Rlr×lr )) of the first block row has full rank. We are going to

show that all such blocks H(1)
1,k1

, . . . H
(s)
1,ks are invertible, and this will complete the

proof.
Let A be in the form (7.6). We start with H(s) (i.e., the submatrix of H corre-

sponding to the collection of all chains of A of maximal length; in other words, H(s)

(or Jks,ls , resp.) is the last diagonal block of H (of A, resp.)).
According to Lemma 7.8 all elements of H placed to the left of H(s)

1,ks are equal

to zero. Since H is invertible, H(s)
1,ks is also nonsingular.

Note also that since H = HT , the lowest block element of the first block column
of H(s) equals (H(s)

1,ks)
T (according to our notation it is H(s)

ks,1) and all the elements of

H above it (above H(s)
ks,1) are zeros.

Thus, according to a rule for developing determinants, one finds that the matrix
obtained from H by omitting all rows and columns which intersect at least one of
H

(s)
1,ks or H(s)

ks,1 is also nonsingular. The new matrix Ĥ must not be precisely of the
form corresponding to (7.6), but now (Lemma 7.8) all elements of Ĥ placed in the
rows of H(s−1)

1,ks−1 (the last block element of the first block row of H(s−1)) which do

not belong to H(s−1)
1,ks−1 are zeros. This allows us to apply the algorithm used above in

order to show that H(s−1)
1,ks−1 is nonsingular; H(s−1) is also nonsingular.

Using this algorithm s times, one obtains the invertibility of all submatrices
H(1), . . . , H(s).

Examination of the main diagonal blocks in the relation ATHA = H now shows
that each matrix Jki,li is in U(R).

Appendix. In this appendix we summarize some known results for regular pen-
cils λA − B with no symmetry assumptions on A and B. We begin with useful
results which are carefully developed in reference [5]; see also [11] and [12] for earlier
treatments. These sources present the results in the context of Banach spaces. We
specialize to the case in which A and B are n × n matrices. As in the main body
of this paper, λA − B is always a regular pencil with A,B ∈ Cn×n, generally both
singular.

The symbol Γ will denote a closed Cauchy contour in C (see [5] for details), and
∆+, ∆− denote the inner domain and outer domain of Γ (including ∞), respectively.
Generalized Riesz projections are defined in the first lemma.

LEMMA A.1. Let Γ be a Cauchy contour with Γ ∩ σ(λA−B) = ∅, and

P =
1

2πi

∫
Γ
(λA−B)−1Adλ, Q =

1
2πi

∫
Γ
A(λA−B)−1 dλ.(A.1)
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Then P , Q are projections onto the spectral deflating subspaces of λA−B and λAT −
BT , respectively, associated with ∆+ ∩ σ(λA−B).

THEOREM A.2. Let P , Q be the projections of (A.1) and let X = [X1 X2],
Y = [Y1 Y2] be nonsingular matrices for which

ImX1 = ImP, ImX2 = KerP, ImY1 = ImQ, ImY2 = KerQ.

Then

Y −1(λA−B)X =
[
λA1 −B1 0

0 λA2 −B2

]
,(A.2)

where A1 is invertible, λA2 −B2 is regular, and

σ(λA1 −B1) = ∆+ ∩ σ(λA−B), σ(λA2 −B2) = ∆− ∩ σ(λA−B).(A.3)

Furthermore, if 0 ∈ ∆+, then B2 is invertible and if ∆− = {∞}, then A2 is nilpotent.
Note that if r is the dimension of ImP (and ImQ), then λA1 − B1 is r × r. In

the body of the paper, we use deflations like the right side of (A.2) in which A1 = Ir
and B2 = In−r. For discussion of numerically stable methods for the computation of
deflations like (A.2) the reader is referred to [2].

PROPOSITION A.3.
(a) If 0 ∈ ∆+, then there exist nonsingular X and Y such that

Y −1(λA−B)X =
[
λIr −B1 0

0 λA2 − In−r

]
(A.4)

and σ(λIr −B1) ⊂ ∆+, σ(λA2 − In−r) ⊂ ∆−.
(b) When (A.4) holds with nonsingular X and Y and we write X = [X1 X2], Y =

[Y1 Y2], where X1, Y1 are n×r, then ImX1 and ImX2 are deflating subspaces
of λA−B associated with σ(λIr −B1) and σ(λA2 − In−r), respectively, and

Y1 = AX1, Y2 = BX2.(A.5)

Proof. Part (a) follows immediately from Theorem A.2. For (b) observe that
(A.4) implies

AX1 = Y1, AX2 = Y2A2, BX1 = Y1B1, BX2 = Y2(A.6)

and the conclusions follow from these relations (see Lemma 1.6.1 and what follows in
[9], for example).

We will also take advantage of the following result (see [10] and Theorem IV.2.1
of [5]).

THEOREM A.4. Let A1, B1 be r × r matrices, A2, B2 be (n − r) × (n − r), and
C be r × (n− r). If the spectra of λA1 −B1 and λA2 −B2 do not intersect, then the
equation

B1ZA2 −A1ZB2 = C

has a unique solution Z.



324 ILYA KRUPNIK AND PETER LANCASTER

Acknowledgments. The authors are grateful to L. Rodman and anonymous
reviewers for comments which have helped to improve the exposition of this paper.

REFERENCES

[1] D. J. CLEMENTS AND K. GLOVER, Spectral factorization via hermitian pencils, Linear Algebra
Appl., 122/123 (1989), pp. 797–846.

[2] J. W. DEMMEL AND B. KAGSTROM, Computing stable eigendecomposition of matrix pencils,
Linear Algebra Appl., 88/89 (1987), pp. 139–186.

[3] L. ELSNER AND P. LANCASTER, The spectral variation of pencils of matrices, J. Comput.
Math., 3 (1985), pp. 262–274.

[4] J. D. GARDINER AND A. J. LAUB, A generalization of the matrix-sign-function solution for
algebraic Riccati equations, Internat. J. Control, 44 (1986), pp. 823–832.

[5] I. GOHBERG, S. GOLDBERG, AND M. A. KAASHOEK, Classes of Linear Operators, Vol. 1,
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Abstract. In this paper, we consider the use of the Dulmage–Mendelsohn decomposition and
network flow on bipartite graphs to improve a graph bisection partition. Given a graph partition
[S,B,W ] with a vertex separator S and two disconnected components B and W , different strategies
are considered based on the Dulmage–Mendelsohn decomposition to reduce the separator size |S|
and/or the imbalance between B and W . For the case when the vertices are weighted, we relate this
to the bipartite network flow problem. A further enhancement to improve a partition is to generalize
the bipartite network to a general network and then solve a max-flow problem. We demonstrate
the utility of these improvement techniques on a set of sparse test matrices, where we find top-level
separators, nested dissection, and multisection orderings.

Key words. Dulmage–Mendelsohn decomposition, network flow, graph bisection, ordering
algorithms, nested dissection, multisection

AMS subject classifications. 65F05, 65F50, 68R10

PII. S0895479896308433

1. Introduction. The ability to find a good separator for a graph is necessary
in many application areas [16], [29]. Our motivation to consider this problem is to
determine good sparse matrix orderings for direct factorization methods [4], [5], [19],
[24].

In a recent paper [2], the authors have applied the notion of blocking to obtain an
efficient graph partitioning scheme to find a good vertex separator. The approach has
three basic steps. In the first step, we construct a domain decomposition of the graph,
consisting of a subset of vertices (called a multisector) whose removal decomposes the
graph into a number of domains. Each domain is a connected subset of vertices. The
second step uses a variant of the Kernighan–Lin scheme [21] on the set of domains to
determine an approximation to a good separator. The last step refines the separator
using some techniques from bipartite graph matching. One purpose of this paper is
to give a full explanation of the machinery used in the separator improvement step.

The fundamental tool used in this final step is the Dulmage–Mendelsohn decom-
position [8], which is a canonical decomposition of a bipartite graph based on the
notion of matching. This decomposition has been used extensively to extract a vertex
separator from an edge separator [15], [20], [23], [27]. The vertices that are incident to
an edge in the edge separator form a wide vertex separator. A vertex separator is a
cover for the edge separator if all edges are incident to a vertex of the separator. Using
the Dulmage–Mendelsohn decomposition, one can find one or more vertex covering
separators of minimum size that are subsets of this wide vertex separator.
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This decomposition has been used to improve a vertex separator in earlier papers
[24], [25], [26]. Let the vertices in the graph be partitioned as a vertex separator S and
two components B and W . We consider the edge separator that contains edges linking
vertices in S to B (or S to W ). This defines a wide vertex set containing vertices
in S and all vertices in B (or W ) adjacent to S. We use the Dulmage–Mendelsohn
decomposition to find a covering separator of minimum size from this set of vertices1.

The same technique can be applied to the new separator and its new adjacent
sets, so the overall improvement process is iterative in nature. At each step, a wide
vertex separator is taken from the current separator and one of the two components,
and a covering vertex separator subset of minimum size is obtained. It is accepted as
the new vertex separator only if the quality of its induced partition is better.

In this paper, we consider related approaches, initially developed in [2], to improve
a vertex separator. Although the Dulmage–Mendelsohn decomposition is defined
only for unit-weight graphs, we are able to extend it to a special class of weighted
graphs, thus greatly reducing the execution time in many cases. In the extension,
we reformulate it into a much-studied combinatorial problem involving the flow of
commodities through an interconnected network: a maximum network flow problem
[9], [11], [12], [18], [28]. The solution to our separator improvement step is thus
transformed to solving a maximum flow problem on a bipartite network. We also
relate the improved separator in the new partition to the min-cut set in the well-
known max-flow min-cut theorem on network flows.

We have explored an additional advantage in the transformation of a bipartite
graph matching problem to a bipartite network flow problem. By adding and deleting
edges from a bipartite network it may be possible to construct a new network that
yields a smaller separator. The new network would not be bipartite and the new
separator need not be a covering separator. By adding vertices and edges we can
generate larger networks that might yield still smaller separators.

An outline of this paper is as follows. In section 2, we give a formal description of
the partition improvement problem and introduce the various notations used through-
out the paper. Section 3 starts with a discussion on reducing the size of a separator
using bipartite graph matching. This provides the motivation for using the Dulmage–
Mendelsohn decomposition for bipartite graphs. This section is mainly expository in
nature; the results can be found in [24], [25], and [26]. Section 4 considers the use of
the Dulmage–Mendelsohn decomposition to improve the balance of a partition.

In section 5, we introduce the notion of a compressed graph induced by a grouping
of vertices that share the same adjacent sets. Compressed graphs can be considered as
a special kind of weighted graphs. The Dulmage–Mendelsohn decomposition is then
generalized to handle compressed bipartite graphs.

In section 6, we relate this decomposition of a compressed bipartite graph to a
max-flow solution to a bipartite network problem. We point out the equivalence be-
tween the generalized matching and a max-flow, and between the improved separator
and a min-cut. We also describe a new enhancement where we transform the bipartite
network into a larger, more general network based on the underlying graph structure.
We show that a max-flow min-cut solution to this new general network is at least as
good as and is often better than that of the bipartite network. We also generalize the
network flow approach to even wider separators formed from the separator and many
“layers” of adjacent sets from one or both components in the partition.

1It is a little-appreciated fact that a covering separator of minimum size may not be a separator
of minimum size, i.e., a separator of minimum size may not be incident on all the edges of the edge
separator. (See the example graph in Figures 2 and 8.)
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Section 7 contains experimental results on separator/partition improvements. We
compare the improvement in partitions based on solving a max-flow problem on a
bipartite network, the induced two-layer network, and a centered three-layer wide
network. Sparse matrix ordering statistics are also given when these techniques are
used in a nested dissection and a multisection ordering code [3]. The multisection
statistics are at least as good and often are better than those from the multiple
minimum degree ordering approach. Section 8 contains our concluding remarks.

2. Definitions and notations. Let G = (V,E) be a given undirected graph.
The adjacent set of a vertex v is given by

Adj(v) = {u 6= v | (u, v) ∈ E}.

Without loss of generality, we assume the graph is connected. A walk is a sequence of
vertices v0, v1, . . . , vm such that (vi, vi+1) ∈ E. A path is a walk without any repeated
vertices.

A vertex subset S is a vertex separator if the subgraph induced by the vertices in
V but not in S has more than one connected component. An edge separator is a set
of edges whose removal disconnects the graph. A separator is minimal if no subset of
it forms a separator.

A bisector is a separator whose removal gives at least two connected components.
We shall use the notation [S,B,W ] to represent a two-set partition, where the removal
of the bisector S will give two disconnected portions B and W ; that is, Adj(B) ⊆ S
and Adj(W ) ⊆ S. We measure the imbalance of a partition as the dimensionless ratio
max{|B|, |W |}/min{|B|, |W |}. We shall often assume that B is the bigger portion
so that |B| ≥ |W | and the imbalance is |B|/|W |. Our objective is to determine a
well-balanced partition with a small separator size |S|.

In this paper, we consider methods to improve a given partition. Therefore, we
need to compare the quality of the original and the modified partitions. Following [2],
we use this evaluation function

γ[S,B,W ] = |S|
(

1 + α
max{|B|, |W |}
min{|B|, |W |}

)
,

where α is some constant greater than zero. The separator size |S| is the primary
metric while the imbalance is used as a “penalty” multiplicative factor. A large value
of the constant α places a large emphasis on the balance. We have used the penalty
cost function γ[S,B,W ] with α = 1 in all the experiments in section 7.

Throughout the paper we will be concerned with a subset of vertices, those vertices
just “outside” the subset, and those “inside” the subset. To make these concepts clear
we introduce the following notation. Let Y be a vertex subset of V . The interior of
Y is defined to be

Int(Y ) = {y ∈ Y | Adj(y) ⊆ Y },

and contains all nodes in Y that are adjacent to no nodes outside of Y . The boundary
of Y , or its adjacent set, is the set of nodes not in Y that are adjacent to Y ,

Adj(Y ) = {v ∈ V \ Y | (y, v) ∈ E for some y ∈ Y } =

⋃
y∈Y

Adj(y)

 \ Y.
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Partition-Improve [S,B,W ]
Improved = true
while Improved do

if |B| < |W | then interchange B and W // make B the larger portion
if a subset Z of S is found with γ([S,B,W ]Z 7→W ) < γ[S,B,W ] then

[S,B,W ] = [S,B,W ]Z 7→W
else

if a subset Z of S is found with γ([S,B,W ]Z 7→B) < γ[S,B,W ] then
[S,B,W ] = [S,B,W ]Z 7→B

else
Improved = false

end if
end if

end while

FIG. 1. Partition improvement scheme.

The border of Y is a subset of Y , namely, the boundary of the interior of Y ,

Border(Y ) = Adj(Int(Y )) = Y \ Int(Y ),

or those nodes in Y that are not in the interior of Y .

3. Partition improvement and the Dulmage–Mendelsohn decomposi-
tion.

3.1. A partition improvement algorithm by moves. Let [S,B,W ] be a
two-set partition of a given graph G. Consider a subset Z of S. Let Z 7→ W be the
move of Z to W that moves the subset Z from S to W , thereby creating the following
new partition:

BZ 7→W = B \Adj(Z), WZ 7→W = W ∪ Z, and SZ 7→W = (S \ Z) ∪ (Adj(Z) ∩B).

We use the notation [S,B,W ]Z 7→W to refer to the new partition.
We consider a partition improvement scheme that uses moves by finding subsets Z

that will help in reducing the evaluation function γ[S,B,W ]. A high-level description
of the improvement algorithm is described in Figure 1. The scheme makes a first
attempt to reduce the evaluation function of the partition by moving a subset from
S to the smaller portion W . If no such move can be found, it tries to improve the
partition by moving a separator subset to the larger portion B. It continues until no
reduction can be obtained.

3.2. Improving the separator size by graph matching. Recall that the
evaluation function γ[S,B,W ] on a partition is given by the penalty function based
on the separator size and the imbalance ratio. In practice, the weight α is chosen
to be close to one so that the separator size has a strong influence on the partition
evaluation. Therefore, one way to look for an improvement to the partition is to
reduce the separator size. Consider the move Z 7→ W . The new separator size is
given by

|SZ 7→W | = |S| − |Z|+ |Adj(Z) ∩B|.
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Bipartite graph with a maximum matching

FIG. 2. Bipartite graph example from a separator partition.

Therefore, if we can find a subset Z of S such that |Z| > |Adj(Z)∩B|, the move of Z to
W will result in a reduction of the separator size by an amount of |Z| − |Adj(Z)∩B|.
(Note that this does not always guarantee a reduction in the evaluation function
value.)

In [24], the technique of bipartite graph matching is used to find such a subset
Z of S with |Z| > |Adj(Z) ∩B|. We shall first describe the necessary terminology in
graph matching and state the results relevant to this approach.

A bipartite graph is an undirected graph whose node set can be divided into two
disjoint sets X and Y such that every edge has one endpoint in X and the other in
Y . A matching of a bipartite graph H is a subset M of edges such that no two edges
in this subset have a node in common. A node that is incident to some edge in M
is said to be covered; otherwise, it is exposed. If (x, y) belongs to the matching M ,
then x = mate(y) and y = mate(x). The number of edges in M is called the size of
the matching. A maximum matching is one with the largest possible size. A complete
matching is a matching of size min{|X|, |Y |}.

We now consider the results in graph matching relevant to our context of im-
proving a two-set partition [S,B,W ]. Assume that B is the larger portion. Consider
the bipartite graph H = (S,Border(B), EH), where EH contains the set of edges
between vertices in S and those in Border(B) of the original graph G. Recall that
Border(B) = B ∩ Adj(S). For simplicity, we often refer to this bipartite graph by
H(S,B), and the two defining sets as S and B. However, it is implicit that only the
subset Border(B) of B is used in H. For a node x in this bipartite graph H, we
shall use AdjH(x) to represent the set of adjacent nodes of x in the bipartite graph
H. We extend the notation to AdjH(U) for the adjacent set of a subset U of nodes.
Note that we use Adj(x) and Adj(U) to represent the adjacent sets in the original
graph G. It should be clear from the definition of H that for any subset Z of S,
AdjH(Z) = Adj(Z) ∩B.

In Figure 2, we illustrate the induced bipartite graph H for a 6 × 6 grid problem
with the 9-point operator; that is, each interior node is connected to its eight neigh-
bors. For the given separator of size 9, we obtain its associated bipartite graph H. In
the figure, a matching between S and B is also given; and the edges in the matching
are indicated by thick lines. This matching is of size 7 and it is maximum.
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In the separator improvement scheme, we want to find a subset Z of S satisfying
|Z| > |Adj(Z) ∩B|. The next theorem by Hall [14] relates the nonexistence of such a
subset with bipartite graph matching.

THEOREM 3.1 (see Hall [14]). The bipartite graph H has a complete matching of
S into B if and only if for every subset Z of S, |Z| ≤ |Adj(Z) ∩B|.

Theorem 3.1 can be used to provide a necessary and sufficient condition for the
existence of a size-improving subset Z of S. The condition is that the bipartite graph
H does not have a complete matching from S into B. This implies that for a maximum
matching, there will be some exposed nodes in S, that is, nodes without a mate in
the matching. In the example of Figure 2, there are two exposed nodes 13 and 25 in
S so that the maximum matching is not complete. We know from Theorem 3.1 that
we can find some size-improving subset Z of S.

To discuss the way to find such subsets, we need the notion of an alternating
path. For a given matching M , consider a path 〈x0, x1, ..., xk〉 where no vertex is
repeated. It is called alternating with respect to M if the alternate edges belong to
the matching M . For example, in Figure 2, the path 〈25, 20, 19, 14, 7〉 is alternating;
the edges (20, 19) and (14, 7) belong to the matching. In [24], alternating paths are
used in the following result to find a subset Z satisfying |Z| > |Adj(Z) ∩B|.

THEOREM 3.2 (see Liu [24]). Let x ∈ S be an exposed node in a maximum
matching of H. Define Sx = {s ∈ S | s is reachable from x via alternating paths}.
Then |Sx| − |AdjH(Sx)| = 1.

The set Sx can be determined by performing a special kind of breadth-first search
starting from the exposed node x. The search is restricted to nodes reachable via
alternating paths. Then Sx is given by the nodes of S appearing in this breadth-first
search tree rooted at x. Since we only consider alternating paths in the traversal, we
shall refer to this tree as an alternating breadth-first search tree. This set Sx can be
used as Z to reduce the separator size by one.

For the example in Figure 2, there are two exposed separator nodes: 13 and 25.
Immediately below we find the two alternating breadth-first search trees that start
from 13 and 25, respectively. It is clear that S13 = {7, 13, 19} and AdjH(S13) =
{14, 20}. On the other hand, S25 = {7, 19, 25} and AdjH(S25) = {14, 20}. Figure 3
shows the improvement of the separator by making the move Z = S13 (see the top
two grids) and the move Z = S25 (see the middle two grids).

7

14

19

20

25

����
����

19 7

20 14

13

��������
�� @@

An alternating breadth-first search tree is a special case of an alternating breadth-
first level structure. Let X0 be some initial set of exposed nodes in S; X0 forms the
first level. Define the next level X1 = AdjH(X0), namely, those vertices in Border(B)
adjacent to vertices in X0. The next level X2 contains all nodes in S that are mates



NETWORK FLOW AND GRAPH BISECTION IMPROVEMENT 331

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

level set rooted at {13,25}

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

level set rooted at {25}

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

level set rooted at {13}

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

new partition

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

new partition

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

new partition

FIG. 3. Alternating breadth-first level structures and their improved partitions.

with nodes in X1. In general, the level sets have the following form:

X2i =
⋃

x∈X2i−1

mate(x) ⊆ S,

X2i+1 = AdjH

 2i⋃
j=0

Xj

 ⊆ Border(B).
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The move set is Z = X0∪X2∪ . . . while its boundary set is AdjH(Z) = X1∪X3∪ . . ..
For example, the alternating breadth-first level structure for X0 = {13, 25} is found
below.

7 19

14 20

13 25

��������@
@

The move set is S{13,25} = {7, 13, 19, 25} while its boundary is AdjH(S{13,25}) =
{14, 20}. Figure 3 shows the improvement of the separator by making the move
Z = S{13,25} (see the bottom two grids). Note that the resulting separator is smaller
than the separator induced by the two move sets S13 and S25.

The first improvement to [24] is to use all exposed nodes in S to find a subset
Z ⊆ S that maximizes the decrease in separator size. It is based on the following
extension [25], [26] of the result in Theorem 3.2 for separator-size reduction of greater
than one.

THEOREM 3.3 (see Pothen and Fan [26]). Define

SI = {s ∈ S | s is reachable from some exposed node in S via alternating paths}.

Then
• |SI | − |AdjH(SI)| > 0,
• |SI | − |AdjH(SI)| = maxZ⊆S{|Z| − |AdjH(Z)|},
• SI is the smallest subset of S with this maximum value |SI | − |AdjHSI |.

The subset SI can be constructed by performing an alternating breadth-first
search starting with X0, which contains all exposed nodes of S.

Theorems 3.2 and 3.3 provide the end points of a range of separator subsets with
the size-improving property. Indeed, consider any subset X0 of exposed nodes in S.
It is easy to verify that the corresponding subset

Z =
⋃
{Sx | x ∈ X0}

satisfies the condition |Z|−|AdjH(Z)| > 0. This gives a number of choices in selecting a
separator-improving subset. Although the subset SI provides the maximum reduction
in separator size, one might accept a smaller reduction in exchange for a better balance
in the two components.

3.3. The Dulmage–Mendelsohn Decomposition. In [26], Pothen and Fan
relate the subset SI used in separator size reduction with the Dulmage–Mendelsohn
decomposition of bipartite graphs [8]. The decomposition is also useful in our context
in finding a balance-improving separator subset. Let H(S,B) be the induced bipartite
graph from a given partition [S,B,W ]. Assume that a maximum matching M is given
on H.

The Dulmage–Mendelsohn decomposition of S is the decomposition of S into three
disjoint subsets: S = SI ∪ SR ∪ SX , where

SI = {s ∈ S | s is reachable from some exposed node in S via alternating paths},
SX = {s ∈ S | s is reachable from some exposed node in B via alternating paths},
SR = S \ (SI ∪ SX).
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Note we use the notation SI to represent nodes reachable from internal exposed
nodes, and SX from external exposed nodes of S. SR stands for the remaining nodes.
We shall also use the notation 〈SI , SX , SR〉 to represent the Dulmage–Mendelshohn
decomposition of S. We now quote some results about this decomposition relevant to
the partition improvement scheme.

THEOREM 3.4 (see Dulmage and Mendelsohn [8]). The Dulmage–Mendelsohn
decomposition 〈SI , SX , SR〉 of S is independent of the maximum matching used to
define the alternating paths.

THEOREM 3.5 (see Pothen and Fan [26]). The set SI ∪SR satisfies the following:
• |SI ∪ SR| − |AdjH(SI ∪ SR)| = |SI | − |AdjH(SI)|,
• SI ∪ SR is the largest subset of S with the maximum value maxZ⊆S{|Z| −
|AdjH(Z)|}.

Theorem 3.3 states that SI , if used, is the smallest subset of S with the maximum
reduction |SI | − |AdjH(SI)| in separator size. On the other hand, Theorem 3.5 iden-
tifies SI ∪ SR as the largest subset with such maximum reduction in separator size.
Moving SI or SI ∪SR will achieve the same amount of size reduction, but the balance
for the resulting partition will be better for one or the other of the two moves.

By symmetry, there is a similar Dulmage–Mendelsohn decomposition 〈BI , BX , BR〉
of B, the other part of the bipartite graph, where

BI = {b ∈ B | b is reachable from some exposed node in B via alternating paths},
BX = {b ∈ B | b is reachable from some exposed node in S via alternating paths},
BR = B \ (BI ∪BX).

THEOREM 3.6 (see Dulmage and Mendelsohn [8]). SX = AdjH(BI) and BX =
AdjH(SI).

The set SX is given by the adjacent set of BI , the set of reachable nodes in B
from internal exposed nodes via alternating paths. The set BI can be determined in
the same way as SI , by forming the alternating breadth-first search forest from the
set of exposed nodes in B.

For the example in Figure 2, the sets of exposed nodes in S and B are {13, 25}
and {16, 33}, respectively. This gives the following:

SI = {7, 13, 19, 25}, BI = {4, 10, 16, 21, 27, 33},
SX = {3, 9, 26, 32}, BX = {14, 20},
SR = {8}, BR = {15}.

In Figure 4, we illustrate the Dulmage–Mendelsohn decomposition of the bipartite
graph H of Figure 2. The six sets are arranged to illustrate their adjacency relation-
ships.

It is instructive to interpret the decompositions 〈SI , SX , SR〉 and 〈BI , BX , BR〉 in
connection with our partition improvement objective. For the given separator S, we
can extend it to include its adjacent set in the B portion to obtain a wide separator
S∪Border(B). The Dulmage–Mendelsohn decomposition provides machinery whereby
a separator can be obtained from this wide separator, such that it is of minimum cover
among all separator subsets of S ∪ Border(B). Indeed, it is clear that the following
are two such separator subsets:

SX ∪ SR ∪BX , SX ∪BR ∪BX .

Either one of them can be used to achieve a maximum reduction in separator size in
the new partition.
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FIG. 4. Dulmage–Mendelsohn decomposition.

4. Using the Dulmage–Mendelsohn decomposition to improve balance.

4.1. Using the set SR . In the discussion in the last section, we are looking for
a separator-improving subset Z of S satisfying |Z| > |AdjH(Z)∩B|. If no such subset
can be found, no reduction in separator size by graph matching is possible. In terms
of the Dulmage–Mendelsohn decomposition, this is equivalent to the condition that
the current separator S is already of minimum size among covering separator subsets
of S ∪ Border(B). The algorithm as presented in [24] will terminate if there is no
reduction in separator size via graph matching.

However, based on our evaluation function γ(B,W,S), it may still be possible to
improve the partition by reducing the imbalance ratio max{|B|, |W |}/min{|B|, |W |}.
We can search for a subset Z of S with |AdjH(Z)| = |Z|. A move of such a subset to
the smaller portion W will replace Z by AdjH(Z) in S so that there will be no change
in separator size. However, there may be a reduction in the imbalance.

When SI is empty (implying that size reduction is not possible by this approach),
the subset SR can be used to reduce the imbalance. The next theorem contains an
interesting property of this subset; to establish, we need the following lemma.

LEMMA 4.1. Let SI = ∅. Consider a subset Z of S. If Z ∩ SX 6= ∅, then
|Z| < |AdjH(Z)|.

Proof. SI = ∅ implies that there is a complete matching from S into B. By
Theorem 3.1, |Z| ≤ |AdjH(Z)| for every subset Z of S.

Let Z be a subset of S with Z ∩ SX 6= ∅. Assume for contradiction that |Z| =
|AdjH(Z)|. This means AdjH(Z) is exactly the set of matched vertices of Z for a
given maximum matching. Let s be a vertex in Z ∩SX . Then there exists an exposed
vertex be ∈ B and an alternating path from be to s

(be, s1, b1, . . . , st, bt, st+1 = s),

where each pair {si, bi} belongs to the maximum matching. Let m be the smallest
index such that sm ∈ Z. If m = 1, this is a contradiction since be ∈ AdjH(s1) ⊆
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FIG. 5. Improving the balance.

AdjH(Z) and be does not have a mate in Z. For the case m > 1, this is again a
contradiction since bm−1 ∈ AdjH(sm) ⊆ AdjH(Z) and the mate sm−1 of bm−1 is not
in Z by the choice of m. Therefore, we have |Z| < |AdjH(Z)|.

THEOREM 4.2. Let SI = ∅. The separator subset SR is the largest subset of S
such that its size is the same as the size of its adjacent set.

Proof. By Theorem 3.5 we have

|SI ∪ SR| − |AdjH(SI ∪ SR)| = |SI | − |AdjH(SI)|,

so that if SI = ∅, |SR| − |AdjH(SR)| = 0.
Consider any subset Z of S with the property |Z| = |AdjH(Z)|. By Lemma 4.1,

Z ∩ SX is empty, which implies Z ⊆ SR.
Theorem 4.2 suggests that the subset SR is the key to finding a balance-improving

separator subset. We first note from [25], [26] that, in general, we have |SR| = |BR|.
Furthermore, we have

AdjH(SI ∪ SR) = BX ∪BR,

so that when SI = ∅, we have BX = ∅ and AdjH(SR) = BR. Therefore, when the
separator subset SI is empty, the move of SR to W will give a new separator

SSR 7→W = (S ∪BR) \ SR,

so that |SSR 7→W | = |(S ∪BR) \ SR| = |S|.
Consider the example in Figure 5. There is a complete matching from the set S to

B so that in the induced bipartite graph, SI = ∅. This implies the separator-improving
technique in the last section is not applicable. Note that the Dulmage–Mendelsohn
decomposition is given by the following:

SI = ∅, BI = {5, 11, 17, 30, 31, 32},
SX = {4, 10, 24, 25}, BX = ∅,
SR = {9, 15, 19, 20, 21}, BR = {16, 22, 26, 27, 28}.

For this example, moving the subset SR from S to W will have the net effect of replac-
ing it byBR in S. In this way, the new separator will be {4, 10, 16, 22, 24, 25, 26, 27, 28},
which is the same size as before.
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Now consider a separator subset Z with the property |Z| = |AdjH(Z)|. Moving
it to the portion W will preserve the separator size. The next result gives a simple
necessary and sufficient condition for the move to improve the evaluation function
γ[S,B,W ].

THEOREM 4.3. Let [S,B,W ] be a given partition with |B| ≥ |W | and SI = ∅.
Consider a subset Z with |Z| = |AdjH(Z)|. The move of the subset Z to W will reduce
the evaluation function if and only if |Z| < |B| − |W |.

Proof. Let

[S,B,W ]Z 7→W = [SZ 7→W , BZ 7→W ,WZ 7→W ]

be the new partition after the move of the subset Z from S to W . It is clear that
|SZ 7→W | = |S|, |BZ 7→W | = |B| − |Z|, and |WZ 7→W | = |W |+ |Z|.

Case 1. |BZ 7→W | ≥ |WZ 7→W |.

γ[S,B,W ]− γ[S,B,W ]Z 7→W = |S|
(

1 + α
|B|
|W |

)
− |S|

(
1 + α

|B| − |Z|
|W |+ |Z|

)
=
α|S| |Z| (|B|+ |W |)
|W |(|W |+ |Z|) > 0.

Case 2. |BZ 7→W | < |WZ 7→W |.

γ[S,B,W ]− γ[S,B,W ]Z 7→W = |S|
(

1 + α
|B|
|W |

)
− |S|

(
1 + α

|W |+ |Z|
|B| − |Z|

)
=
α|S| |Z| (|B|+ |W |)(|B| − |W | − |Z|)

|W |(|B| − |Z|) .

Assume |Z| < |B| − |W |. The evaluation function will be reduced in Case 1.
Moreover, in Case 2, we have |B|− |W |− |Z| > 0 so γ[S,B,W ]−γ[S,B,W ]Z 7→W > 0.

On the other hand, assume that γ[S,B,W ]− γ[S,B,W ]Z 7→W > 0. In Case 1 we
have |B| − |Z| > |W |+ |Z|, which implies that

|B| − |W | > 2|Z| > |Z|.

Furthermore, in Case 2, a reduction in the evaluation function implies that |B| −
|W | − |Z| > 0 or |Z| < |B| − |W |.

By Theorems 4.2 and 4.3, to improve the balance of a given partition, we should
be looking for a subset Z of SR such that |Z| = |AdjH(Z)| < |B| − |W |. Of course,
if |SR| < |B| − |W |, this set SR is a good choice. Otherwise, we need to find proper
subsets of SR.

4.2. Finding balance-improving subsets of SR . Finding a subset Z with
|Z| = |AdjH(Z)| is related to the problem of reordering a sparse square matrix to
block lower triangular form. In [26], Pothen and Fan provide an algorithm to compute
the block triangular form of a sparse matrix. In their “fine decomposition” step, the
square submatrix associated with the vertices in SR and BR are further reordered
into block lower triangular form. (Pothen and Fan actually compute a block upper
triangular form, but the algorithm can be adapted for block lower triangular form.)
Their approach involves the following substeps:
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• Form a directed graph based on the bipartite subgraph of SR and BR. The
directed graph consists of nodes from SR. For two nodes x and y in SR, there
is a directed edge from x to y in this new directed graph if and only if there
is an edge from x to the mate of y in BR.
• Determine the strongly connected components of this directed graph. (The

quotient graph using the strongly connected components forms a directed
acyclic graph or, in short, a dag).
• Order the strongly connected components of this directed graph by a reverse

topological ordering (i.e., an ordering of the nodes in the directed graph so
that all the directed edges are pointing backwards to the left).

The reverse topological ordering of the strongly connected components of this directed
graph will induce an ordering of the vertices in SR and BR so that the bipartite graph
with this new reordering has a block lower triangular form. It should be clear from the
block lower triangular structure that any subset Z of nodes of SR corresponding to
the leading blocks in the triangular form has this desirable property |Z| = |AdjH(Z)|.

It is instructive to apply this scheme to the example of Figure 5. The new directed
graph formed will consist of nodes from SR = {9, 15, 19, 20, 21}. Figure 6 shows the
directed graph; each vertex of this directed graph is labeled with both the node in SR
and its mate in B. There is no cycle in this directed graph, so that each node forms
a strongly connected component. Furthermore, the following is a reverse topological
ordering:

9, 15, 19, 20, 21

and the corresponding matrix is lower triangular:

16 22 26 27 28
9
15
19
20
21


•
• •

•
• •

• • • • •

 .

We can then deduce from this reverse topological ordering that all of the following
subsets have the property |Z| = |AdjH(Z)|:

{9}, {9, 15}, {9, 15, 19}, {9, 15, 19, 20}, {9, 15, 19, 20, 21}.
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It is interesting to note that there are different reverse topological orderings of this di-
rected graph. They will provide additional such subsets. For example, {19, 20, 9, 15, 21}
is a different reverse topological ordering, and the subsets {19}, {19, 20}, {19, 20, 9}
also have the size-preserving property.

5. Partition improvement on compressed graphs.

5.1. Compressed graphs. The Dulmage–Mendelsohn decomposition is the ba-
sic tool used in the last two sections to improve a given two-set partition. In this
section, we explore efficient ways of computing this decomposition for some practi-
cal classes of matrix problems. It is common for graphs from applications to have
sets of vertices with identical adjacency structures, e.g., in a finite element graph, a
given geometric location may have multiple displacements and rotations. Such ver-
tex pairs are sometimes referred to as indistinguishable in the sparse matrix research
community. More formally, two vertices x and y are said to be indistinguishable if

Adj(x) ∪ {x} = Adj(y) ∪ {y}.

The notion of compressed graph is introduced in [1], [6], where each vertex of the
compressed graph corresponds to (possibly) several indistinguishable vertices in the
original graph. A compressed graph can be viewed as a quotient graph of the original
unit-weight graph consisting of weighted compressed vertices. The motivation in [1] is
for efficient implementations of some sparse matrix ordering algorithms. The number
of vertices in a compressed graph can be many fewer than those of the original unit-
weight graph. Since most graph algorithms have a strong O(|V |) or O(|E|) component
to their complexity, it would be quite beneficial to work with a compressed graph
instead of the original graph.

Following [1], we use boldface G = (V,E) to represent a compressed graph. A
boldface v is used to denote a compressed vertex in V that corresponds to a set of
indistinguishable vertices in V . For a given compressed graph, it is helpful to define its
associated compression to be a mapping κ : V −→ V, where κ(v) is the compressed
vertex in V containing the vertex v. This means κ(v) is a subset of vertices in V
(containing v) that are indistinguishable from v in G. However, we do not require
κ(v) to include all possible indistinguishable vertices of v. An edge (u,v) is in the
compressed edge set E if (u×v)∩E 6= ∅. The theory and algorithm to be developed
apply to any level of compression (partial or complete). Note that this is a lossless
representation; that is, given E and κ, we can always recover the original edge set E.

We also extend the usage of κ to subsets: for a subset Y ⊆ V , κ(Y ) = {κ(y) | y ∈
Y } ⊆ V. For a compressed vertex v ∈ V, define its weight wt(v) to be the number of
indistinguishable vertices contained in v. This notion can be extended to the weight
of a subset of compressed vertices: for a subset Y of V,

wt(Y) =
∑
{wt(y) | y ∈ Y}.

We now consider the partition improvement techniques of the last two sections in the
context of compressed graphs.

5.2. Definitions for bipartite compressed graphs. Let G be a given com-
pressed graph with compression κ and a two-set partition [S,B,W]; that is, Adj(B) ⊆
S and Adj(W) ⊆ S. We first make a connection of this compressed partition with a
partition on the original graph G.

THEOREM 5.1. There is a unique two-set partition [S,B,W ] on G such that
κ(S) = S, κ(B) = B, and κ(W ) = W.
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Proof. It is clear that the subsets defined by

S = {v ∈ V | κ(v) ∈ S}, B = {v ∈ V | κ(v) ∈ B}, W = {v ∈ V | κ(v) ∈W}

satisfy the conditions κ(S) = S, κ(B) = B, and κ(W ) = W, respectively. To prove
that they form a two-set partition on G, it suffices to show that Adj(B) ⊆ S (by
symmetry, we have Adj(W ) ⊆ S). This is the case since otherwise it would have
implied that W and B are adjacent, contradicting the fact that S separates them.
The uniqueness follows from the fact that [S,B,W] is a partition on G.

The simple connection in Theorem 5.1 allows the partition improvement tech-
niques described in sections 3 and 4 using the Dulmage–Mendelsohn decomposition
to be applied to the induced partition [S,B,W ] of the unit-weight graph. We now
show that the decomposition of the original graph can be readily obtained from a
similar decomposition of the compressed graph. We first extend the various notions
used in the formulation of the Dulmage–Mendelsohn decomposition from unit-weight
graphs to compressed graphs.

5.2.1. Compressed matching and maximum matching. As before, let
[S,B,W] be a given partition on the compressed graph G. This will in turn define a
bipartite compressed graph H(S,Border(B)). We extend the notion of matching to
bipartite compressed graphs. In the unit-weight case, a matching can be viewed as an
assignment of an integer value f(s, b) to each edge (s, b) in the bipartite graph such
that

• for every edge (s, b), f(s, b) ≥ 0;
• for every vertex s̃ ∈ S, 1 ≥

∑
{f(s̃, b) | b ∈ B};

• for every vertex b̃ ∈ B, 1 ≥
∑
{f(s, b̃) | s ∈ S}.

It follows that the assigned values can either be zero (unmatched) or one (matched).
Furthermore, a maximum matching is one that will maximize the sum

∑
{f(s, b) | s ∈

S, b ∈ B}, which is the number of edges in the matching.
With this interpretation, we generalize a compressed matching of a bipartite com-

pressed graph to be an assignment of integer values f(s,b) to the edges such that they
satisfy the following three conditions:

• for every edge (s,b), f(s,b) ≥ 0;
• for every compressed vertex s̃ ∈ S, wt(s̃) ≥

∑
{f(s̃,b) | b ∈ B};

• for every compressed vertex b̃ ∈ B, wt(b̃) ≥
∑
{f(s, b̃) | s ∈ S}.

Note that we have used the weight of each vertex instead of unit weight in the sums
above. A maximum compressed matching is one that maximizes the total edge value:∑

{f(s,b) | s ∈ S, b ∈ B}.

Compressed exposed nodes and alternating paths. In the unit-weight bi-
partite graph, an exposed node se is one such that none of its incident edges belong
to the matching. In terms of the value f(s, b), this is equivalent to the condition that
for the node se

1 >
∑
{f(se, b) | b ∈ B} = 0.

In a compressed bipartite graph, we define an exposed node se ∈ S to be a node such
that

wt(se) >
∑
{f(se,b) | b ∈ B}.
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The exposure of s is defined to be wt(s)−
∑
{f(s,b) | b ∈ B}. Therefore, the exposure

of an exposed node is positive. Exposed nodes and exposure are similarly defined for
compressed vertices in B.

For a given compressed matching M of the compressed bipartite graph, consider
a path

s0 −→ b1 −→ s1 −→ b2 −→ s2 −→ . . . −→ bm −→ sm −→ . . . .

It is a compressed alternating path with respect to M if the alternate edges

(b1, s1), (b2, s2), . . . , (bm, sm), . . .

all have positive edge values from the matching M. In such a case, we use the following
to represent an alternating path:

s0 −→ b1 =⇒ s1 −→ b2 =⇒ s2 −→ . . . −→ bm =⇒ sm −→ . . . ,

where a double-lined arrow is used to indicated an edge with positive edge value. An
alternating path that starts with a compressed node from B is similarly defined.

5.3. Decomposition in bipartite compressed graphs. Recall that our ob-
jective is to improve a partition using the Dulmage–Mendelsohn decomposition, and
we want to take advantage of compression in finding such decomposition. As before,
let [S,B,W] be a given partition on the compressed graph G and H(S,Border(B))
be the corresponding bipartite compressed graph. Furthermore, let M be a maximum
compressed matching on H. Consider the decomposition SI ∪ SR ∪ SX of S, where

SI = {s ∈ S | s is reachable from some exposed node in S via alternating paths},
SX = {s ∈ S | s is reachable from some exposed node in B via alternating paths},
SR = S \ (SI ∪ SX).

Note that we have used the boldface exposed and alternating in the decomposition
above to emphasize the use of the extended definitions of compressed exposed nodes
and compressed alternating paths for compressed bipartite graphs. The decomposition
BI ∪BR ∪BX of B can be similarly defined.

We now make the connection of this decomposition with the Dulmage–Mendelsohn
decomposition in the unit-weight graph. Consider the unique partition [S,B,W ] of
the unit-weight graph G satisfying κ(S) = S, κ(B) = B, and κ(W ) = W in Theo-
rem 5.1. This partition will in turn determine a unit-weight bipartite graph H(S,B).
We now relate the decomposition SI ∪ SR ∪ SX with the Dulmage–Mendelsohn de-
composition of S in this H(S,B). Note that the Dulmage–Mendelsohn decomposition
〈SI , SX , SR〉 of S is independent of any maximum matching used in H. But in order
to make the connection between the two decompositions, we need to define an induced
matching of H from H.

Let M be a compressed matching on H(S,Border(B)). An induced matching
M on the unit-weight bipartite graph H(S,B) can be defined as follows. For each
compressed vertex s, we have the size condition

wt(s) ≥
∑
{f(s,b) | b ∈ B}.

Therefore, for each incident edge (s,b) we can always assign f(s,b) distinct S-vertices
from s to this compressed edge. Similar allotments of B-vertices from compressed
vertices of B to compressed incident edges can be assigned.
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Now for each compressed edge (s,b) with value f(s,b) in the matching M, there
will be f(s,b) S-vertices from s and the same number of B-vertices from b assigned
to this edge. Since each S-vertex in s is adjacent to each B-vertex in b, we can get
f(s,b) different edges consisting of pairs of adjacent assigned vertices from s and b.
We place them in the set M .

After doing this for every compressed edge, we see that the set of edges in M ,
by construction, does not have common vertices. This means that the set M forms a
matching. Furthermore, this set M satisfies the following property.

LEMMA 5.2. Given M is a maximum matching on the compressed bipartite graph
H, M is a maximum matching on H.

Proof. Assume for contradiction that M is not maximum. We can therefore find
an alternating path connecting two exposed vertices, say s ∈ S and b ∈ B (such a
path is usually referred to as an augmenting path):

s −→ b1 =⇒ s1 −→ . . . −→ bt =⇒ st −→ b.

Through compression, this corresponds to a path or walk in the compressed graph

κ(s) −→ κ(b1) =⇒ κ(s1) −→ . . . −→ κ(bt) =⇒ κ(st) −→ κ(b).

Since s ∈ κ(s) and b ∈ κ(b) are both exposed in M , we can increase the total matching
in M by at least one by alternately increasing and decreasing the f values along this
path. This contradicts the fact that M is a maximum matching on H.

By this lemma, M is a maximum matching onH so that the Dulmage–Mendelsohn
decomposition 〈SI , SX , SR〉 of S can be determined using M .

THEOREM 5.3. κ(SI) = SI , κ(SR) = SR, κ(SX) = SX .
Proof. We only prove κ(SI) = SI and leave the remaining two for the readers.

We first show κ(SI) ⊆ SI . Consider a compressed vertex κ(s) ∈ κ(SI) with s ∈ SI .
This means that there exists an alternating path

s0 −→ b1 =⇒ s1 −→ . . . −→ bt =⇒ st = s

from some exposed node s0 ∈ S. This induces a compressed alternating path or walk
in H:

κ(s0) −→ κ(b1) =⇒ κ(s1) −→ . . . −→ κ(bt) =⇒ κ(st) = κ(s)

and κ(s0) is exposed in S. Therefore, κ(s) ∈ SI .
We now show SI ⊆ κ(SI). Consider a compressed node s ∈ SI . There exists an

alternating path in H

s0 −→ b1 =⇒ s1 −→ . . . −→ bt =⇒ st = s

from an exposed s0. Choose a s0 ∈ s0, that is exposed in M . For 0 < i < t, choose a
matched edge (bi, si) in M , where κ(bi) = bi and κ(si) = si; one is guaranteed since
f(bi, si) > 0. This forms an alternating path in M from an exposed node s0 to st;
therefore, st ∈ SI . The result follows since κ(st) = s.

The next two theorems follow directly from Theorem 5.3. The first theorem states
that the weight of SI is less than that of BX so that the partition [S,B,W] can be
improved by replacing the subset SI with its adjacent set BX . The second theorem
relates the weights of the two subsets SR and BR.

THEOREM 5.4. If SI is nonempty, then wt(SI) < wt(BX).
THEOREM 5.5. wt(SR) = wt(BR).
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6. Partition improvement by maximum network flow.

6.1. Bipartite compressed graph matching by maximum network flow.
Finding an assignment of edge values to a bipartite compressed graph that corresponds
to a maximum matching can be reformulated into a much-studied combinatorial prob-
lem involving flow through a network [9], [11], [12], [18], [28]. A network is a weighted
directed graph with two special nodes: one with no incoming edges (the source), and
one with no outgoing edges (the sink). There are capacity constraints associated with
the edges and vertices. Most discussions of the network flow problem in the literature
assume the use of edge capacities. The generalization to include both edge and vertex
capacity is well known (for example, [22, pp. 120–121]). For our purposes, we only
need to consider networks with finite vertex capacities, i.e., each vertex y is given
a nonnegative integer value capacity(y), called the capacity of the vertex. All edges
have infinite capacity.

A flow is a function that assigns a nonnegative integer value flow(y, z) to each
directed edge (y, z). The flow satisfies two conditions:

• the amount of in-flow equals the amount of out-flow at each vertex except
the source and sink;
• the in-flow must be within capacity of each vertex.

Let inflow(y) denote the amount of in-flow into the vertex y, that is,

inflow(y) =
∑
{flow(v, y) | v ∈ V }

and let outflow(y) be the amount of out-flow from the vertex y,

outflow(y) =
∑
{flow(y, v) | v ∈ V }.

For every vertex aside from the source and sink, the flow function satisfies

inflow(y) = outflow(y) ≤ capacity(y).

We shall also refer to inflow(y) (or equivalently outflow(y)) as the flow across the
vertex y. A vertex y is said to be saturated or at capacity if inflow(y) = capacity(y);
otherwise, it is said to be below capacity or to have excess capacity. By convention,
the source and sink have infinite capacity.

The value of the flow is the amount of out-flow from the source node, called
outflow(source)2, or equivalently, the amount of in-flow into the sink node, inflow(sink).
The network flow problem is to find a flow with the maximum value for a given net-
work. It should be emphasized that we consider only integer capacity and flow values.

We now describe a network flow problem that when solved will give a solution
to the maximum matching problem for bipartite compressed graphs. As before, let
H(S,Border(B)) be our bipartite compressed graph with weight function wt(∗). A
bipartite network is constructed as follows:

• In addition to the source and sink, the nodes in the network are the vertices
in S and Border(B).

• For each vertex s ∈ S, add the directed edge (source, s) to the network.
• For each vertex b ∈ Border(B), add the directed edge (b, sink) to the net-

work.

2We use boldface for source and sink to emphasize that we are working on the weighted com-
pressed graph.



NETWORK FLOW AND GRAPH BISECTION IMPROVEMENT 343

• For each edge (s,b), s ∈ S, b ∈ Border(B), in the graph H(S,Border(B)),
add a directed edge (s,b) to the network, where flow is assumed to go from
s to b along this edge.
• All edges have infinite capacity. For each vertex y in H(S,Border(B)), we

set capacity(y) = wt(y).
In the top network of Figure 7 we illustrate the bipartite network obtained for the

separator example of Figure 2. Arrows are used on edges to indicate the direction of
flow (except for those involving the source and the sink). Edges with positive (zero)
flow are thick (thin) lines. Note that there is a directed edge from the source to every
vertex in S (the set of “square” vertices) and one from every vertex in Border(B) (the
set of “circle” vertices) to the sink.

We shall use the notation Nb (b for bipartite) to represent this bipartite network.
To establish the equivalence between a max-flow solution on this bipartite network
with a maximum matching on the bipartite compressed graph, we use the equivalence
of flow augmenting paths in the former with augmenting paths in the latter. An
augmenting path in the bipartite compressed graph is an alternating path whose first
and last vertices are exposed in S.

It is simple to generalize such augmenting paths for bipartite network flows. In-
deed, a flow augmenting path for a bipartite network is a sequence of edges from the
source to the sink with alternate forward and backward edges:

source −→ v1 −→ v2 ←− v3 −→ v4 ←− . . .←− vk −→ sink.

Furthermore, each backward edge (v2j+1,v2j) has positive flow and the vertices v1
and vk are below capacity. It is easy to relate this with an augmenting path in the
original bipartite compressed graph. Since v1 and vk are below capacity, they are
exposed in the graph matching. Any backward edge with positive flow means the two
incident vertices are matched.

Since we will be considering flows on a general network, we must further gener-
alize the notion of a flow augmenting path. When edges have finite capacity, a flow
augmenting path is a path from the source to the sink such that forward edges are
below capacity and backward edges have positive flow. In our networks the edges
have infinite capacity and the vertices have finite capacity, so a flow augmenting
path is a sequence of vertices 〈source = v0,v1, . . . ,vk,vk+1 = sink〉 with these four
properties.

• Two consecutive vertices vi and vi+1 are connected by an edge in the network;
a forward edge is of the form (vi,vi+1), a backward edge is of the form
(vi+1,vi).

• Any two consecutive forward edges (vi−1,vi) and (vi,vi+1) implies vertex vi
is below capacity.
• Any backward edge (vi+1,vi) has nonzero flow, i.e., flow(vi+1,vi) > 0.
• A vertex may appear in the path once or twice, via a forward edge, a backward

edge, or both3.
The overall flow value can be increased by increasing flow along the forward edges
and decreasing flow along the backward edges.

3Technically speaking, if a vertex is visited twice we have a flow augmenting walk. Had we taken
the more conventional route of handling vertex capacities by expanding a vertex v into a pair of
vertices connected by an edge (v−,v+) whose capacity is the weight of the vertex, then v− would
be visited by a forward edge, v+ would be visited by a forward or a backward edge, and there would
be no repeated vertices along the path.
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FIG. 7. Top: Nb, the original bipartite network used to find the Dulmage–Mendelsohn decom-
position; middle: Nm, the intermediate network found by adding edges that do not increase the
max-flow; bottom: Nw, the final three-layer network found by deleting edges from the middle layer
vertices to the sink.

6.2. Min-cut in network flow. The dual to the network max-flow is a min-cut.
In our context of networks with finite vertex capacities and infinite edge capacities,
a cut is a set of vertices whose removal separates the source from the sink, i.e., a
separator of the graph from which the network was derived. A min-cut is a cut such



NETWORK FLOW AND GRAPH BISECTION IMPROVEMENT 345

that its size ∑
{capacity(v) | v belongs to the cut}

is minimum among all cuts. The well-known max-flow min-cut theorem states that
the size of a min-cut is the same as the value of a max-flow.

It is interesting to relate min-cuts with the Dulmage–Mendelsohn decomposition.
For a bipartite compressed graph, once we find a maximum matching we can determine
the Dulmage–Mendelsohn decomposition and thus construct one or more minimum
cover separators, such as SX ∪ SR ∪ BX and SX ∪ BR ∪ BX . A covering separator
of minimum size is equivalent to a min-cut of a bipartite network constructed from S
and Border(B).

There are two specific min-cuts of the network that are of interest. The tool we
use is a flow alternating path. A flow alternating path differs from a flow augmenting
path in that it need not start from the source nor end at the sink. Therefore, any
contiguous sequence of edges from a flow augmenting path is a flow alternating path.
We can now define the following subset:

Rsource = {v ∈ V | v is reachable from source via a flow alternating path}.

Intuitively, the subset Rsource provides the “bottleneck” that limits the total flow to
its present value. Indeed, the border of Rsource is a min-cut of the network. A similar
subset can be defined with respect to the sink:

Rsink = {v ∈ V | the sink is reachable from v via a flow alternating path}.

The border of Rsink is a min-cut of the network. For the network at the top of
Figure 7, the two reach sets and their borders are given below.

Rsource = {3, 7, 8, 9, 13, 14, 19, 20, 25, 26, 32},
Border(Rsource) = {3, 8, 9, 14, 20, 26, 32},

Rsink = {3, 4, 9, 10, 14, 15, 16, 20, 21, 26, 27, 32, 33},
Border(Rsink) = {3, 9, 14, 15, 20, 26, 32}.

In the context of the Dulmage–Mendelsohn decomposition, Rsource = SI ∪ BX ∪
SR ∪ SX , Border(Rsource) = BX ∪ SR ∪ SX , Rsink = BI ∪ SX ∪ BR ∪ BX , and
Border(Rsink) = SX ∪BR ∪BX .

6.3. Enhancement techniques by network flow. In this section, we con-
sider new partition improvement techniques based on network flows. We first con-
sider a motivating example. Consider again the grid at the bottom of Figure 3.
Using the Dulmage–Mendelsohn decomposition, we can determine the move set SI =
{7, 13, 19, 25} that decreases the separator size the most. The size of SX ∪BX ∪BX ,
the new separator {3, 9, 14, 15, 20, 26, 32}, is seven. On the other hand, consider the
two grids in Figure 8. The left-hand grid shows a wide separator S ∪ Border(B)
that contains 18 nodes. The right-hand grid shows a separator subset of size six,
smaller than the “best” separator that was found using the Dulmage–Mendelsohn
decomposition.

There is no contradiction here, yet there is a subtle point that needs to be un-
derstood. Theorem 3.3 states that SI is the smallest subset of S that if absorbed by
W will result in the largest decrease of separator size. The “move” that generated
the partition in the right-hand grid of Figure 8 had W absorb the separator vertices
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FIG. 8. A two-layer wide separator and its minimal weight separator subset.

{7, 8, 13, 19, 25, 26, 32}, but W also absorbed the black vertices {14, 20}, so it is a more
general move than that covered by Theorem 3.3. Indeed, {7, 8, 13, 14, 19, 20, 25, 26, 32}
is the smallest subset of S ∪ Border(B), which when moved to W will result in the
largest decrease in separator size.

We first offer an intuitive explanation to the enhancement. Our goal is to improve
an initial partition [S,B,W] of a given compressed graph. The separator S is first used
to construct a compressed bipartite graph based on S and its adjacent set Border(B)
in B. In section 6.1, we construct a bipartite network Nb based on this compressed
bipartite graph. A max-flow min-cut solution to this bipartite network Nb can then
be used to obtain an improved new partition for the original compressed graph.

We shall modify our bipartite network so that the max-flow value (and hence
min-cut size) of the new network is no larger and possibly smaller. More importantly,
the min-cut of this new network also corresponds to a separator of the underlying
compressed graph. There is potential to obtain a smaller separator than the one from
the original bipartite network.

We now describe how to construct the new network. Let S ∪ Border(B) be the
wide separator induced from S. We have a new partition [S∪Border(B), Int(B),W].
The wide separator has two portions S and Border(B). Consider a further subdivision
of the subset Border(B) into

Y = {b ∈ Border(B) | Adj(b) ∩ Int(B) = ∅} and Z = Border(B) \Y.

Y contains those vertices in Border(B) that are not adjacent to Int(B), while Z has
those vertices that are adjacent to Int(B).

By using these subsets we can form the new network.
• In addition to the source and sink, the nodes in the network are the vertices

in S and Border(B) = Y ∪ Z.
• For each vertex s ∈ S, add the directed edge (source, s) to the network.
• For each vertex z ∈ Z, add the directed edge (z, sink) to the network.
• For s ∈ S and b ∈ Y ∪Z = Border(B) where (s,b) is an edge in the original

compressed graph, add the directed edge (s,b) to the network.
• For y ∈ Y and b ∈ Y ∪ Z = Border(B), if (y,b) is an edge in the original

compressed graph, add the directed edge (y,b) to the network.
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• All edges have infinite capacity. For each vertex s in S ∪ Border(B) we set
capacity(s) = wt(s).

We shall refer to this new network by Nw (w for wide). Let us first apply the
construction on the partition example of Figure 2. We note that the wide separator
is subdivided into these three sets:

S = {3, 7, 8, 9, 13, 19, 25, 26, 32}, Y = {14, 20}, and Z = {4, 10, 15, 16, 21, 27, 33}.

Nw is the bottom network of Figure 7. The readers should compare this network with
Nb, the original bipartite network Nb, at the top of Figure 7.

We are now ready to establish the important result that this new network Nw has
a max-flow (or min-cut) solution no larger than the one from the bipartite network Nb
using the same wide separator S ∪ Border(B). To prove this result we will construct
an intermediate network Nm by adding the following directed edges into the bipartite
network Nb.

• For y ∈ Y and b ∈ Y ∪ Z = Border(B), if (y,b) is an edge in the original
compressed graph, add the directed edge (y,b) to the network.

Nm is the middle network in Figure 7 and contains the edges (14, 20), (20, 14), (14, 21),
(14, 15), (20, 15), and (20, 27) in addition to those found in Nb.

The following lemma will be used in the next theorem to show that the max-flow
values for Nb and Nm are identical. It proves that adding an edge connecting two
vertices that are both adjacent to the sink does not change the max-flow value.

LEMMA 6.1. Let x and y be two vertices in a given network N0, such that both x
and y are connected to the sink. Consider the new network N1 by adding a directed
edge (x, y) to N0. The networks N0 and N1 have the same max-flow values.

Proof. Since the network N1 has one additional edge than N0, its max-flow value
is at least as large as that of N0. Consider a flow function f1 for N1 that achieves
the max-flow value for N1. If f1(x, y) = 0, there is an equivalent flow function for the
network N0. If f1(x, y) > 0, define the following flow function f0 for N0:

f0(x, sink) = f1(x, sink) + f1(x, y),

f0(y, sink) = f1(y, sink)− f1(x, y),

f0(x, y) = 0 (there is no directed edge from x to y in N0), and the f0 values are the
same as the f1 values for the other vertices. It is easy to see that f0 is a flow function
for N0 and its flow value is the same as the max-flow value for N1.

THEOREM 6.2. The max-flow values of the networks Nb and Nm are the same.
Proof. First note that the network Nm is constructed from Nb by adding a

number of directed edges to vertices that are directly linked to the sink. By applying
Lemma 6.1 a number of times, we have the result that the networks Nb and Nm have
the same max-flow values.

After we delete from Nm all edges (y, sink) for y ∈ Y , (in our example these
edges are (14, sink) and (20, sink)), we are left with the network Nw. We now show
that the max-flow value for Nw is no larger, and can be smaller, than the max-flow
value for Nb. The reach sets from the source and sink are

Rsource = {3, 7, 8, 9, 13, 14, 15, 19, 20, 21, 25, 26, 27, 32, 33},
Rsink = {3, 4, 9, 10, 15, 16, 21, 27, 33},
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FIG. 9. Finding a minimal separator using a three-layer network.

and they both have the same border, and thus give rise to the same min-cut, {3, 9, 15,
21, 27, 33}, which has six vertices compared with seven vertices for a min-cut of Nb.

THEOREM 6.3. The max-flow value of the network Nw is less than or equal to the
max-flow value of Nb.

Proof. Compare the networks Nm and Nw. The network Nw can be obtained
from Nm by removing those directed edges (y, sink) for y ∈ Y. Since Nw is a sub-
network of Nm, the max-flow value of Nw must be smaller than or equal to that of
Nm.

6.4. Generalization to wider separators. The technique introduced in the
last section hinges on the choice of the wide separator S ∪ Border(B). It is easy to
generalize this technique for “wider” separators.

Consider a given partition [S̃, B̃,W̃], where the separator set S̃ need not be
minimal but can be quite large. Subdivide the separator set S̃ into three subsets:

X = Border(S̃ ∪ B̃), Y = Int(S̃), and Z = Border(S̃ ∪ W̃).

A network can be constructed in the same manner as given in the last section by
adding edges from the source to vertices in X, from vertices in Z to the sink, and
retaining the underlying edges associated with Y from the original graph. A max-flow
min-cut solution to this network will determine a separator subset of S̃ with minimum
weight among all such separator subsets.

The wide separator S∪Border(B) we have used in our last section can be viewed
as having two layers: S and Border(B). Let us now consider a three-layer separator,
given by

S̃ = Border(W) ∪ S ∪ Border(B),

and solve a flow problem on a three-layer network N3.
Figure 9 contains an example to illustrate a three-layer separator S̃ given by the

union of the following three layers:

Border(W) = {2, 8, 9, 15, 22, 29, 36, 43, 44, 45},
S = {3, 10, 16, 17, 23, 30, 37, 38, 39, 46},

Border(B) = {4, 11, 18, 24, 25, 31, 32, 33, 40, 47}.
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TABLE 1
Iteration history for BCSSTK37.

Reduction Partition
|S| Imbalance in |S| cost γ

Initial two-set partition 1166 1.013 — 2347.2
after block Kernighan–Lin 572 1.118 50.9% 1211.5
1. SI ∪ SR 7→W 518 1.062 9.4% 1068.1
2. SI ∪ SR 7→W 484 1.038 6.6% 986.4
3. SI ∪ SR 7→W 480 1.017 0.8% 968.2
4. SI 7→W 471 1.001 1.9% 942.5
5. SI 7→W 460 1.012 2.3% 925.5
6. SI 7→W 446 1.015 3.0% 898.7
7. SR 7→W 446 1.013 0.0% 897.8
8. SI 7→ B 438 1.030 1.8% 889.1
9. SI 7→ B 434 1.041 0.9% 885.8

10. SI 7→ B 420 1.051 3.2% 861.4
11. SI 7→ B rejected 419 1.069 0.2% 867.0

The remaining white vertices form the partition subset W̃, while remaining black
vertices form B̃.

The right grid in Figure 9 shows the decomposition of the wide separator S̃ into the
three subsets X, Y, and Z. They form the basis on which the network is formed and
max-flow min-cut problem is solved. It should be pointed out that often there is more
than one min-cut solution. In this example there are three—{2, 9, 16, 23, 30, 37, 44},
{3, 10, 17, 24, 31, 38, 45}, and {4, 11, 18, 25, 32, 39, 46}.

When S̃ is even wider, say five or seven layers, the space from which we find a
minimal weight separator is large. As the number of layers in S̃ increases, the weight
of a minimal separator cannot increase. As in our example in Figure 9, there often
will be more than one choice of minimal weight separators; we want to choose one
that minimizes our partition evaluation function.

7. Experimental results.

7.1. A closer look at two-layer smoothing. In this section, we provide some
experimental evidence on improving partitions based on the Dulmage–Mendelsohn
decomposition. Table 1 contains a typical iteration history for the algorithm in Fig-
ure 1. The sparse matrix BCSSTK37, taken from the Harwell–Boeing collection [7],
has 25503 degrees of freedom and 1115474 edges. After compression, we work with
the weighted compressed graph with 7093 vertices and 88924 edges.

The partitioning algorithm used is from [2]; readers are referred to it for more
details. We first constructed a domain decomposition of the graph—there were 141
domains for this test. The initial partition split the domains into two groups of near
equal weight. The separator vertices had weight 1166, and the partition has imbalance
of max{|B|, |W|}/min{|B|, |W|} = 1.013. We then applied a block Kernighan–Lin
algorithm on the domain-segment graph to reduce the separator size to 572 but with
an increase in imbalance to 1.118. The separator at this stage tends to be “locally
smooth” when it coincides with the boundary of a domain, but the domains do not
generally align themselves to form smooth bisectors of the graph.

We then executed the algorithm in Figure 1. Note that the initial imbalance of
1.118 is rather high. At the first step we evaluate two moves that would reduce the
separator size and the size of the larger component, namely, Z = SI and Z = SI ∪SR.
The SI ∪ SR move reduces the partition cost function more. This holds for three
moves, as we see both the separator weight and the imbalance decrease together. The
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TABLE 2
Statistics for Harwell–Boeing matrices.

Original Compressed MMD
Matrix |V | |E| |V| |E| NZF/103 OPS/106 CPU
bcsstk30 28924 2014568 9289 222884 3725 777 1.72
bcsstk31 35588 1145828 17403 288806 5156 2400 4.70
bcsstk32 44609 1970092 14821 226974 5147 1048 2.84
bcsstk33 8738 583166 4344 164284 2654 1301 1.10
bcsstk35 30237 1419926 6611 65934 2780 406 0.90
bcsstk36 23052 1120088 4351 37166 1767 626 0.51
bcsstk37 25503 1115474 7093 88924 2829 548 1.00
bcsstk39 46772 2042522 10140 81762 7669 2194 1.33
mn12 264002 13115458 51920 569226 40404 24810 12.45
pwt 217918 11634424 41531 483791 63992 49875 7.93

next three moves are SI moves, for the balance is close to unity and the SR sets are
relatively large.

At step 5, note that the move Z = SI 7→ W results in a reduction in separator
size but an increase in imbalance. After the move the new set BZ7→W is now smaller
than WZ7→W and the difference |WZ7→W| − |BZ7→W| is greater than the previous
difference |B| − |W|. At the next step, we maintain the convention that W is the
smaller portion so that the W in the SI 7→ W move at step 6 is the BZ7→W from
step 5. Again for step 6, there is a reduction in separator size but an increase in
imbalance. Step 7 is an instance where the balance is improved with no reduction
in separator size. Steps 1–7 are all moves of subsets to the smaller component, so
the separator is smoothed in one direction. There is still reduction in the separator
to be had by smoothing it against the smaller component, i.e., the larger component
absorbs part of the separator, as we see in steps 8–11. The separator weight decreases
by 5.9% during steps 8–10 while the imbalance increases from 1.013 to 1.051. At
step 11 there is still a possible reduction in separator weight, where |Z| = 106 and
|AdjH(Z)| = 105. Making this move would increase the partition cost function, so the
algorithm terminates.

7.2. Comparing two-layer and three-layer smoothers. We have tested the
various partition improvement techniques described in this paper on a collection of
test matrix problems. Table 2 contains the description of 10 sparse matrix problems
from the Harwell–Boeing collection [7].

Table 3 presents statistics for finding a top-level separator for the three algorithms.
The cost is |S|

(
1 + αmax(|B|,|W |)

min(|B|,|W |)

)
, where the penalty multiplier α = 1. The median

cost value for 25 runs is found in the table—for each run the matrix was randomly
permuted. The initial partition is obtained from domain decomposition followed by
the block Kernighan–Lin scheme in [2] as discussed in the last section.

The three algorithms tested are labeled Nb, Nw, and N3, respectively, in the
table. Column Nb has statistics for the partition improvement algorithm in Figure 1
using the Dulmage–Mendelsohn decomposition, i.e., it solves the max-flow problem
defined on the bipartite network Nb. Column Nw contains results for the partition
improvement algorithm in Figure 1 using the two-layer wide network Nw. These two
algorithms iterate until no improvement can be made. Inside the loop, they make a
first attempt to improve the partition based on a two-layer separator S ∪ Border(B)
using the current separator S and the larger portion B. If there is no improvement on
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TABLE 3
Top-level separators, median cost of 25 runs.

Using Nb Using Nw Using N3
Matrix Cost |S| Balance Cost |S| Balance Cost |S| Balance
bcsstk30 467 223 1.095 421 209 1.012 421 209 1.012
bcsstk31 707 353 1.001 679 339 1.003 680 332 1.049
bcsstk32 791 355 1.228 717 322 1.226 711 271 1.624
bcsstk33 847 421 1.012 847 421 1.012 847 421 1.012
bcsstk35 344 162 1.121 306 144 1.128 307 96 2.194
bcsstk36 715 357 1.002 644 325 1.043 662 331 1.000
bcsstk37 894 440 1.031 889 437 1.033 889 437 1.033
bcsstk39 451 225 1.003 451 225 1.003 451 225 1.003
mn12 1736 861 1.017 1662 815 1.039 1609 791 1.034
pwt 1441 720 1.001 1441 720 1.001 1442 720 1.003

TABLE 4
Nested dissection compared to multiple minimum degree; a value greater than one means that

nested dissection generates more factor entries, operations, or CPU than minimum degree.

Factor entries Factor ops Ordering cpu
Matrix Nb Nw N3 Nb Nw N3 Nb Nw N3
bcsstk30 1.24 1.11 1.13 1.88 1.42 1.46 4.86 5.16 6.07
bcsstk31 0.89 0.84 0.84 0.58 0.52 0.50 3.21 3.20 3.48
bcsstk32 1.12 1.09 1.07 1.48 1.38 1.33 4.40 3.96 4.19
bcsstk33 0.86 0.83 0.80 0.71 0.65 0.57 4.86 4.74 7.21
bcsstk35 1.15 1.11 1.09 1.55 1.41 1.36 4.20 4.13 4.20
bcsstk36 1.13 1.07 1.07 1.42 1.25 1.25 4.47 4.47 4.47
bcsstk37 1.09 1.07 1.06 1.36 1.35 1.30 4.24 4.29 4.42
bcsstk39 0.94 0.94 0.94 0.95 0.94 0.94 4.11 4.11 4.05
mn12 1.08 1.00 0.97 1.07 0.92 0.82 3.53 3.56 3.57
pwt 0.74 0.74 0.74 0.47 0.47 0.46 4.26 4.22 4.36

this attempt, it will then try the two-layer separator S∪Border(W) with the smaller
portion W.

The algorithm associated with N3 is also iterative in nature. It is simpler since it
tries to improve the partition using the three-layer set S ∪ Border(B) ∪ Border(W).
It continues until no improvement can be obtained. Our experience shows that the
algorithm for N3 typically requires half the number of steps or less when compared
to the first two algorithms. But, of course, it takes more time at each step since it
is solving a larger network problem. We see that often using the network Nw gives
sizable partition improvement over the network Nb. Using the three-layer network
sometimes gives additional but small improvement.

We have also used the three partition improvement algorithms to find separators
in the context of finding fill-reducing sparse matrix orderings. Tables 4 and 5 contain
statistics of nested dissection orderings and multisection orderings [3] using the three
partition improvement schemes. The statistics are scaled by results from the multiple
minimum degree ordering. Each result in the tables comes from the run that generated
the median factor operations in 25 runs.

We have experimented with using a network with five layers, seven layers, and
more to improve separators. Any improvement is usually modest while the run times
for the orderings increase dramatically as the time to solve the max-flow problems for
the larger networks takes a larger portion of the ordering time.

Wide separators have a disadvantage for the min-cuts may be spread across the
wide separator. Consider an example where we start with a partition that has good
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TABLE 5
Multisection compared with multiple minimum degree; a value greater than one means that

multisection generates more factor entries, operations, or CPU than minimum degree.

Factor entries Factor ops Ordering cpu
Matrix Nb Nw N3 Nb Nw N3 Nb Nw N3
bcsstk30 1.09 1.01 1.04 1.30 1.08 1.15 4.87 5.16 6.07
bcsstk31 0.90 0.86 0.85 0.61 0.58 0.55 3.19 3.22 3.49
bcsstk32 0.97 0.95 0.94 0.90 0.85 0.84 4.04 3.96 4.19
bcsstk33 0.81 0.79 0.79 0.61 0.57 0.57 4.86 4.74 7.20
bcsstk35 1.03 1.00 0.99 1.06 1.01 0.97 4.20 4.12 4.19
bcsstk36 0.96 0.94 0.94 0.85 0.82 0.82 4.49 4.48 4.47
bcsstk37 0.95 0.94 0.93 0.87 0.85 0.84 4.24 4.28 4.41
bcsstk39 0.89 0.89 0.90 0.77 0.78 0.79 4.12 4.11 4.05
mn12 1.00 0.94 0.93 0.88 0.77 0.75 3.53 3.58 3.56
pwt 0.79 0.79 0.79 0.59 0.60 0.59 4.25 4.21 4.36

balance. When we use a very wide separator (say seven levels) to form a network,
a min-cut may lie far to one side or the other of the “thin” separator. Though the
separator induced by the min-cut might be smaller than the present separator, the
partition that would result may have a larger cost due to an increased imbalance,
and so the new partition would not be accepted. There is one min-cut closest to
the source and one closest to the sink (the two may be identical), and neither might
result in a better partition. We are not primarily interested in finding the minimal
weight separator—we want a partition whose cost is minimal. To this end we are
exploring ways to modify the network such that the min-cut determines a partition
with minimal cost.

8. Concluding remarks. In this paper, we have presented a detailed exposi-
tion of the Dulmage–Mendelsohn decomposition of bipartite graphs in the context of
improving bisector-based partitions. In the literature, this decomposition has been
used to obtain a vertex separator from an edge separator, and in iteratively improving
a vertex separator. We have also used the decomposition to improve the balance of a
partition.

Another contribution of this paper is the extension of the Dulmage–Mendelsohn
decomposition to compressed graphs, a special type of weighted graphs that occur
naturally and frequently in practice. For such graphs, we have related the decom-
position with the well-known maximum flow network problem. Finding a separator
of minimum cover based on the Dulmage–Mendelsohn decomposition is the same as
obtaining a min-cut of a bipartite network problem. We have also introduced an en-
hancement by solving a slightly modified network problem, the solution of which will
often yield a smaller separator.

We have provided experimental results to demonstrate the viability of the ap-
proaches to improve bisectors and partitions. These results should be viewed as addi-
tional evidence to those included in our earlier paper [2]. We recommend this smooth-
ing step using graph matching or network max-flow min-cut as a standard final process
on all dissection-based ordering codes. Indeed, such smoother codes are present in the
recently developed software, such as the new chaco code [17] by Hendrickson and
Rothberg, and the IBM Watson Graph Partitioning code wgpp [13] by Gupta.

Max-flow techniques have potential applications in other contexts, particularly to
find separators of coarse graphs used in multilevel algorithms [13], [17], [20] or the
domain/segments graphs from a domain-decomposition approach [2]. While we have
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concentrated on “thin” networks, where the distance from the source to the sink is
small, in principal one can attack much wider separators, perhaps containing all of a
graph save for a source and sink vertex. While this would be prohibitively expensive
for a large graph, it could be profitably used for a coarse graph or domain/segment
graph. The drawback is that a min-cut might naturally lie very close to the source or
sink and thus induce a poorly balanced partition. By increasing the weight of vertices
close to the source or sink one can force the min-cut to split the graph into two more
equally sized pieces [10].

Acknowledgments. We would like to thank Matt Berge of Boeing Information
and Support Services for several enlightening conversations on network flow and Stan
Eisenstat of Yale University for many insightful comments on an earlier draft. We
owe a great debt to John Gilbert of Xerox PARC for his notes on bipartite graphs
and the Dulmage–Mendelsohn decomposition.
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Abstract. We apply tools from the theory of sign-solvable systems and use the directed graph
of a matrix in order to obtain sufficient conditions for a linear control system (A,B) to be completely
controllable solely due to the sign patterns of the coefficient matrices A and B. We show that
such conditions are necessary and sufficient for a particular class of linear control systems. We also
consider an alternative approach to controllability, based on a reformulation of the classical condition
(that the controllability matrix is of full rank) and obtain equivalent conditions for the general case.

Key words. control system, sign pattern, signing, L-matrix, directed graph, aligned vertices,
balancing chain
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1. Introduction. In linear control theory, the basic concepts of controllability
(and observability) are intimately related to the image of a matrix of the form

C = [B AB . . . An−1B] ∈ Rn, nm,

where A ∈ Rn, n and B ∈ Rn, m. Specifically, a control system of the form

d

dt
x(t) = Ax(t) +Bu(t)

is completely controllable if and only if rank C = n. As the matrices A,B comprise
system parameters prone to measurement errors, it is desirable to determine whether
rank C = n based on combinatorial and qualitative information about A and B (e.g.,
their directed graphs and the signs of their entries). Such qualitative approaches to
controllability have been undertaken, for example, by Lin [6], Mayeda and Yamada
[9], Murota [8], Johnson, Mehrmann, and Olesky [4], and Olesky, Tsatsomeros, and
van den Driessche [10].

In the present work, we shall consider the following: assume that the sign patterns
(namely, the location of the positive, negative, and zero entries) of A and B are
known. When can we conclude that rank C = n, based solely on the sign patterns and
regardless of the magnitudes of the nonzero entries of A and B? The study of this
question was initiated in [4], where A was assumed to have nonnegative entries and
B was assumed to be a column vector with positive entries.

Our qualitative approach to controllability will be based on extending and com-
bining techniques used in the study of zero/nonzero patterns that allow or require
complete controllability (see [6, 9, 10]) with notions related to the analysis of sign
patterns and sign-solvable linear systems. We will find sufficient conditions for com-
plete controllability for general sign patterns (Theorem 3.2), and we will identify a
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class of linear control systems (Definition 2.2) for which these conditions are neces-
sary and sufficient (Theorem 3.7). In section 4, we will consider a simple technical
recasting of the classical controllability condition that rank C = n in order to provide
an alternative answer to the question posed above.

2. Preliminaries. In this section, we present some of the notation, terminology,
and basic facts necessary to state and prove the main results in the following sections.
In the remainder we let 〈k〉 = {1, 2, . . . , k} for any positive integer k; | α | denote
the cardinality of a set α; sgn(a) be 0, 1, or −1, when a is zero, positive, or negative,
respectively; Re(x) denote the real part of a complex vector x; diag(A1, A2, . . . , Ak) be
a block diagonal matrix whose diagonal blocks are the square matrices A1, A2, . . . , Ak;
X[α | β] denote the submatrix of X ∈ Rs, t whose rows and columns are indexed by
the sets α ⊆ 〈s〉 and β ⊆ 〈t〉, respectively; X[α] = X[α | α]; and e denote an all 1s
column vector of appropriate size.

We let Γ = (V,E) denote a directed graph with vertex set V and directed edge set
E consisting of ordered pairs (i, j) of vertices. A path from j to k in Γ is a sequence
of vertices j = r1, r2, . . . , rt = k, with (ri, ri+1) ∈ E for i = 1, . . . , t− 1.

The directed graph of X = (xij) ∈ Rs, t, s ≤ t, denoted by Γ = D(X) = (V,E),
has V = 〈t〉 and E = {(i, j) | xij 6= 0}. Extending the terminology in [6] and [9],
when s < t we say that D(X) is accessible if for every j ∈ 〈s〉 there exists k ∈ 〈t〉 \ 〈s〉,
such that there is a path from j to k in Γ. Also, for every α ⊆ 〈s〉 we denote the
adjacency set of α by

R(α) = {j ∈ 〈t〉 | (i, j) ∈ E for some i ∈ α}.

Notice that if there exists an α ⊆ 〈s〉 such that α ⊆ R(α) and if Γ is accessible, then
R(α) ∩ (〈t〉 \ 〈s〉) 6= ∅ and hence α ⊂ R(α).

In keeping with the notation and terminology of Brualdi and Shader [1] (which
is our comprehensive reference on sign patterns), we define the following.

The sign pattern of X ∈ Rs, t is the (0, 1,−1)-matrix obtained from X when zero,
positive, and negative entries are replaced by 0, 1, and −1, respectively. The matrix
X determines the qualitative class Q(X) of all matrices with the same sign pattern
as X. We will write X̂ ∈ Q(X) for any matrix X̂ having the same sign pattern as X.

A signing is a nonzero square diagonal sign pattern. A real vector is called
balanced if it is the zero vector, or if it has at least one negative and at least one
positive entry. A real vector is referred to as unisigned if it is not balanced. If a
unisigned vector has nonnegative (respectively, nonpositive) entries, we refer to it as
of positive (respectively, negative) type. We denote the signings S such that all the
columns of SX are balanced by B(X).

The matrix X is called an L-matrix provided that every matrix in Q(X) has
linearly independent rows. It is well known (see [1, Theorem 2.1.1]) that X ∈ Rs, t is
an L-matrix if and only if B(X) = ∅. Next we introduce the notion of aligned vertices
in the directed graph of a matrix.

DEFINITION 2.1. Let X ∈ Rs, t, s ≤ t, and let α1 ⊆ 〈s〉, α2 ⊆ 〈t〉 be two
nonempty and disjoint sets. We call α1 aligned relative to α2 if there exists a signing
S ∈ B(X[α1 | α2]) such that the unisigned columns of SX[α1] (if any exist) are only
of one type (either only positive type or only negative type). When B(X[α1 | α2]) = ∅,
α1 is by definition not aligned relative to α2.

In other words, α1 ⊆ 〈s〉 is aligned relative to a disjoint set α2 ⊆ 〈t〉 if there
exists a signing of the rows of X[α1 | 〈t〉] such that the columns of X[α1 | α2] become
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balanced and the columns of X[α1] become either balanced or unisigned of only one
type.

Consider now a linear control system of the form

d

dt
x(t) = Ax(t) +Bu(t), t ≥ 0,(2.1)

where A ∈ Rn, n and B ∈ Rn, m, and where u(t) ∈ Rm represents an unconstrained,
piecewise continuous control input. We denote the system in (2.1) by (A,B). It is
known that the output (viz. solution) x(t) of (2.1) emanating from any initial point
in Rn is controllable (by an appropriate choice of u(t)) to any terminal point in Rn

in finite time if and only if

rank C = n,(2.2)

where C = [B AB . . . An−1B] ∈ Rn, nm is the controllability matrix associated
with (A,B). When (2.2) holds, we call (A,B) completely controllable. It follows easily
that if X ∈ Rn, n is nonsingular, then (A,B) is completely controllable if and only
if (XAX−1, XB) is completely controllable, or if and only if (−A,B) is completely
controllable.

As with many questions arising in the study of sign patterns, the presence of
implicit relations among the entries of the matrix in question can complicate the
qualitative analysis significantly. In the case of the controllability matrix C this
difficulty is evident because of the presence of the products of powers of A with
B. For this reason, it is useful to consider a condition known to be equivalent to
rank C = n (see, e.g., Theorem 4.3.3 in Lancaster and Rodman [7]), namely,

rank[A− λI B] = n for all λ ∈ C.(2.3)

The compromise in dealing with the latter condition, rather than C, is the introduc-
tion of the complex parameter λ.

Given a linear control system (A,B), we consider the qualitative class consisting
of all linear control systems (Â, B̂) such that Â ∈ Q(A), B̂ ∈ Q(B). In this paper,
we say that (A,B) is sign controllable1 if (Â, B̂) is completely controllable for all
Â ∈ Q(A) and all B̂ ∈ Q(B).

Next we introduce a classification of control systems (A,B) based on the directed
graph of [A B] and the signs of the diagonal entries of A.

DEFINITION 2.2. Let A ∈ Rn, n, B ∈ Rn, m, T = [A B], Γ = D(T ). We call
(A,B) a strict linear control system if

(a) the diagonal entries of A are nonzero and have the same sign, and
(b) for all α ⊆ 〈n〉 such that α ⊂ R(α) in Γ, either T [α | R(α)\α] is an L-matrix

or B(T [α | R(α) \ α]) contains a nonsingular signing.
In the next section, we will find sufficient conditions for sign controllability and

we will show that these conditions are necessary and sufficient for sign controllability
of a strict linear control system.

3. Conditions for sign controllability. First we mention a necessary condi-
tion for complete controllability (that is observed in [6] as a necessary condition for
structural controllability).

1We caution the reader that the term sign controllability has also been used in the literature to
describe a different property of the controllability matrix (see [3, 7]).
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LEMMA 3.1. Let A ∈ Rn, n, B ∈ Rn, m, and suppose that (A,B) is completely
controllable. Then Γ = D([A B]) is accessible.

Proof. Suppose that Γ is not accessible. Then there exists j ∈ 〈n〉 such that there
is no path from j to k in Γ for every k ∈ 〈n + m〉 \ 〈n〉. Let α ⊆ 〈n〉 be the set
consisting of j and all vertices of D(A) that lie on a path emanating from j. It follows
that there is no path from ` to k in Γ for every ` ∈ α and every k ∈ 〈n + m〉 \ 〈n〉.
Moreover, letting αc be the complement of α in 〈n〉, there exists a permutation matrix
P such that

PAPT =
[

A[α] 0
A[αc | α] A[αc]

]
and PB =

[
0

B[αc | 〈m〉]

]
.

So, if x = [x̂T 0]T ∈ Rn, where x̂ is a left eigenvector of A[α] corresponding to an
eigenvalue λ, then xT [PAPT − λI PB] = 0, showing that (PAPT , PB) (and hence
(A,B)) is not completely controllable.

From condition (2.3) for λ = 0 and the above lemma, we have that [A B] being an
L-matrix and the directed graph of [A B] being accessible are two necessary conditions
for sign controllability of (A,B). We continue by showing that these two conditions,
together with some additional conditions on the directed graph of [A B], are also
sufficient for sign controllability of (A,B).

THEOREM 3.2. Let A ∈ Rn, n, B ∈ Rn, m, and Γ = D([A B]) = (V,E). Suppose
that

(1) Γ is accessible,
(2) [A B] is an L-matrix, and
(3) for all α ⊆ 〈n〉 satisfying α ⊂ R(α) in Γ, either there exists j ∈ R(α) \α and

exactly one i ∈ α such that (i, j) ∈ E, or α is not aligned relative to R(α) \ α.
Then the linear control system (A,B) is sign controllable.

Proof. Suppose (A,B) is not completely controllable and that (1) and (2) hold.
It is enough to show that (3) is not true. By condition (2.3) and because [A B] is an
L-matrix, there exists λ ∈ C \ {0} and x ∈ Cn \ {0} such that

xT [A B] = [λxT 0].(3.1)

Without loss of generality, assume that x = (x1, x2, . . . , xk, 0, . . . 0)T , xi 6= 0 for i =
1, 2, . . . , k (otherwise we can work with (PAPT , PB) for some permutation matrix P ).
Also without loss of generality assume that Re(x) 6= 0 (otherwise we can replace x in
our arguments by

√
−1x). Observe that Re(λxT ) 6= 0 or else, by (3.1), Re(xT )[A B] =

0 and (2) is contradicted. Consider an invertible signing S = diag(s1, s2, . . . , sn) so
that Re(λxTS) ≥ 0 (entrywise). On letting T = [SAS SB] = (tij), we have from
(3.1) that

xTS[SAS SB] = [λxTS 0],(3.2)

namely,

k∑
i=1

xisitij = λxjsj 6= 0 (j = 1, 2, . . . , k).(3.3)

Now take α = 〈k〉 ⊆ 〈n〉 and let αc be its complement in 〈n+m〉. From (3.3) we can
conclude that every column of T [α] contains at least one nonzero entry. Hence for
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every j ∈ α there exists i ∈ α such that (i, j) ∈ E. This means that α ⊆ R(α). Since
Γ is assumed accessible, we have that α ⊂ R(α). We also have from (3.2) that

k∑
i=1

xisitij = 0 (j = k + 1, k + 2, . . . , n+m),(3.4)

which implies that every column of T [α | αc] has either no or at least two nonzero
entries. Hence for every j ∈ R(α) \ α ⊆ αc there are at least two vertices i ∈ α such
that (i, j) ∈ E. As a consequence, to show that condition (3) is violated it remains to
argue that α is aligned relative to R(α)\α. From (3.3) and (3.4) we get, respectively,
that

k∑
i=1

Re(xi)sitij = Re(λxjsj) ≥ 0 (j = 1, 2, . . . , k)(3.5)

and

k∑
i=1

Re(xi)sitij = 0 (j = k + 1, k + 2, . . . , n+m).(3.6)

Equations (3.5) and (3.6) have the following interpretation: if we consider the signing

Ŝ = diag(sgn(Re(x1))s1, sgn(Re(x2))s2, . . . , sgn(Re(xk))sk),

then the columns of ŜT [α | αc], and in particular the columns of ŜT [α | R(α) \ α],
are balanced, while all unisigned columns of ŜT [α] are of positive type. Hence α is
aligned relative to R(α) \ α in Γ.

We continue with some examples in order to illustrate the use of Theorem 3.2
and various situations that arise.

Example 3.3. Let

A =

 0 1 1
−1 0 −1

1 0 −1

 and B =

 1
0
0

 .
Notice that the directed graph of [A B] is accessible and that [A B] is an L-matrix
because detÂ < 0 for all Â ∈ Q(A) (i.e., A is a sign nonsingular matrix; see [1]).
Regarding condition (3) of Theorem 3.2, we find that αi ⊂ R(αi), i = 1, 2, 3, 4, where
α1 = {3}, α2 = {1, 2}, α3 = {1, 3}, and α4 = 〈3〉. We also have that

R(α1)\α1 = {1}, R(α2)\α2 = {3, 4}, R(α3)\α3 = {2, 4}, and R(α4)\α4 = {4}.

In all four cases, the first part of condition (3) is satisfied with the edge from αi to
R(αi) \ αi, i = 1, 2, 3, 4, being (3, 1), (1, 4), (1, 4), and (1, 4), respectively. So by
Theorem 3.2, (A,B) is sign controllable. We comment that, in the language of [10],
the pair of zero/nonzero patterns (A, B) associated with (A,B) is not qualitatively
controllable (see ([10, Theorem 2.2]).

Example 3.4. Let

A =

 1 0 1
1 0 0
0 1 −1

 and B =

 1 −1
1 1
0 0

 .
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The directed graph of T = [A B] is accessible and T is an L-matrix. Regarding
condition (3) of Theorem 3.2, we find that with one exception, for all α ⊆ 〈3〉 for which
α ⊂ R(α), there is exactly one edge from α to some j ∈ R(α)\α. The only exception
is α̂ = 〈3〉 for which R(α̂) \ α̂ = {4, 5}. Notice that every S ∈ B(T [α̂ | R(α̂) \ α̂]) has
its first two diagonal entries zero and the third diagonal entry nonzero. But then the
last two columns of ST [α̂] are unisigned of opposite type. Hence, by Theorem 3.2,
(A,B) is sign controllable.

We continue with a result on sign controllability, which will lead to a characteri-
zation of strict sign controllable systems.

PROPOSITION 3.5. Let A ∈ Rn, n, B ∈ Rn, m, T = [A B], and Γ = D(T ).
Assume that there exists α ⊆ 〈n〉 with α ⊂ R(α) in Γ such that B(T [α | R(α) \ α])
contains a nonsingular signing S. Also assume that the unisigned columns of ST [α]S
(if any exist) are only of one type. Then (A,B) is not sign controllable.

Proof. Let S be as prescribed above and Γ = (V,E). Since (A,B) is completely
controllable if and only if (−A,B) is, we will assume, without loss of generality, that
the unisigned columns of ST [α]S (if any exist) are all of positive type. Since there is
no i ∈ α and j 6∈ R(α) such that (i, j) ∈ E, T [α | 〈n + m〉 \ R(α)] = 0. Also, since
α ⊂ R(α), every column of T [α] contains a nonzero entry. Letting Ŝ ∈ Rn, n be a
nonsingular signing such that Ŝ[α] = S and considering T̂ = [ŜAŜ ŜB], we have that

(1) every column of T̂ [α] contains a positive entry,
(2) every column of T̂ [α | R(α) \ α] is balanced, and
(3) every column of T̂ [α | 〈n+m〉 \ R(α)] is zero.
Therefore, by (1)–(3) above, we can assume that the nonzero entries of A and B

have been chosen so that the entries of each column of T̂ [α] add up to one, and the
entries of each column of T̂ [α | 〈n+m〉 \ α] add up to zero. That is, if we let

x = (x1, x2, . . . xn)T , xi =
{

1 if i ∈ α,
0 otherwise,

we have shown that

xT [ŜAŜ ŜB] = [xT 0]

for an invertible signing Ŝ. Hence, using λ = 1 in condition (2.3), it follows that
(ŜAŜ, ŜB) and thus (A,B) is not sign controllable.

COROLLARY 3.6. Let A ∈ Rn, n, B ∈ Rn, m, T = [A B], Γ = D(T ), and suppose
that the diagonal entries of A are nonzero and have the same sign. Let α ⊆ 〈n〉 with
α ⊂ R(α) such that B(T [α | R(α) \ α]) contains a nonsingular signing. Then (A,B)
is not sign controllable.

Proof. Let α be as prescribed and S ∈ B(T [α | R(α) \ α]) be nonsingular. Since
all diagonal entries of ST [α]S are nonzero and have the same sign, all the assumptions
of Proposition 3.5 are satisfied and the corollary follows.

THEOREM 3.7. Let A ∈ Rn, n, B ∈ Rn, m, T = [A B], and Γ = D(T ). Suppose
that (A,B) is a strict linear control system. Then (A,B) is sign controllable if and
only if the following conditions hold:

(1) Γ is accessible,
(2) [A B] is an L-matrix, and
(3) for all α ⊆ 〈n〉 satisfying α ⊂ R(α) in Γ, α is not aligned relative to R(α)\α.
Proof. The sufficiency of conditions (1)–(3) follows from Theorem 3.2. We have

discussed the necessity of conditions (1) and (2) after Lemma 3.1. To prove the
necessity of condition (3), assume that (1) and (2) hold and that (3) does not hold.
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Since Γ is accessible and the diagonal entries of A are nonzero, we have that for all
α ⊆ 〈n〉, α ⊂ R(α) and hence R(α) \ α 6= ∅. So since (3) is not true, there exists
α ⊂ R(α) such that B(T [α | R(α)\α]) 6= ∅. Because (A,B) is strict, B(T [α | R(α)\α])
must contain a nonsingular signing. By Corollary 3.6 it follows that (A,B) is not sign
controllable.

Example 3.8. Let

A =

 1 0 1
1 1 0
0 1 1

 and B =

 1 1
1 −1
1 1

 .
The directed graph of T = [A B] is accessible and T is an L-matrix. For all α ⊆ 〈n〉 we
have that α ⊂ R(α) in Γ. In fact, for all α ⊆ 〈n〉, except α̂ = {1, 2, 3}, T [α | R(α)\α]
is an L-matrix. We have that T [α̂ | R(α̂) \ α̂] = B, and S = diag(−1, 1, 1) ∈ B(B).
So (A,B) is a strict linear control system. Since ST [α̂] has unisigned columns of only
positive type, α̂ is aligned relative to R(α̂) \ α̂. By Theorem 3.7, (A,B) is not sign
controllable.

4. The extended controllability matrix. We will now introduce some addi-
tional concepts and terminology pertaining to an alternative analysis of sign control-
lability.

For the purposes of this section, we append to the set of signings the zero (square)
matrix and refer to them as weak signings. We let B0(X) denote B(X) ∪ {0} for any
X ∈ Rs, t.

It is clear that for every S ∈ B0(X) there exists X̂ ∈ Q(X) such that the column
sums of SX̂ equal to zero (and hence equal to the column sums of the zero matrix).
Based on this observation, we extend the notion of B0(X) as follows. Given a matrix
X and a weak signing S′, we denote by B0(X,S′) the set of all weak signings S such
that there exists X̂ ∈ Q(X) with the column sums of SX̂ equal to the column sums
of S′. Notice that B0(X) = B0(X, 0). To illustrate the definition of B0(X,S′), let

X =

 1 −3 2
−1 0 1

2 −1 −1

 and S′ =

−1 0 0
0 1 0
0 0 0

 .
Then B0(X,S′) consists of all signings S such that SX has a negative entry in the
first column, a positive entry in the second column, and a balanced third column. For
example, S = diag(−1, 1, 1) ∈ B0(X,S′) and I 6∈ B0(X,S′).

DEFINITION 4.1. Let A ∈ Rn, n and B ∈ Rn, m be given. A nonzero ordered
n-tuple (S1, S2, . . . , Sn) of weak signings is called an (A,B)-balancing chain if

Si ∈ B0(B) (i = 1, 2, . . . , n)

and

Si+1 ∈ B0(A,Si) (i = 1, 2, . . . , n− 1).

If, in addition, there exist Â ∈ Q(A), B̂ ∈ Q(B), and entrywise positive vectors
xi ∈ Rn such that

xTi SiB̂ = 0 (i = 1, 2, . . . , n)
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and

xTi Si = xTi+1Si+1Â (i = 1, 2, . . . , n− 1),

we call (S1, S2, . . . , Sn) a compatible (A,B)-balancing chain.
The notion of an (A,B)-balancing chain depends only on the sign patterns of A

and B. Indeed, if (S1, S2, . . . , Sn) is an (A,B)-balancing chain, then there always
exist Ai ∈ Q(A), Bi ∈ Q(B), and xi with positive entries such that xTi SiBi = 0 for
i = 1, 2, . . . , n and xTi Si = xTi+1Si+1Ai+1 for i = 1, 2, . . . , n − 1. In fact, we can take
xi = e for all i. In the definition of a compatible (A,B)-balancing chain we require,
in addition, that there are common matrices Â ∈ Q(A) and B̂ ∈ Q(B) that satisfy
the above conditions.

Observe that an (A,B)-balancing chain (S1, S2, . . . , Sn) may contain some zero
weak signings, which could appear only as the leading part of the chain. Indeed, if
Si 6= 0, then since Si+1Â must have the same column sums as Si for some Â ∈ Q(A),
Si+1 must be nonzero.

DEFINITION 4.2. With the linear control system (A,B) we will associate (in
Lemma 4.3) the extended controllability matrix G defined as follows:

G =



I 0 . . . . . . . . . . . . . . . . . . . . . 0 B
−A I 0 . . . . . . . . . . . . . . . 0 B 0
0 −A I . . . . . . . . . . . . 0 B 0 0
...

...
. . .

...
...

...
... ..

. ...
...

...
0 0 . . . −A I 0 B 0 . . . . . . 0
0 0 . . . 0 −A B 0 . . . . . . . . . 0

 ∈ Rn2, n(n+m−1).

The following result is a recasting of the classical condition for controllability in
(2.2); its proof can be found in Casti [2].

LEMMA 4.3 (see [2, Corollary 5, section 3.5]). Let A ∈ Rn, n, B ∈ Rn, m. The
control system (A,B) is completely controllable if and only if rank G = n2.

We now have the following equivalent condition for sign controllability.
THEOREM 4.4. Let A ∈ Rn, n, B ∈ Rn, m. The linear control system (A,B) is

sign controllable if and only if there is no compatible (A,B)-balancing chain.
Proof. Let A ∈ Rn, n, B ∈ Rn, m, and suppose that (A,B) is not sign control-

lable. Then, by Lemma 4.3, there are matrices in Â ∈ Q(A) and B̂ ∈ Q(B) so that the
corresponding extended controllability matrix Ĝ is of deficient rank, i.e., wT Ĝ = 0
for some w ∈ Rn2 \ {0}. Now let S ∈ Rn2, n2

be a signing such that w = Sx, where
x has positive entries. It follows that xTS Ĝ = 0. Hence if S is partitioned into
n diagonal blocks S1, S2, . . . , Sn of size n × n, then (S1, S2, . . . , Sn) is a compatible
(A,B)-balancing chain.

Conversely, if (S1, S2, . . . , Sn) is a compatible (A,B)-balancing chain, then there
exist Â ∈ Q(A), B̂ ∈ Q(B), and vectors xi with positive entries such that

xTi SiB̂ = 0 (i = 1, 2, . . . , n)

and

xTi Si = xTi+1Si+1Â (i = 1, 2, . . . , n− 1).

It follows that for S = diag(S1, S2, . . . , Sn) and for x = [xT1 , x
T
2 , . . . , x

T
n ]T , w = Sx is

a nonzero left nullvector of the extended controllability matrix of (Â, B̂); that is, by
Lemma 4.3, (A,B) is not sign controllable.
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The existence or not of a compatible (A,B)-balancing chain can be a hard con-
dition to check, but in some instances the clauses in the definition of a compatible
(A,B)-balancing chain can serve as useful necessary or sufficient conditions. This is
illustrated in the following examples.

Example 4.5. This example is mentioned in [4]. Let

A =

 0 0 1
1 0 1
1 0 0

 and B =

 1
0
0

 .
Notice that B0(B) consists of the weak signings S1, S2, . . . , S9 having their (1,1) entry
equal to zero. It is easy to check the sign patterns of SiA for i = 1, 2, . . . , 9 and
discover that there is no (A,B)-balancing chain and hence, by Theorem 4.4, (A,B)
is sign controllable.

Example 4.6. Let

A =

−1 0 1
1 0 −1
1 −1 −1

 and B =

 1
1
0

 .
It can be checked that

R =

−1 0 0
0 1 0
0 0 1

 , S =

−1 0 0
0 1 0
0 0 −1

 , T =

 1 0 0
0 −1 0
0 0 −1


are in B(B), and that (R, T,R), (T,R, T ), (T,R, S) are some of the (A,B)-balancing
chains. In this case the knowledge of a balancing chain leads to a straightforward
search for the vectors xi and the matrices Â and B̂ in the definition of a compatible
balancing chain. One finds that with x1 = x2 = x3 = e and

Â =

−1/3 0 1/3
1/3 0 −1/3
1/3 −1 −1/3

 , B̂ =

 1
1
0

 ,
(R, T,R) is a compatible (A,B)-balancing chain and thus, by Theorem 4.4, (A,B) is
not sign controllable.

In conclusion, we have presented an alternative approach to sign controllability of
a linear control system (A,B) based on the existence of a balancing chain of signings.
We do not know if there exists an algorithm to verify the (non)existence of a com-
patible balancing chain, regardless of the complexity. We have also found sufficient
conditions for sign controllability, based on the sign pattern and the directed graph of
[A B], which are necessary and sufficient when the linear control system is strict. We
have not addressed computational matters regarding these conditions. However, we
remark that the recognition of one of these conditions, namely, that the rectangular
matrix [A B] be an L-matrix, has been shown to be an NP-complete problem (see
Klee, Ladner, and Manber [5]).
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Abstract. The mapping A 7→ (K′A+K)+ is shown to be matrix concave and isoton when A
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1. Introduction. Let Rm×n denote the set of m×n real matrices. The symbols
A′, A−, A+, rk(A), R(A), and N (A) will stand for the transpose, any generalized
inverse, the Moore–Penrose inverse, the rank, the range, and the nullspace, respec-
tively, of A ∈ Rm×n. By A⊥ we denote any matrix whose range coincides with the
orthogonal complement of R(A). A possible choice for A⊥ is A⊥ = Im −AA+. For

any two matrices A,B ∈ Rm×m we will write A
L

≤ B when B −A = GG′ for some
matrix G, or, in other words, B − A is symmetric nonnegative definite. Note that

according to Löwner (1934), the relation
L

≤ specifies a partial ordering in Rm×m.
For any matrix A ∈ Rm×m with real eigenvalues, λmax(A) denotes the maximal
eigenvalue of A. Observe that all eigenvalues of a symmetric matrix are real.

In a recent note, Neudecker and Liu (1995) give an algebraic proof for the concav-
ity of the matrix function f(A) = (K′A−K)+, where A belongs to the convex cone

A(K) = {0
L

≤ A : R(K) ⊆ R(A)} and K ∈ Rm×p. This has originally been estab-
lished by Pukelsheim and Styan (1983), who apply their result to a combination of
estimators from two linear models with different dispersion matrices. Another proof
is given by Gaffke and Krafft (1982, Theorem 4.8), who refer the result to an earlier
version of Pukelsheim and Styan’s (1983) paper.

However, from an algebraical point of view, one may also consider a more general
function for which analogous properties can be derived. As we will show subsequently,
application to linear models is possible.

In the following we will consider the matrix function f∗(A) = (K′A+K)+, where
A belongs to

A∗(K) = {0
L

≤ A : R(KK′A) ⊆ R(A)}.

Since for 0
L

≤ A and 0
L

≤ B we have R(A) + R(B) = R(A + B), it is easy to see
that A∗(K) is a convex cone, i.e., αA and A + B lie in A∗(K) for all A,B ∈ A∗(K),
α > 0.

The difference between f(A) and f∗(A) lies in the fact that

f(A) = (K′A−K)+ = (K′A+K)+
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for all generalized inverses A− of A whenever A ∈ A(K), whereas A+ in f∗(A) =
(K′A+K)+ cannot be replaced by A− when A ∈ A∗(K). However, it is clear that
A(K) ⊆ A∗(K) for a fixed matrix K.

On the other hand, both functions can be seen as generalizations of the function
φ(A) = (K′A−1K)−1, where A is assumed to be nonsingular and K has full column
rank. The function φ has been considered by Marshall and Olkin (1979, pp. 469–473).

In the next section we demonstrate that the positively homogeneous function
f∗(A) is matrix concave with respect to the Löwner ordering by showing that

f∗(A) + f∗(B)
L

≤ f∗(A + B)

for all matrices A and B in the convex cone A∗(K).

2. Results. The following characterization of the Löwner partial ordering of
symmetric nonnegative definite matrices, originally established by Stȩpniak (1985), is
quite useful. For a tractable proof see Liski and Puntanen (1989, Lemma). A more
general statement is given by Baksalary, Schipp, and Trenkler (1992, Theorem 1).

LEMMA 1. Let A,B ∈ Rm×m be such that 0
L

≤ A and 0
L

≤ B. Then A
L

≤ B if
and only if R(A) ⊆ R(B) and λmax(AB−) ≤ 1.

Note that in the above lemma, λmax(AB−) is invariant with respect to the choice
of B−, i.e., λmax(AB−) = λmax(AB+) for all generalized inverses B− of B. This
is easily established by using BB−A = A, and the fact that the set of nontrivial
eigenvalues of a matrix product FG coincides with the set of nontrivial eigenvalues
of GF.

In our Theorem 1 we will show matrix concavity of f∗ with the help of Lemma
1. Before stating this result, we give two further lemmas which provide some insight
concerning the generalization of the function f to the function f∗ on the convex cones
A(K) and A∗(K), respectively.

LEMMA 2. Let A,B ∈ Rm×m be such that 0
L

≤ A and 0
L

≤ B and let K ∈ Rm×p.
Then

R[(K′A+K)+ + (K′B+K)+] = R[(K′(A + B)+K)+].

Proof. Since (K′A+K)+ and (K′B+K)+ are symmetric nonnegative definite, we
have R[(K′A+K)+ + (K′B+K)+] = R[(K′A+K)+] + R[(K′B+K)+] = R(K′A) +
R(K′B) = R[(K′(A + B)] = R[(K′(A + B)+K)+].

Clearly Lemma 2 implies R[f∗(A) + f∗(B)] = R[f∗(A + B)] for A,B ∈ A∗(K).

LEMMA 3. Let A ∈ Rm×m be such that 0
L

≤ A and let K ∈ Rm×p. Then
K(K′A+K)+K′

L

≤ A if and only if R(KK′A) ⊆ R(A).
Proof. Since the matrix K(K′A+K)+K′A+ is idempotent, it has only eigenvalues

0 and 1, which shows λmax[K(K′A+K)+K′A+]
L

≤ 1. Moreover,R[K(K′A+K)+K′] =
R(KK′A) and the assertion follows from Lemma 1.

Using Lemmas 1, 2, and 3, the following theorem is easy to establish.

THEOREM 1. Let A,B ∈ A∗(K). Then f∗(A) + f∗(B)
L

≤ f∗(A + B).
Proof. From Lemma 3 we immediately get

K(K′A+K)+K′ + K(K′B+K)+K′
L

≤ A + B.

Then from Lemma 1

λmax{[K(K′A+K)+K′ + K(K′B+K)+K′](A + B)+} ≤ 1,
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which is equivalent to λmax{[f∗(A) + f∗(B)][f∗(A + B)]+} ≤ 1. Applying Lemmas 1
and 2 gives the assertion.

The following result establishes the fact that on the convex cone A∗(K) the func-
tion f∗ is not only concave but also isoton with respect to the Löwner partial ordering.
Compare also Theorem 3 in Pukelsheim and Styan (1983).

THEOREM 2. Let A,B ∈ A∗(K) be such that A
L

≤ B. Then f∗(A)
L

≤ f∗(B).

Proof. When A
L

≤ B, Lemma 1 gives R(A) ⊆ R(B), from which follows R(K′A)
⊆ R(K′B), i.e., R[f∗(A)] ⊆ R[f∗(B)]. Moreover, from Lemma 3 we get

K(K′A+K)+K′
L

≤ B, which implies λmax[K(K′A+K)+K′B+] ≤ 1 in view of
Lemma 1. Since the latter is equivalent to λmax{f∗(A)[f∗(B)]+} ≤ 1, the asser-
tion follows with Lemma 1.

Observe that according to Theorem 3 in Pukelheim and Styan (1983) (see also

Proposition 2 in Neudecker and Liu (1995)), f(A)
L

≤ f(B) is equivalent to [f(B)]+
L

≤
[f(A)]+, i.e., Moore–Penrose inversion of the function f is antiton with respect to
the Löwner partial ordering. It should be pointed out that an analogous statement
does not hold for the function f∗. From Milliken and Akdeniz (1977, Theorem 3.1)

we know that f∗(A)
L

≤ f∗(B) and [f∗(B)]+
L

≤ [f∗(A)]+ hold together if and only if
rk[f∗(A)] = rk[f∗(B)], i.e., rk(AK) = rk(BK). However, the possible choice K = Im,
p = m, shows that the latter is not necessarily satisfied, even under the assumptions
of Theorem 2.

According to Hartwig [1978, Theorem 1i], who established his result indepen-
dently of Milliken and Akdeniz (1977), the condition rk[f∗(A)] = rk[f∗(B)] can be
replaced by R[f∗(A)] = R[f∗(B)], i.e., R(K′A) = R(K′B). The following theorem
is concerned with giving an equivalent condition, which depends on the subspaces
R(A) and R(B) themselves.

THEOREM 3. Let A,B ∈ A∗(K) be such that f∗(A)
L

≤ f∗(B). Then [f∗(B)]+
L

≤
[f∗(A)]+ if and only if

R(A) ∩R(K) = R(B) ∩R(K).

Proof. By applying Theorem 1i in Hartwig (1978) we get [f∗(B)]+
L

≤ [f∗(A)]+

if and only if R[f∗(A)] = R[f∗(B)], i.e., R(K′A) = R(K′B), i.e., R(KK′A) =
R(KK′B). But since A ∈ A∗(K), R(KK′A) ⊆ R(A) ∩ R(K). Now, from the
strengthened version of Sylvester’s law of nullity, cf. Baksalary and Styan (1993, Corol-
lary 1), we always have rk(KK′A) ≥ dim[R(A) ∩ R(K)], showing that R(KK′A)
= R(A) ∩ R(K). Analogously, R(KK′B) = R(B) ∩ R(K) and the assertion
follows.

Clearly when R(K) ⊆ R(A) and R(K) ⊆ R(B), the condition R(A) ∩ R(K) =
R(B) ∩R(K) reduces to R(K) = R(K). This covers the above-mentioned results of
Pukelsheim and Styan (1983, Theorem 3) and Neudecker and Liu (1995, Proposition
2).

Note that the equivalence of the conditions R(FG) ⊆ R(G) and R(FG) =
R(G) ∩ R(F) for symmetric nonnegative definite matrix F and arbitrary matrix G
also appears in connection with equality conditions for ordinary least squares and best
linear unbiased estimators, cf. Alalouf and Styan [1984, Theorem 2, equations (2.5),
(2.6)].

3. Application. Consider now the linear model {y,Kβ,A}, where y is an m×
1 random vector with mean vector Kβ and dispersion matrix A ∈ A∗(K). Then
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Theorem 4 in Baksalary (1987) asserts that KHy with

H = (K′A+K)+K′A+ + (K′(Im −AA+)K)+K′(Im −AA+)

is the best linear unbiased estimator for Kβ, which means KHK = K and KHAK⊥ =
0, cf. Rao [1978, (3.1)]. But since R(H) ⊆ R(K′) this also gives HKK′ = K′ and
HAK⊥ = 0, showing that Hy is best linear minimum biased for β, cf. Rao [1978,
(3.21)]. Clearly Hy has dispersion matrix f∗(A).

Consider in addition a linear model {z,Kβ,B}, B ∈ A∗(K), where z and y
are uncorrelated. By applying our Theorem 1, the same reasoning as in Pukelsheim
and Styan (1983, section 3) shows that averaging the individual best linear minimum
biased estimators for β is preferable to averaging the observations in advance and
estimating afterwards.
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1. Introduction. The relations between graph theory and matrix theory consti-
tute a well-established area of research (see [7]). This paper explores some connections
between theoretic properties of totally positive matrices and graph theoretic proper-
ties of certain graphs naturally associated with the matrices.

Section 2 deals with undirected graphs. Given a symmetric matrixA = (aij)1≤i,j≤n,
the undirected graph G(A) is the usual graph in which there is an edge {i, j} if and
only if i 6= j and aij 6= 0. We call a clique of a graph a vertex-induced subgraph
of G that is complete (i.e., all possible pairs of different vertices are edges). The
maximum cardinality of a clique in G will be denoted by c(G). If c(G) = 2, we shall
say that the graph is triangle-free. There are many examples of triangle-free graphs.
Obviously, trees and cycles are triangle-free. Since a cycle of a bipartite graph has
even length, bipartite graphs are also triangle-free. A graph without simple cycles of
length greater than or equal to four is usually said to be chordal. We say that a graph
is quadrilateral-free if it has no cycles of length four.

Let us introduce now some of the classes of matrices that will be used in this
paper. An n × n matrix A is TPk if all r × r minors of A are nonnegative for all
r = 1, . . . , k. If A is TPn, then it is called totally positive. This class of matrices
has many applications in mathematics, statistics, economics, etc. (see [14], [1]). Some
recent characterizations of totally positive matrices can be found in [9], [10], [11].
In Proposition 2.1 we prove that a symmetric TP2 matrix A with nonzero rows is
p-banded if and only if c(G(A)) ≤ p; so, in particular, G(A) is triangle-free if and
only if A is tridiagonal. The corresponding characterization of the symmetric TP2
matrices A such that G(A) is quadrilateral-free is given in Proposition 2.4.

A square matrix A is called M -matrix if A = αI − P , where I is the identity
matrix, P is a nonnegative matrix, and α ≥ ρ(P ) (the spectral radius of P ) is a positive
real number. M -matrices have many equivalent definitions (see [5, Chapter 6]). M -
matrices have important applications, for instance, in iterative methods in numerical
analysis, in the analysis of dynamical systems, in economics, and in mathematical
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programming. Given a matrix A = (aij)1≤i,j≤n, its comparison matrix is defined by
M(A) = (mij)1≤i,j≤n (with mii := |aii| and mij := −|aij | if i 6= j, 1 ≤ i, j ≤ n).

An n × n matrix A is completely positive if it can be written as A = BBT ,
where B is an n ×m nonnegative matrix. Completely positive matrices are positive
semidefinite matrices and, for any graph G, there exists a completely positive matrix
A such that G(A) = G. Some recent results on graphs which are associated with
completely positive matrices can be found in [3] and [4], and [2] surveys many results
on completely positive matrices. [8, Theorem 5] characterizes completely positive
matrices A with G(A) triangle-free and [13, Theorem 1] characterizes M -matrices A
with G(A) triangle-free. In Proposition 2.5 we characterize the corresponding case of
totally positive matrices. At the end of section 2 some results on the convergence of
iterative methods to solve tridiagonal totally positive linear systems are given.

Section 3 deals with directed graphs (digraphs). The existence of nonintersecting
paths in a digraph is a topic of wide interest in combinatorics. We give several results
on this topic. Our fundamental tools to obtain these results are provided by an
interpretation of the totally positive matrices in terms of digraphs (which was given
in [6, Theorem 3.1]) and some properties of the totally positive matrices obtained in
[9], [10], and [12].

2. Undirected graphs and totally positive matrices. In this section we
shall deal with undirected graphs on vertices {1, 2, . . . , n}. Now let us introduce some
matricial notation. An n×n matrix is p-banded if all its entries are zero except within
the band |i − j| < p. A tridiagonal matrix is a 2-banded matrix. Given k, n ∈ N,
k ≤ n, we define Qk,n := {(α1, . . . , αk)|αi ∈ N, 1 ≤ α1 < · · · < αk ≤ n} and
for α, β ∈ Qk,n, A[α|β] is by definition the k × k submatrix of A containing rows
numbered by α and columns numbered by β. Finally, A[α] := A[α|α].

In the next result we shall use the condition that the matrix has no zero rows
because we are interested in graphs with no isolated vertices.

PROPOSITION 2.1. Let A be a symmetric TP2 matrix with nonzero rows. Then
c(G(A)) ≤ p if and only if A is p-banded.

Proof. As every n × n matrix is n-banded, we assume p ≤ n − 1. If A is p-
banded, then c(G(A)) ≤ p since A has no (p + 1) × (p + 1) principal submatrices
whose off-diagonal entries are nonzero.

Let us assume now that A is an n × n matrix with c(G(A)) ≤ p and let us see
by induction on n that A is p-banded. If n = 2 and c(G(A)) = 1, then A has a zero
off-diagonal entry and, by symmetry, A is a diagonal matrix. Let us suppose that
the result holds for n− 1 and let us prove it for n. By the induction hypothesis, the
matrices A[1, . . . , n−1] and A[2, . . . , n] are already p-banded. Thus, it remains to see
a1n = 0 (and so, by symmetry, an1 = 0). Let us assume that a1n 6= 0 and we shall
get a contradiction.

If p < n − 1, we have that a1,n−1 = 0. Since by symmetry A has no zero
columns, there exists k ∈ {2, . . . , n} such that ak,n−1 > 0. Thus, detA[1, k|n−1, n] =
−a1nak,n−1 < 0, which contradicts that A is TP2.

Finally, let us consider the case of p = n − 1. Let us observe that arguments
similar to those of the previous case show that a1k 6= 0 for all k and that akn 6= 0
for all k. Since c(G(A)) ≤ p, p = n − 1, and A is symmetric, there exists aij = 0
for some i ≤ j < n. So then detA[1, i|1, j] = −ai1a1j < 0, which gives us the final
contradiction.

Applying the previous result to p = 2, we derive the following characterization of
symmetric TP2 matrices A with G(A) triangle-free.
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COROLLARY 2.2. Let A be a symmetric TP2 matrix with nonzero rows. Then
G(A) is triangle-free if and only if A is tridiagonal.

We have already mentioned that the condition of dealing with matrices without
zero rows is natural in the framework of graphs. Let us observe that without this
restriction the previous result does not hold because, for instance, the symmetric
matrix

A =

 3 0 1
0 0 0
1 0 3


is totally positive and G(A) is triangle-free, but A is not tridiagonal.

Now we can easily deduce from Corollary 2.2 a characterization of the TP2 sym-
metric matrices A such that G(A) is a tree.

COROLLARY 2.3. Let A be a symmetric TP2 matrix. Then the following condi-
tions are equivalent:

(i) G(A) is a tree.
(ii) A is tridiagonal and irreducible.
(iii) G(A) is triangle-free and connected.
The next result characterizes the case when G(A) is quadrilateral-free.
PROPOSITION 2.4. Let A = (aij)1≤i,j≤n be a symmetric TP2 matrix with nonzero

rows. Then G(A) is quadrilateral-free if and only if A is 3-banded and for every i
(1 ≤ i ≤ n− 3) such that ai,i+2 6= 0 one has that ai+1,i+3 = 0.

Proof. Let us assume first that G(A) is quadrilateral-free. Since c(G(A)) ≤ 3,
A is 3-banded by Proposition 2.1. Let us suppose now that there exists an index
i such that ai,i+2 6= 0 and ai+1,i+3 6= 0 and we shall obtain a contradiction. By
symmetry, ai+2,i 6= 0 and ai+3,i+1 6= 0, and these four numbers are positive since A
is TP2. If ai,i+1 = 0, we would have detA[i, i + 3|i + 1, i + 2] = −ai,i+2ai+3,i+1 <
0, which contradicts that A is TP2. Analogously, if ai+2,i+3 = 0, we would have
detA[i+1, i+2|i, i+3] = −ai+1,i+3ai+2,i < 0, which contradicts again that A is TP2.
In conclusion, the elements ai,i+2, ai+1,i+3, ai,i+1, and ai+2,i+3 are nonzero and so they
are associated with a cycle of length four in G(A), which again gives a contradiction.

Let us prove now the converse. Let us assume that A is 3-banded and that G(A)
has a cycle of length four. Let i(≤ n − 3) be the least index associated with the
vertices of this cycle. Since A is 3-banded, the other two vertices of the cycle adjacent
to i must be associated with the indices i + 1 and i + 2, and i + 3 must correspond
to the fourth vertex, which is adjacent to i + 1 and i + 2. But then we have that
ai,i+2 6= 0 and ai+1,i+3 6= 0, which proves the converse of the proposition.

In [8, Theorem 5] completely positive matrices A with G(A) triangle-free were
characterized, and a characterization of nonsingular M -matrices with G(A) triangle-
free was obtained in [13, Theorem 1]. The next result gives the corresponding char-
acterization for the case of symmetric totally positive matrices.

PROPOSITION 2.5. Let A be a nonsingular, nonnegative, and symmetric matrix
with G(A) triangle-free. Then the following conditions are equivalent:

(i) A is totally positive.
(ii) A is tridiagonal completely positive.
(iii) M(A) is a tridiagonal M -matrix.
Proof. (i) =⇒ (ii) If A is totally positive and G(A) is triangle-free, then A is

tridiagonal by Corollary 2.2. On the other hand, a totally positive matrix admits an
LU factorization with L and U totally positive (cf. [1, Theorem 3.5]) and since A is
symmetric we can deduce that it is completely positive. In fact, the factors in the
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unique LDU factorization of A are nonnegative (see, for instance, the second part of
Theorem 4.1′ of [11]) and therefore the factors in the Cholesky factorization of A are
nonnegative matrices.

(ii) =⇒ (i) If A is completely positive, it is in particular a positive semidefinite
symmetric matrix and so its principal minors are nonnegative. Now (i) follows from
[1, Theorem 2.3] since A is a nonnegative tridiagonal matrix.

(ii) ⇐⇒ (iii) It is a consequence of [8, Theorem 5].
REMARK 2.6. In contrast with the previous results, condition (i) of Proposition

2.5 imposes the total positivity of the matrix A instead of the property of being TP2.
The following matrix A shows that a TP2 tridiagonal matrix is not necessarily totally
positive:

A =

 1 1 0
1 1 2
0 2 4


(detA < 0). On the other hand, Proposition 2.5 cannot be extended in a natural way
to matrices A with G(A) quadrilateral-free. For instance, the matrix

B =

 1 0 1
0 1 0
1 0 2

=

 1 0 0
0 1 0
1 0 1

 1 0 1
0 1 0
0 0 1


is a completely positive 3-banded symmetric matrix with nonzero rows, but B is not
totally positive (it is not even TP2).

In the next result we see that the equivalence between (i) and (iii) of Proposition
2.5 also holds for nonsymmetric matrices.

PROPOSITION 2.7. Let A be a tridiagonal nonnegative matrix. Then A is totally
positive if and only if its comparison matrix M(A) is an M -matrix.

Proof. Let us consider the diagonal matrix Kn = diag{1,−1, 1, . . . , (−1)n+1}.
The matrix KnAKn has nonnegative diagonal elements and nonpositive off-diagonal
elements because A is tridiagonal and nonnegative. Therefore, KnAKn is the com-
parison matrix M(A) of A. Furthermore, the principal minors of KnAKn coincide
with the principal minors of A because they only differ in the fact that in KnAKn

the even rows and even columns of A have been multiplied by (−1).
If A is totally positive, then KnAKn has nonnegative principal minors and, by

Theorem (4.6) of Chapter 6 of [5], KnAKn =M(A) is an M -matrix.
Finally, if M(A)(= KnAKn) is an M -matrix, then it has nonnegative principal

minors by Theorem (4.6) of Chapter 6 of [5]. Consequently, the nonnegative matrix
A is totally positive by [1, Theorem 2.3].

As a consequence of the previous result we may obtain from Theorem (5.14) of
Chapter 7 of [5] a result on the convergence of iterative methods for tridiagonal totally
positive matrices. As usual, let D = diag(a11, . . . , ann) and −L and −U be the strictly
lower and strictly upper triangular parts of A, respectively. Thus, A = D − L − U .
The iteration matrices for the Jacobi and successive over relaxation (SOR) methods
are J = D−1(L+ U) and Hω = (D − ωL)−1((1− ω)D + ωU), respectively.

COROLLARY 2.8. Let A be a tridiagonal nonsingular totally positive matrix. Then
the Jacobi method is convergent and the SOR method converges whenever

0 < ω <
2

1 + ρ(|J |) .
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3. On the existence of nonintersecting paths in digraphs. In this section
we shall deal with digraphs. We shall show how some properties of the totally positive
matrices follow easily from their interpretation in terms of digraphs and, conversely,
we shall see that information on the existence of nonintersecting paths with posi-
tive weight in a digraph can be obtained from the properties of the totally positive
matrices.

Following the notations of [6], let D = (V,A) be a digraph. We shall assume
that D has no loops or multiple edges. So, the elements of A (i.e., the edges) can be
identified with ordered pairs (u, v) with u, v ∈ V , u 6= v. A path in D is a sequence
π = u1u2 · · ·un of elements of V such that (ui, ui+1) ∈ A for i = 1, . . . , n − 1 (we
say that π goes from u1 to un). We say that D is locally finite if, for every u, v ∈ V ,
there are only a finite number of paths from u to v. Let us observe that a locally
finite digraph D must be acyclic. We say that D is weighted if there is a function
w : A→ R. If w(u, v) ≥ 0 for all (u, v) ∈ A, then we call D a nonnegative digraph.

Let D = (V,A,w) be a locally finite, weighted digraph. For a path π = u0u1 · · ·uk
in D we define w(π) :=

∏k
i=1 w(ui−1, ui), and, for u, v ∈ V , PD(u, v) :=

∑
π w(π),

where the sum is over all paths π inD going from u to v. By convention, PD(u, u) := 1.
Given u := (u1, . . . , ur), v := (v1, . . . , vr) ∈ V r, we let

N(u,v) :=
∑

(π1,...,πr)

w(π1, . . . , πr),

where w(π1, . . . , πr) :=
∏r
i=1 w(πi) and where the sum is over all r-tuples (π1, . . . , πr)

of paths from u to v (i.e., πi is a path from ui to vi, for i = 1, . . . , r) that are
nonintersecting (i.e., πi and πj have no vertices in common if i 6= j). Most classes
of plane partitions that are of interest (either by association with the representation
theory of the classical groups, or for purely combinatorial reasons) can be interpreted
as configurations of nonintersecting paths in a digraph. We say that u and v are
compatible if, for every σ ∈ Sr\{Id} (where Sr is the group of permutations of a set of
r elements), there are no r-tuples of paths from (u1, . . . , ur) to (vσ(1), . . . , vσ(r)) that
are nonintersecting. The proof of the following result can be found in [16, Theorem
1.2] or in [15, Lemma 1].

PROPOSITION 3.1. Let D = (V,A,w) be a locally finite, weighted digraph and
u = (u1, . . . , un), v = (v1, . . . , vn) ∈ V n be compatible. Then

(3.1) N(u,v) = det [(PD(ui, vj))1≤i,j≤n] .

The previous result gives no information about which sets of the vertices are
compatible. However, if D is planar it is often possible to take advantage of the
underlying topology, as shown in [16]. For example, suppose that one may pass a
Jordan curve C through two sets of vertices I and J so that all paths from I to J
are contained in the interior of C. If the vertices of I and J are arranged along two
distinct segments of C, then I must be compatible with J . [16, Proposition 1.4] gives
an algebraic method for identifying compatible sets of vertices.

Proposition 3.1 implies that if D is a locally finite, nonnegative digraph and
(u1, . . . , un), (v1, . . . , vn) ∈ V n are compatible, then the matrix (PD(ui, vj))1≤i,j≤n
has a nonnegative determinant. The following concept leads to totally positive ma-
trices. We say that u = (u1, . . . , un), v = (v1, . . . , vn) ∈ V n are fully compatible if
(ui1 , . . . , uir ) and (vj1 , . . . , vjr ) are compatible for all (i1, . . . , ir), (j1, . . . , jr) ∈ Qr,n
and 1 ≤ r ≤ n. The following characterization of totally positive matrices corresponds
to [6, Theorem 3.1].
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THEOREM 3.2. Let U be an n × n matrix. Then U is totally positive if and
only if there exists a planar, locally finite, nonnegative digraph D = (V,A,w) and u =
(u1, . . . , un), v = (v1, . . . , vn) ∈ V n fully compatible such that U = (PD(ui, vj))1≤i,j≤n.

If u = (u1, . . . , un), v = (v1, . . . , vn) ∈ V n are compatible and (3.1) is strictly
positive (and so there exists an n-tuple of nonintersecting paths with positive weight
from each ui to each vi), we say that u and v are strictly compatible.

The following result follows immediately from the previous definitions.
LEMMA 3.3. Let D = (V,A,w) be a locally finite, nonnegative digraph and

u = (u1, . . . , un), v = (v1, . . . , vn) ∈ V n be strictly compatible. If (ui1 , . . . , uik) is
compatible with (vi1 , . . . , vik) ((i1, . . . , ik) ∈ Qk,n, 1 ≤ k ≤ n) then they are strictly
compatible.

PROPOSITION 3.4. Let D = (V,A,w) be a locally finite, nonnegative digraph.
Let u = (u1, . . . , un), v = (v1, . . . , vn) ∈ V n be strictly compatible and such that
for all (i1, . . . , ik) ∈ Qk,n, 1 ≤ k ≤ n, (u1, . . . , uk) is compatible with (vi1 , . . . , vik)
and (v1 . . . , vk) is compatible with (ui1 , . . . , uik). Then there exist a locally finite,
nonnegative digraph D̄ = (V̄ , Ā, w̄) and ū = (ū1, . . . , ūn), v̄ = (v̄1, . . . , v̄n) ∈ V̄ n such
that they are fully compatible and PD(ui, vj) = PD̄(ūi, v̄j) for all i, j ∈ {1, . . . , n}.

Proof. Let B := (PD(ui, vj))1≤i,j≤n. By hypothesis, detB[1, . . . , k|i1, . . . , ik] ≥ 0
and detB[i1, . . . , ik|1, . . . , k] ≥ 0 for all (i1, . . . , ik) ∈ Qk,n, 1 ≤ k ≤ n. Besides, for
all k ∈ {1 . . . , n} (u1, . . . , uk) is compatible with (v1 . . . , vk) and, since u and v are
strictly compatible, (u1, . . . , uk) is strictly compatible with (v1 . . . , vk) by Lemma 3.3.
Thus, detB[1, . . . , k] > 0 for all k ∈ {1 . . . , n}. So, by [10, Theorem 3.1], B is totally
positive. Now the result follows from Theorem 3.2.

The next result illustrates how Theorem 3.2 can be used to obtain properties of
totally positive matrices. In fact, we shall show that the well-known strict positivity
of the principal minors of a nonsingular totally positive matrix (see for instance [1,
Corollary 3.8]) is a straightforward consequence of Theorem 3.2.

PROPOSITION 3.5. If an n × n totally positive matrix B is nonsingular, then
detB[α] > 0 for every k ∈ {1, . . . , n} and α ∈ Qk,n.

Proof. By Theorem 3.2 there exists a planar, locally finite, nonnegative digraph
D = (V,A,w) and u = (u1, . . . , un), v = (v1, . . . , vn) ∈ V n fully compatible satisfying
that B = (PD(ui, vj))1≤i,j≤n. Since B is nonsingular, we have that u and v are in
fact strictly compatible. By Lemma 3.3 we have that (ui1 , . . . , uir ) and (vi1 , . . . , vir )
are strictly compatible for all (i1, . . . , ir) ∈ Qr,n and 1 ≤ r ≤ n, and then the result
follows.

Now we shall apply some results of the theory of totally positive matrices to know
the existence of nonintersecting paths with positive weight in a digraph. We say that
u = (u1, . . . , un), v = (v1, . . . , vn) ∈ V n are strictly fully compatible if (ui1 , . . . , uir )
and (vj1 , . . . , vjr ) are strictly compatible for all (i1, . . . , ir), (j1, . . . , jr) ∈ Qr,n and
1 ≤ r ≤ n (and so there will be nonintersecting paths with positive weight from
(ui1 , . . . , uir ) to (vj1 , . . . , vjr )). In the next result we shall deduce the existence of
r-tuples of paths with positive weight from all sets of vertices (ui1 , . . . , uir ) to all sets
(vj1 , . . . , vjr ) ((i1, . . . , ir), (j1, . . . , jr) ∈ Qr,n and 1 ≤ r ≤ n) from the existence of
nonintersecting paths with positive weight between some special sets of vertices.

PROPOSITION 3.6. Let D = (V,A,w) be a locally finite, nonnegative digraph and
u = (u1, . . . , un), v = (v1, . . . , vn) ∈ V n be fully compatible. If for k = 1, 2, . . . , n we
have that (u1, u2, . . . , uk) is strictly compatible with (vn−k+1, vn−k+2, . . . , vn) and also
that (un−k+1, un−k+2, . . . , un) is strictly compatible with (v1, v2, . . . , vk), then u and
v are strictly fully compatible.
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Proof. By Proposition 3.1 the matrix B := (PD(ui, vj))1≤i,j≤n is totally positive.
By hypothesis, for k = 1, 2, . . . , n detB [1, 2, . . . , k|n− k + 1, n− k + 2, . . . , n] > 0
and detB [n− k + 1, n− k + 2, . . . , n|1, 2, . . . , k] > 0. Now the result follows from [9,
Theorem 4.3].

In the previous result we have proved that u and v are strictly fully compatible
assuming previously that u and v are fully compatible. In the next result we remove
this assumption and we obtain a result of a similar nature to Proposition 3.4.

PROPOSITION 3.7. Let D = (V,A,w) be a locally finite, nonnegative digraph and
u = (u1, . . . , un), v = (v1, . . . , vn) ∈ V n be fully compatible. Let us assume that, for
k = 1, 2, . . . , n, (u1, u2, . . . , uk) is strictly compatible with (vn−k+1, vn−k+2, . . . , vn)
and also that (un−k+1, un−k+2, . . . , un) is strictly compatible with (v1, v2, . . . , vk), and
that for all d ∈ {1, 2, . . . , n − k + 1} (u1, u2, . . . , uk) is compatible with (vd, vd+1, . . .,
vd+k−1) and (ud, ud+1, . . . , ud+k−1) is compatible with (v1, v2, . . . , vk). Then there ex-
ist a locally finite, nonnegative digraph D̄ = (V̄ , Ā, w̄) and ū = (ū1, . . . , ūn),
v̄ = (v̄1, . . . , v̄n) ∈ V̄ n such that they are strictly fully compatible and PD(ui, vj) =
PD̄(ūi, v̄j) for all i, j ∈ {1, . . . , n}.

Proof. Let B := (PD(ui, vj))1≤i,j≤n. For all k = 1, 2, . . . , n and for all d ∈
{1, 2, . . . , n−k+1} (u1, u2, . . . , uk) is compatible with (vd, vd+1, . . . , vd+k−1). Since we
have that (u1, . . . , uk, uk+1, . . . , un−d+1) is strictly compatible with (vd, . . . , vd+k−1,
vd+k, . . . , vn), we obtain by Lemma 3.3 that (u1, . . . , uk) is strictly compatible with
(vd, . . . , vd+k−1). Thus, detB [1, 2, . . . , k|d, d+ 1, . . . , d+ k − 1] > 0 for all k =
1, 2, . . . , n and for all d ∈ {1, 2, . . . , n − k + 1}. Analogously the positivity of the
determinants detB [d, d+ 1, . . . , d+ k − 1|1, 2, . . . , k] for all k = 1, 2, . . . , n and for all
d ∈ {1, 2, . . . , n− k+ 1} can be proven. Now the result follows from [9, Theorem 4.1]
and from Theorem 3.2.

Given u = (u1, . . . , un), v = (v1, . . . , vn) ∈ V n, a (trivial) necessary condition
for the existence of nonintersecting paths with positive weight from (ui1 , . . . , uir )
to (vj1 , . . . , vjr ) is that there exist paths with positive weight from uil to vjl for
l = 1, . . . , r. Two compatible u,v are called almost strictly fully compatible if this
necessary condition is also sufficient, i.e., (ui1 , . . . , uir ) is strictly compatible with
(vj1 , . . . , vjr ) if and only if there exist paths with positive weight from uil to vjl for l =
1, . . . , r. Let us remark that if u,v are almost strictly fully compatible (respectively,
strictly fully compatible), then the corresponding matrices B = (PD(ui, vj))1≤i,j≤n
are almost strictly totally positive (respectively, strictly totally positive). These ma-
trix definitions can be found in [9] and [12].

The next result will provide a sufficient condition to prove that u,v are almost
strictly fully compatible. Previously, we have to recall some well-known facts on the
zero pattern of a nonsingular totally positive matrix A = (aij)1≤i,j≤n. Taking into
account that by Proposition 3.5 it cannot have a zero as a diagonal entry and that all
its 2× 2 minors are nonnegative, one can deduce that its entries satisfy

(3.2)
aij = 0, i > j ⇒ ahk = 0 ∀h ≥ i, k ≤ j,
aij = 0, i < j ⇒ ahk = 0 ∀h ≤ i, k ≥ j.

Thus, the patterns of zeros of these matrices are determined by the following indices.
For an n× n matrix A let us denote

i0 = 1, j0 = 1;
for t = 1, . . . , l :
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it = max{i|ai,jt−1 6= 0}+ 1 (≤ n+ 1),
jt = max{j|ait,j = 0}+ 1 (≤ n+ 1),

where l is given in this recurrent definition by il = n+ 1. Analogously we denote

ĵ0 = 1, î0 = 1;
for t = 1, . . . , r :

ĵt = max{j|aît−1,j
6= 0}+ 1,

ît = max{i|ai,ĵt = 0}+ 1,

where ĵr = n + 1. In other words, the entries below the places (i1 − 1, j) with
j0 ≤ j < j1, (i2 − 1, j) with j1 ≤ j < j2, . . . , (il−1 − 1, j) with jl−2 ≤ j < jl−1
are zero. So are the entries to the right of the places (i, ĵ1 − 1) with î0 ≤ i < î1,
(i, ĵ2 − 1) with î1 ≤ i < î2, . . . , (i, ĵr−1 − 1) with îr−2 ≤ i < îr−1. On the other
hand, the entries of both lists, those above the first list and those to the left of the
last list, are nonzero. We shall say that the matrix A has a zero pattern given by
I = {i0, i1, . . . , il}, J = {j0, j1, . . . , jl}, Î = {̂i0, î1, . . . , îr}, and Ĵ = {ĵ0, ĵ1, . . . , ĵr}.
Only matrices with these patterns of zeros and all the other entries positive can be
nonsingular totally positive. Besides, we have that

(3.3)
it > jt, t = 1, . . . , l − 1,

ĵt > ît, t = 1, . . . , r − 1.

Let us consider an example of a 10×10 matrix with l = r = 3 and {i0, i1, i2, i3} =
{1, 6, 9, 11}, {j0, j1, j2, j3} = {1, 3, 5, 11}, {ĵ0, ĵ1, ĵ2, ĵ3} = {1, 7, 9, 11}, {̂i0, î1, î2, î3}
= {1, 3, 5, 11}. Entries represented by the symbol * are nonzero:

∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗


.

PROPOSITION 3.8. Let D = (V,A,w) be a locally finite, nonnegative digraph and
u = (u1, . . . , un), v = (v1, . . . , vn) ∈ V n be fully compatible and strictly compatible.
Let B := (PD(ui, vj))1≤i,j≤n, with a zero pattern given by I, J, Î, Ĵ as above. Let us
assume also that for 1 ≤ t ≤ l and jt−1 ≤ h < jt, (uit−1−h+jk , . . . , uit−1) is strictly
compatible with (vjk , vjk+1, . . . , vh) (where jk = max{js|s ≤ t − 1, h − js < it − is})
and that for 1 ≤ t ≤ r and ît−1 ≤ h < ît, (uîk , uîk+1 . . . , uh) is strictly compatible
with (vĵt−1−h+îk , . . . , vĵt−1) (where îk = max{̂is|s ≤ t− 1, h− îs < ĵt − ĵs}). Then u
and v are almost strictly fully compatible.

Proof. Since u and v are fully compatible, the matrix B is totally positive by
Theorem 3.2. B is also nonsingular because u and v are strictly compatible. Thus,
B has a zero pattern given by I, J, Î, Ĵ as above. Now the result follows easily from
the equivalence of (1) and (3) in [12, Theorem 3.3].
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Finally, let us mention that [9, Theorem 4.3 (ii)] (respectively, [12, Theorem
3.3 (2)]) provides an algorithmic way to check that fully compatible sets of vertices
u = (u1, . . . , un), v = (v1, . . . , vn) are strictly fully compatible (respectively, almost
strictly fully compatible): we have to check the positivity of the pivots (respectively,
of the pivots corresponding to the nonzero elements) when we perform the Neville
elimination of the matrix (PD(ui, vj))1≤i,j≤n. Roughly speaking, Neville elimination
is a procedure to create zeros in a matrix by means of adding to a given row a
suitable multiple of the previous one. In [9] there appears a detailed exposition of this
elimination procedure.
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Abstract. In this paper we discuss matrix decompositions in the symmetrized max-plus algebra.
The max-plus algebra has maximization and addition as basic operations. In contrast to linear
algebra, many fundamental problems in the max-plus algebra still have to be solved. In this paper
we discuss max-algebraic analogues of some basic matrix decompositions from linear algebra. We
show that we can use algorithms from linear algebra to prove the existence of max-algebraic analogues
of the QR decomposition, the singular value decomposition (SVD), the Hessenberg decomposition,
the LU decomposition, and so on.
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composition
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1. Introduction. In recent years both industry and the academic world have be-
come more and more interested in techniques to model, analyze, and control complex
systems such as flexible manufacturing systems, telecommunication networks, parallel
processing systems, traffic control systems, logistic systems, and so on. These sys-
tems are typical examples of discrete event systems (DESs), the subject of an emerging
discipline in system and control theory. The class of the DESs essentially contains
man-made systems that consist of a finite number of resources (e.g., machines, com-
munications channels, or processors) that are shared by several users (e.g., product
types, information packets, or jobs), all of which contribute to the achievement of
some common goal (e.g., the assembly of products, the end-to-end transmission of a
set of information packets, or a parallel computation). Although in general DESs lead
to a nonlinear description in conventional algebra, there exists a subclass of DESs for
which this model becomes “linear” when we formulate it in the max-plus algebra [1, 5].
DESs that belong to this subclass are called max-linear DESs.

The basic operations of the max-plus algebra are maximization and addition.
There exists a remarkable analogy between the basic operations of the max-plus alge-
bra on the one hand, and the basic operations of conventional algebra (addition and
multiplication) on the other hand. As a consequence many concepts and properties of
conventional algebra (such as the Cayley–Hamilton theorem, eigenvectors, eigenval-
ues, and Cramer’s rule) also have a max-algebraic analogue. This analogy also allows
us to translate many concepts, properties, and techniques from conventional linear
system theory to system theory for max-linear DESs. However, there are also some
major differences that prevent a straightforward translation of properties, concepts,
and algorithms from conventional linear algebra and linear system theory to max-plus
algebra and max-algebraic system theory for DESs.

Compared to linear algebra and linear system theory, the max-plus algebra and
the max-algebraic system theory for DESs is at present far from fully developed, and
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much research on this topic is still needed in order to get a complete system theory.
The main goal of this paper is to fill one of the gaps in the theory of the max-plus
algebra by showing that there exist max-algebraic analogues of many fundamental
matrix decompositions from linear algebra such as the QR decomposition and the
singular value decomposition (SVD). These matrix decompositions are important tools
in many linear algebra algorithms (see [14] and the references cited therein) and in
many contemporary algorithms for the identification of linear systems (see [21, 22,
33, 34, 35] and the references cited therein).

In [30], Olsder and Roos have used asymptotic equivalences to show that every
matrix has at least one max-algebraic eigenvalue and to prove a max-algebraic version
of Cramer’s rule and of the Cayley–Hamilton theorem. We shall use an extended and
formalized version of their technique to prove the existence of the QR decomposition
and the SVD in the symmetrized max-plus algebra. In our existence proof we shall
use algorithms from linear algebra. This proof technique can easily be adapted to
prove the existence of max-algebraic analogues of many other matrix decompositions
from linear algebra such as the Hessenberg decomposition, the LU decomposition, the
eigenvalue decomposition, the Schur decomposition, and so on.

This paper is organized as follows. After introducing some concepts and defi-
nitions in section 2, we give a short introduction to the max-plus algebra and the
symmetrized max-plus algebra in section 3. Next we establish a link between a ring
of real functions (with conventional addition and multiplication as basic operations)
and the symmetrized max-plus algebra. In section 5 we use this link to define the QR
decomposition and the SVD of a matrix in the symmetrized max-plus algebra and to
prove the existence of these decompositions. We conclude with an example.

2. Notations and definitions. In this section we give some definitions that
will be used in the next sections.

The set of all reals except for zero is represented by R0 (R0 = R\{0}). The set of
nonnegative real numbers is denoted by R+, and the set of nonpositive real numbers
is denoted by R−. We have R+

0 = R+ \ {0}.
We shall use “vector” as a synonym for “n-tuple.” Furthermore, all vectors are

assumed to be column vectors. If a is a vector, then ai is the ith component of a.
If A is a matrix, then aij or (A)ij is the entry on the ith row and the jth column.
The n× n identity matrix is denoted by In and the m× n zero matrix is denoted by
Om×n.

The matrix A ∈ Rn×n is called orthogonal if ATA = In.
The Frobenius norm of the matrix A ∈ Rm×n is represented by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2
ij .

The 2-norm of the vector a is defined by ‖a‖2 =
√
aTa and the 2-norm of the matrix

A is defined by

‖A‖2 = max
‖x‖2=1

‖Ax‖2 .

If A ∈ Rm×n, then there exist an orthogonal matrix Q ∈ Rm×m and an upper trian-
gular matrix R ∈ Rm×n such that A = QR. We say that QR is a QR decomposition
of A.
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Let A ∈ Rm×n and let r = min(m,n). Then there exist a diagonal matrix
Σ ∈ Rm×n and two orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that

A = U ΣV T(1)

with σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0, where σi = (Σ)ii for i = 1, 2, . . . , r. Factorization (1) is
called an SVD of A. The diagonal entries of Σ are the singular values of A. We have
σ1 = ‖A‖2. The columns of U are the left singular vectors of A and the columns of V
are the right singular vectors of A. For more information on the QR decomposition
and the SVD the interested reader is referred to [14, 18].

We use f , f(·) or x 7→ f(x) to represent a function. The domain of definition of
the function f is denoted by dom f and the value of f at x ∈ dom f is denoted by
f(x).

DEFINITION 2.1 (analytic function). Let f be a real function and let α ∈ R be an
interior point of dom f . Then f is analytic in α if the Taylor series of f with center
α exists and if there is a neighborhood of α where this Taylor series converges to f .

A real function f is analytic in an interval [α, β] ⊆ dom f if it is analytic in every
point of that interval.

A real matrix-valued function F̃ is analytic in [α, β] ⊆ dom F̃ if all its entries are
analytic in [α, β].

DEFINITION 2.2 (asymptotic equivalence in the neighborhood of ∞). Let f and
g be real functions such that ∞ is an accumulation point of dom f and dom g.

If there is no real number K such that g is identically zero in [K,∞), then we
say that f is asymptotically equivalent to g in the neighborhood of ∞, denoted by
f(x) ∼ g(x), x→∞, if limx→∞

f(x)
g(x) = 1.

If there exists a real number L such that both f and g are identically zero in
[L,∞), then we also say that f(x) ∼ g(x), x→∞.

Let F̃ and G̃ be real m×n matrix-valued functions such that∞ is an accumulation
point of dom F̃ and dom G̃. Then F̃ (x) ∼ G̃(x), x→∞ if f̃ij(x) ∼ g̃ij(x), x→∞
for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

The main difference with the conventional definition of asymptotic equivalence is
that Definition 2.2 also allows us to say that a function is asymptotically equivalent
to zero in the neighborhood of ∞: f(x) ∼ 0, x→∞ if there exists a real number L
such that f(x) = 0 for all x ≥ L.

3. The max-plus algebra and the symmetrized max-plus algebra. In this
section we give a short introduction to the max-plus algebra and the symmetrized max-
plus algebra. A complete overview of the max-plus algebra can be found in [1, 5, 12].

3.1. The max-plus algebra. The basic max-algebraic operations are defined
as follows:

x⊕ y = max (x, y),(2)
x⊗ y = x+ y(3)

for x, y ∈ R ∪ {−∞} with, by definition, max(x,−∞) = x and x + (−∞) = −∞ for
all x ∈ R ∪ {−∞}. The reason for using the symbols ⊕ and ⊗ to represent maxi-
mization and addition is that there is a remarkable analogy between ⊕ and addition,
and between ⊗ and multiplication: many concepts and properties from conventional
linear algebra (such as the Cayley–Hamilton theorem, eigenvectors, eigenvalues, and
Cramer’s rule) can be translated to the (symmetrized) max-plus algebra by replacing
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+ by ⊕ and × by ⊗ (see also section 4). Therefore, we also call ⊕ the max-algebraic
addition. Likewise, we call ⊗ the max-algebraic multiplication. The resulting al-
gebraic structure Rmax = (R ∪ {−∞},⊕,⊗) is called the max-plus algebra. Define
Rε = R ∪ {−∞}. The zero element for ⊕ in Rε is represented by ε

def= −∞. So
x⊕ ε = x = ε⊕ x for all x ∈ Rε.

Let r ∈ R. The rth max-algebraic power of x ∈ R is denoted by x⊗
r

and
corresponds to rx in conventional algebra. If x ∈ R, then x⊗

0
= 0 and the inverse

element of x with respect to ⊗ is x⊗
−1

= −x. There is no inverse element for ε since
ε is absorbing for ⊗. If r > 0, then ε⊗

r
= ε. If r ≤ 0, then ε⊗

r
is not defined.

The rules for the order of evaluation of the max-algebraic operators are similar to
those of conventional algebra. So max-algebraic power has the highest priority, and
max-algebraic multiplication has a higher priority than max-algebraic addition.

Consider the finite sequence a1, a2, . . . , an with ai ∈ Rε for all i. We define

n⊕
i=1

ai = a1 ⊕ a2 ⊕ · · · ⊕ an.

The matrix En is the n× n max-algebraic identity matrix:

(En)ii = 0 for i = 1, 2, . . . , n ,
(En)ij = ε for i = 1, 2, . . . , n and j = 1, 2, . . . , n with i 6= j .

The m×n max-algebraic zero matrix is represented by εm×n: we have (εm×n)ij = ε
for all i, j.

The off-diagonal entries of a max-algebraic diagonal matrix D ∈ Rm×nε are equal
to ε: dij = ε for all i, j with i 6= j. A matrix R ∈ Rm×nε is a max-algebraic upper
triangular matrix if rij = ε for all i, j with i > j. If we permute the rows or the
columns of the max-algebraic identity matrix, we obtain a max-algebraic permutation
matrix.

The operations ⊕ and ⊗ are extended to matrices as follows. If α ∈ Rε and if
A,B ∈ Rm×nε , then

(α⊗A)ij = α⊗ aij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n

and

(A⊕B)ij = aij ⊕ bij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n .

If A ∈ Rm×pε and B ∈ Rp×nε , then

(A⊗B)ij =
p⊕
k=1

aik ⊗ bkj for i = 1, 2, . . . ,m and j = 1, 2, . . . , n .

3.2. The symmetrized max-plus algebra. One of the major differences be-
tween conventional algebra and the max-plus algebra is that there exist no inverse
elements with respect to ⊕ in Rε: if x ∈ Rε, then there does not exist an element
yx ∈ Rε such that x ⊕ yx = ε = yx ⊕ x, except when x is equal to ε. So (Rε,⊕)
is not a group. Therefore, we now introduce Smax [1, 12, 25], which is a kind of
symmetrization of the max-plus algebra. This can be compared with the extension of
(N,+,×) to (Z,+,×). In section 4 we shall show that Rmax corresponds to a set of
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nonnegative real functions with addition and multiplication as basic operations and
that Smax corresponds to a set of real functions with addition and multiplication as
basic operations. Since the ⊕ operation is idempotent, we cannot use the conven-
tional symmetrization technique since every idempotent group reduces to a trivial
group [1, 25]. Nevertheless, it is possible to adapt the method of the construction of
Z from N to obtain “balancing” elements rather than inverse elements.

We shall restrict ourselves to a short introduction to the most important features
of Smax. This introduction is based on [1, 12, 25]. First we introduce the “algebra of
pairs.” We consider the set of ordered pairs Pε

def= Rε × Rε with operations ⊕ and ⊗
that are defined as follows:

(x, y)⊕ (w, z) = (x⊕ w, y ⊕ z),(4)
(x, y)⊗ (w, z) = (x⊗ w ⊕ y ⊗ z, x⊗ z ⊕ y ⊗ w)(5)

for (x, y), (w, z) ∈ Pε, and where the operations ⊕ and ⊗ on the right-hand side
correspond to maximization and addition as defined in (2) and (3). The reason for
also using ⊕ and ⊗ on the left-hand side is that these operations correspond to ⊕ and
⊗ as defined in Rmax as we shall see later on. It is easy to verify the following: in Pε
the ⊕ operation is associative, commutative, and idempotent, and its zero element is
(ε, ε); the ⊗ operation is associative, commutative, and distributive with respect to
⊕; the identity element of ⊗ is (0, ε); and the zero element (ε, ε) is absorbing for ⊗.
We call the structure (Pε,⊕,⊗) the algebra of pairs.

If u = (x, y) ∈ Pε, then we define the max-absolute value of u as |u|⊕ = x ⊕ y
and we introduce two unary operators 	 (the max-algebraic minus operator) and ( · )•
(the balance operator) such that 	u = (y, x) and u• = u ⊕ (	u) = (|u|⊕ , |u|⊕). We
have

u• = (	u)• = (u•)•,(6)
u⊗ v• = (u⊗ v)•,(7)
	(	u) = u,(8)
	(u⊕ v) = (	u)⊕ (	v),(9)
	(u⊗ v) = (	u)⊗ v(10)

for all u, v ∈ Pε. The last three properties allow us to write u	 v instead of u⊕ (	v).
Since the properties (8)–(10) resemble properties of the − operator in conventional
algebra, we could say that the 	 operator of the algebra of pairs can be considered as
the analogue of the − operator of conventional algebra (see also section 4). As for the
order of evaluation of the max-algebraic operators, the max-algebraic minus operator
has the same, i.e., the lowest, priority as the max-algebraic addition operator.

In conventional algebra we have x − x = 0 for all x ∈ R, but in the algebra of
pairs we have u 	 u = u• 6= (ε, ε) for all u ∈ Pε unless u is equal to (ε, ε), the zero
element for ⊕ in Pε. Therefore, we introduce a new relation.

DEFINITION 3.1 (balance relation). Consider u = (x, y), v = (w, z) ∈ Pε. We say
that u balances v, denoted by u∇v, if x⊕ z = y ⊕ w.

We have u 	 u = u• = (|u|⊕ , |u|⊕) ∇ (ε, ε) for all u ∈ Pε. The balance rela-
tion is reflexive and symmetric, but it is not transitive since, e.g., (2, 1)∇ (2, 2) and
(2, 2)∇ (1, 2) but (2, 1)∇/ (1, 2). Hence, the balance relation is not an equivalence
relation and we cannot use it to define the quotient set of Pε by ∇ (as opposed to
conventional algebra where (N × N)/= yields Z). Therefore, we introduce another
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relation that is closely related to the balance relation and that is defined as follows:
if (x, y), (w, z) ∈ Pε, then

(x, y)B(w, z) if
{

(x, y) ∇ (w, z) if x 6= y and w 6= z ,
(x, y) = (w, z) otherwise.

Note that if u ∈ Pε, then we have u 	 u B/ (ε, ε) unless u is equal to (ε, ε). It is easy
to verify that B is an equivalence relation that is compatible with ⊕ and ⊗, with
the balance relation ∇, and with the 	, | · |⊕ and ( · )• operators. We can distinguish
between three kinds of equivalence classes generated by B:

1. (w,−∞) = { (w, x) ∈ Pε |x < w }, called max-positive;
2. (−∞, w) = { (x,w) ∈ Pε |x < w }, called max-negative;
3. (w,w) = { (w,w) ∈ Pε }, called balanced.

The class (ε, ε) is called the max-zero class.
Now we define the quotient set S = Pε/B. The algebraic structure Smax =

(S,⊕,⊗) is called the symmetrized max-plus algebra. By associating (w,−∞) with
w ∈ Rε, we can identify Rε with the set of max-positive or max-zero classes denoted
by S⊕. The set of max-negative or max-zero classes will be denoted by S	, and
the set of balanced classes will be represented by S•. This results in the following
decomposition: S = S⊕ ∪ S	 ∪ S•. Note that the max-zero class (ε, ε) corresponds to
ε. The max-positive elements, the max-negative elements, and ε are called signed.
Define S∨ = S⊕ ∪ S	. Note that S⊕ ∩ S	 ∩ S• =

{
(ε, ε)

}
and ε = 	ε = ε•.

These notations allow us to write, e.g., 2 ⊕ (	4) instead of (2,−∞) ⊕ (−∞, 4).
Since (2,−∞)⊕ (−∞, 4) = (2, 4) = (−∞, 4), we have 2⊕ (	4) = 	4.

Let x, y ∈ Rε. Since we have

(x,−∞)⊕ (y,−∞) = (x⊕ y, −∞),
(x,−∞)⊗ (y,−∞) = (x⊗ y, −∞),

the operations ⊕ and ⊗ of the algebra of pairs as defined by (4)–(5) correspond to
the operations ⊕ and ⊗ of the max-plus algebra as defined by (2)–(3).

In general, if x, y ∈ Rε, then we have

x⊕ (	y) = x if x > y ,(11)
x⊕ (	y) = 	y if x < y ,(12)
x⊕ (	x) = x• .(13)

Now we give some extra properties of balances that will be used in the next sections.
An element with a 	 sign can be transferred to the other side of a balance as

follows.
PROPOSITION 3.2. ∀a, b, c ∈ S : a	 c∇ b if and only if a∇ b⊕ c .
If both sides of a balance are signed, we may replace the balance by an equality.
PROPOSITION 3.3. ∀a, b ∈ S∨ : a∇ b ⇒ a = b .
Let a ∈ S. The max-positive part a⊕ and the max-negative part a	 of a are

defined as follows:
• if a ∈ S⊕, then a⊕ = a and a	 = ε;
• if a ∈ S	, then a⊕ = ε and a	 = 	a;
• if a ∈ S•, then there exists a number x ∈ Rε such that a = x• and then
a⊕ = a	 = x.
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So a = a⊕ 	 a	 and a⊕, a	 ∈ Rε. Note that a decomposition of the form a = x 	 y
with x, y ∈ Rε is unique if it is required that either x 6= ε and y = ε, x = ε and y 6= ε,
or x = y. Hence, the decomposition a = a⊕ 	 a	 is unique.

Note that |a|⊕ = a⊕ ⊕ a	 for all a ∈ S. We say that a ∈ S is finite if |a|⊕ ∈ R. If
|a|⊕ = ε, then we say that a is infinite.

Definition 3.1 can now be reformulated as follows.
PROPOSITION 3.4. ∀a, b ∈ S : a∇ b if and only if a⊕ ⊕ b	 = a	 ⊕ b⊕ .
The balance relation is extended to matrices in the usual way: if A,B ∈ Sm×n,

then A∇B if aij∇ bij for i = 1, . . . ,m and j = 1, . . . , n. Propositions 3.2 and 3.3 can
be extended to the matrix case as follows.

PROPOSITION 3.5. ∀A,B,C ∈ Sm×n : A	 C ∇B if and only if A∇B ⊕ C .
PROPOSITION 3.6. ∀A,B ∈ (S∨)m×n : A∇B ⇒ A = B .
We conclude this section with a few extra examples that illustrate the concepts

defined above.
Example 3.7. We have 2⊕ = 2, 2	 = ε, and (5•)⊕ = (5•)	 = 5. Hence, 2∇ 5•

since 2⊕ ⊕ (5•)	 = 2⊕ 5 = 5 = ε⊕ 5 = 2	 ⊕ (5•)⊕.
We have 2∇/ 	5 since 2⊕ ⊕ (	5)	 = 2⊕ 5 = 5 6= ε = ε⊕ ε = 2	 ⊕ (	5)⊕.
Example 3.8. Consider the balance x ⊕ 2 ∇ 5 . From Proposition 3.2 it follows

that this balance can be rewritten as x∇ 5	 2 or x∇ 5 since 5	 2 = 5 by (11).
If we want a signed solution, the balance x∇ 5 becomes an equality by Proposi-

tion 3.3. This yields x = 5.
The balanced solutions of x∇ 5 are of the form x = t• with t ∈ Rε. We have

t•∇ 5 or equivalently t = 5⊕ t if and only if t ≥ 5.
So the solution set of x⊕ 2 ∇ 5 is given by {5} ∪ { t• | t ∈ Rε, t ≥ 5 } .
DEFINITION 3.9 (max-algebraic norm). Let a ∈ Sn. The max-algebraic norm of

a is defined by

‖a‖⊕ =
n⊕
i=1

|ai|⊕ .

The max-algebraic norm of the matrix A ∈ Sm×n is defined by

‖A‖⊕ =
m⊕
i=1

n⊕
j=1

|aij |⊕ .

The max-algebraic vector norm corresponds to the p-norms from linear algebra
since

‖a‖⊕ =

(
n⊕
i=1

|ai|⊕
⊗p

)⊗ 1
p

for every a ∈ Sn and every p ∈ N0 .

The max-algebraic matrix norm corresponds to both the Frobenius norm and the
p-norms from linear algebra since we have

‖A‖⊕ =

 m⊕
i=1

n⊕
j=1

|aij |⊕
⊗2

⊗
1
2

for every A ∈ Sm×n

and also ‖A‖⊕ = max‖x‖⊕=0 ‖A⊗ x‖⊕ (the maximum is reached for x = On×1).
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4. A link between conventional algebra and the symmetrized max-plus
algebra. In [30] Olsder and Roos have used a kind of link between conventional
algebra and the max-plus algebra based on asymptotic equivalences to show that every
matrix has at least one max-algebraic eigenvalue and to prove a max-algebraic version
of Cramer’s rule and of the Cayley–Hamilton theorem. In [10] we have extended and
formalized this link. Now we recapitulate the reasoning of [10] but in a slightly
different form that is mathematically more rigorous.

In the next section we shall encounter functions that are asymptotically equivalent
to an exponential of the form νexs for s→∞. Since we want to allow exponents that
are equal to ε, we set eεs equal to zero for all positive real values of s by definition.
We also define the following classes of functions:

R+
e =

{
f : R+

0 → R+

∣∣∣∣∣ f(s) =
n∑
i=0

µie
xis with n ∈ N,

µi ∈ R+
0 , and xi ∈ Rε for all i

}
,

Re =

{
f : R+

0 → R

∣∣∣∣∣ f(s) =
n∑
i=0

νie
xis with n ∈ N,

νi ∈ R0, and xi ∈ Rε for all i

}
.

It is easy to verify that (Re,+,×) is a ring.
For all x, y, z ∈ Rε we have

x⊕ y = z ⇔ exs + eys ∼ cezs , s→∞,(14)

x⊗ y = z ⇔ exs · eys = ezs for all s ∈ R+
0 ,(15)

where c = 1 if x 6= y and c = 2 if x = y. The relations (14) and (15) show that there
exists a connection between the operations ⊕ and ⊗ performed on the real numbers
and −∞, and the operations + and × performed on exponentials. We shall extend this
link between (R+

e ,+,×) and Rmax that has already been used in [26, 27, 28, 29, 30]—
and under a slightly different form in [6]—to Smax.

We define a mapping F with domain of definition S× R0 × R+
0 and with

F(a, µ, s) = |µ|eas if a ∈ S⊕,
F(a, µ, s) = −|µ|e|a|⊕s if a ∈ S	,
F(a, µ, s) = µe|a|⊕s if a ∈ S•,

where a ∈ S, µ ∈ R0, and s ∈ R+
0 .

In the remainder of this paper the first two arguments of F will most of the time
be fixed and we shall only consider F in function of the third argument, i.e., for a
given a ∈ S and µ ∈ R0 we consider the function F(a, µ, ·). Note that if x ∈ Rε and
µ ∈ R0, then we have

F(x, µ, s) = |µ|exs,
F(	x, µ, s) = −|µ|exs,
F(x•, µ, s) = µexs
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for all s ∈ R+
0 . Furthermore, F(ε, µ, ·) = 0 for all µ ∈ R0 since we have eεs = 0 for

all s ∈ R+
0 by definition.

For a given µ ∈ R0 the number a ∈ S will be mapped by F to an exponential
function s 7→ νe|a|⊕s, where ν = |µ|, ν = −|µ|, or ν = µ depending on the max-
algebraic sign of a. In order to reverse this process, we define the mapping R, which
we shall call the reverse mapping and which will map a function that is asymptotically
equivalent to an exponential function s 7→ νe|a|⊕s in the neighborhood of ∞ to the
number |a|⊕ or 	 |a|⊕ depending on the sign of ν. More specifically, if f is a real
function, if x ∈ Rε, and if µ ∈ R0, then we have

f(s) ∼ |µ|exs , s→∞ ⇒ R(f) = x,

f(s) ∼ −|µ|exs , s→∞ ⇒ R(f) = 	x .

Note that R will always map a function that is asymptotically equivalent to an ex-
ponential function in the neighborhood of ∞ to a signed number and never to a
balanced number that is different from ε. Furthermore, for a fixed µ ∈ R0 the map-
pings a 7→ F(a, µ, ·) and R are not each other’s inverse since these mappings are not
bijections as shown by the following example.

Example 4.1. Let µ = 1. We have F(2, µ, s) = e2s and F(2•, µ, s) = e2s for all
s ∈ R+

0 . So R(F(2•, µ, ·)) = 2 6= 2•.
Consider the real functions f and g defined by f(s) = e2s and g(s) = e2s + 1.

We have f(s) ∼ g(s) ∼ e2s, s → ∞. Hence, R(f) = R(g) = 2. So F(R(g), µ, ·) =
f 6= g.

Let µ ∈ R0. It is easy to verify that, in general, we have R(F(a, µ, ·)) = a if
a ∈ S⊕ ∪ S	, R(F(a, µ, ·)) = |a|⊕ if a ∈ S• and µ > 0, and R(F(a, µ, ·)) = 	 |a|⊕ if
a ∈ S• and µ < 0. Furthermore, if f is a real function that is asymptotically equivalent
to an exponential function in the neighborhood of ∞, then we have F(R(f), µ, s) ∼
f(s) , s→∞.

For all a, b, c ∈ S we have

a⊕ b = c ⇒
{
∃µa, µb, µc ∈ R0 such that
F(a, µa, s) + F(b, µb, s) ∼ F(c, µc, s) , s→∞,

(16)

∃µa, µb, µc ∈ R0 such that
F(a, µa, s) + F(b, µb, s) ∼ F(c, µc, s) , s→∞

}
⇒ a⊕ b ∇ c,(17)

a⊗ b = c ⇒
{
∃µa, µb, µc ∈ R0 such that
F(a, µa, s) · F(b, µb, s) = F(c, µc, s) for all s ∈ R+

0 ,
(18)

∃µa, µb, µc ∈ R0 such that
F(a, µa, s) · F(b, µb, s) = F(c, µc, s) for all s ∈ R+

0

}
⇒ a⊗ b ∇ c.(19)

As a consequence, we could say that the mapping F provides a link between the struc-
ture (R+

e ,+,×) and Rmax = (Rε,⊕,⊗), and a link between the structure (Re,+,×)
and Smax = (S,⊕,⊗).

Remark 4.2. The balance in (17) results from the fact that we can have cancella-
tion of equal terms with opposite sign in (R+

e ,+,×), whereas this is, in general, not
possible in the symmetrized max-plus algebra since ∀a ∈ S \ {ε} : a	 a 6= ε.

The following example shows that the balance on the right-hand side of (19) is
also necessary: we have F(0, 1, s) · F(0, 1, s) = 1 · 1 = 1 = F(0•, 1, s) for all s ∈ R+

0 ,
but 0⊗ 0 = 0 6= 0•.
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We have 1⊕2 = 2∇3•. However, there do not exist real numbers µ1, µ2, µ3 ∈ R0
such that

F(1, µ1, s) + F(2, µ2, s) ∼ F(3•, µ3, s) , s→∞

or equivalently

|µ1| es + |µ2| e2s ∼ µ3 e
3s , s→∞.

This implies that, in general, (16) does not hold any more if we replace the equality
on the left-hand side by a balance.

In a similar way we can show that, in general, a⊗ b∇ c with a, b, c,∈ S does not
imply that there exist real numbers µa, µb, µc ∈ R0 such that F(a, µa, s)·F(b, µb, s) =
F(c, µc, s) for all s ∈ R+

0 .
We extend the mapping F to matrices as follows. If A ∈ Sm×n and if M ∈ Rm×n0 ,

then Ã = F(A,M, ·) is a real m×n matrix-valued function with domain of definition
R+

0 and with ãij(s) = F(aij ,mij , s) for all i, j. Note that the mapping is performed
entrywise. The reverse mapping R is extended to matrices in a similar way: if Ã is
a real matrix-valued function with entries that are asymptotically equivalent to an
exponential in the neighborhood of ∞, then (R(Ã))ij = R(ãij) for all i, j. If A, B,
and C are matrices with entries in S, we have

A⊕B = C ⇒
{
∃MA,MB ,MC such that
F(A,MA, s) + F(B,MB , s) ∼ F(C,MC , s) , s→∞,

(20)

∃MA,MB ,MC such that
F(A,MA, s) + F(B,MB , s) ∼ F(C,MC , s) , s→∞

}
⇒ A⊕B ∇ C,(21)

A⊗B = C ⇒
{
∃MA,MB ,MC such that
F(A,MA, s) · F(B,MB , s) ∼ F(C,MC , s) , s→∞,

(22)

∃MA,MB ,MC such that
F(A,MA, s) · F(B,MB , s) ∼ F(C,MC , s) , s→∞

}
⇒ A⊗B ∇ C.(23)

Example 4.3. Let A =
[ 0
	1

ε
	2

]
and B =

[−3
2•

1
	0

]
. Hence, A ⊗ B =

[−3
4•

1
2•
]
.

Let M , N , and P ∈ R2×2
0 . In general we have

F(A,M, s) =
[
|m11| 0
−|m21| es −|m22| e2s

]
,

F(B,N, s) =
[
|n11| e−3s |n12| es
n21 e

2s −|n22|

]
,

F(A⊗B,P , s) =
[
|p11| e−3s |p12| es
p21 e

4s p22 e
2s

]
for all s ∈ R+

0 . Furthermore,

F(A,M, s) · F(B,N, s)

=
[

|m11| |n11| e−3s |m11| |n12| es
−|m21| |n11| e−2s − |m22|n21 e

4s (−|m21| |n12| + |m22| |n22|) e2s

]
for all s ∈ R+

0 .
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If −|m21||n12| + |m22||n22| 6= 0 and if we take

p11 = |m11| |n11| , p12 = |m11| |n12| ,
p21 = −|m22|n21 , p22 = −|m21| |n12| + |m22| |n22| ,

then we have F(A,M, s) · F(B,N, s) ∼ F(A⊗B,P , s) , s→∞.
If we take mij = nij = 1 for all i, j, we get

F(A, s) · F(B, s) ∼
[
e−3s es

−e4s 0

]
def= C̃(s) , s→∞.

The reverse mapping results in C = R(C̃) =
[−3
	4

1
ε

]
. Note that A⊗B ∇ C.

Taking mij = nij = (−1)(i+j)(i+ j) for all i, j leads to

F(A, s) · F(B, s) ∼
[

4e−3s 6es

12e4s 7e2s

]
def= D̃(s) , s→∞.

The reverse mapping results in D = R(D̃) =
[−3

4
1
2

]
and again we have

A⊗B ∇D.

5. The QR decomposition and the SVD in the symmetrized max-plus
algebra. In [10] we have used the mapping from Smax to (Re,+,×) and the reverse
mapping R to prove the existence of a kind of SVD in Smax. The proof of [10] is
based on the analytic SVD. In this section we present an alternative proof for the
existence theorem of the max-algebraic SVD. The major advantage of the new proof
technique that will be developed in this section over the one of [10] is that it can
easily be extended to prove the existence of many other matrix decompositions in
the symmetrized max-plus algebra such as the max-algebraic QR decomposition, the
max-algebraic LU decomposition, the max-algebraic eigenvalue decomposition (for
symmetric matrices), and so on. This proof technique consists of transforming a
matrix with entries in S to a matrix-valued function with exponential entries (using
the mapping F), applying an algorithm from linear algebra, and transforming the
result back to the symmetrized max-plus algebra (using the mapping R).

5.1. Sums and series of exponentials. The entries of the matrices that are
used in the existence proofs for the max-algebraic QR decomposition and the max-
algebraic SVD that will be presented in this section are sums or series of exponentials.
Therefore, we first study some properties of this kind of functions.

DEFINITION 5.1 (sum or series of exponentials). Let Se be the set of real func-
tions that are analytic and that can be written as a (possibly infinite but absolutely
convergent) sum of exponentials in a neighborhood of ∞:

Se =
{
f :A→ R

∣∣∣ A ⊆ R, ∃K ∈ R+
0 such that [K,∞) ⊆ A and

f is analytic in [K,∞), and either

∀x ≥ K : f(x) =
n∑
i=0

αie
aix(24)

with n ∈ N, αi ∈ R0, ai ∈ Rε for all i and a0 > a1 > · · · > an, or

∀x ≥ K : f(x) =
∞∑
i=0

αie
aix(25)
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with αi ∈ R0, ai ∈ R, ai > ai+1 for all i , limi→∞ ai = ε and

where the series converges absolutely for every x ≥ K
}
.

If f ∈ Se, then the largest exponent in the sum or the series of exponentials that
corresponds to f is called the dominant exponent of f .

Recall that by definition we have eεs = 0 for all s ∈ R+
0 . Since we allow exponents

that are equal to ε = −∞ in the definition of Se, the zero function also belongs to
Se. Since we require that the sequence of the exponents that appear in (24) or (25) is
decreasing and since the coefficients cannot be equal to zero, any sum of exponentials
of the form (24) or (25) that corresponds to the zero function consists of exactly one
term, e.g., 1 · eεx.

If f ∈ Se is a series of the form (25), then the set {ai | i = 0, 1, . . . ,∞} has no
finite accumulation point since the sequence {ai}∞i=0 is decreasing and unbounded
from below. Note that series of the form (25) are related to (generalized) Dirichlet
series [23].

The behavior of the functions in Se in the neighborhood of ∞ is given by the
following property.

LEMMA 5.2. Every function f ∈ Se is asymptotically equivalent to an exponential
in the neighborhood of ∞:

f ∈ Se ⇒ f(x) ∼ α0e
a0x , x→∞

for some α0 ∈ R0 and some a0 ∈ Rε.
Proof. See Appendix A.
The set Se is closed under elementary operations such as additions, multiplica-

tions, subtractions, divisions, square roots, and absolute values.
PROPOSITION 5.3. If f and g belong to Se, then ρf , f + g, f − g, fg, f l, and |f |

also belong to Se for any ρ ∈ R and any l ∈ N.
Furthermore, if there exists a real number P such that f(x) 6= 0 for all x ≥ P ,

then the functions 1
f and g

f restricted to [P,∞) also belong to Se.
If there exists a real number Q such that f(x) > 0 for all x ≥ Q, then the function√

f restricted to [Q,∞) also belongs to Se.
Proof. See Appendix B.

5.2. The max-algebraic QR decomposition. Let Ã and R̃ be real m × n
matrix-valued functions and let Q̃ be a real m × m matrix-valued function. Sup-
pose that these matrix-valued functions are defined in J ⊆ R. If Q̃(s) R̃(s) = Ã(s),
Q̃T (s) Q̃(s) = Im, and R̃(s) is an upper triangular matrix for all s ∈ J, then we say
that Q̃R̃ is a path of QR decompositions of Ã on J . A path of SVDs is defined in a
similar way.

Note that if Q̃R̃ is a path of QR decompositions of Ã on J , then we have ‖R̃(s)‖F =
‖Ã(s)‖F for all s ∈ J . Now we prove that for a matrix with entries in Se there exists
a path of QR decompositions with entries that also belong to Se. Next we use this
result to prove the existence of a max-algebraic analogue of the QR decomposition.

PROPOSITION 5.4. If Ã ∈ Sm×ne , then there exists a path of QR decompositions
Q̃R̃ of Ã for which the entries of Q̃ and R̃ belong to Se.

Proof. To compute the QR decomposition of a matrix with real entries we can
use the Givens QR algorithm (see [14]). The operations used in this algorithm are
additions, multiplications, subtractions, divisions, and square roots. Furthermore, the
number of operations used in this algorithm is finite.
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So if we apply this algorithm to a matrix-valued function Ã with entries in Se,
then the entries of the resulting matrix-valued functions Q̃ and R̃ will also belong to
Se by Proposition 5.3.

THEOREM 5.5 (max-algebraic QR decomposition). If A ∈ Sm×n, then there exist
a matrix Q ∈ (S∨)m×m and a max-algebraic upper triangular matrix R ∈ (S∨)m×n

such that

A ∇ Q⊗R(26)

with QT ⊗Q ∇ Em and ‖R‖⊕ = ‖A‖⊕.
Every decomposition of the form (26) that satisfies the above conditions is called

a max-algebraic QR decomposition of A.
Proof. If A ∈ Sm×n has entries that are not signed, we can always define a matrix

Â ∈ (S∨)m×n such that

âij =
{
aij if aij is signed,
|aij |⊕ if aij is not signed

for all i, j. Since |âij |⊕ = |aij |⊕ for all i, j, we have ‖Â‖⊕ = ‖A‖⊕. Moreover, we have

∀a, b ∈ S : a ∇ b ⇒ a• ∇ b,

which means that if Â ∇ Q ⊗ R, then also A ∇ Q ⊗ R. Therefore, it is sufficient to
prove this theorem for signed matrices A.

So from now on we assume that A is signed. We construct Ã = F(A,M, ·), where
M ∈ Rm×n with mij = 1 for all i, j. Hence, ãij(s) = γije

cijs for all s ∈ R+
0 and for

all i, j with γij ∈ {−1, 1} and cij = |aij |⊕ ∈ Rε for all i, j. Note that the entries of
Ã belong to Se. By Proposition 5.4 there exists a path of QR decompositions of Ã.
So there exists a positive real number L and matrix-valued functions Q̃ and R̃ with
entries in Se such that

Ã(s) = Q̃(s) R̃(s) for all s ≥ L,(27)
Q̃T (s) Q̃(s) = Im for all s ≥ L,(28)
‖R̃(s)‖F = ‖Ã(s)‖F for all s ≥ L.(29)

The entries of Q̃ and R̃ belong to Se and are thus asymptotically equivalent to an
exponential in the neighborhood of ∞ by Lemma 5.2.

If we define Q = R(Q̃) and R = R(R̃), then Q and R have signed entries. If we
apply the reverse mapping R to (27)–(29), we get

A ∇ Q⊗R , QT ⊗Q ∇ Em, and ‖R‖⊕ = ‖A‖⊕ .

If f , g, and h belong to Se, then they are asymptotically equivalent to an exponential
in the neighborhood of ∞ by Lemma 5.2. So if L is large enough, then f(L) ≥ 0 and
g(L) ≥ h(L) imply that f(s) ≥ 0 and g(s) ≥ h(s) for all s ∈ [L,∞). This fact and the
fact that Se is closed under some elementary algebraic operations explain why many
algorithms from linear algebra—such as the Givens QR algorithm and Kogbetliantz’s
SVD algorithm (see section 5.3)—also work for matrices with entries that belong to
Se instead of R. If we apply an algorithm from linear algebra to a matrix-valued
function Ã with entries in Se that is defined on some interval [L,∞), we are in fact
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applying this algorithm on the (constant) matrix Ã(s) for every value of s ∈ [L,∞)
in parallel.

If QR is a QR decomposition of a matrix A ∈ Rm×n, then we always have
‖R‖F = ‖A‖F since Q is an orthogonal matrix. However, the following example
shows that A∇Q⊗R and QT ⊗Q∇Em do not always imply that ‖R‖⊕ = ‖A‖⊕.

Example 5.6. Consider

A =

 	0 0 0
0 	0 0
0 0 0

 .
Without the condition ‖R‖⊕ = ‖A‖⊕ every max-algebraic product of the form

Q⊗R(ρ) =

 	0 0 0
0 	0 0
0 0 	0

⊗
 0 ε ρ
ε 0 ρ
ε ε ρ

 =

 	0 0 ρ•

0 	0 ρ•

0 0 ρ•


with ρ ≥ 0 would have been a max-algebraic QR decomposition of A. However,
since ‖R(ρ)‖⊕ = ρ if ρ ≥ 0 and since ‖A‖⊕ = 0, we do not have ‖R‖⊕ = ‖A‖⊕ if
ρ > 0.

This example explains why we have included the condition ‖R‖⊕ = ‖A‖⊕ in the
definition of the max-algebraic QR decomposition.

Now we explain why we really need the symmetrized max-plus algebra Smax to
define the max-algebraic QR decomposition: we shall show that the class of matrices
with entries in Rε that have max-algebraic QR decompositions for which the entries
of Q and R belong to Rε is rather limited. Let A ∈ Rm×nε and let Q ⊗ R be a
max-algebraic QR decomposition of A for which the entries of Q and R belong to Rε.
Since the entries of A, Q, and R are signed, it follows from Proposition 3.6 that the
balances A ∇ Q⊗ R and QT ⊗Q ∇ Em result in A = Q⊗ R and QT ⊗Q = Em. It
is easy to verify that we can only have QT ⊗Q = Em if every column and every row
of Q contains exactly one entry that is equal to zero and if all the other entries of Q
are equal to ε. Hence, Q is max-algebraic permutation matrix. As a consequence, A
has to be a row-permuted max-algebraic upper triangular matrix.

So only row-permuted max-algebraic upper triangular matrices with entries in Rε
have a max-algebraic QR decomposition with entries in Rε. This could be compared
with the class of real matrices in linear algebra that have a QR decomposition with
only nonnegative entries: using an analogous reasoning one can prove that this class
coincides with the set of the real row-permuted upper triangular matrices. Further-
more, it is obvious that every QR decomposition in Rmax is also a QR decomposition
in Smax.

5.3. The max-algebraic SVD. Now we give an alternative proof for the ex-
istence theorem of the max-algebraic SVD. In this proof we shall use Kogbetliantz’s
SVD algorithm [20], which can be considered an extension of Jacobi’s method for the
computation of the eigenvalue decomposition of a real symmetric matrix. We now
state the main properties of this algorithm. The explanation below is mainly based
on [4] and [17].



392 B. DE SCHUTTER AND B. DE MOOR

A Givens matrix is a square matrix of the form

1 0 · · · 0 · · · 0 · · · 0 0
0 1 · · · 0 · · · 0 · · · 0 0
...

...
. . .

...
...

...
...

0 0 · · · cos(θ) · · · sin(θ) · · · 0 0
...

...
...

. . .
...

...
...

0 0 · · · − sin(θ) · · · cos(θ) · · · 0 0
...

...
...

...
. . .

...
...

0 0 · · · 0 · · · 0 · · · 1 0
0 0 · · · 0 · · · 0 · · · 0 1


.

The off-norm of the matrix A ∈ Rm×n is defined by

‖A‖off =

√√√√ n∑
i=1

n∑
j=1, j 6=i

a2
ij ,

where the empty sum is equal to zero by definition (so if A is a 1 × 1 matrix, then
we have ‖A‖off = 0). Let A ∈ Rm×n. Since USV T is an SVD of A if and only if
V STUT is an SVD of AT , we may assume without loss of generality that m ≥ n.
Before applying Kogbetliantz’s SVD algorithm we compute a QR decomposition of
A:

A = Q

[
R

O(m−n)×n

]
,

where R is an n× n upper triangular matrix.
Now we apply Kogbetliantz’s SVD algorithm to R. In this algorithm a sequence

of matrices is generated as follows:

U0 = In , V0 = In , S0 = R,

Uk = Uk−1Gk , Vk = Vk−1Hk , Sk = GTk Sk−1Hk for k = 1, 2, 3, . . .

such that ‖Sk‖off decreases monotonously as k increases. So Sk tends more and more
to a diagonal matrix as the iteration process progresses. The absolute values of the
diagonal entries of Sk will converge to the singular values of R as k goes to ∞.

The matrices Gk and Hk are Givens matrices that are chosen such that (Sk)ikjk =
(Sk)jkik = 0 for some ordered pair of indices (ik, jk). As a result we have

‖Sk‖2off = ‖Sk−1‖2off − (Sk−1)2
ikjk
− (Sk−1)2

jkik
.

Since the matrices Gk and Hk are orthogonal for all k ∈ N0, we have

‖Sk‖F = ‖R‖F , R = UkSkV
T
k , UTk Uk = In, and V Tk Vk = In(30)

for all k ∈ N.
We shall use the row-cyclic version of Kogbetliantz’s SVD algorithm: in each cycle

the indices ik and jk are chosen such that the entries in the strictly upper triangular
part of the Sk’s are selected row by row. This yields the following sequence for the
ordered pairs of indices (ik, jk):

(1, 2)→ (1, 3)→ · · · → (1, n)→ (2, 3)→ (2, 4)→ · · · → (n− 1, n).
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A full cycle (1, 2)→ · · · → (n− 1, n) is called a sweep. Note that a sweep corresponds
to N = (n−1)n

2 iterations. Sweeps are repeated until Sk becomes diagonal. If we have
an upper triangular matrix at the beginning of a sweep, then we shall have a lower
triangular matrix after the sweep and vice versa.

For triangular matrices the row-cyclic Kogbetliantz algorithm is globally conver-
gent [11, 17]. Furthermore, for triangular matrices the convergence of this algorithm
is quadratic if k is large enough [2, 3, 15, 16, 31]:

∃K ∈ N such that ∀k ≥ K : ‖Sk+N‖off ≤ γ ‖Sk‖
2
off(31)

for some constant γ that does not depend on k, under the assumption that diagonal
entries that correspond to the same singular value or that are affiliated with the same
cluster of singular values occupy successive positions on the diagonal. This assumption
is not restrictive since we can always reorder the diagonal entries of Sk by inserting an
extra step in which we select a permutation matrix P̂ ∈ Rn×n such that the diagonal
entries of Sk+1 = P̂TSkP̂ exhibit the required ordering. Note that ‖Sk+1‖F = ‖Sk‖F.
If we define Uk+1 = UkP̂ and Vk+1 = VkP̂ , then Uk+1 and Vk+1 are orthogonal since
P̂T P̂ = In. We also have

Uk+1Sk+1V
T
k+1 =

(
UkP̂

) (
P̂TSkP̂

) (
P̂TV Tk

)
= UkSkV

T
k = R.

Furthermore, once the diagonal entries have the required ordering, they hold it pro-
vided that k is sufficiently large [15].

If we define S = limk→∞ Sk, U = limk→∞ Uk, and V = limk→∞ Vk, then S is a
diagonal matrix, U and V are orthogonal matrices, and USV T = R. We make all
the diagonal entries of S nonnegative by multiplying S with an appropriate diagonal
matrix D. Next we construct a permutation matrix P such that the diagonal entries
of PTSDP are arranged in descending order. If we define UR = UP , SR = PTSDP,
and VR = V D−1P , then UR and VR are orthogonal, the diagonal entries of SR are
nonnegative and ordered, and

URSRV
T
R = (UP )

(
PTSDP

) (
PTD−1V T

)
= USV T = R.

Hence, URSRV TR is an SVD of R. If we define

UA = Q

[
UR On×(m−n)

O(m−n)×n Im−n

]
, SA =

[
SR

O(m−n)×n

]
, and VA = VR,

then UASAV
T
A is an SVD of A.

THEOREM 5.7 (max-algebraic SVD). Let A ∈ Sm×n and let r = min(m,n). Then
there exist a max-algebraic diagonal matrix Σ ∈ Rm×nε and matrices U ∈ (S∨)m×m

and V ∈ (S∨)n×n such that

A ∇ U ⊗ Σ⊗ V T(32)

with UT ⊗U ∇ Em, V T ⊗V ∇ En, and ‖A‖⊕ = σ1 ≥ σ2 ≥ · · · ≥ σr, where σi = (Σ)ii
for i = 1, 2, . . . , r.

Every decomposition of the form (32) that satisfies the above conditions is called
a max-algebraic SVD of A.

Proof. Using a reasoning that is similar to the one that has been used at the
beginning of the proof of Theorem 5.5, we can show that it is sufficient to prove this
theorem for signed matrices A. So from now on we assume that A is signed.
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Define c = ‖A‖⊕. If c = ε, then A = εm×n. If we take U = Em, Σ = εm×n
and V = En, we have A = U ⊗ Σ ⊗ V T , UT ⊗ U = Em, V T ⊗ V = En, and
σ1 = σ2 = · · · = σr = ε = ‖A‖⊕. So U ⊗ Σ⊗ V T is a max-algebraic SVD of A.

From now on we assume that c 6= ε. We may assume without loss of generality that
m ≥ n: if m < n, we can apply the subsequent reasoning to AT since A ∇ U⊗Σ⊗V T
if and only if AT ∇ V ⊗ ΣT ⊗ UT . So U ⊗ Σ ⊗ V T is a max-algebraic SVD of A if
and only if V ⊗ ΣT ⊗ UT is a max-algebraic SVD of AT .

Now we distinguish between two different situations depending on whether or not
all the aij ’s have a finite max-absolute value. In Remark 5.8 we shall explain why
this distinction is necessary.

Case 1. All the aij ’s have a finite max-absolute value.
We construct Ã = F(A,M, ·), where M ∈ Rm×n with mij = 1 for all i, j. The

entries of Ã belong to Se.
In order to determine a path of SVDs of Ã, we first compute a path of QR

decompositions of Ã on R+
0 :

Ã = Q̃

[
R̃

O(m−n)×n

]
,

where R̃ is an n× n upper triangular matrix-valued function. By Proposition 5.4 the
entries of Q̃ and R̃ belong to Se.

Now we use the row-cyclic Kogbetliantz algorithm to compute a path of SVDs of
R̃. The operations used in this algorithm are additions, multiplications, subtractions,
divisions, square roots, and absolute values. So if we apply this algorithm to a matrix
with entries in Se, the entries of all the matrices generated during the iteration process
also belong to Se by Proposition 5.3.

In theory we should run the row-cyclic Kogbetliantz algorithm forever in order
to produce a path of exact SVDs of Ã. However, since we are only interested in the
asymptotic behavior of the singular values and the entries of the singular vectors of
Ã, we may stop the iteration process after a finite number of sweeps.

Let S̃k, Ũk, and Ṽk be the matrix-valued functions that are computed in the
kth step of the algorithm. Let ∆̃p be the diagonal matrix-valued function obtained
by removing the off-diagonal entries of S̃pN (where N = n(n−1)

2 is the number of
iterations per sweep), making all diagonal entries nonnegative and arranging them
in descending order, and adding m − n zero rows (cf. the transformations used to
go from S to SA in the explanation of Kogbetliantz’s algorithm given above). Let
X̃p and Ỹp be the matrix-valued functions obtained by applying the corresponding
transformations to ŨpN and ṼpN , respectively. If we define a matrix-valued function
C̃p = X̃p∆̃pỸ

T
p , we have a path of exact SVDs of C̃p on some interval [L,∞). This

means that we may stop the iteration process as soon as

F(Ã,N, s) ∼ C̃p(s), s→∞(33)

for some N ∈ Rm×n0 . Note that eventually this condition will always be satisfied
due to the fact that Kogbetliantz’s SVD algorithm is globally convergent and—for
triangular matrices—also quadratically convergent if p is large enough, and due to
the fact that the entries of Ã—to which the entries of C̃p should converge—are not
identically zero since they have a finite dominant exponent.

Let Ũ S̃Ṽ T be a path of approximate SVDs of Ã on some interval [L,∞) that was
obtained by the procedure given above. Since we have performed a finite number of
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elementary operations on the entries of Ã, the entries of Ũ , S̃, and Ṽ belong to Se.
We have

F(Ã,N, s) ∼ Ũ(s) Σ̃(s) Ṽ T (s) , s→∞(34)

for some N ∈ Rm×n0 . Furthermore,

ŨT (s) Ũ(s) = Im for all s ≥ L,(35)
Ṽ T (s) Ṽ (s) = In for all s ≥ L .(36)

The diagonal entries of Σ̃ and the entries of Ũ and Ṽ belong to Se and are thus
asymptotically equivalent to an exponential in the neighborhood of∞ by Lemma 5.2.
Define σ̃i = Σ̃ii for i = 1, 2, . . . , r.

Now we apply the reverse mapping R in order to obtain a max-algebraic SVD of
A. If we define

Σ = R(Σ̃) , U = R(Ũ) , V = R(Ṽ ), and σi = (Σ)ii = R(σ̃i) for all i ,

then Σ is a max-algebraic diagonal matrix and U and V have signed entries. If we
apply the reverse mapping R to (34)–(36), we get

A ∇ U ⊗ Σ⊗ V T , UT ⊗ U ∇ Em, and V T ⊗ V ∇ En.

The σ̃i’s are nonnegative in [L,∞) and therefore we have σi ∈ Rε for all i. Since
the σ̃i’s are ordered in [L,∞), their dominant exponents are also ordered. Hence,
σ1 ≥ σ2 ≥ · · · ≥ σr.

We have ‖Ã(s)‖F ∼ γecs, s→∞ for some γ > 0 since c = ‖A‖⊕ is the largest
exponent that appears in the entries of Ã. Hence, R(‖Ã‖F) = c = ‖A‖⊕.

If P ∈ Rm×n, then
1√
n
‖P‖F ≤ ‖P‖2 ≤ ‖P‖F . As a consequence we have

1√
n
‖Ã‖F ≤ ‖Ã‖2 ≤ ‖Ã‖F for all s ≥ L .

Since σ̃1(s) ∼ ‖Ã(s)‖2, s→∞ and since the mapping R preserves the order, this
leads to ‖A‖⊕ ≤ σ1 ≤ ‖A‖⊕ and, consequently, σ1 = ‖A‖⊕.

Case 2. Not all the aij ’s have a finite max-absolute value.
First we construct a sequence {Al}∞l=1 of m× n matrices such that

(Al)ij =
{
aij if |aij |⊕ 6= ε ,

‖A‖⊕ − l if |aij |⊕ = ε ,

for all i, j. So the entries of the matrices Al are finite and ‖A‖⊕ = ‖Al‖⊕ for all
l ∈ N0. Furthermore, liml→∞Al = A.

Now we construct the sequence {Ãl}∞l=1 with Ãl = F(Al,M, ·) for l = 1, 2, 3, . . .
with M ∈ Rm×n and mij = 1 for all i, j. We compute a path of approximate SVDs
Ũl Σ̃l Ṽ Tl of each Ãl using the method of Case 1 of this proof.

In general, it is possible that for some of the entries of the Ũl’s and the Ṽl’s the
sequence of the dominant exponents and the sequence of the corresponding coefficients
have more than one accumulation point (since if two or more singular values coincide,
the corresponding left and right singular vectors are not uniquely defined). However,
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since we use a fixed computation scheme (the row-cyclic Kogbetliantz algorithm), all
the sequences will have exactly one accumulation point. So some of the dominant
exponents will reach a finite limit as l goes to∞, while the other dominant exponents
will tend to −∞. If we take the reverse mappingR, we get a sequence of max-algebraic
SVDs {Ul ⊗ Σl ⊗ V Tl }

∞
l=1, where some of the entries, viz., those that correspond to

dominant exponents that tend to −∞, tend to ε as l goes to ∞.
If we define

U = lim
l→∞

Ul, Σ = lim
l→∞

Σl, and V = lim
l→∞

Vl,

then we have

A ∇ U ⊗ Σ⊗ V T , UT ⊗ U ∇ Em, and V T ⊗ V ∇ En.

Since the diagonal entries of all the Σl’s belong to Rε and are ordered, the diagonal
entries of Σ also belong to Rε and are also ordered. Furthermore, (Σ)11 = ‖A‖⊕ since
(Σl)11 = ‖A‖⊕ for all l. Hence, U ⊗ Σ⊗ V T is a max-algebraic SVD of A.

Remark 5.8. Now we explain why we have distinguished between two different
cases in the proof of Theorem 5.7.

If there exist indices i and j such that aij = ε, then ãij(s) = 0 for all s ∈ R+
0 ,

which means that we cannot guarantee that condition (33) will be satisfied after a
finite number of sweeps. This is why we make a distinction between the case where
all the entries of A are finite and the case where at least one entry of A is equal to ε.

Let us now show that we do not have to take special precautions if Ã has singular
values that are identically zero in the neighborhood of∞. If Ψ̃ is a real matrix-valued
function that is analytic in some interval J ⊆ R, then the rank of Ψ̃ is constant in J
except in some isolated points where the rank drops [13]. If the rank of Ψ̃(s) is equal
to ρ for all s ∈ J except for some isolated points, then we say that the generic rank of
Ψ̃ in J is equal to ρ. The entries of all the matrix-valued functions created in the row-
cyclic Kogbetliantz algorithm when applied to Ã are real and analytic in some interval
[L∗,∞). Furthermore, for a fixed value of s the matrices Ã(s), R̃(s), S̃1(s), S̃2(s), . . .
all have the same rank since they are related by orthogonal transformations. So if ρ is
the generic rank of Ã in [L∗,∞), then the generic rank of R̃, S̃1, S̃2, . . . in [L∗,∞) is
also equal to ρ. If ρ < n, then the n−ρ smallest singular values of R̃ will be identically
zero in [L∗,∞). However, since R̃, S̃N , S̃2N , . . . are triangular matrices, they have at
least n − ρ diagonal entries that are identically zero in [L∗,∞) since otherwise their
generic rank would be greater than ρ. In fact this also holds for S̃1, S̃2, . . . since these
matrix-valued functions are hierarchically triangular, i.e., block triangular such that
the diagonal blocks are again block triangular, etc. [17]. Furthermore, if k is large
enough, diagonal entries do not change their affiliation any more, i.e., if a diagonal
entry corresponds to a specific singular value in the kth iteration, then it will also
correspond to that singular value in all the next iterations. Since the diagonal entries
of S̃k are asymptotically equivalent to an exponential in the neighborhood of ∞, this
means that at least n− ρ diagonal entries (with a fixed position) of S̃k, S̃k+1, . . . will
be identically zero in some interval [L,∞) ⊆ [L∗,∞) if k is large enough. Hence, we
do not have to take special precautions if Ã has singular values that are identically
zero in the neighborhood of ∞ since convergence to these singular values in a finite
number of iteration steps is guaranteed.

For inner products of two different columns of Ũ there are no problems either:
these inner products are equal to zero by construction since the matrix-valued function
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Ũk is orthogonal on [L,∞) for all k ∈ N. This also holds for inner products of two
different columns of Ṽ .

If UΣV T is an SVD of a matrix A ∈ Rm×n, then we have σ1 = (Σ)11 = ‖A‖2.
However, in Smax the balances A∇U ⊗ Σ ⊗ V T , UT ⊗ U ∇Em, and V T ⊗ V ∇En,
where Σ is a diagonal matrix with entries in Rε and where the entries of U and V are
signed, do not always imply that (Σ)11 = ‖A‖⊕ [10]. Therefore, we have included the
extra condition σ1 = ‖A‖⊕ in the definition of the max-algebraic SVD.

Using a reasoning that is similar to the one that has been used at the end of
section 5.2, we can show that only permuted max-algebraic diagonal matrices with
entries in Rε have a max-algebraic SVD with entries in Rε [7, 10].

For properties of the max-algebraic SVD and for a possible application of this
decomposition in a method to solve the identification problem for max-linear DESs,
the interested reader is referred to [7, 10]. In [7] we have also proposed some possible
extensions of the definitions of the max-algebraic QR decomposition and the max-
algebraic SVD.

The proof technique that has been used in this section essentially consists of
applying an algorithm from linear algebra to a matrix with entries in Se. This proof
technique can also be used to prove the existence of many other max-algebraic matrix
decompositions: it can easily be adapted to prove the existence of a max-algebraic
eigenvalue decomposition for symmetric matrices (by using the Jacobi algorithm for
the computation of the eigenvalue decomposition of a real symmetric matrix), a max-
algebraic LU decomposition, a max-algebraic Schur decomposition, a max-algebraic
Hessenberg decomposition, and so on.

6. A worked example of the max-algebraic QR decomposition and
the max-algebraic SVD. Now we give an example of the computation of a max-
algebraic QR decomposition and a max-algebraic SVD of a matrix using the mapping
F .

Example 6.1. Consider the matrix

A =
[
	0 3• 	(−1)

1 	(−2) ε

]
.

Let us first compute a max-algebraic QR decomposition of A using the mapping F .
Let M =

[ 1
1

1
1

1
1

]
and define Ã = F(A,M, ·). Hence,

Ã(s) =
[
−1 e3s −e−s
es −e−2s 0

]
for all s ∈ R+

0 .

If we use the Givens QR algorithm, we get a path of QR decompositions Q̃R̃ of Ã
with

Q̃(s) =


−e−s√
1 + e−2s

−1√
1 + e−2s

1√
1 + e−2s

−e−s√
1 + e−2s

 ,

R̃(s) =


es
√

1 + e−2s −e2s − e−2s√
1 + e−2s

e−2s√
1 + e−2s

0
−e3s + e−3s√

1 + e−2s

e−s√
1 + e−2s
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for all s ∈ R+
0 . Hence,

Q̃(s) ∼
[
−e−s −1

1 −e−s
]
, s→∞,

R̃(s) ∼
[
es −e2s e−2s

0 −e3s e−s

]
, s→∞.

If we define Q = R(Q̃) and R = R(R̃), we obtain

Q =
[
	(−1) 	0

0 	(−1)

]
and R =

[
1 	2 −2
ε 	3 −1

]
.

We have

Q⊗R =
[
	0 3 	(−1)

1 2• (−2)•
]
∇ A,

QT ⊗Q =
[

0 (−1)•

(−1)• 0

]
∇ E2,

and ‖R‖⊕ = 3 = ‖A‖⊕.
Let us now compute a max-algebraic SVD of A. Since Ã is a 2× 3 matrix-valued

function, we can compute a path of SVDs Ũ Σ̃Ṽ T of Ã analytically, e.g., via the
eigenvalue decomposition of ÃT Ã (see [14, 32]). This yields1

Ũ(s) ∼
[

1 2 e−5s

−2 e−5s 1

]
, s→∞,

Σ̃(s) ∼
[
e3s 0 0
0 es 0

]
, s→∞,

Ṽ (s) ∼

 −e−3s 1 e−7s

1 e−3s e−4s

−e−4s −2 e−7s 1

 , s→∞.
If we apply the reverse mapping R, we get a max-algebraic SVD U ⊗ Σ ⊗ V T of A
with

U = R(Ũ) =
[

0 −5
	(−5) 0

]
,

Σ = R(Σ̃) =
[

3 ε ε
ε 1 ε

]
,

V = R(Ṽ ) =

 	(−3) 0 −7
0 −3 −4

	(−4) 	(−7) 0

 .
We have

U ⊗ Σ⊗ V T =
[
	0 3 	(−1)

1 (−2)• (−6)•
]
∇ A,

1We have used the symbolic computation tool MAPLE to compute a path of SVDs ŨΣ̃Ṽ T of Ã.
However, since the full expressions for the entries of Ũ , S̃, and Ṽ are too long and too intricate to
display here, we only give the dominant exponentials.
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UT ⊗ U =
[

0 (−5)•

(−5)• 0

]
∇E2,

V T ⊗ V =

 0 (−3)• (−4)•

(−3)• 0 (−7)•

(−4)• (−7)• 0

 ∇E3,

and σ1 = 3 = ‖A‖⊕ ≥ 1 = σ2.
Another example of the computation of a max-algebraic SVD can be found in [7,

10].
Remark 6.2. In [7] we have shown that the max-algebraic QR decomposition and

the max-algebraic SVD of a matrix can also be computed by solving an extended linear
complementarity problem (ELCP)—which is a kind of mathematical programming
problem. Although it would lead us to far to explain this procedure in detail, we
shall now give a brief outline of how the equations that appear in the definition of
the max-algebraic QR decomposition and the max-algebraic SVD can be transformed
into a system of multivariate max-algebraic polynomial equalities.

Consider the equation A∇Q ⊗ R. If we extract the max-positive and the max-
negative parts of each matrix, we obtain

A⊕ 	A	 ∇ (Q⊕ 	Q	)⊗ (R⊕ 	R	)

or

A⊕ 	A	 ∇ Q⊕ ⊗R⊕ 	 Q⊕ ⊗R	 	 Q	 ⊗R⊕ ⊕ Q	 ⊗R	.

By Proposition 3.5 this can be rewritten as

A⊕ ⊕ Q⊕ ⊗R	 ⊕ Q	 ⊗R⊕ ∇ A	 ⊕ Q⊕ ⊗R⊕ ⊕ Q	 ⊗R	.

Both sides of this balance are signed. So by Proposition 3.6 we may replace the
balance by an equality. If we introduce a matrix T of auxiliary variables, we obtain

A⊕ ⊕ Q⊕ ⊗R	 ⊕ Q	 ⊗R⊕ = T,(37)
A	 ⊕ Q⊕ ⊗R⊕ ⊕ Q	 ⊗R	 = T.(38)

If we write out the max-algebraic matrix multiplications in (37) and if we transfer the
entries of T to the opposite side, we get

a⊕ij ⊗ tij⊗
−1 ⊕

m⊕
k=1

q⊕ik ⊗ r
	
kj ⊗ tij⊗

−1

⊕
m⊕
k=1

q	ik ⊗ r
⊕
kj ⊗ tij⊗

−1
= 0 for all i, j.(39)

Equation (38) can be rewritten in a similar way. The condition QT ⊗ Q∇Em also
leads to similar equations.

The condition that the entries of Q and R should be signed can be written as

q⊕ij ⊗ q	ij = ε for all i, j,(40)
r⊕ij ⊗ r	ij = ε for all i, j.(41)
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The condition ‖R‖⊕ = ‖A‖⊕ is equivalent to

m⊕
i=1

n⊕
j=1

(
r⊕ij ⊕ r	ij

)
= ‖A‖⊕ for all i, j.(42)

So if we combine all equations of the form (39)–(42), we obtain a system of multivariate
max-algebraic polynomial equalities of the following form:

Given l integers m1, m2, . . . , ml ∈ N0 and real numbers aki, bk,
and ckij for k = 1, 2, . . . , l, i = 1, 2, . . . ,ml, and j = 1, 2, . . . , r, find
x ∈ Rrε such that

ml⊕
i=1

aki ⊗
r⊗
j=1

xj
⊗ckij = bk for k = 1, 2, . . . , l ,

or show that no such x exists.
Here the vector x contains the max-positive and max-negative parts of the entries of
Q and R and the auxiliary variables.

Using a similar reasoning we can also show that the equations that appear in
the definition of the max-algebraic SVD also lead to a system of multivariate max-
algebraic polynomial equalities.

In [7, 9] we have shown that a system of multivariate max-algebraic polynomial
equalities can be rewritten as a mathematical programming problem of the following
form:

Given two matrices A ∈ Rp×r, B ∈ Rq×r, two vectors c ∈ Rp, d ∈ Rq,
and s subsets φ1, φ2, . . . , φs of {1, 2, . . . , p}, find x ∈ Rr such that

s∑
j=1

∏
i∈φj

(Ax− c)i = 0

subject to Ax ≥ c and Bx = d, or show that no such x exists.
This problem is called an extended linear complementarity problem (ELCP). In [7, 8]
we have developed an algorithm to find all solutions of a general ELCP. However, the
execution time of this algorithm increases exponentially as the number of equations
and variables of the ELCP increases. Furthermore, in [7, 8] we have shown that the
general ELCP is an NP-hard problem. As a consequence, the ELCP approach can
only be used to compute max-algebraic QR decompositions and max-algebraic SVDs
of small-sized matrices. So there certainly is a need for efficient algorithms to compute
max-algebraic QR decompositions and SVDs: this will be one of the most important
topics for further research. An important question is whether we can develop efficient
algorithms for special classes of matrices, e.g., is it possible to come up with more
efficient algorithms by making use of the nonzero structure (sparsity, bandedness, . . . )
of the matrix?

7. Conclusions and future research. In this paper we have tried to fill one of
the gaps in the theory of the (symmetrized) max-plus algebra by showing that there
exist max-algebraic analogues of many fundamental matrix decompositions from linear
algebra.

We have established a link between a ring of real functions (with addition and
multiplication as basic operations) and the symmetrized max-plus algebra. Next we
have introduced a class of functions that are analytic and that can be written as a
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sum or a series of exponentials in a neighborhood of ∞. This class is closed under
basic operations such as additions, subtractions, multiplications, divisions, powers,
square roots, and absolute values. This fact has then been used to prove the exis-
tence of a QR decomposition and an SVD of a matrix in the symmetrized max-plus
algebra. These decompositions are max-algebraic analogues of basic matrix decom-
positions from linear algebra. The proof technique that has been used to prove the
existence of these max-algebraic matrix decompositions can also be used to prove the
existence of max-algebraic analogues of other real matrix decompositions from linear
algebra such as the LU decomposition, the Hessenberg decomposition, the eigenvalue
decomposition (for symmetric matrices), the Schur decomposition, and so on.

In [7, 10] we have introduced a further extension of the symmetrized max-plus
algebra: the max-complex structure Tmax, which corresponds to a ring of complex
functions (with addition and multiplication as basic operations). We could also define
max-algebraic matrix decompositions in Tmax. These decompositions would then be
analogues of matrix decompositions from linear algebra for complex matrices (such
as the eigenvalue decomposition or the Jordan decomposition).

Topics for future research are as follows: further investigation of the properties
of the max-algebraic matrix decompositions that have been introduced in this paper,
development of efficient algorithms to compute these max-algebraic matrix decom-
positions, investigation of the computational complexity of computing max-algebraic
matrix decompositions (in general and for special classes of matrices), and applica-
tion of the max-algebraic SVD and other max-algebraic matrix decompositions in the
system theory for max-linear discrete event systems.

Appendix A. Proof of Lemma 5.2. In this section we show that functions
that belong to the class Se are asymptotically equivalent to an exponential in the
neighborhood of ∞. We shall use the following lemma.

LEMMA A.1. If f ∈ Se is a series with a nonpositive dominant exponent, i.e., if
there exists a positive real number K such that f(x) =

∑∞
i=0 αie

aix for all x ≥ K
with αi ∈ R, ai ∈ R−, ai > ai+1 for all i, limi→∞ ai = ε, and where the series
converges absolutely for every x ≥ K, then the series

∑∞
i=0 αie

aix converges uniformly
in [K,∞).

Proof. If x ≥ K, then we have eaix ≤ eaiK for all i ∈ N0 since ai ≤ 0 for all i.
Hence, |αieaix| ≤ |αieaiK |for all x ≥ K and for all i ∈ N0. We already know that∑∞
i=1 |αieaiK | converges. Now we can apply the Weierstrass M -test (see [19, 24]). As

a consequence, the series
∑∞
i=1 αie

aixconverges uniformly in [K,∞).
Proof (proof of Lemma 5.2). If f ∈ Se, then there exists a positive real number

K such that f(x) =
∑n
i=0 αie

aix for all x ≥ K with n ∈ N ∪ {∞}, αi ∈ R0, and
ai ∈ Rε for all i. If n =∞, then f is a series that converges absolutely in [K,∞).

If a0 = ε, then there exists a real number K such that f(x) = 0 for all x ≥ K
and then we have f(x) ∼ 0 = 1 · eεx , x→∞ by Definition 2.2.

If n = 1, then f(x) = α0e
a0x and thus f(x) ∼ α0e

a0x, x→∞ with α0 ∈ R0 and
a0 ∈ Rε.

From now on we assume that n > 1 and a0 6= ε. Then we can rewrite f(x) as

f(x) = α0e
a0x

(
1 +

n∑
i=1

αi
α0

e(ai−a0)x

)
= α0e

a0x( 1 + p(x) )

with p(x) =
∑n
i=1 γie

cix, where γi =
αi
α0
∈ R0 and ci = ai − a0 < 0 for all i. Note
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that p ∈ Se and p has a negative dominant exponent. Since ci < 0 for all i, we have

lim
x→∞

p(x) = lim
x→∞

(
n∑
i=1

γie
cix

)
=

n∑
i=1

(
lim
x→∞

γie
cix

)
= 0.(43)

If n =∞, then the series
∑∞
i=1 γie

cix converges uniformly in [K,∞) by Lemma A.1.
As a consequence, we may also interchange the summation and the limit in (43) if
n =∞ (cf. [19]).

Now we have

lim
x→∞

f(x)
α0ea0x

= lim
x→∞

α0e
a0x(1 + p(x))
α0ea0x

= lim
x→∞

(1 + p(x)) = 1,

and thus f(x) ∼ α0e
a0x , x→∞ where α0 ∈ R0 and a0 ∈ R.

Appendix B. Proof of Proposition 5.3. In this section we show that Se is
closed under elementary operations such as additions, multiplications, subtractions,
divisions, square roots, and absolute values.

Proof (proof of Proposition 5.3). If f and g belong to Se, then we may assume
without loss of generality that the domains of definition of f and g coincide, since we
can always restrict the functions f and g to dom f ∩ dom g and since the restricted
functions also belong to Se.

Since f and g belong to Se, there exists a positive real number K such that

f(x) =
n∑
i=0

αie
aix and g(x) =

m∑
j=0

βje
bjx for all x ≥ K

with m,n ∈ N ∪ {∞}, αi, βj ∈ R0, and ai, bj ∈ Rε for all i, j. If m or n is equal to
∞, then the corresponding series converges absolutely in [K,∞).

We may assume without loss of generality that both m and n are equal to ∞. If
m or n are finite, then we can always add dummy terms of the form 0 · eεx to f(x)
or g(x). Afterwards we can remove terms of the form reεx with r ∈ R to obtain an
expression with nonzero coefficients and decreasing exponents. So from now on we
assume that both f and g are absolute convergent series of exponentials.

If a0 = ε, then we have f(x) = 0 for all x ≥ K, which means that |f(x)| = 0 for
all x ≥ K. So if a0 = ε, then |f | belongs to Se.

If a0 6= ε, then there exists a real number L ≥ K such that either f(x) > 0 or
f(x) < 0 for all x ≥ L since f(x) ∼ α0e

a0x , x→∞ with α0 6= 0 by Lemma 5.2.
Hence, either |f(x)| = f(x) or |f(x)| = −f(x) for all x ≥ L. So in this case |f | also
belongs to Se.

Since f and g are analytic in [K,∞), the functions ρf , f + g, f − g, f · g, and f l

are also analytic in [K,∞) for any ρ ∈ R and any l ∈ N.
Now we prove that these functions can be written as a sum of exponentials or as

an absolutely convergent series of exponentials.
Consider an arbitrary ρ ∈ R. If ρ = 0, then ρf(x) = 0 for all x ≥ K and thus

ρf ∈ Se.
If ρ 6= 0, then we have ρf(x) =

∑∞
i=0(ραi)eaix. The series

∑∞
i=0(ραi)eaix also

converges absolutely in [K,∞) and has the same exponents as f(x). Hence, ρf ∈ Se.
The sum function f + g is a series of exponentials since

f(x) + g(x) =
∞∑
i=0

αie
aix +

∞∑
j=0

βje
bjx.
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Furthermore, this series converges absolutely for every x ≥ K. Therefore, the sum
of the series does not change if we rearrange the terms [19]. So f(x) + g(x) can be
written in the form of Definition 5.1 by reordering the terms, adding up terms with
equal exponents and removing terms of the form reεx with r ∈ R, if there are any.
If the result is a series, then the sequence of exponents is decreasing and unbounded
from below. So f + g ∈ Se.

Since f − g = f + (−1)g, the function f − g also belongs to Se.
The series corresponding to f and g converge absolutely for every x ≥ K. There-

fore, their Cauchy product will also converge absolutely for every x ≥ K and it will
be equal to fg [19]:

f(x)g(x) =
∞∑
i=0

i∑
j=0

αjβi−je
(aj+bi−j)x for all x ≥ K .

Using the same procedure as for f + g, we can also write this product in the form
(24) or (25). So fg ∈ Se.

Let l ∈ N. If l = 0, then f l = 0 ∈ Se and if l = 1, then f l = f ∈ Se. If l > 1,
we can make repeated use of the fact that fg ∈ Se if f, g ∈ Se to prove that f l also
belongs to Se.

If there exists a real number P such that f(x) 6= 0 for all x ≥ P , then 1
f and

g
f are defined and analytic in [P,∞). Note that we may assume without loss of
generality that P ≥ K. Furthermore, since the function f restricted to the interval
[P,∞) also belongs to Se, we may assume without loss of generality that the domain
of definition of f is [P,∞).

If f(x) 6= 0 for all x ≥ P , then we have a0 6= ε. As a consequence, we can rewrite
f(x) as

f(x) =
∞∑
i=0

αie
aix = α0e

a0x

(
1 +

∞∑
i=1

αi
α0

e(ai−a0)x

)
= α0e

a0x( 1 + p(x) )

with p(x) =
∑∞
i=1 γie

cix, where γi = αi
α0
∈ R0 and ci = ai − a0 < 0 for all i. Note

that p is defined in [P,∞), that p ∈ Se, and that p has a negative dominant exponent.
If c1 = ε, then p(x) = 0 and 1

f(x) = 1
α0
e−a0x for all x ≥ P . Hence, 1

f ∈ Se.

Now assume that c1 6= ε. Since {ci}∞i=1 is a nonincreasing sequence of negative
numbers with limi→∞ ci = ε = −∞ and since p converges uniformly in [P,∞) by
Lemma A.1, we have limx→∞ p(x) = 0 (cf. (43)). So | p(x) | will be less than one if
x is large enough, say if x ≥ M . If we use the Taylor series expansion of 1

1+x , we
obtain

1
1 + p(x)

=
∞∑
k=0

(−1)kpk(x) if |p(x)| < 1 .(44)

We already know that p ∈ Se. Hence, pk ∈ Se for all k ∈ N. We have |p(x)| < 1
for all x ≥ M . Moreover, for any k ∈ N the highest exponent in pk is equal to
kc1, which implies that the dominant exponent of pk tends to −∞ as k tends to ∞.
As a consequence, the coefficients and the exponents of more and more successive
terms of the partial sum function sn that is defined by sn(x) =

∑n
k=0(−1)kpk(x) for

x ∈ [M,∞) will not change any more as n becomes larger and larger. Therefore, the
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series on the right-hand side of (44) also is a sum of exponentials:

1
1 + p(x)

=
∞∑
k=0

(−1)k
( ∞∑
i=1

γie
cix

)k
=
∞∑
k=0

die
δix for all x ≥M .

Note that the set of exponents of this series will have no finite accumulation point
since the highest exponent in pk is equal to kc1. Let us now prove that this series also
converges absolutely. Define p∗(x) =

∑∞
i=1 |γi|ecix for all x ≥ P . Since the terms of

the series p∗ are the absolute values of the terms of the series p and since p converges
absolutely in [P,∞), p∗ also converges absolutely in [P,∞). By Lemma A.1 the series
p∗ also converges uniformly in [P,∞). Furthermore, {ci}∞i=1 is a nonincreasing and
unbounded sequence of negative numbers. As a consequence, we have limx→∞ p∗(x) =
0 (cf. (43)). So | p∗(x) | will be less than one if x is large enough, say if x ≥ N .
Therefore, we have

1
1 + p∗(x)

=
∞∑
k=0

(−1)k (p∗(x))k for all x ≥ N .

This series converges absolutely in [N,∞). Since

∞∑
k=0

|di|eδix ≤
∞∑
k=0

( ∞∑
i=1

|γi|ecix
)k

=
∞∑
k=0

∣∣∣(p∗(x))k
∣∣∣ ,

the series
∑∞
k=0 die

δix also converges absolutely for any x ∈ [N,∞). Since this series
converges absolutely, we can reorder the terms. After reordering the terms, adding
up terms with the same exponents and removing terms of the form reεx with r ∈ R if
necessary, the sequence of exponents will be decreasing and unbounded from below.

This implies that 1
1+p ∈ Se and thus also 1

f ∈ Se.
As a consequence, g

f = g 1
f also belongs to Se.

If there exists a real number Q such that f(x) > 0 for all x ≥ Q, then the function√
f is defined and analytic in [Q,∞). We may assume without loss of generality that

Q ≥ K and that the domain of definition of f is [Q,∞).
If a0 = ε, then we have

√
f(x) = 0 for all x ≥ Q and thus

√
f ∈ Se.

If a0 6= ε, then α0 > 0 and then we can rewrite
√
f(x) as√

f(x) =
√
α0 e

1
2a0x

√
1 + p(x) .

Now we can use the Taylor series expansion of
√

1 + x . This leads to

√
1 + p(x) =

∞∑
k=0

Γ
( 3

2

)
Γ
( 3

2 − k
)
k!

pk(x) if |p(x)| < 1 ,

where Γ is the gamma function. If we apply the same reasoning as for 1
1+p , we find

that
√

1 + p ∈ Se and thus also
√
f ∈ Se.
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Abstract. We examine the reflexive inner inverse and M–P inverse of block matrix. First, we
give the definitions of block independence in generalized inverse of block matrix, and derive necessary
and sufficient conditions for two m × n matrices being block independent in reflexive inner inverse
and in M–P inverse. An analogous set of conditions for three ordered m× n matrices is also derived
in this paper.

Key words. reflexive inner inverse, M–P inverse, block matrix, block independence, rank of
matrix
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1. Introduction. Let A ∈ Cm×n and consider the following four Moore–Penrose
equations:

(1) AGA = A,

(2) GAG = G,

(3) (AG)∗ = AG,

(4) (GA)∗ = GA.

Suppose J = {i, j, ..., k} is a nonempty subset of {1, 2, 3, 4}; then a matrix G is said to
be a J -inverse of A if G satisfies equation (i) for each i ∈ J . The set of all J -inverse
of A is denoted by A{J} and its any element is denoted by AJ . {1}-inverse, {1, 2}-
inverse, and {1, 2, 3, 4}-inverse are also called inner inverse, reflexive inner inverse,
and M–P (Moore–Penrose) inverse of A, denoted by A−, AG, and A+, respectively.

Throughout this paper, all our matrices will be over the complex number field
C. For a matrix A in the set Cm×n, the symbols A∗, rk(A), R(A), N (A), RS(A),
and tr(A) denote the conjugate transpose, the rank, the range (column space), the
nullspace, the row space, and the trace of A, respectively. In the following, we suppose
J = {i, j, ..., k} is a nonempty subset of {1, 2, 3, 4}.

DEFINITION 1.1. We say two m× n matrices B and C are block independent in
J -inverse if there exist BJ ∈ B{J}, CJ ∈ C{J} such that

(
BJ CJ

)
∈
(
B
C

){J}
and

(
BJ

CJ

)
∈ (B C){J} .
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DEFINITION 1.2. We say three ordered m×n matrices A,B,C are block indepen-
dent in J -inverse if there exist AJ ∈ A{J}, BJ ∈ B{J}, CJ ∈ C{J} such that(

AJ CJ

BJ 0

)
∈
(
A B
C 0

){J}
.

DEFINITION 1.3. We say four ordered m × n matrices A,B,C, and D are block
independent in J -inverse if there exist AJ ∈ A{J}, BJ ∈ B{J}, CJ ∈ C{J}, DJ ∈
D{J} such that (

AJ CJ

BJ DJ

)
∈
(
A B
C D

){J}
.

It should be noted that the definition of independence of blocks of generalized
inverse of block matrix in another meaning have been given in [1, 2] by Hall and in
[3] by Hall and Hartwig. But for clarity of the difference between these two kinds of
definitions we repeat their definition.

DEFINITION 1.4. Let

G1 =
(
Q1
L1

)
and G2 =

(
Q2
L2

)
be two possibly different {1}-inverses of (A B). Then the blocks of all {1}-inverses
of (A B) are said to be independent whenever G =

(
Q1
L2

)
is a {1}-inverse of (A B)

for every possible choice of G1 and G2.
Independence of blocks of {1, 3}- and {1, 4}-inverses of (A B) and of generalized

inverses of
(
A
C

)
is defined similarly.

DEFINITION 1.5. For general block matrix

M =
(
A B
C D

)
,

let G1, G2, G3, and G4 be four possibly different {1}-inverses of M, and let Gi(jk)
denote the (j,k) block of Gi, where i = 1, 2, 3, or 4, while j, k = 1 or 2. Then the
blocks of all {1}-inverses of M are said to be independent whenever

G =
(
G1(11) G2(12)
G3(21) G4(22)

)
is a {1}-inverse of M for every possible choice of G1, G2, G3, and G4.

The independence of blocks of {1, 3}- and {1, 4}-inverses of M is defined similarly.
It is easy to see that these two kinds of definitions are different. First, all blocks

in J -inverse of block matrix in Definitions 1.2 and 1.3 are requested to be of the
same order but not in the definition by Hall and Hartwig. Second, for any nonempty
J ′ ⊂ J ⊆ {1, 2, 3, 4}, if two m × n complex matrices A,B are independent in J -
inverse, then they are independent in J ′-inverse, but for the block matrix M in
Definition 1.5, the blocks of {1}-inverses ofM are independent of each other if and only
if the blocks of both {1, 3}- and {1, 4}-inverses of M are independent (cf. Theorems
1, 2, and 3 in [2]). The relations between these two kinds of definitions are discussed
at the end of the following sections.
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In this paper, we mainly examine the block independence in reflexive inner inverse
and in M–P inverse. The outline of our paper is as follows. In section 2 we examine
the block independence in reflexive inner inverse of two m × n complex matrices as
well as in M–P inverse, and derive necessary and sufficient conditions for two m× n
matrices being block independent in reflexive inner inverse as well as in M–P inverse.
In section 3, we examine the block independence in reflexive inner inverse of three
ordered m × n complex matrices as well as in M–P inverse. In particular, necessary
and sufficient conditions for three ordered m×n matrices being block independent in
reflexive inner inverse as well as in M–P inverse are also derived in this section, which
generalizes Theorem 2.1 of Markham and Fiedler [8]. And in the end of each section,
we investigate the relations between two kinds of definitions of independence given in
this paper.

2. Block independence of two m×n complex matrices. First, we give the
concepts of ∗-orthogonality and ∗-commutativity which were introduced by Hestenes
[5].

DEFINITION 2.1. Two m×n complex matrices A and B are said to be ∗-orthogonal
if A∗B = 0 and AB∗ = 0. Two m × n complex matrices A and B are said to be ∗-
commute if A∗B = B∗A and AB∗ = BA∗. Moreover, we say that A and B are rank
additive (or their rank is additive) if rk(A+B) = rk(A) + rk(B).

The connection between ∗-orthogonality, ∗-commutativity, and rank additivity can
be seen in the following lemma.

LEMMA 2.2. Two m× n complex matrices A and B are ∗-orthogonal if and only
if they are ∗-commute and their rank is additive.

Proof. Only if: Trivially ∗-orthogonality implies ∗-commutativity. We have A∗B =
0⇔ R(B) ⊆ N (A∗)⇒ R(B)∩R(A) = {0} as well as AB∗ = 0⇔ R(B∗) ⊆ N (A)⇒
R(B∗) ∩ R(A∗) = {0}. But R(B) ∩ R(A) = {0} and R(B∗) ∩ R(A∗) = {0} are
equivalent to rk(A + B) = rk(A) + rk(B) from Theorem 11 in Marsaglia and Styan
[6].

If: since AB∗ = BA∗ and R(A) ∩ R(B) = {0}, one has AB∗ = 0. Similarly, we
have A∗B = 0 since A∗B is a Hermitian matrix and R(A∗) ∩R(B∗) = {0}.

It is clear that A∗B = 0⇔ A+B = 0⇔ B+A = 0 as well as AB∗ = 0⇔ AB+ =
0⇔ BA+ = 0. Hence, we have the following.

THEOREM 2.3. Two m × n complex matrices are block independent in reflexive
inner inverse if and only if their rank is additive. Moreover they are block independent
in M–P inverse if and only if they are ∗-orthogonal.

Proof. We only give the proof of the first part of the theorem since the latter part
can easily be seen.

Let B,C be two m × n matrices if there exist {1, 2}-inverses BG, CG of B and
C, respectively, such that

BGC = 0, BCG = 0, CGB = 0, CBG = 0.

It can easily be verified that(
BG CG

)
∈
(
B
C

){1,2}
,

(
BG

CG

)
∈
(
B C

){1,2}
.

Hence, B,C are block independent in reflexive inner inverse.
Conversely, by (

BG CG
)
∈
(
B
C

){1,2}
,



410 YIJU WANG

one has (
BG CG

)(B
C

)
(BG CG) = (BG CG),

so

BGBCG = 0, CGCBG = 0.

Multiplying the left side by B,C, respectively, one has

BCG = 0, CBG = 0.

Similarly, by (
BG

CG

)
∈
(
B C

){1,2}
,

one has BGC = 0, CGB = 0.
Let A,B be two m × n complex matrices; denote W1 = (A B),W2 =

(
A
B

)
,

respectively. From the above theorem, Theorem 11 in Marsaglia and Styan [6], and
Theorems 2.1 and 2.2 in [3], we know that

A and B are block independent in reflexive inner inverse
⇔ rk(A+B) = rk(A) + rk(B)
⇔ R(A) ∩R(B) = {0} and R(A∗) ∩R(B∗) = {0}
⇔W1

+W1 and W2W2
+ are both block diagonal

⇔ the blocks in the {1}-inverses for W1 and W2 are independent of each other.
Hence, we obtain a relationship between two kinds of definitions of independence

for block matrix which has two blocks.
PROPERTY 1. Two m × n complex matrices A and B are block independent in

reflexive inner inverse if and only if the blocks of {1}-inverses for (A B) and
(
A
B

)
are independent of each other.

3. Block independence of three m×n complex matrices. In this section,
we denote

M1 :=
(
A B
C 0

)
, M2 :=

(
0 B
C D

)
,

M3 :=
(
A B
0 D

)
, M4 :=

(
A 0
C D

)
,

M :=
(
A B
C D

)
.

DEFINITION 3.1. Let A,B,C be m× n complex matrices, and let AG, BG, CG be
given respective {1, 2}-inverses of A,B,C. Then the ordered pair (BG, CG) is said to
be related via AG if

BGA = 0, AGB = 0, CGA = 0, ACG = 0

hold.
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Note that for given AG and BG, the pair (BG, BG) is related via AG if and only
if BG and AG are related in the sense of Fiedler and Markham [8, p. 167]. Hence, the
above definition can be seen as a generalization of the relation of two {1, 2}-inverses
to the relation of three {1, 2}-inverses. Note that the relation of pair (BG, CG) via
AG is not the same as the relation of the relation of the pair (CG, BG) via AG, as will
become clearer subsequently.

THEOREM 3.2. Let A,B,C be three m× n complex matrices. Then the following
statements are equivalent:

(1) three ordered matrices A,B,C are block independent in reflexive inner inverse;
(2) there exist {1, 2}-inverses AG, BG, and CG of A, B, and C, respectively, such

that the ordered pair (BG, CG) is related via AG;
(3) rk(M1) = rk(A) + rk(B) + rk(C);
(4) R(A) ∩R(B) = {0} and R(A∗) ∩R(C∗) = {0}.
Proof. The equivalence of (1) and (2) can easily be seen.
(3)=⇒(1): For A,B,C ∈ Cm×n, there exist nonsingular matrices P1, Q1 (cf.

Theorem 6.2.2 in [7]) such that

P1AQ1 =
(
IA 0
0 0

)
, P1BQ1 =

(
B1 B2
B3 B4

)
, P1CQ1 =

(
C1 C2
C3 C4

)
.

Since rk(A) + rk(B) + rk(C) = rk(M1) ≤ rk(A B) + rk(C) ≤ rk(A) + rk(B) + rk(C),
we have rk(A B) = rk(A) + rk(B) and R(A) ∩ R(B) = {0} (cf. Theorem 11 in [6]).
By

rk(M1) = rk
[(
P1 0
0 P1

)(
A B
C 0

)(
Q1 0
0 Q1

)]

= rk


IA 0 B1 B2
0 0 B3 B4
C1 C2 0 0
C3 C4 0 0


= rk(A) + rk(B) + rk(C),

and R(A) ∩ R(B) = {0}, we have rk(B3 B4) = rk(B) and there exists nonsingular
matrix P2 of the form P2 =

(
IA ∗
0 I

)
such that

P2P1AQ1 =
(
IA 0
0 0

)
, P2P1BQ1 =

(
0 0
B3 B4

)
, P2P1CQ1 =

(
C1 C2
C3 C4

)
.

Hence,

rk(M1) = rk
[(
P2P1 0

0 P2P1

)(
A B
C 0

)(
Q1 0
0 Q1

)]

= rk


IA 0 0 0
0 0 B3 B4

C1 C2 0 0
C3 C4 0 0


= rk(A) + rk(B) + rk(C),

and

rk
(
C2
C4

)
= rk(C).
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There exists nonsingular matrix Q2 of the form Q2 =
(
IA 0
∗ I

)
such that

P2P1AQ1Q2 =
(
IA 0
0 0

)
, P2P1BQ1Q2 =

(
0 0
B3 B4

)
, P2P1CQ1Q2 =

(
0 C2
0 C4

)
.

Let P = P2P1, Q = Q1Q2, respectively; one has

PAQ =
(
IA 0
0 0

)
, PBQ =

(
0 0
B3 B4

)
, PCQ =

(
0 C2
0 C4

)
.

Let

AG = Q

(
IA 0
0 0

)
P, BG = Q

(
0 B̂3

0 B̂4

)
P, CG = Q

(
0 0
Ĉ2 Ĉ4

)
P,

where
(
B̂3

B̂4

)
is a reflexive inner inverse of (B3 B4), (Ĉ2 Ĉ4) is a reflexive inner inverse

of
(
C2
C4

)
. It can easily be verified that

ACG = 0, CAG = 0, BGA = 0, AGB = 0,

and

M̂1 :=
(
AG CG

BG 0

)
is a reflexive inner inverse of M1.

(1) =⇒ (3): If there exist AG ∈ A{1,2}, BG ∈ B{1,2}, CG ∈ C{1,2} such that

M̂1 :=
(
AG CG

BG 0

)
∈
(
A B
C 0

){1,2}
,

by M1M1
GM1 = M1 and M1

GM1M1
G = M1

G, we have

ACG = 0, CAG = 0, BGA = 0, AGB = 0,

and

M1M̂1 =
(
AAG +BBG 0

0 CCG

)
is a projector. Hence,

rk(M1) = rk(M1M̂1)
= tr(AAG) + tr(BBG) + tr(CCG)
= rk(A) + rk(B) + rk(C).

(3)⇐⇒ (4): It is clear that

rk
(
A∗ C∗

B∗ 0

)
= rk

(
A∗

B∗

)
+ rk

(
C∗

0

)
− dim

(
R
(
A∗

B∗

)
∩R

(
C∗

0

))
,
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where rk
(
C∗

0

)
= rk(C) and

rk
(
A∗

B∗

)
= rk(A) + rk(B)− dim(R(A) ∩R(B)).

Hence, we have rk(M1) = rk(A)+rk(B)+rk(C) if and only if R(A)∩R(B) = {0} and
R
(
A∗

B∗

)
∩R

(
C∗

0

)
= {0}, the latter being equivalent toR[A∗(I−BB+)]∩R(C∗) = {0}.

But in view of R(A) ∩R(B) = {0} we have rk[A∗(I −BB+)] = rk(A∗) (cf. Theorem
5 in [6]), and hence R[A∗(I −BB+)] = R(A∗).

From the above theorem it becomes immediately clear that the relation of a pair
(BG, CG) via AG is not the same as the relation of (CG, BG) via AG. Moreover, it
is seen that the equivalence of (i) and (v) in Theorem 2.1 of [8] follows as a corollary
from the above results.

Similarly, we have the following.
THEOREM 3.3. Let A,B,C,D ∈ Cm×n; then

(1) there exist {1, 2}-inverses BG, CG, DG of B,C,D, respectively, such that(
0 CG

BG DG

)
∈M2

{1,2} if and only if rk(M2) = rk(B) + rk(C) + rk(D);

(2) there exist {1, 2}-inverses AG, BG, DG of A,B,D, respectively, such that(
AG 0
BG DG

)
∈M3

{1,2} if and only if rk(M3) = rk(A) + rk(B) + rk(D);

(3) there exist {1, 2}-inverses AG, CG, DG of A,C,D, respectively, such that(
AG CG

0 DG

)
∈M4

{1,2} if and only if rk(M4) = rk(A) + rk(C) + rk(D).

Before examining the block indepdence in M–P inverse, we give the following
lemma without proving.

LEMMA 3.4. Let A,B,C be three m × n complex matrices. Then AC∗ = 0 and
A∗B = 0 if and only if A∗AC∗C = C∗CA∗A and AA∗BB∗ = BB∗AA∗ hold together
with R(A) ∩R(B) = {0} and R(A∗) ∩R(C∗) = {0}.

From this lemma, it is easy to prove the following.
THEOREM 3.5. Let A,B,C be three m× n complex matrices. Then three ordered

matrices A, B, and C are block independent in M–P inverse if and only if one of the
following conditions holds:
(1) AC∗ = 0 and A∗B = 0;
(2) AC+ = 0 and A+B = 0;
(3) A∗AC∗C = C∗CA∗A, AA∗BB∗ = BB∗AA∗, R(A)∩R(B) = {0}, R(A∗)∩
R(C∗) = {0};
(4) rk(M1) = rk(A) + rk(B) + rk(C) and A∗AC∗C = C∗CA∗A, AA∗BB∗ =
BB∗AA∗.

It is clear that the three ordered m×n matrices A,B,C are independent in M–P
inverse if and only if they are independent in reflexive inner inverse together with
A∗AC∗C = C∗CA∗A and AA∗BB∗ = BB∗AA∗ by Lemma 3.4 and Theorem 3.3.
Similarly, we have the following.

THEOREM 3.6. Let A,B,C,D ∈ Cm×n; then
(1) M2

+ =
(

0 C+

B+ D+

)
if and only if C∗D = 0 and BD∗ = 0;
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(2) M3
+ =

(
A+ 0
B+ D+

)
if and only if A∗B = 0 and BD∗ = 0;

(3) M4
+ =

(
A+ C+

0 D+

)
if and only if AC∗ = 0 and D∗C = 0.

THEOREM 3.7. If four ordered m × n matrices A,B,C,D are independent in
reflexive inner inverse, then rk(M) = rk(A) + rk(B) + rk(C) + rk(D).

Proof. By Definition 1.3, there exist {1, 2}-inverses AG, BG, CG, and DG of A,
B, C, and D, respectively, such that

M̂ :=
(
AG CG

BG DG

)
∈M{1,2} and MM̂ =

(
AAG +BBG ∗

∗ CCG +DDG

)
.

Since MM̂ is a projector, we have

rk(M) = rk(MM̂) = tr(MM̂)
= tr(AAG +BBG) + tr(CCG +DDG)
= tr(AAG) + tr(BBG) + tr(CCG) + tr(DDG)
= rk(A) + rk(B) + rk(C) + rk(D).

Since

rk(M) ≤ rk
(
A
C

)
+ rk

(
B
D

)
≤ rk(A) + rk(B) + rk(C) + rk(D),

rk(M) ≤ rk(A B) + rk(C D) ≤ rk(A) + rk(B) + rk(C) + rk(D),

and from the above theorem, Theorem 1 in [2], and Theorems 2.1 and 2.2 in [3], we
know that four ordered m× n complex matrices A, B, C, and D are independent in
reflexive inner inverse

⇒ rk(M) = rk(A) + rk(B) + rk(C) + rk(D),

⇒ rk(M) = rk(A B) + rk(C D) = rk
(
A
C

)
+ rk

(
B
D

)
,

⇔ R
(
A
C

)
∩R

(
B
D

)
= {0} and R

(
A∗

B∗

)
∩R

(
C∗

D∗

)
= {0},

⇔M+M and MM+ are both block diagonal,
⇔ the blocks in the {1}-inverses for M are independent of each other.

Hence, we also obtain a relationship between two kinds of definitions of indepen-
dence of block matrix M .

PROPERTY 2. If four ordered m × n complex matrices A,B,C, and D are inde-
pendent in reflexive inner inverse, then the blocks in the {1}-inverses for M are in-
dependent of each other. In particular, if three ordered m× n complex matrices A,B,
and C are independent in reflexive inner inverse, then the blocks in the {1}-inverses
for M1 are independent of each other.

Now we have derived the necessary and sufficient conditions for three ordered
m×n matrices being independent in reflexive inner inverse as well as in M–P inverse,
but the necessary and sufficient conditions for four ordered m × n matrices being
independent in J -inverse such as J = {1, 2} as well as J = {1, 2, 3, 4} are not
derived in this paper. In the end of this paper, we pose the following conjecture.

CONJECTURE. Four ordered m×n matrices A,B,C,D are independent in reflexive
inner inverse if and only if rk(M) = rk(A) + rk(B) + rk(C) + rk(D).
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Abstract. Let GMn be the semigroup of all the n× n (n ≥ 2) group Boolean matrices, and let
R be a nonzero element in GMn, where G is an n-order Abelian group. The sandwich semigroup of
GMn with the sandwich element R is denoted by GMn(R). The purpose of this paper is to discuss
the Green’s classes, idempotent elements, maximal subgroups, and regular elements in GMn(R). If
G is an n-order cyclic group, our results are exactly the results of Wenchao Huang in [Linear Algebra
Appl., 25 (1979), pp. 135–160].

Key words. group Boolean matrix, sandwich semigroup, Green’s class

AMS subject classification. 15A23

PII. S0895479895290383

1. Introduction and preliminaries. Let B = {0, 1} be a Boolean algebra,
and let Mn be the set of all the n×n (n ≥ 2) matrices over B. In [1], Wenchao Huang
discussed the sandwich semigroups of circulant Boolean matrices. In this paper, we
will study the sandwich semigroups of the following group Boolean matrices.

Let G be an n-order group, N = {1, 2, . . . , n}, and let ϕ: N → G be a one-to-one
correspondence. For A = (aij) ∈ Mn, we say that A is a (G,ϕ)-(Boolean) matrix if
there exists a map fA from G to B such that

aij = fA(ϕ(i)−1ϕ(j)), i, j ∈ N.(1.1)

This definition is due to Kai Wang (see [2]). (G,ϕ)-matrix is a generalized circulant
matrix in [2]. LetGMϕ

n denote the set of all (G,ϕ)-matrices over B. For A, D ∈ GMϕ
n ,

and a ∈ B, define

faA(g) = afA(g), fA+D(g) = fA(g) + fD(g),

fAD(g) =
n∑
l=1

fA(ϕ(l))fD(ϕ(l)−1g), g ∈ G.(1.2)

By (1.1), it is clear that aA, A + D, AD ∈ GMϕ
n . Hence, GMϕ

n is a semiring.
Let Z, E, and H denote the zero matrix, unit matrix, and universal matrix in Mn,
respectively. Obviously, Z, E, H ∈ GMϕ

n for any ϕ. Write E = (e1, e2, . . . , en), where
e1, e2, . . . , en are unit column vectors. Let ψ be another one-to-one correspondence
from N to G. Write P (τ) = (eτ(1), eτ(2), . . . , eτ(n)), where τ = ψ−1ϕ. Then P (τ) is
an n-order permutation matrix and P (τ)−1 = P (τ)T = P (τ−1), where P (τ)T denotes
the transpose of P (τ). Therefore, we have the following.

PROPOSITION 1.1. A ∈ GMψ
n if and only if P (τ)−1AP (τ) ∈ GMϕ

n .
Proof. Let A = (aij) ∈ GMψ

n . Write P (τ)−1AP (τ) = (bij). It is easily known
that bij = aτ(i)τ(j), i, j ∈ N . Then, bij = fA(ψ(τ(i))−1ψ(τ(j))) = fP (τ)TAP (τ)
(ϕ(i)−1ϕ(j)), where fP (τ)TAP (τ) = fA, by (1.1) and (1.2). Hence, P (τ)−1AP (τ) ∈
GMϕ

n . Inversely, if P (τ)−1AP (τ) ∈ GMϕ
n , thenA = P (τ−1)−1P (τ)−1AP (τ)P (τ−1) ∈

GMψ
n .

∗Received by the editors June 3, 1995; accepted for publication (in revised form) by G. P. Styan
April 2, 1997.
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By the above proposition, GMψ
n is isomorphic to GMϕ

n . Hence, we fix ϕ. And,
briefly, GMϕ

n can be denoted as GMn and (G,ϕ)-matrix can be called a group matrix
or G-matrix. If G is an n-order cyclic group, GMn is isomorphic to Cn where Cn
denotes the set of all n-order circulant Boolean matrices. In general, GMn is not
isomorphic to Cn. In fact, if G is not a cyclic group of order n, then there exists not
certainly a map ϕ from N to G such that GMϕ

n is equal to Cn (see [5]). Thus, all
results in this paper are generalizations of results in [1]. For convenience, we need the
following results also.

Let f1, f2, . . . , fn be n maps from G to B and P1, P2, . . . , Pn be n-group matrices
by the following, defined respectively:

fr(gs) =

{
1 for r = s,

0 for r 6= s,
r, s ∈ N(1.3)

and

Pr = (P (r)
ij ) = (fr(g−1

i gj)) ∈ GMn, r ∈ N,(1.4)

where gi = ϕ(i), i ∈ N . Then P1, P2, . . . , Pn are permutation matrices of order n.
Write P = {P1, P2, . . . , Pn} = {Pg | g ∈ G}, where Pg = Pϕ−1(g) for g ∈ G. Then we
have the following.

PROPOSITION 1.2. PrPs = Pt if and only if grgs = gt for r, s, t ∈ N . Further,
P is group isomorphic to G and

PgPh = Pgh, for g, h ∈ G.(1.5)

Proof. For r, s ∈ N , if grgs = gt, then g−1
i gj = gt if and only if g−1

r g−1
i gj =

gs for i, j ∈ N . By (1.2), (1.3), and (1.4), PrPs = (
∑n
k=1 fr(gk)fs(g−1

k g−1
i gj)) =

(fs(g−1
r g−1

i gj)) = (ft(g−1
i gj)) = Pt. Inversely, if PrPs = Pt, then fs(g−1

r g−1
i gj) =

ft(g−1
i gj) for i, j ∈ N . Choose gi = g−1

r and gj = gs. Then ft(grgs) = fs(gs) = 1.
Hence, grgs = gt by (1.3). It is easily known that P is group isomorphic to G and
(1.5) holds.

PROPOSITION 1.3. For A ∈Mn, A ∈ GMn if and only if A can be written as

A =
n∑
i=1

aiPi, ai ∈ B, for i ∈ N(1.6)

or

A =
∑
g∈G

agPg, ag ∈ B, for g ∈ G.(1.7)

And every element in GMn has a unique representation in form (1.6) or (1.7).
Proof. Since Pi ∈ GMn for every i ∈ N ,

∑n
i=1 aiPi ∈ GMn by (1.2). Inversely,

if A ∈ GMn, then we have fA = a1f1 + a2f2 + · · · + anfn, where ai = fA(gi)
for i ∈ N . Thus, A = a1P1 + a2P2 + · · · + anPn. If A =

∑n
i=1 biPi also, then∑n

i=1 aifi(g
−1
s gt) =

∑n
i=1 bifi(g

−1
s gt), s, t ∈ N . Thus, by (1.3), ar =

∑n
i=1 aifi(gr) =∑n

i=1 bifi(gr) = br, r ∈ N . Therefore, the representation is unique.
Therefore, by the above propositions, if G is an Abelian group, the set GMn

forms a commutative semigroup under the usual multiplication operation of Boolean
matrices. In this paper, we only discuss this case. For an arbitrary but fixed element
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R ∈ GMn, we can define an operation ∗ in GMn as follows: for arbitrary A, B ∈ GMn,
A ∗ B = ARB, where ARB is the usual product of Boolean matrices. It can be
easily proved that GMn is also a commutative semigroup under the operation ∗. We
denote this semigroup by GMn(R) and call it a sandwich semigroup of group Boolean
matrices with sandwich matrix R. The purpose of this paper is to discuss Green’s
relations, idempotent elements, regular elements, and maximal subgroups for GMn(R)
with R 6= Z. If G is a cyclic group of order n, then our results are exactly the results
of Wenchao Huang in [1]. We need the following notation also.

Let Z 6= A ∈ GMn; then there exists a subset S of G such that

A =
∑
g∈S

Pg.(1.8)

We write S = SN(A). SN(A) is said to be the set of support elements of A. Let
R 6= Z be a fixed element in GMn. For convenience, assume SN(R) = {r1, r2, . . . , rl}
throughout this paper. Let S be a subset of G. We denote the generated subgroup of
G by S by 〈S〉, and the set {s−1 | s ∈ S} by S−1. It is clear that for every x ∈ S−1,
〈S−1S〉 = 〈xS〉. If D is a subgroup of G, we write D ≤ G. The unit element in G is
denoted by e.

2. LR-relation in GMn(R). We now recall some concepts for a semigroup
S (see [3]). For a general semigroup S, there are five Green’s relations L,R,D,H,
and T for S. For instance, the definition of the relation L is that aLb if and only
if Sa ∪ {a} = Sb ∪ {b}. The R-relation is defined dually. These relations are all
equivalent relations. Their equivalent classes are all called Green’s classes. It can
be easily proved that, for commutative semigroup, we have L = R = D = H = T .
Since GMn(R) is commutative, all the Green’s relations in GMn(R) coincide with
each other. So it is sufficient to discuss the Green’s relation L in this paper. In this
paper, L denotes the L-relation in GMn, and LR denotes the L-relation in GMn(R).
In this section, we will discuss the Green’s relation LR in GMn(R). A necessary
and sufficient condition on LR is given. For the special case of G = Zn (the residue
classes additive group module n), it is exactly the result of Wenchao Huang in [1].
First, some properties on GMn(R) (or GMn) are discussed as preparation for the
main investigation. For convenience, we recall some results on semigroup theory in
the following (see [3]).

Let S be a semigroup, and a, b ∈ S. Then
(1) if a ∈ Sb and b ∈ Sa, then aLb;
(2) if a 6= b, then aLb if and only if a ∈ Sb and b ∈ Sa.
First, we give a proposition on Abelian group.
PROPOSITION 2.1. Let G be an n-order Abelian group. Let M be a nonempty

subset of G, and m1,m2, . . . ,ml be l different elements in G. Then

mfM = M, f = 1, 2, . . . , l,(2.1)

if and only if, for D = 〈m1,m2, . . . ,ml〉, there are n1, n2, . . . , nh ∈M such that

M = ∪̇hi=1niD,(2.2)

where ∪̇ denotes the union of disjoint sets, that is, niD ∩ njD = ∅ whenever i 6=
j, i, j = 1, 2, . . . , h.

Proof. “Only if”: Since G is an Abelian group and D is a generated subgroup by
m1,m2, . . . ,ml in G,

D = {mt1
1 m

t2
2 · · ·m

tl
l | t1, t2, . . . , tl ∈ Z},(2.3)
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where Z denotes the integer ring. We can choose tj ≥ 0 for 1 ≤ j ≤ l. Since M 6= ∅,
we can choose n1 ∈M . Then n1D ⊆M . In fact, for x ∈ n1D, x = n1m

t1
1 m

t2
2 · · ·m

tl
l ,

tj ≥ 0, j = 1, 2, . . . , l. If t1 = 0, then n1m
t1
1 ∈ M . If t1 > 0, by (2.1), n1m1 ∈ M .

Then n1m
2
1 = m1(m1n1) ∈ M, . . . , n1m

t
1 = m1(n1m

t−1
1 ) ∈ M by (2.1). By induction

l, hypothesize that n1m
t1
1 · · ·m

tl−l
l−1 ∈ M ; then n1m

t1
1 · · ·m

tl−1
l−1 m

tl
l ∈ M similarly.

Assume that n1, n2, . . . , nk−1(k ≥ 2) have been given such that ∪̇k−1
i=1 niD ⊆ M . If

M\∪̇k−1
i=1 niD = ∅, then M = ∪̇k−1

i=1 niD. Equation (2.2) holds. If M\∪̇k−1
i=1 niD 6= ∅, we

can choose nk ∈ M\∪̇k−1
i=1 n1D. Similarly, nkD ⊆ M . By the choice of nk, we have

nkD ∩ niD = ∅, i = 1, 2, . . . , k − 1. In fact, if nkD ∩ niD 6= ∅, then nkD = niD.
Hence nk ∈ niD. This is impossible. Since M is a finite set, by the same process,
after a finite number of steps, we have M = ∪̇hi=1niD.

“If”: By (2.2) and D = 〈m1,m2, . . . ,ml〉, for any f , we have mfniD =
nimfD = niD, i = 1, 2, . . . , h. Hence, mfM = ∪̇hi=1mfniD = ∪̇hi=1niD = M ,
f = 1, 2, . . . , l.

Next, we give some properties on GMn(R) or GMn.
LEMMA 2.2. Let Z 6= A, Q ∈ GMn. Then the following are equivalent:
(1) QA = A;
(2) SN(Q)SN(A) = SN(A);
(3) for every g ∈ SN(Q), gSN(A) = SN(A);
(4) for every g ∈ SN(Q), PgA = A.
Proof. (1)⇒ (2): Since Pg = Ph if and only if g = h, by the unique representation

(1.5) of any nonzero element in GMn and

∑
g∈SN(A)

Pg = A = QA =

 ∑
h∈SN(Q)

Ph

 ∑
g∈SN(A)

Pg


=

∑
h∈SN(Q), g∈SN(A)

Phg =
∑

g∈SN(Q)SN(A)

Pg,

we have SN(Q)SN(A) = SN(A). So (2) holds.
(2)⇒ (3): For every g ∈ SN(Q), obviously gSN(A) ⊆ SN(A). Since for g1, g2 ∈

SN(A), gg1 = gg2 if and only if g1 = g2, it must follow gSN(A) = SN(A).
(3) ⇒ (4): For g ∈ SN(Q), since SN(PgA) = gSN(A) = SN(A), we have

PgA = A.
(4)⇒ (1): Since PgA = A for every g ∈ SN(Q), we have

A =
∑

g∈SN(Q)

PgA =

 ∑
g∈SN(Q)

Pg

A = QA.

PROPOSITION 2.3. There exists an identity element in GMn(R) if and only if
|SN(R)| = 1.

Proof. “Only if”: Assume |SN(R)| ≥ 2, and I =
∑
g∈SN(I) Pg is an identity

element of GMn(R). Then IR = IRE = E. By Lemma 2.2, for g ∈ SN(I), we have
gri = e, i = 1, 2, . . . , l, where e is a unit element in G. This implies r1 = r2 = · · · = rl,
but that is impossible.

“If”: If |SN(R)| = 1, then R = Pr for some r ∈ G. Clearly, I = P−1
r is an

identity element of GMn(R).
The following result is exactly the corresponding result of Kim and Schwarz in

[4] for the special case of R = E.
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THEOREM 2.4. If A, B ∈ GMn, then ALB if and only if there exists an element
g ∈ G such that B = PgA.

Proof. “Only if”: If ALB, there exist U , V ∈ GMn such that A = UB and
B = V A. Then B = V UB. By Lemma 2.2, for every g ∈ SN(V U), PgB = B. For
g ∈ SN(V ), since gSN(U) ⊆ SN(V U), so

B =
∑

h∈SN(U)

PghB = Pg

 ∑
h∈SN(U)

Ph

B = PgUB = PgA.

“If”: If B = PgA for some g ∈ G, then B ∈ GMnA. On the other hand,
A = P−1

g B ∈ GMnB. Therefore, ALB. .
For any Z 6= R ∈ GMn, it is obvious that ALRB implies ALB. Hence, it is

necessary for ALB that there exists Pg such that B = PgA. For this reason, the
following question is considered in this section: Let Z 6= A ∈ GMn(R); what is the
necessary and sufficient condition for PgALRA for all g ∈ G? Clearly, if A = Z or H,
PgALRA holds for all g ∈ G. Hence, the above question will be discussed for the case
of A 6= Z, H.

LEMMA 2.5. Let Z 6= A ∈ GMn(R). Then PgA = A for all g ∈ G if and only if
A = H.

Proof. “Only if”: If PgA = A for all g ∈ G, then

A =
∑
g∈G

PgA =

∑
g∈G

Pg

A = HA = H.

“If”: This is obvious.
LEMMA 2.6. Let Z,H 6= A ∈ GMn(R). Then the following are equivalent:
(1) A ∈ GMn(R) ∗A;
(2) for all g ∈ G,PgALRA;
(3) there exists g ∈ G such that A 6= PgA and PgALRA;
(4) there exists g ∈ G such that A = PgRA.
Proof. (1) ⇒ (2): If A ∈ GMn(R) ∗ A, then there exists B ∈ GMn(R) such

that A = BRA. For any g ∈ G, since PgA = PgBRA = (PgB) ∗ A, hence PgA ∈
MGn(R) ∗ A. On the other hand, A = (P−1

g B)R(PgA) = (P−1
g B) ∗ PgA, and this

implies A ∈ GMn(R) ∗ PgA. Hence PgALRA for all g ∈ G.
(2)⇒ (3): By the hypothesis A 6= Z, H, and Lemma 2.5, there exists g ∈ G such

that A 6= PgA. By (2), then (3) holds.
(3) ⇒ (4): For some g ∈ G, PgALRA. Then PgA ∈ GMn(R) ∗ A. That is, we

have PgA = BRA for some B ∈ GMn(R). Set C = P−1
g B, then A = CRA. By

Lemma 2.2, for every f ∈ SN(CR), PfA = A. Since SN(CR) = SN(C)SN(R), for
every g ∈ SN(C), gSN(R) ⊆ SN(CR). Then, for every g ∈ SN(C),

A =
∑

r∈SN(R)

PgrA = Pg

 ∑
r∈SN(R)

Pr

A = PgRA.

(4)⇒ (1): It is clear.
THEOREM 2.7. Let Z,H 6= A ∈ GMn(R). Then the following conditions are

equivalent:
(1) for all g ∈ G,PgALRA;
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(2) there exists an element g in G such that , for D = 〈gSN(R)〉,

SN(A) = ∪̇hi=1niD,(2.4)

where ni ∈ SN(A), i = 1, 2, . . . , h.
Proof. (1) ⇒ (2): By Lemma 2.6, there exists an element g in G such that

A = PgRA. Then, by Lemma 2.2, ri ∈ SN(R), 1 ≤ i ≤ l, we have

griSN(A) = SN(A), i = 1, 2, . . . , l.(2.5)

By Proposition 2.1, (2) holds.
(2) ⇒ (1): By (2) and Proposition 2.1, (2.5) holds. Then, SN(PgR)SN(A) =

SN(A) by Lemma 2.2. Therefore, A = PgRA. By Lemma 2.6, (1) holds.
Remarks. (i) According to the proof of (1) ⇒ (2) in Lemma 2.6, (2) ⇒ (1) in

Theorem 2.7 still holds without the condition A 6= H.
(ii) When A = H,SN(A) = G. For any g ∈ G, D = 〈gSN(R)〉 is a subgroup of

G. Hence, (2.4) holds.
(i) and (ii) show that Theorem 2.7 is still true without the condition A 6= H.
According to Lemma 2.5, Lemma 2.6, and Theorem 2.7, the following theorem

on LR-classes is true.
THEOREM 2.8. Let A ∈ GMn(R). LR(A) denotes the LR-class of GMn(R)

containing A, that is,

LR(A) = {X | XLRA, X ∈ GMn(R)}.(2.6)

Then either LR(A) = {A} or {LR(A)} ≥ 2 with

LR(A) = {PgA | g ∈ G}.(2.7)

In the following, several special cases for Theorem 2.7 are discussed.
Case 1. Suppose |SN(R)| = 1, and SN(R) = {r}. For arbitrary A ∈ GMn(R),

let SN(A) = {n1, n2, . . . , nt}. Choose g = r−1. For D = 〈gr〉 = {e}. SN(A) =
{n1} ∪ {n2} ∪ · · · ∪ {nt} is a union satisfying (2) of Theorem 2.7. This shows that
LR(A) = {PgA | g ∈ G}, for all A ∈ GM(R), and leads to the following corollaries.

COROLLARY 2.9. Let R = Pr, r ∈ G. If A,B ∈ GMn(R), then ALRB if and only
if B = PgA for some g ∈ G.

When r = e, Corollary 2.9 coincides with Theorem 2.4.
COROLLARY 2.10. For A ∈ GMn(R), where R = Pr, r ∈ G. Then the following

hold:
(1) if A 6= H,Z, |LR(A)| ≥ 2;
(2) if (|SN(A)|, n) = 1, |LR(A)| = n.
Proof. (1) Clearly.
(2) If |LR(A)| < n, then there exist g and h in G such that PgA = PhA and

g 6= h. That is, P−1
gh A = A and gh−1 6= e. By Proposition 2.1, for D = 〈gh−1〉, there

are n1, n2, . . . , nh such that SN(A) = ∪̇hi=1niD. Then |SN(A)| = h|D|. Since |D| > 1
and |D| | |G|, (|SN(A)|, n) 6= 1. Therefore, (2) holds.

Case 2. Suppose n is a prime and |SN(R)| ≥ 2. Then G is a cyclic group. For
any g ∈ G, since |SN(R)| ≥ 2, we have D = 〈gSN(R)〉 = G. This shows that for any
Z, H 6= A ∈ GMn(R). A cannot satisfy condition (2) of Theorem 2.7. By Lemma 2.6,
all the LR-classes in GMn(R) are trivial, i.e., LR(A) = {A} for all A ∈ GMn(R).

Case 3. Suppose |SN(R)| ≥ 2 and 〈SN(R)SN(R)−1〉 = G. Then, for any g ∈ G,
D = 〈gSN(R)〉 = G. By the same reasoning as the discussion in Case 2, all the
LR-classes in GMn(R) are trivial.
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3. Idempotent elements in GMn(R). Let S be a semigroup and a ∈ S.
Then a is called an idempotent element of S if a2 = a. In this section, we give the
structure theorems for the nonzero idempotent elements of GMn(R).

LEMMA 3.1. Let k be a positive integer, and B1, B2, . . . , Bk,A be k + 1 nonzero
elements in GMn(R). Then the following are equivalent:

(1) B1B2 · · ·BkA = A;
(2) (

∏k
i=1 SN(Bi))SN(A) = SN(A);

(3) for any bi ∈ SN(Bi), i = 1, 2, . . . , k, one has SN(A) = (
∏k
i=1 bi)SN(A).

Proof. (1)⇒ (2): When k = 1, this is true by Lemma 2.2. Since
∏k
i=1 SN(Bi) =

SN(B1B2 · · ·Bk), for any positive integer k, statement (2) holds by induction k.
(2)⇒ (3): For any bi ∈ SN(Bi), i = 1, 2, . . . , k, by (2), we have (

∏k
i=1 bi)SN(A) ⊆

SN(A). Since |(
∏k
i=1 bi)SN(A)| = |SN(A)|, (

∏k
i=1 bi)SN(A) = SN(A).

(3) ⇒ (1): For any bi ∈ SN(Bi), i = 1, 2, . . . , k, write r =
∏k
i=1 bi. Since

SN(PrA) = (
∏k
i−1 bi)SN(A) = SN(A) we have PrA = A. Hence, we have A =∑

b1∈SN(B1) · · ·
∑
bk∈SN(Bk)(PrA) =

∑
b1∈SN(B1) · · ·

∑
bk∈SN(Bk)(Pb1 · · ·PbkA) =

(
∑
b1∈SN(B1) Pb1) · · · (

∑
bk∈SN(Bk) Pbk)A = B1 · · ·BkA.

LEMMA 3.2. Let Z 6= I ∈ GMn(R). Then the following are equivalent:
(1) I is an idempotent element in GMn(R);
(2) for D = 〈SN(I)SN(R)〉, one has

SN(I) = ∪̇hi=1niD, ni ∈ SN(I), i = 1, 2, . . . , h.(3.1)

Proof. I being an idempotent element inGMn(R) means IRI = I. By Lemma 3.1,
IRI = I if and only if for any ni ∈ SN(I), rj ∈ SN(R)

nirjSN(I) = SN(I).(3.2)

By Proposition 2.1, (3.2) holds if and only if (2) holds.
THEOREM 3.3. Let Z 6= I ∈ GMn(R). Then the following are equivalent:
(1) I is an idempotent element in GMn(R);
(2) for D = 〈SN(I)SN(R)〉, one has

SN(I) = niD, for some ni ∈ SN(I).(3.3)

Proof. (1)⇒ (2): Suppose I is an idempotent element inGMn(R). By Lemma 3.2,
for D = 〈SN(I)SN(R)〉, we have SN(I) = ∪̇hi=1niD, where ni ∈ SN(I), i =
1, 2, . . . , h. We will prove h = 1. Suppose h ≥ 2. Since n1r1, n2r1 ∈ D,n1n

−1
2 ∈ D.

Then n1D = n2D, which contradicts n1D ∩ n2D = ∅. Hence, h = 1 and (2) holds.
(2)⇒ (1): This is the conclusion of Lemma 3.2.
THEOREM 3.4 (the first structure theorem for idempotent elements). Suppose

e ∈ SN(R). Let 〈SN(R)〉 ≤ D ≤ G. Then

I =
∑
g∈D

Pg(3.4)

is a nonzero idempotent element in GMn(R). All the nonzero idempotent elements in
GMn(R) are obtained in this manner.

Proof. (a) Since 〈SN(R)〉 ≤ D and SN(I) = D, 〈SN(R)SN(I)〉 = 〈(SN(I)〉 =
D. By Theorem 3.3, I is an idempotent element in GM(R).

(b) Conversely, let I be an arbitrary nonzero idempotent element in GMn(R). By
Theorem 3.3, for some ni ∈ SN(I), SN(I) = niD, where D = 〈SN(I)SN(R)〉. Since
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e ∈ SN(R), ni ∈ D. Hence, SN(I) = niD = D and 〈SN(R)〉 ≤ D ≤ G. The proof is
completed.

Let D ≤ G. D+ denotes the cardinality of the set {F | D ≤ F ≤ G}. Then, by
Theorem 3.4, we have the following result.

COROLLARY 3.5. If e ∈ SN(R) and D = 〈SN(R)〉, there exist exactly D+

different nonzero idempotent elements in GMn(R).
In the following, we discuss the idempotent elements in GMn(R) for the general

case (without the condition e ∈ SN(R)).
LEMMA 3.6. Let I ∈ GMn(R). If SN(I) = D, where 〈SN(R)〉 ≤ D ≤ G, then I

is an idempotent element in GMn(R).
Proof. The proof is the same as part (a) of the proof of Theorem 3.4.
THEOREM 3.7. Let D = 〈SN(R)〉. Then there exist exactly D+ different nonzero

idempotent elements in GMn(R) satisfying e ∈ SN(I).
Proof. By Lemma 3.6, there exist at least D+ different nonzero idempotent

elements in GMn(R) satisfying e ∈ SN(I). Conversely, let I be a nonzero idempotent
element in GMn(R) satisfying e ∈ SN(I). By Theorem 3.3, for some ni ∈ SN(I).
SN(I) = niD

′, where D′ = 〈SN(I)SN(R)〉. Then e = nid ∈ D′, d ∈ D′, and
n−1
i ∈ D′. So ni ∈ D′. Hence, SN(I) = D′. Since e ∈ SN(I), D = 〈SN(R)〉 ≤
D′. This shows that each nonzero idempotent element I in GMn(R) satisfying e ∈
SN(I) corresponds to a subgroup D′ of G satisfying D ≤ D′. Combining the above
discussion, we have proved this theorem.

THEOREM 3.8. Let Z 6= I ∈ GMn(R) and e 6∈ SN(I). Then the following are
equivalent:

(1) I is an idempotent element in GMn(R);
(2) there exists a nonunit element g in G such that, for a subgroup D of G

satisfying 〈gSN(R)〉 ≤ D,

SN(I) = gD.(3.5)

Proof. (1) ⇒ (2): Suppose I is an idempotent element in GMn(R). By Theo-
rem 3.3, for D = 〈SN(I)SN(R)〉, there exists g in G such that SN(I) = gD. Since
e 6∈ SN(I), we have e 6= g ∈ SN(I). Obviously 〈gSN(R)〉 ≤ D.

(2)⇒ (1): Let D′ = 〈gDSN(R)〉. Because 〈gSN(R)〉 ≤ D, D′ = 〈gSN(R)D〉 =
〈D〉 = D.

THEOREM 3.9 (the second structure theorem for idempotent elements). Let V =
〈SN(R)−1SN(R)〉. Let D be a subgroup of G satisfying V ≤ D. Then

I =
∑
g∈cD

Pg, for some c ∈ SN(R)−1,(3.6)

is a nonzero idempotent element in GMn(R). All the nonzero idempotent elements in
GMn(R) are obtained in this manner.

Proof. (a) If c = e, then by Lemma 3.6, I =
∑
g∈D Pg is an idempotent element

in GMn(R). If c 6= e, then e 6∈ SN(I) and V = 〈cSN(R)〉. Hence, by Theorem 3.8,
I =

∑
g∈cD Pg is an idempotent element in GMn(R).

(b) Conversely, let I be a nonzero idempotent element in GMn(R). If e ∈ SN(I),
then, by the proof of Theorem 3.7, SN(I) = D, where D is a subgroup of G sat-
isfying 〈SN(R)〉 ≤ D. If e 6∈ SN(I), by Theorem 3.8, there exists e 6= g ∈ G
such that, for a subgroup D of G satisfying 〈gSN(R)〉 ≤ D, SN(I) = gD. Since
V = 〈SN(R)−1SN(R)〉 ≤ 〈hSN(R)〉 ≤ D, for h = e or g, hr ∈ D for any r ∈ SN(R).
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Then r−1D = hD. That is, there exists a subgroup D of G satisfying V ≤ D such
that I =

∑
g∈cD Pg for some c ∈ SN(R)−1.

The idempotent element obtained in Theorem 3.9 is denoted I(c,D). Obviously,
I(c,G) = H for any possible c.

LEMMA 3.10. In GMn(R), I(c,D) = I(c′, D′) if and only if D = D′.
Proof. “Only if”: Suppose I(c,D) = I(c′, D′). Since SN(I(c,D)) = SN(I(c′, D′)),

we have cD = c′D′. Hence c−1c′D′ = D. Since e ∈ D, e = c−1c′d for some d ∈ D′.
Then c−1c′ = d−1 ∈ D′. So c−1c′D′ = D′. Therefore, D = D′.

“If”: If D = D′, since c, c′ ∈ SN(R)−1, c−1c′ ∈ V , and V ≤ D, so c−1c′ ∈ D.
Then cD = c′D = c′D′. Therefore, I(c,D) = I(c′, D′).

The set of all the idempotent elements in GMn(R) is denoted by Id(GMn(R)).
We have the following counting theorem on Id(GMn(R)).

THEOREM 3.11. Let Z 6= R ∈ GMn(R). If V = 〈SN(R)−1SN(R)〉, then

Id(GMn(R)) = V + + 1.(3.7)

Proof. By Theorem 3.9 and Lemma 3.10, the number of nonzero idempotent
elements in GMn(R) is exactly V +. Clearly, Z is also an idempotent element in
GMn(R).

4. Maximal subgroups in GMn(R). Let I be an idempotent element in
GMn(R). The maximal subgroup of GMn(R) containing I is denoted by GI(R)
(the definition of the maximal subgroup of a semigroup can be seen in [3]). In this
section, we will investigate the structure of GI(R). Since GMn(R) is commutative,
all the Green’s relations for GMn(R) coincide with each other. Therefore, for any
idempotent element I in GMn(R), we have GI(R) = LR(I).

LEMMA 4.1. If I is an idempotent element in GMn(R), then for any g ∈ G, one
has PgI ∈ LR(I).

Proof. If I = Z, the conclusion is obviously true. Suppose I 6= Z. It is sufficient
to prove

PgI ∈ GMn(R) ∗ I and I ∈ GMn(R) ∗ (PgI), for any g ∈ G.(4.1)

Since I = IRI, we have PgI = (PgI)RI and I = (P−1
g I)R(PgI) for any g ∈ G. This

shows that (4.1) is true.
For A, B ∈ GMn(R), clearly, if A and B are L-equivalent in GMn(R), then A

and B are L-equivalent in GMn. According to Theorem 2.4 and Lemma 4.1, for any
idempotent element I in GMn(R), we have

LR(I) = {PgI | g ∈ G}.(4.2)

THEOREM 4.2 (structure theorem for maximal subgroups). Let I = I(c,D) =∑
g∈cD Pg be a nonzero idempotent element in GMn(R) obtained in the manner of

Theorem 3.9, and

G = ∪̇si=1giD.(4.3)

Then

GI(R) = {PgiI | i = 1, 2, . . . , s}(4.4)

and

|GI(R)| = |G|/|D|.(4.5)
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Proof. By the above investigation, GI(R) = {PgI | g ∈ G}. To prove (4.4) and
(4.5), it is sufficient to prove the following:

(1) gD = hD if and only if PgI = PhI;
(2) for every i, if g, h ∈ giD, PgI = PhI.
“Proof of (1)”: First, we have PgI = Pg

∑
k∈cD Pk =

∑
k∈cD Pgk =

∑
k∈gcD Pk.

Hence, for g, h ∈ G,

PgI = PhI ⇐⇒
∑
k∈gcD

Pk =
∑
k∈hcD

Pk ⇐⇒ gcD = hcD ⇐⇒ gD = hD.

“Proof of (2)”: For every i, if g, h ∈ giD, then gD = giD = hD. By (1), we have
PgI = PhI.

THEOREM 4.3. Let I satisfy the conditions of Theorem 4.2. Then GI(R) ∼= G/D
(group isomorphism), where G/D denotes the quotient group of G module D.

Proof. Set

Φ : GI(R)→ G/D; PgI → gD.

By the proof of Theorem 4.2, it is clear that Φ is a bijection from GI(R) to G/D.
And, since IRI = I, for g, h ∈ G, Φ(PgI ∗ PhI) = Φ(PgIRPhI) = Φ(PghI) = ghD =
(gD)(hD) = Φ(PgI)Φ(PhI). Hence, Φ is an isomorphism from GI(R) to G/D.

The following theorem gives an answer for the problem about trivial maximal
subgroups in GMn(R).

THEOREM 4.4. For arbitrary Z 6= R ∈ GMn, GMn(R) contains exactly two trivial
maximal subgroups, which are GZ(R) and GH(R).

Proof. Let I = I(c,D) be a nonzero idempotent element determined in the manner
of Theorem 3.9. If GI(R) is trivial, then, by Theorem 4.2, |GI(R)| = |G|/|D| = 1. So
G = D and cD = D = G. Hence, I =

∑
g∈G Pg = H. Therefore, GZ(R) and GH(R)

are the only trivial maximal subgroups in GMn(R).
Remark. If Z 6= R ∈ GMn and |SN(R)| ≥ 2, let I = I(c,D) be a nonzero idempo-

tent element in GMn(R) obtained in the manner of Theorem 3.9; then |GI(R)| < n.
In fact, suppose |GI(R)| = n, by Theorem 4.2, D = {e}. Since 〈cSN(R)〉 ≤ D,
〈cSN(R)〉 = {e}. Then SN(R) = {c−1}, and I = Pc, which contradicts |SN(R)| ≥ 2.

5. Regular elements in GMn(R). In this section, we will determine all the
regular elements in GMn(R). Let S be a semigroup and a ∈ S. Then a is said to be
a regular element of S if axa = a for some x ∈ S. By referring to [3], we can obtain
the following:

(1) if A ∈ GMn(R) is regular, then all the elements in LR(A) are regular;
(2) A ∈ GMn(R) is regular if and only if LR(A) contains an idempotent element.
According to (1) and (2), and the results in sections 3 and 4, we can obtain the

following theorem immediately.
THEOREM 5.1. Let A ∈ GMn(R). Then the following are equivalent:
(1) A is a regular element in GMn(R);
(2) there exist g in G and I in GMn(R), where I is an idempotent element of

GMn(R), such that A = PgI;
(3) there exists an idempotent element I of GMn(R) such that A ∈ GI(R).
The set of all the regular elements in GMn(R) is denoted by Reg(GMn(R)).
THEOREM 5.2. For GMn(R), the following are true:
(1) Reg(GMn(R)) = ∪̇I∈Id(GMn(R))GI(R);
(2) Reg(GMn(R)) = 1 +

∑
V≤D≤G |G|/|D|, where V = 〈SN(R)−1SN(R)〉.
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Proof. (1) By Theorem 5.1, we have Reg(GMn(R)) = ∪I∈Id(GMn(R))GI(R).
If GI1(R) ∩ GI2(R) 6= ∅, there are g and h in G such that PgI1 = PhI2. Then
I1 = Pg−1hI2 ∈ GI2(R), I2 = Pgh−1I1 ∈ GI1(R). Hence, GI1(R) ⊆ GI2(R) and
GI2(R) ⊆ GI1(R). Therefore, GI1(R) = GI2(R). Thus, we have GI1(R)∩GI2(R) = ∅
if and only if I1 = I2. Hence, Reg(GMn(R)) = ∪̇I∈Id(GMn(R))GI(R).

(2) By (1) and Theorem 4.2, we have that |Reg(GMn(R))| =
∑
I∈Id(GMn(R))

|GI(R)| = 1 +
∑
I∈Id(GMn(R)),I 6=Z |GI(R)| = 1 +

∑
V≤D≤G |G|/|D|. That is, (2)

holds.

6. Algorithm and examples.

6.1. LR-classes.
Example 1. Let n = 18, G = Z1 + Z2 + Z3, and R =

∑
g∈SN(R) Pg, where

SN(R) = {(0, 1, 0), (0, 1, 1), (0, 1, 2), (1, 1, 1) (1, 1, 2)}.

Suppose A =
∑

g∈SN(A) Pg, where SN(A) = {(x, y, z) | x = 0, 1; y = 0, 1; z =
0, 1, 2}. Choose g = (0, 2, 0). For D = 〈gSN(R)〉 = 〈(0, 0, 0), (0, 0, 1), (0, 0, 2), (1, 0, 1),
(1, 0, 2)〉 = {(x, 0, z) | x = 0, 1; z = 0, 1, 2}. We have

SN(A) = D ∪̇ (0, 1, 0)D.

By Theorem 2.7, LR(A) = {PgA | g ∈ G}. By calculating,

LR(A) = {A,P(0,1,0)A, P(0,2,0)A}.

Example 2. Let Z, H 6= A ∈ GMn(R). If for every g ∈ G|〈gSN(R)〉| is not a
divisor of |SN(A)|, then LR(A) = {A}.

6.2. Idempotent elements. According to Theorem 3.9, Lemma 3.10, and The-
orem 3.11, we can find all the idempotent elements in GMn(R) for any Z 6= R ∈ GMn.
An algorithm for obtaining all the idempotent elements in GMn(R) is given as follows.

Algorithm. Let Z, H 6= R ∈ GMn(R).
Step 1. Compute V = 〈SN(R)−1SN(R)〉.
Step 2. Compute D satisfying V ≤ D ≤ G, say D1, D2, . . . , Dk.
Step 3. Choose ci = r−1

ti , where rti ∈ SN(R), 1 ≤ ti ≤ l, i = 1, 2, . . . , k.
Step 4. Form all idempotent elements of

Id(GMn(R)) = {Z} ∪

I(ci, Di) =
∑

g∈ciDi

Pg | i = 1, 2, . . . , k

 .

Example 3. Let n = 60, G = Z2 + Z2 + Z15, and SN(R) = {(1, 0, 7), (0, 1, 8)}.
We will determine all the idempotent elements in GMn(R).

Step 1. V = 〈(0, 0, 0), (1, 1, 14), (1, 1, 1)〉 = {(x, x, y) | x = 0, 1; y = 0, 1, . . . , 14}.
Step 2. All the subgroups D of G satisfying V ≤ D are V and G.
Step 3. Choose c1 = (1, 0, 8), c2 = (1, 0, 8).
Step 4. c1V = {(1, 0, x), (0, 1, y) | x, y = 0, 1, 2, . . . , 14} and c2G = G. Hence,

Id(GMn(R)) =

Z,H, ∑
g∈(1,0,8)V

Pg

 .

We obtain exactly V + = 2 nonzero idempotent elements in GMn(R).
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If e ∈ SN(R), according to Theorem 3.4, we can also find out all the nonzero
idempotent elements in GMn(R). This can be demonstrated by the following example.

Example 4. Let n = 50, G = Z5+Z5+Z2, and SN(R) = {(0, y, 0) | y = 0, 1, 2, 3}.
Then, 〈SN(R)〉 = {(0, y, 0) | y = 0, 1, 2, 3, 4}. By calculating, all subgroups D of G
satisfying 〈SN(R)〉 ≤ D are D1, D2, D3, and D4 where

D1 = 〈SN(R)〉, D2 = {(x, y, 0) | x = 0, 1, 2, 3, 4; y = 0, 1, 2, 3, 4},
D3 = {(0, y, z) | y = 0, 1, 2, 3, 4; z = 0, 1}, and D4 = G.

By Theorem 3.4, there exist exactly four nonzero idempotent elements in GMn(R) as
follows:

I1 = P(0,0,0) + P(0,1,0) + P(0,2,0) + P(0,3,0) + P(0,4,0),

I2 =
∑
g∈D2

Pg, I3 =
∑
g∈D3

Pg, I4 = H.

6.3. Maximal subgroups. According to Theorem 4.2, all the maximal sub-
groups of GMn(R) containing a nonzero idempotent element can be determined; con-
sidering GZ(R), there are exactly V + + 1 maximal subgroups in GMn(R), where
V = 〈SN(R)−1SN(R)〉.

Example 5. Let n = 200, G = Z2 + Z4 + Z5 + Z5, and SN(R) = {(1, 0, 0, 0),
(1, 1, 1, 1)}. Then, V = 〈(0, 0, 0, 0), (0, 3, 4, 4), (0, 1, 1, 1)〉 = {(0, x, y, y) | x = 0, 1, 2, 3;
y = 0, 1, 2, 3, 4}. By calculating, we obtain

D1 = V, D2 = {(0, x, y, z) | x = 0, 1, 2, 3; y, z = 0, 1, 2, 3, 4},
D3 = {(x, y, z, z) | x = 0, 1; y = 0, 1, 2, 3; z = 0, 1, 2, 3, 4}, D4 = G.

Choose c = (1, 0, 0, 0). Then

Id(GMn(R)) =

{
Z,H,

3∑
x=0

4∑
y=0

P(1,x,y,y),
3∑

x=0

4∑
y=0

4∑
z=0

P(1,x,y,z),

1∑
x=0

3∑
y=0

4∑
z=0

P(x,y,z,z)

}
.

So there are five maximal subgroups in GMn(R) as follows:

GZ(R) = {Z}, GH(R) = {H},
GI(c,V )(R) = {P(x,0,y,0)I(c, V ) | x = 0, 1; y = 0, 1, 2, 3, 4},
GI(c,D2)(R) = {P(x,0,0,0)I(c,D2) | x = 0, 1},
GI(c,D3)(R) = {P(0,0,0,z)I(c,D3) | z = 0, 1, 2, 3, 4}.

Clearly, GZ(R) ∼= GH(R) = {e}, GI(c,V )(R) ∼= Z2 + Z5, GI(c,D2)(R) ∼= Z2,
GI(c,D3)(R) ∼= Z5.

6.4. Regular elements. According to Theorem 5.2, we can determine all the
regular elements in GMn(R) by computing all the idempotent elements in GMn(R).

Example 6. Let n = 200, G = Z2 + Z4 + Z5 + Z5, and SN(R) = {(1, 0, 0, 0),
(1, 1, 1, 1)}. Then, V = {(0, x, y, y) | x = 0, 1, 2, 3; y = 0, 1, 2, 3, 4}. By Theorem 5.2,

|Reg(GMn(R))| = 1 +
∑

V≤D≤G
|G|/|D|

= 1 + 10 + 2 + 5 + 1 = 19.
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So there exist exactly 19 regular elements in GMn(R) which are the matrices in all
the maximal subgroups GZ(R), GH(R), GI(c,V )(R), GI(c,D2)(R), and GI(c,D3)(R) in
Example 5.

Acknowledgment. The author thanks the referees and Professor George P. H.
Styan for their helpful suggestions to this paper.
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Abstract. New perturbation analyses are presented for the block Cholesky downdating problem
UTU = RTR − XTX. These show how changes in R and X alter the Cholesky factor U . There
are two main cases for the perturbation matrix ∆R in R: (1) ∆R is a general matrix; (2)∆R is
an upper triangular matrix. For both cases, first-order perturbation bounds for the downdated
Cholesky factor U are given using two approaches — a detailed “matrix–vector equation” analysis
which provides tight bounds and resulting true condition numbers, which unfortunately are costly
to compute, and a simpler “matrix equation” analysis which provides results that are weaker but
easier to compute or estimate. The analyses more accurately reflect the sensitivity of the problem
than previous results. As X → 0, the asymptotic values of the new condition numbers for case (1)
have bounds that are independent of κ2(R) if R was found using the standard pivoting strategy in
the Cholesky factorization, and the asymptotic values of the new condition numbers for case (2) are
unity. Simple reasoning shows this last result must be true for the sensitivity of the problem, but
previous condition numbers did not exhibit this.

Key words. perturbation analysis, sensitivity, condition, asymptotic condition, Cholesky fac-
torization, downdating

AMS subject classifications. 15A23, 65F35

PII. S0895479896304113

1. Introduction. Let A ∈ Rn×n be a symmetric positive definite matrix. Then
there exists a unique upper triangular matrix R ∈ Rn×n with positive diagonal ele-
ments such that A = RTR. This factorization is called the Cholesky factorization,
and R is called the Cholesky factor of A (see, for example, [13]).

In this paper we give perturbation analyses of the following problem: given an
upper triangular matrix R ∈ Rn×n and a matrix X ∈ Rk×n such that RTR −XTX
is positive definite, find an upper triangular matrix U ∈ Rn×n with positive diagonal
elements such that

UTU = RTR−XTX.(1.1)

This problem is called the block Cholesky downdating problem, and the matrix U
is referred to as the downdated Cholesky factor. The block Cholesky downdating
problem has many important applications, and it has been extensively studied in the
literature (see [1, 2, 3, 8, 9, 11, 12, 16, 17, 18]).

Perturbation results for the single Cholesky downdating problem (k = 1) were
presented by Stewart [18]. Eldén and Park [10] made an analysis for block downdating.
But these two papers just considered the case that only R or X is perturbed. More
complete analyses, with both R and X being perturbed, were given by Pan [15] and
Sun [20]. Pan [15] gave first-order perturbation bounds for single downdating. Sun [20]
gave strict, also first-order perturbation bounds for single downdating and first-order
perturbation bounds for block downdating.
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The main purpose of this paper is to establish new first-order perturbation results
and present new condition numbers which more closely reflect the true sensitivity of
the problem. In section 2 we will give the key result of Sun [20] and a new result
using the approach of these earlier papers. In section 3 we present new perturbation
results, first by the straightforward matrix equation approach, then by the more
detailed and tighter matrix–vector equation approach. The basic ideas behind these
two approaches were discussed by Chang, Paige, and Stewart [6, 7]. We give numerical
results and suggest practical condition estimators in section 4.

Previous papers implied the change ∆R in R was upper triangular, and Sun [20]
said this, but neither he nor the others made use of this. In fact a backward stable
algorithm for computing U given R and X would produce the exact result Uc =
U + ∆U for nearby data R + ∆R and X + ∆X, where it is not clear that ∆R
would be upper triangular — the form of the equivalent backward error ∆R would
depend on the algorithm, and if it were upper triangular, it would require a rounding
error analysis to show this. Thus, for completeness it seems necessary to consider
two separate cases—upper triangular ∆R and general ∆R. We do this throughout
sections 3 and 4, and get stronger results for upper triangular ∆R than in the general
case.

In any perturbation analysis it is important to examine how good the results
are. In section 3.2 we produce provably tight bounds, leading to the true condition
numbers (for the norms chosen). The numerical example in section 4 indicates how
much better the results of this new analysis can be compared with some earlier ones,
but a theoretical understanding is also desirable. By considering the asymptotic case
as X → 0, the results simplify, and are easily understandable. We show the new
results have the correct properties as X → 0, in contrast to earlier results.

Before proceeding, let us introduce some notation. Let B = (bij) ∈ Rn×n; then
up(B), sut(B), slt(B), and diag(B) are defined by

up(B) ≡


1
2b11 b12 · b1n

0 1
2b22 · b2n

· · · ·
0 0 · 1

2bnn

 ,(1.2)

sut(B) ≡


0 b12 b13 · b1n
0 0 b23 · b2n
· · · · ·
0 · · 0 bn−1,n

0 · · · 0

 , slt(B) ≡ sut(BT )T ,(1.3)

and

diag(B) = diag(b11, b22, . . . , bnn).(1.4)

2. Basics, previous results, and an improvement. Let Γ satisfy ΓTΓ =
In − R−TXTXR−1 (so Γ could be the Cholesky factor of In − R−TXTXR−1), and
let σn(Γ) be the smallest singular value of Γ. Notice that for fixed R, ΓTΓ → In as
X → 0, so σn(Γ)→ 1. First we derive some relationships among U , R, X, and Γ.

1) From (1.1) obviously we have

‖U‖2 ≤ ‖R‖2, ‖X‖2 ≤ ‖R‖2.(2.1)
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2) From (1.1) it follows that

RU−1U−TRT = (In −R−TXTXR−1)−1,

so that taking the 2-norm gives

‖RU−1‖2 =
1

σn(Γ)
.(2.2)

3) From (1.1) we have

U−TXTXU−1 = U−TRTRU−1 − In,

which, combined with (2.2), gives

‖XU−1‖2 =
√
‖RU−1‖22 − 1 =

√
1− σ2

n(Γ)
σn(Γ)

=
√

1− σ2
n(Γ)‖RU−1‖2.(2.3)

4) From (1.1) we have

R−TXTXR−1 = In −R−TUTUR−1,

which, combined with (2.2), gives

‖XR−1‖2 =
√

1− σ2
min(UR−1) =

√
1− 1
‖RU−1‖22

=
√

1− σ2
n(Γ).(2.4)

5) By (2.2) we have

‖R‖2 = ‖RU−1U‖2 ≤ ‖RU−1‖2‖U‖2 =
‖U‖2
σn(Γ)

,(2.5)

‖U−1‖2 = ‖R−1RU−1‖2 ≤ ‖R−1‖2‖RU−1‖2 =
‖R−1‖2
σn(Γ)

.(2.6)

6) Finally, from (2.4) we see

‖X‖2
‖R‖2

≤ ‖XR−1‖2 =
√

1− σ2
n(Γ).(2.7)

The condition number for the single Cholesky downdating problem (k = 1, XT =
x say) suggested by Pan [15] is

β0 ≡ cn ·
√

2κ2(R)
(
κ2(R)‖v‖22
1− ‖v‖22

+ 1
)
,

where
√

2n ≤ cn ≤
√

2n3/2, κ2(R) ≡ ‖R‖2‖R−1‖2, and v ≡ R−Tx ∈ Rn. The
condition number for block downdating proposed by Sun [20] is

β1 ≡
√

2
κ2(U)
σ2
n(Γ)

.

In particular, when k = 1, from (2.4) we see σn(Γ) =
√

1− ‖v‖22, and thus

β1 =
√

2
κ2(U)

1− ‖v‖22
.
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In this case, when ‖v‖ is sufficiently close to zero, β0/cn and β1 are approximately
equal; otherwise it is difficult to assess which one is smaller. But [20] indicated that
numerical tests show in most cases β1 is smaller than β0/cn, and that when κ2(R)� 1
and/or 1− ‖v‖22 ≈ 0, the former is much smaller than the latter.

Now we use a similar approach to Sun’s to derive a new bound for block down-
dating, from which Sun’s bound follows.

To derive first-order perturbation results we consider the perturbed version of
(1.1):

(U + ∆U)T (U + ∆U) = (R+ ∆R)T (R+ ∆R)− (X + ∆X)T (X + ∆X),(2.8)

where U , U + ∆U , and R are upper triangular matrices with positive diagonal ele-
ments. Clearly when ∆R and ∆X are sufficiently small, (2.8) has a unique solution
∆U . Multiplying out the two sides of (2.8) and ignoring second-order terms, we obtain
a linear matrix equation for the first-order approximation ∆̂U to ∆U :

UT ∆̂U + ∆̂U
T
U = RT∆R+ ∆RTR−XT∆X −∆XTX.(2.9)

In fact it is straightforward to show ∆̂U = U̇(0), the rate of change of U(τ) at τ = 0,
where U(τ)TU(τ) ≡ (R + τ∆R)T (R + τ∆R)− (X + τ∆X)T (X + τ∆X), 0 ≤ τ ≤ 1,
so ∆̂U also has a precise meaning. From (2.9) we have

∆̂UU−1 + (∆̂UU−1)T = U−T (RT∆R+ ∆RTR−XT∆X −∆XTX)U−1.

Notice since ∆̂UU−1 is upper triangular, it follows, with (1.2), that

∆̂U = up[U−T (RT∆R+ ∆RTR−XT∆X −∆XTX)U−1]U.(2.10)

But for any symmetric matrix B,

2‖up(B)‖2F = ‖B‖2F −
1
2

(b211 + b222 + · · ·+ b2nn) ≤ ‖B‖2F .

Thus, from (2.10) we have

‖∆̂U‖F ≤
1√
2
‖U−T (RT∆R+ ∆RTR−XT∆X −∆XTX)U−1‖F ‖U‖2

≤
√

2‖U‖2‖U−1‖2(‖RU−1‖2‖∆R‖F + ‖XU−1‖2‖∆X‖F ),

which, combined with (2.2) and (2.3), gives

‖∆̂U‖F ≤
√

2‖U‖2‖U−1‖2
σn(Γ)

(‖∆R‖F +
√

1− σ2
n(Γ)‖∆X‖F ),

resulting in the new perturbation bound for relative changes as

‖∆̂U‖F
‖U‖2

≤
√

2
‖U−1‖2‖R‖2

σn(Γ)
‖∆R‖F
‖R‖2

+
√

2

√
1− σ2

n(Γ)‖U−1‖2‖X‖2
σn(Γ)

‖∆X‖F
‖X‖2

,(2.11)

which leads to the condition numbers for the Cholesky downdating problem:

βR ≡
√

2
‖U−1‖2‖R‖2

σn(Γ)
, βX ≡

√
2

√
1− σ2

n(Γ)‖U−1‖2‖X‖2
σn(Γ)
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for U with respect to relative changes in R and X, respectively. Notice from (2.1)
βR > βX . So we can define a new overall condition number as

β2 ≡ βR =
√

2
‖U−1‖2‖R‖2

σn(Γ)
.(2.12)

Rewriting (2.11) as

‖∆̂U‖F
‖U‖2

≤
√

2
‖U−1‖2‖R‖2

σn(Γ)

(
‖∆R‖F
‖R‖2

+
√

1− σ2
n(Γ)

‖X‖2
‖R‖2

‖∆X‖F
‖X‖2

)
,

and combining it with (2.5) and (2.7), gives Sun’s bound

‖∆̂U‖F
‖U‖2

≤
√

2
κ2(U)
σ2
n(Γ)

(
‖∆R‖F
‖R‖2

+ (1− σ2
n(Γ))

‖∆X‖F
‖X‖2

)
.(2.13)

We have seen the right-hand side of (2.11) is never worse than that of (2.13), so

β2 ≤ β1.(2.14)

When k = 1, we have from (2.12) with σn(Γ) =
√

1− ‖v‖22 and (2.6) that

β2 =
√

2
‖U−1‖2‖R‖2√

1− ‖v‖22
≤
√

2
κ2(R)

1− ‖v‖22
≤
√

2
κ2(R)(1 + (κ2(R)− 1)‖v‖22)

1− ‖v‖22
.

Notice the most right-hand side is just β0/cn, thus

β2 ≤ β0/cn ≤ β0.

Although β2 is a minor improvement on β1, and is also an improvement on β0
when k = 1, it is still not what we want. We can see this from the asymptotic behavior
of these “condition numbers.” The Cholesky factorization is unique, so as X → 0,
U → R, and XT∆X → 0 in (2.9). Now for any upper triangular perturbation
∆R in R, ∆U → ∆R, so the true condition number should approach unity. Here
β1, β2 →

√
2κ2(R). The next section shows how we can overcome this inadequacy.

3. New perturbation results. In section 2 we saw the key to deriving first-
order perturbation bounds for U in the block Cholesky downdating problem is the
equation (2.9). We will now analyze it in two new approaches. The two approaches
have been used in the perturbation analyses of the Cholesky factorization, the QR fac-
torization (see Chang, Paige, and Stewart [6, 7]), and LU factorization (see Chang [4]
and Stewart [19]). The first approach, the refined matrix equation approach, gives a
clear improvement on the previous results, while the second, the matrix–vector equa-
tion approach, gives a further improvement still, which leads to the true condition
numbers for the block Cholesky downdating problem.

3.1. Refined matrix equation analysis. In the last section we used (2.9) to
produce the matrix equation (2.10), and derived the bounds directly from this. We
now look at this approach more closely.

Let Dn be the set of all n × n real positive definite diagonal matrices. For any
D = diag(δ1, . . . , δn) ∈ Dn, let U = DŪ . Note that for any matrix B we have
up(BD−1) = up(B)D−1 and up(D−1B) = D−1up(B).
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First with no restriction on ∆R we have from (2.10)

∆̂U = {up(U−TRT∆RŪ−1) +D−1up(Ū−T∆RTRU−1)D}Ū
− {up(U−TXT∆XŪ−1) +D−1up(Ū−T∆XTXU−1)D}Ū ,

so taking the F-norm gives

‖∆̂U‖F ≤ ‖up(U−TRT∆RŪ−1) +D−1up(Ū−T∆RTRU−1)D‖F ‖Ū‖2
+‖up(U−TXT∆XŪ−1) +D−1up(Ū−T∆XTXU−1)D‖F ‖Ū‖2.

(3.1)

It is easy to show for any B ∈ Rn×n (see Lemma 5.1 in [7])

‖up(B) +D−1up(BT )D‖F ≤
√

1 + ζ2
D‖B‖F ,(3.2)

where

ζD = max
1≤i<j≤n

{δj/δi}.(3.3)

Thus, from (3.1) we have

‖∆̂U‖F ≤
√

1 + ζ2
D(‖U−TRT∆RŪ−1‖F + ‖U−TXT∆XŪ−1‖2)‖Ū‖2

≤
√

1 + ζ2
Dκ2(Ū)(‖RU−1‖2‖∆R‖F + ‖XU−1‖2‖∆X‖F )

=
√

1 + ζ2
D

κ2(Ū)
σn(Γ)

(‖∆R‖F +
√

1− σ2
n(Γ)‖∆X‖F ) (using (2.2), (2.3))

which is an elegant result in the changes alone. It leads to the following perturbation
bound in terms of relative changes:

‖∆̂U‖F
‖U‖2

≤
√

1 + ζ2
D

κ2(D−1U)
σn(Γ)

‖R‖2
‖U‖2

‖∆R‖F
‖R‖2

(3.4)

+
√

1 + ζ2
D

√
1− σ2

n(Γ)
κ2(D−1U)
σn(Γ)

‖X‖2
‖U‖2

‖∆X‖F
‖X‖2

.

Although here it would be simpler to just define an overall condition number, for later
comparisons it is necessary for us to define the following two quantities as condition
numbers for U with respect to relative changes in R and X, respectively (here sub-
script G refers to general ∆R, and later the subscript T will refer to upper triangular
∆R):

cRG(R,X) ≡ inf
D∈Dn

cRG(R,X,D), cX(R,X) ≡ inf
D∈Dn

cX(R,X,D),(3.5)

where

cRG(R,X,D) ≡
√

1 + ζ2
D

κ2(D−1U)
σn(Γ)

‖R‖2
‖U‖2

,(3.6)

cX(R,X,D) ≡
√

1 + ζ2
D

√
1− σ2

n(Γ)
κ2(D−1U)
σn(Γ)

‖X‖2
‖U‖2

.(3.7)

Then an overall condition number can be defined as

cG(R,X) ≡ inf
D∈Dn

cG(R,X,D),(3.8)
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where

cG(R,X,D) ≡ max{cRG(R,X,D), cX(R,X,D)} = cRG(R,X,D).

Obviously we have

cG(R,X) = cRG(R,X) ≥ cX(R,X).(3.9)

Thus, with these, we have from (3.4) that

‖∆̂U‖F
‖U‖2

≤ cRG(R,X)
‖∆R‖2
‖R‖2

+ cX(R,X)
‖∆X‖F
‖X‖2

(3.10)

≤ cG(R,X)
(
‖∆R‖F
‖R‖2

+
‖∆X‖F
‖X‖2

)
.

Clearly if we take D = In, (3.4) will become (2.11), and

cRG(R,X) ≤ cRG(R,X, In) = βR, cX(R,X) ≤ cX(R,X, In) = βX ,

cG(R,X) ≤ cG(R,X, In) = β2.(3.11)

It is not difficult to give an example to show β2 can be arbitrarily larger than cG(R,X),
as can be seen from the following asymptotic behavior.

If X → 0 we saw U → R and σn(Γ)→ 1, so

cG(R,X,D)→
√

1 + ζ2
Dκ2(D−1R).

It is shown in [7, sect. 5.1, (5.14)] that with an appropriate choice of D,√
1 + ζ2

Dκ2(D−1R) has a bound which is a function of n only, if R was found us-
ing the standard pivoting strategy in the Cholesky factorization, and in this case, we
see the condition number cG(R,X) of the problem here is bounded independently of
κ2(R) as X → 0, for general ∆R. At the end of this section we give an even stronger
result when X → 0 for the case of upper triangular ∆R. Note in the case here that β2
in (2.12) can be made as large as we like, and thus arbitrarily larger than cG(R,X).

In the case where ∆R is upper triangular , we can refine the analysis further. From
(2.10) we have

∆̂U = [up(U−TRT∆RU−1 + U−T∆RTRU−1)(3.12)
− up(U−TXT∆XU−1 + U−T∆XTXU−1)]U.

Notice with (1.3) and (1.4)

U−TRT∆RU−1 + U−T∆RTRU−1

= [slt(U−TRT ) + diag(U−TRT )]∆RU−1

+ U−T∆RT [sut(RU−1) + diag(RU−1)]
= diag(U−TRT ) ·∆RU−1 + U−T∆RT · diag(RU−1)(3.13)

+ slt(U−TRT ) ·∆RU−1 + U−T∆RT · sut(RU−1).

But for any upper triangular matrix T we have

up(T ) + up(TT ) = T,
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so that if we define T ≡ diag(U−TRT ) ·∆RU−1, then

up[diag(U−TRT ) ·∆RU−1 + U−T∆RT · diag(RU−1)](3.14)
= diag(U−TRT ) ·∆RU−1.

Thus, from (3.12), (3.13), and (3.14) we obtain

∆̂U(3.15)
= diag(U−TRT ) ·∆R+ {up[slt(U−TRT ) ·∆RU−1 + U−T∆RT · sut(RU−1)]
− up(U−TXT∆XU−1 + U−T∆XTXU−1)}U.

As before, let U = DŪ , where D = diag(δ1, . . . , δn) ∈ Dn. From (3.15) it follows that

‖∆̂U‖F ≤ ‖diag(U−TRT )‖2‖∆R‖F
+ ‖up[slt(U−TRT ) ·∆RŪ−1] +D−1up[Ū−T∆RT · sut(RU−1)]D‖F ‖Ū‖2
+ ‖up(U−TXT∆XŪ−1) +D−1up(Ū−T∆XTXU−1)D‖F ‖Ū‖2.

Then, applying (3.2) to this, we get the following perturbation bound:

‖∆̂U‖F
‖U‖2

≤
(
‖diag(RU−1)‖2 +

√
1 + ζ2

Dκ2(D−1U)‖sut(RU−1)‖2
)‖R‖2
‖U‖2

‖∆R‖F
‖R‖2

+
√

1 + ζ2
Dκ2(D−1U)‖XU−1‖2

‖X‖2
‖U‖2

‖∆X‖F
‖X‖2

.(3.16)

Comparing (3.16) with (3.4) and noticing (2.3), we see (trivially) the sensitivity of U
with respect to changes in X does not change, so cX(R,X) defined in (3.5) can still
be regarded as a condition number for U with respect to changes in X. But we now
need to define a new condition number for U with respect to upper triangular changes
in R, that is (subscript T indicates upper triangular ∆R),

cRT (R,X) ≡ inf
D∈Dn

cRT (R,X,D),

where

cRT (R,X,D) ≡
(
‖diag(RU−1)‖2 +

√
1 + ζ2

Dκ2(D−1U)‖sut(RU−1)‖2
)
‖R‖2
‖U‖2

.(3.17)

Thus, an overall condition number can be defined as

cT (R,X) = inf
D∈Dn

cT (R,X,D),

where

cT (R,X,D) = max{cRT (R,X,D), cX(R,X,D)}.

Obviously we have

cT (R,X) = max{cRT (R,X), cX(R,X)}.(3.18)

With these we have from (3.16) that

‖∆̂U‖F
‖U‖2

≤ cRT (R,X)
‖∆R‖F
‖R‖2

+ cX(R,X)
‖∆X‖F
‖X‖2

(3.19)

≤ cT (R,X)
(
‖∆R‖F
‖R‖2

+
‖∆X‖F
‖X‖2

)
.
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What is the relationship between cT (R,X) and cG(R,X) = cRG(R,X)? For any
n× n upper triangular matrix T = (tij), observe the following two facts:

1) tii, i = 1, 2, . . . , n are the eigenvalues of T , so that

|tii| ≤ ‖T‖2,

which gives

‖diag(T )‖2 ≤ ‖T‖2.

2) ‖sut(T )‖2 ≤ ‖sut(T )‖F ≤ ‖T‖F ≤
√
n‖T‖2.

(Note: In fact we can prove a slightly sharper inequality ‖sut(T )‖2 ≤
√
n− 1‖T‖2).

Therefore,

cRT (R,X,D) =
(
‖diag(RU−1)‖2 +

√
1 + ζ2

Dκ2(D−1U)‖sut(RU−1)‖2
)‖R‖2
‖U‖2

≤
(
‖RU−1‖2 +

√
n
√

1 + ζ2
Dκ2(D−1U)‖RU−1‖2

)‖R‖2
‖U‖2

< (1 +
√
n)
√

1 + ζ2
Dκ2(D−1U)‖RU−1‖2

‖R‖2
‖U‖2

= (1 +
√
n)
√

1 + ζ2
D

κ2(D−1U)
σn(Γ)

‖R‖2
‖U‖2

(using (2.2))

= (1 +
√
n)cRG(R,X,D),

so that

cRT (R,X) ≤ (1 +
√
n)cRG(R,X).

Thus, we have from (3.9) and (3.18)

cT (R,X) ≤ (1 +
√
n)cG(R,X).(3.20)

On the other hand, cT (R,X) can be arbitrarily smaller than cG(R,X). This can be
seen from the asymptotic behavior, which is important in its own right. As X → 0,
since U → R, σn(Γ)→ 1, and RU−1 → In, we have

cT (R,X, In)→ 1,

so for upper triangular changes in R, whether pivoting was used in finding R or not,

cT (R,X)→ 1.

Thus, when X → 0, the bound in (3.19) reflects the true sensitivity of the problem.
For the case of general ∆R, if we do not use pivoting it is straightforward to make
cG(R,X) in (3.8) arbitrarily large even with X = 0; see (3.6).

3.2. Matrix–vector equation analysis. In the last section, based on the struc-
ture of ∆R, we gave two perturbation bounds using the so-called refined matrix equa-
tion approach. Also based on the structure of ∆R, we can now obtain provably sharp
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but less intuitive results by viewing the matrix equation (2.9) as a large matrix–vector
equation. For any matrix C ≡ (cij) ≡ [c1, . . . , cn] ∈ Rn×n, denote by c

(i)
j the vector

of the first i elements of cj . With this, we define (“u” denotes “upper”)

uvec(C) ≡


c
(1)
1

c
(2)
2
.

c
(n)
n

 .

It is the vector formed by stacking the columns of the upper triangular part of C into
one long vector.

First assume ∆R is a general real n × n matrix. It is easy to show (2.9) can be
rewritten into the following matrix–vector form (cf. [7]):

WUuvec(∆̂U) = ZRvec(∆R)− YXvec(∆X),(3.21)

where WU ∈ R
n(n+1)

2 ×n(n+1)
2 is

u11
u12 u11

u12 u22
u13 u11

u13 u23 u12 u22
u13 u23 u33

· · · · · · ·
u1n u11

u1n u2n u12 u22
u1n u2n u3n u13 u23 u33

· · · · ·
u1n u2n u3n · unn



,

ZR ∈ R
n(n+1)

2 ×n2
is

r11

r12 r22 r11
r12 r22

· · · · · · ·
r1n r2n · rnn r11

r1n r2n · rnn r12 r22
· · · ·
r1n r2n · rnn


,

and YX ∈ R
n(n+1)

2 ×kn is

x11 x21 · xk1

x12 x22 · xk2 x11 x21 · xk1
x12 x22 · xk2

· · · · · · · · ·
x1n x2n · xkn x11 x21 · xk1

x1n x2n · xkn x12 x22 · xkn
· · · · ·
x1n x2n · xnn


.



PERTURBATION ANALYSES FOR CHOLESKY DOWNDATING 439

Since U is nonsingular, WU is also, and from (3.21)

uvec(∆̂U) = W−1
U ZRvec(∆R)−W−1

U YXvec(∆X),(3.22)

so taking the 2-norm gives

‖∆̂U‖F ≤ ‖W−1
U ZR‖2‖∆R‖F + ‖W−1

U YX‖2‖∆X‖F ,

resulting in the following perturbation bound:

‖∆̂U‖F
‖U‖2

≤ κRG(R,X)
‖∆R‖F
‖R‖2

+ κX(R,X)
‖∆X‖F
‖X‖2

(3.23)

≤ κCDG(R,X)
(
‖∆R‖F
‖R‖2

+
‖∆X‖F
‖X‖2

)
,

where

κRG(R,X) ≡ ‖W
−1
U ZR‖2‖R‖2
‖U‖2

, κX(R,X) ≡ ‖W
−1
U YX‖2‖X‖2
‖U‖2

,(3.24)

κCDG(R,X) ≡ max{κRG(R,X), κX(R,X)}.(3.25)

Now we would like to show

κRG(R,X) ≤ cRG(R,X), κX(R,X) ≤ cX(R,X).(3.26)

Before showing this, we will prove a more general result. Suppose from (2.9) we are
able to obtain a perturbation bound of the form

‖∆̂U‖F
‖U‖2

≤ αR
‖∆R‖F
‖R‖2

+ αX
‖∆X‖F
‖X‖2

,(3.27)

where αR and αX , two functions of R and X, are other measures of the sensitivity of
the Cholesky downdating problem with respect to changes in R and X. Let ∆X = 0.
Then from (3.22) and (3.27) we have

‖W−1
U ZRvec(∆R)‖2
‖U‖2

≤ αR
‖∆R‖F
‖R‖2

.

Notice ∆R can be any (sufficiently small) n× n real matrix, so we must have

‖W−1
U ZR‖2 ≤ αR

‖U‖2
‖R‖2

,

which gives

κRG(R,X) ≤ αR.

Similarly, we can show

κX(R,X) ≤ αX .

Notice since (3.10) is a particular case of (3.27), (3.26) follows. Thus, we have from
(3.9) and (3.25)

κCDG(R,X) ≤ cG(R,X).(3.28)
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The above analysis shows for general ∆R, κRG(R,X) and κX(R,X) are optimal
measures of the sensitivity of U with respect to changes in R and X, respectively, and
thus the bound (3.23) is optimal. So we propose κRG(R,X) and κX(R,X) as the true
condition numbers for U with respect to general changes in R and X, respectively,
and κCDG(R,X) as the true overall condition number of the problem in this case.

It is easy to observe that if X → 0, κCDG(R,X) → ‖W−1
R ZR‖2, where WR is

just WU with each entry uij replaced by rij . If R was found using the standard
pivoting strategy in the Cholesky factorization, then ‖W−1

R ZR‖2 has a bound which
is a function of n alone (see [5] for a proof). So in this case our condition number
κCDG(R,X) also has a bound which is a function of n alone as X → 0.

Remark 1. Our numerical experiments suggest cG(R,X) is usually a good approx-
imation to κCDG(R,X). But the following example shows cG(R,X) can sometimes be
arbitrarily larger than κCDG(R,X):

R =


2 1 0 0
0 1 0 0
0 0 ε3 0
0 0 0 ε2

 , X =
( √

3 2/
√

3 0 0
0

√
2/3− ε2 0 0

)
, U = diag(1, ε, ε3, ε2),

where ε is a small positive number. It is not difficult to show

cG(R,X) = O

(
1
ε2

)
, κCDG(R,X) = O

(
1
ε

)
.

But cG(R,X) has an advantage over κCDG(R,X) — it can be quite easy to estimate
— all we need do is choose a suitable D in cG(R,X,D). We consider how to do this
in the next section. In contrast κCDG(R,X) is, as far as we can see, unreasonably
expensive to compute or estimate.

Now we consider the case where ∆R is upper triangular. Equation (2.9) can now
be rewritten as the following matrix–vector form:

WUuvec(∆̂U) = WRuvec(∆R)− YXvec(∆X),(3.29)

where WU ∈ R
n(n+1)

2 ×n(n+1)
2 and YX ∈ R

n(n+1)
2 ×kn are defined as before, and WR ∈

Rn(n+1)
2 ×n(n+1)

2 is just WU with each entry uij replaced by rij . Since U is nonsingular,
WU is also, and from (3.29)

uvec(∆̂U) = W−1
U WRuvec(∆R)−W−1

U YXvec(∆X),

so taking the 2-norm gives

‖∆̂U‖F ≤ ‖W−1
U WR‖2‖∆R‖F + ‖W−1

U YX‖2‖∆X‖F ,
which leads to the following perturbation bound:

‖∆̂U‖F
‖U‖2

≤ κRT (R,X)
‖∆R‖F
‖R‖2

+ κX(R,X)
‖∆X‖F
‖X‖2

(3.30)

≤ κCDT (R,X)
(
‖∆R‖F
‖R‖2

+
‖∆X‖F
‖X‖2

)
,

where

κRT (R,X) ≡ ‖W
−1
U WR‖2‖R‖2
‖U‖2

, κX(R,X) ≡ ‖W
−1
U YX‖2‖X‖2
‖U‖2

,

κCDT (R,X) ≡ max{κRT (R,X), κX(R,X)}.(3.31)

Note κX(R,X) is the same as that defined in (3.24).
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As before, we can show that for the case where ∆R is upper triangular, κRT (R,X)
and κX(R,X) are optimal measures of the sensitivity of U with respect to changes in
R and X, respectively, and thus the bound (3.30) is optimal. In particular, we have

κRT (R,X) ≤ cRG(R,X), cRT (R,X), κRG(R,X); κX(R,X) ≤ cX(R,X).

In fact κRT (R,X) ≤ κRG(R,X) can also be proved directly by the fact that the
columns of WR form a proper subset of the columns of ZR, and the second inequality
has been proved before. Thus, we have from (3.9), (3.18), (3.25), and (3.31)

κCDT (R,X) ≤ cG(R,X), cT (R,X), κCDG(R,X).(3.32)

By the above analysis, we propose κRT (R,X) and κX(R,X) as the true condition
numbers for U with respect to changes in R and X, respectively, and κCDT (R,X) as
the true overall condition number, in the case that ∆R is upper triangular.

If as well X → 0, then since U → R, W−1
U WR → In(n+1)

2
, and κCDT (R,X) → 1.

So in this case the Cholesky downdating problem becomes very well conditioned no
matter how ill conditioned R or U is.

Remark 2. Numerical experiments also suggest cT (R,X) is usually a good ap-
proximation to κCDT (R,X). But sometimes cT (R,X) can be arbitrarily larger than
κCDT (R,X). This can also be seen from the example in Remark 1. In fact, it is not
difficult to obtain

cT (R,X) = O

(
1
ε2

)
, κCDT (R,X) = O

(
1
ε

)
.

Like κCDG(R,X), κCDT (R,X) is difficult to compute or estimate. But cT (R,X) is
easy to estimate, which is discussed in the next section.

4. Numerical tests and condition estimators. In section 3 we presented
new first-order perturbation bounds for the downdated Cholesky factor U using first
the refined matrix equation approach, and then the matrix–vector equation approach.
We defined κCDG(R,X) for general ∆R, and κCDT (R,X) for upper triangular ∆R, as
the true overall condition numbers of the problem. Also we gave two corresponding
practical but weaker condition numbers cG(R,X) and cT (R,X) for the two ∆R cases.

We would like to choose D such that cG(R,X,D) and cT (R,X,D) are good ap-
proximations to cG(R,X) and cT (R,X), respectively. We see from (3.6), (3.7), and
(3.17) that we want to find D such that

√
1 + ζ2

Dκ2(D−1U) approximates its infimum.
By a well-known result of van der Sluis [21], κ2(D−1U) will be nearly minimal when
the rows of D−1U are equilibrated. But this could lead to a large ζD. So a reasonable
compromise is to choose D to equilibrate U as far as possible while keeping ζD ≤ 1.
Specifically, take ζ1 =

√∑n
j=1 u

2
1j , ζi =

√∑n
j=i u

2
ij if

√∑n
j=i u

2
ij ≤ ζi−1 otherwise

ζi = ζi−1, for i = 2, . . . , n. Then we use a standard condition estimator to estimate
κ2(D−1U) in O(n2) operations.

Notice from (2.4) we have σn(Γ) =
√

1− ‖XR−1‖22. Usually k, the number of
rows of X, is much smaller than n, so σn(Γ) can be computed in O(n2). If k is not
much smaller than n, then we use a standard norm estimator to estimate ‖XR−1‖2
in O(n2). Similarly ‖U‖2 and ‖R‖2 can be estimated in O(n2). So finally cG(R,X,D)
can be estimated in O(n2). Estimating cT (R,X,D) is not as easy as estimating
cG(R,X,D). The part ‖diag(RU−1)‖2 in cRT (R,X,D) can easily be computed in
O(n), since diag(RU−1) = diag(r11/u11, . . . , rnn/unn). The part ‖sut(RU−1)‖2 in
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TABLE 4.1.

τ τ1 τ2 τ3 τ4 τ5 τ6

‖XR−1‖2 0.99999 0.999 0.9 0.09 0.0009 0.000009
β1 2.25e+10 2.25e+07 2.60e+04 2.72e+03 2.69e+03 2.69e+03
β2 1.01e+08 1.01e+06 1.14e+04 2.71e+03 2.69e+03 2.69e+03

cG(R,X,D) 3.60e+03 3.61e+02 3.79e+01 1.79e+01 1.78e+01 1.78e+01
κCDG(R,X) 1.66e+03 1.66e+02 1.71e+01 8.42e+00 8.41e+00 8.41e+00
cT (R,X,D) 2.12e+03 2.12e+02 1.79e+01 1.07e+00 1.00e+00 1.00e+00
κCDT (R,X) 2.43e+02 2.43e+01 2.44e+00 1.01e+00 1.00e+00 1.00e+00

cRT (R,X,D) can roughly be estimated in O(n2), based on

1√
n− 1

‖sut(RU−1)‖F ≤ ‖sut(RU−1)‖2 ≤ ‖sut(RU−1)‖F ,

‖sut(RU−1)‖F =
√
‖RU−1‖2F − ‖diag(RU−1)‖2F ,

and the fact that ‖RU−1‖F can be estimated by a standard norm estimator in O(n2).
The value of ‖XU−1‖2 in cX(R,X,D) can be calculated (if k � n) or estimated
by a standard estimator in O(n2). All the remaining values ‖R‖2, ‖X‖2, and ‖U‖2
can also be estimated by a standard norm estimator in O(n2). Hence cRT (R,X,D),
cX(R,X,D), and thus cT (R,X,D) can be estimated in O(n2). For standard condition
estimators and norm estimators, see Chapter 14 of [14].

The relationships among the various overall condition numbers for the Cholesky
downdating problem presented in sections 2 and 3 are as follows (see (2.14), (3.11),
(3.28), (3.32), and (3.20)):

β1 ≥ β2 ≥ cG(R,X) ≥ κCDG(R,X) ≥ κCDT (R,X),
(1 +

√
n)cG(R,X) ≥ cT (R,X) ≥ κCDT (R,X).

Now we give one numerical example to illustrate these. The example, quoted from
Sun [20], is as follows:

R = diag(1, s, s2, s3, s4)


1 −c −c −c −c
0 1 −c −c −c
0 0 1 −c −c
0 0 0 1 −c
0 0 0 0 1

 , XT = τ


0.240
−0.899

0.899
1.560
2.390

 ,

where c = 0.95, s =
√

1− c2. The results obtained using MATLAB are shown in Table
4.1 for various values of τ :

τ1 = 1.004015006005433e− 2, τ2 = 1.003021021209640e− 2,
τ3 = 9.036225416303058e− 3,

and τ4 = τ3 · e− 01, τ5 = τ3 · e− 03, τ6 = τ3 · e− 5.
Note in Table 4.1 how β1 and β2 can be far worse than the true condition num-

bers κCDG(R,X) and κCDT (R,X), although β2 is not as bad as β1. Also we ob-
serve that cG(R,X,D) and cT (R,X,D) are very good approximations to κCDG(R,X)
and κCDT (R,X), respectively. When X become small, all of the condition numbers
decrease. The asymptotic behavior of cG(R,X,D), cT (R,X,D), κCDG(R,X), and
κCDT (R,X) coincides with our theoretical results — when X → 0, cG(R,X) and
κCDG(R,X) will be bounded in terms of n since here R corresponds to the Cholesky
factor of a correctly pivoted A, and cT (R,X), κCDT (R,X)→ 1.
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Abstract. A close look is taken at the single-input eigenvalue assignment methods. Several
previously known backward stable QR algorithms are tied together in a common framework of which
each is a special case, and their connection to an explicit expression for the feedback vector is
exposed. A simple new algorithm is presented and its backward stability is established by round-
off error analysis. The differences between this new algorithm and the other QR algorithms are
discussed. Also, the round-off error analysis of a simple recursive algorithm for the problem [B. N.
Datta, IEEE Trans. Automat. Control, AC-32 (1987), pp. 414–417] is presented. The analysis shows
that the latter is reliable, and the reliability can be determined during the execution of the algorithm
rather cheaply. Finally, some numerical experiments comparing some of the methods are reported.
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1. Introduction. Given a controllable pair of matrices (A,B) and a set Ω =
{λ1, ..., λn}, closed under complex conjugation, the well-known eigenvalue assignment
problem in control theory is the problem of finding a matrix F such that A+BF has
the spectrum Ω (see Chen [11], Kailath [24], Szidarovszky and Bahill [38]).

Because of its importance, the problem has been very well studied in both math-
ematics and control literatures. Many methods exist: single-input and multi-input
(Arnold and Datta [3], Bhattacharyya and DeSouza [4], Bru, Mas, and Urbano [8],
Bru, Cerdan, and Urbano [9], Datta [17], Miminis and Paige [27, 29], Patel and
Misra [32], Petkov, Christov, and Konstantinov [33, 34], Tsui [37], Varga [40]); robust
eigenvalue assignment (Kautsky, Nichols, and Van Dooren [25]); partial eigenvalue
assignment (Datta and Saad [23], Saad [35]); parallel algorithms (Arnold [2], Bru,
Cerdan, Fernandez de Cordoba, and Urbano [10], Datta [20], Datta [19], Coutinho,
Bhaya, and Datta [15], Datta and Datta [18],); and methods for second-order systems
(Datta, Elhay, and Ram [22], Chu and Datta [12]). The backward stability of some
of these algorithms have been established by round-off error analysis (Cox and Moss
[13, 14], Miminis and Paige [29]).

We take another look at the single-input methods in this paper.
In theory all the single-input algorithms produce the same solution (see Wonham

[42]). It is therefore natural to explore the relationships between these methods. We
relate the QR methods of Miminis and Paige [27], Patel and Misra [32], and Petkov,
Christov, and Konstantinov [34] under one umbrella and then relate the recursive
algorithm of Datta [17] to these results. Specifically, we prove a result that shows
that all these methods are connected by a simple property of QR iteration and the
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explicit closed form solution of the single-input eigenvalue assignment problem that
can be obtained easily from the recursive algorithm.

These results do not seem to have appeared in the literature before. The re-
lationship allows us to present the QR algorithms in a unified framework through
RQ factorizations of deflated matrices at each step. The unified RQ reformulations of
these algorithms are easier to understand and implement than the original algorithms.

We also present a new algorithm based on the RQ formulation of the single-input
recursive algorithm. We show how this new algorithm differs from other QR algo-
rithms, and establish backward numerical stability of the algorithm through round-off
error analysis. In the course of proving backward stability of this algorithm, we prove
that any single-input eigenvalue assignment algorithm can be made to be backward
stable if it is backward stable for the controller-Hessenberg form.

Finally, we present a detailed round-off error analysis of the single-input recursive
algorithm, which is most efficient, and almost trivial to implement, but is numerically
suspect. Our forward analysis cannot speak to the stability of the method, but the
method is reliable in the sense that we can get an indication, as the method is executed,
when the results are suspect, and the indication can be obtained rather cheaply.

The organization of this paper is as follows:
In section 2 we present a unified RQ reformation of the three QR methods.
In section 3 we establish a relationship between these QR methods and the re-

cursive algorithm.
In section 4 we present a new RQ-based algorithm and discuss the differences of

this new algorithm with the others.
In section 5 we present the round-off analyses of the proposed algorithm and that

of the recursive algorithm.
Finally, in section 6 we present some numerical experiments comparing some of

the methods.

2. Hessenberg eigenvalue assignment. The methods to be discussed in this
section have the following basic structure: the pair (A, b) is first transformed to a
controller-Hessenberg form; the desired feedback is then computed for the reduced
problem, and finally the solution to the original problem is retrieved from the solution
of the reduced problem. The pair (H, r) is in controller-Hessenberg form if H is an
upper Hessenberg matrix and r is a multiple of e1, the first column of the identity
matrix. If r is nonzero and H is unreduced (i.e., hi+1,i 6= 0, i = 1, 2, . . . , n− 1), then
the system is controllable. The above can be summarized in the following algorithm
template.

Algorithm 2.1. A general single-input algorithm.
Input: A ∈ Rn×n, b ∈ Rn, and Ω = {λ1, λ2, . . . , λn}
Output: f ∈ Rn such that λ(A− bf t) = Ω

Step 1 Reduce the pair (A, b) to controller-Hessenberg form
(H,βe1) = (PAP t, P b)

Step 2 Compute k ∈ Rn such that λ(H − βe1k
t) = Ω

Step 3 Compute f = P tk
If in Step 1 it is decided that the system is uncontrollable (i.e., if H is reduced

or β = 0) and if those eigenvalues of A which cannot be moved (called uncontrollable
modes) do not belong to Ω, then we must stop with failure: Ω is unassignable. If the
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uncontrollable modes are contained in Ω, then we go to Step 2 with the controllable
part of H and the subset of Ω that remains to be assigned. Since Ω is closed with
respect to complex conjugation, then f will be real.

We note here that the (orthogonal) matrix P determined by the reduction must
be saved for use in Step 3. Also note that Steps 1 and 3 are individually backward
stable operations (see, e.g., [41, pp. 110–160]). We will show in section 5 that a
method that is backward stable for Hessenberg eigenvalue assignment problem (Step
2) will be backward stable overall.

Remarks. Several remarks on Algorithm 2.1 are in order.
First, the reduction to controller-Hessenberg form can be achieved in a numeri-

cally stable way using a staircase algorithm (see, Boley [7], Paige [31], and Van Dooren
and Verhaegen [39]).

Second, Step 1 and Step 3 are the same in all the eigenvalue assignment methods
to be discussed in this paper.

The different algorithms differ in the way Step 2 is implemented. We will present
below the RQ formulation of several QR-based algorithms, and a recursive algorithm
to implement Step 2. We will then present a new algorithm based on the RQ for-
mulation of the recursive algorithm, thus presenting a link between these apparently
different algorithms.

Third, in section 5, we will prove that if Step 2 is implemented in a numerically
stable way, then the overall algorithm will be numerically stable, thus reproving the
numerical stability of several known QR-based algorithms and proving that of the
new algorithm. The definition of stability used here is that of Stewart [36].

2.1. The method of Miminis and Paige [27]. The basic idea of the method
is to apply the QR algorithm with ultimate shifts to the matrix (with unknown
first row) (H − βe1k

t). If for simplicity we assume that the closed-loop eigenval-
ues are all real, then the method consists of n deflation steps and a “backward
sweep.” Each deflation step can be thought of as an RQ factorization of the ma-
trix (Hi − βie1k

t
i − λiI). However, since ki is unknown, the process is not quite so

straightforward. We first compute Qi such that (Hi − λiI)Qti = Ri is upper triangu-
lar. Then Ui = (Hi − βie1k

t
i − λiI)Qti must also be upper triangular, and we want to

choose ki such that Ui is singular. Now since Hi is unreduced, the only way that Ui
can be singular is if Uie1 = 0, that is, if u(i)

11 ≡ et1Uie1 = 0. Write Qi =
[
yti
Q̃i

]
. Then

0 = Uie1 = (Hi − βie1k
t
i − λiI)yi,

or

βik
t
iyi = et1(Hi − λiI)yi = r

(i)
11 .(2.1)

This is a key relation in the method, but it does not allow us to compute ki, so we
continue. To complete the RQ step we premultiply by Qi and add back the λi to get

Qi(Hi − βie1k
t
i)Q

t
i =

[
λi ∗
0 Q̃i(Hi − βie1k

t
i)Q̃

t
i

]
.

Now if we define Hi+1 = Q̃iHiQ̃
t
i, βi+1 = q

(i)
21 βi, and ki+1 = Q̃iki, then the ith

deflation step is complete; Hi+1 is unreduced, βi+1 is nonzero, and we can continue
with the controllable pair (Hi+1, βi+1e1) and the unknown feedback vector ki+1 of
dimension one less than that of ki.
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At the final deflation step we have Hn−βne1k
t
n ∈ R1×1, i.e., kn = (Hn−λnI)/βn

is a real number.
The backward sweep consists of computing kn−1, kn−2, . . . , k1 = k using the rela-

tions

ki+1 = Q̃iki(2.2)

and from (2.1)

ytiki = r
(i)
11 /βi.(2.3)

Combining these equations we have

ki = Qti

(
r

(i)
11 /βi
ki+1

)
, i = n− 1, n− 2, . . . , 1.(2.4)

We summarize the preceding discussion as an algorithm.
Algorithm 2.2. The RQ formulation of single-input algorithm of

Miminis and Paige.
Input: H, an unreduced n× n Hessenberg matrix, β 6= 0,

and Ω = {λ1, λ2, . . . , λn}
Output: k such that λ(H − βe1k

t) = Ω

Step 1 Set H1 = H, and β1 = β
For i = 1, 2, . . . , n− 1 do

Compute (Hi − λiI)Qti = Ri, the RQ factorization of (Hi − λiI)
Compute τi = r

(i)
11 /βi and βi+1 = q

(i)
21 βi

Compute Hi+1, where QiRi + λiI =
[
∗ ∗
0 Hi+1

]
End

Step 2 Compute kn = (Hn − λn)/βn
For i = n− 1, n− 2, . . . , 1 do

Compute ki = Qti

(
τi
ki+1

)
End

Flop count: When implemented with implicit double steps, this algorithm takes
about 5

6n
3 flops. Combined with the 5

3n
3 flops required for the controller-Hessenberg

reduction, the total flop count is about 5
2n

3.

2.2. The method of Petkov, Christov, and Konstantinov [34]. This meth-
od, like the Miminis–Paige method, is based on an ultimately shifted RQ step with
immediate deflation. The only real difference between the two methods is how the
matrices Qi are computed. In fact, we will show by the end of this section that the Qi
obtained by these methods are essentially the same throughout the entire deflation
sequence. We will devote a major portion of this section to an analysis of the RQ
factorization (and therefore the deflation step) in the method of Petkov, Christov,
and Konstantinov.

If λ is an eigenvalue of the Hessenberg matrix (H − βe1k
t), then there exists v 6= 0

such that

(H − λI)v = βe1k
tv.(2.5)
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Now partition (H − λI) and v as

(H − λI) =
[
∗ ∗
T c

]
and v =

[
ṽ
vk

]
,

where T ∈ Rn−1×n−1 is upper triangular. Then from (2.5) we have [T c]v = 0, or

T ṽ = −vkc.

Since H is unreduced, T is nonsingular and vk is nonzero; so if we fix vk 6= 0, we can
compute v by back substitution. We now have an eigenvalue/eigenvector pair (λ, v)
of the matrix (H − βe1k

t), and if we can compute an orthogonal matrix Q such that
Qv = αe1 and Q(H − λI)Qt is a Hessenberg matrix, then

0 = (H − βe1k
t − λI)v = (H − βe1k

t − λI)αQte1,

or

(H − λI)Qte1 = β(ktQte1)e1.(2.6)

If we now write Q =
[
yt

Q̃

]
, then (2.6) yields

βkty = et1(H − λI)y.

Inserting subscripts and continuing in the fashion of the last section, we see that

Qi(Hi − βie1k
t
i)Q

t
i =

[
λi ∗
0 Q̃i(Hi − βie1k

t
i)Q̃

t
i

]
.

Define Hi+1 = Q̃iHiQ̃
t
i, βi+1 = q

(i)
21 βi, and ki+1 = Q̃iki. If Qi is unreduced, then Hi+1

is also unreduced, βi is nonzero, and therefore the pair (Hi+1, βi+1e1) is controllable.
This is entirely the same situation as in the method of Miminis and Paige, and as
such we can use the same backward sweep to recover k = k1.

We have not yet explained how to compute an orthogonal matrix Q such that
Qv = αe1 and Q(H − λI)Qt is a Hessenberg matrix; the following lemma illustrates
the construction.

LEMMA 2.1. Let Hv = λv, where H is an unreduced upper Hessenberg matrix. Let
the Givens rotations Jk in the k and (k + 1)st planes be such that JiJi+1 · · ·Jn−1v =
(xti, αi, 0)t for i = n− 1, n− 2, . . . , 1, where xi ∈ Ri−1×1 and αi ∈ R. Then

(H − λI)J tn−1J
t
n−2 · · ·J t1 = R(2.7)

is upper triangular.
Proof. Define Mi = (H − λI)J tn−1J

t
n−2 · · ·J ti and suppose that

Mi =

 ki ∗ ∗
0 yti ∗
0 0 Ri

 ,
where yi ∈ R2×1, Ri ∈ Rn−i×n−i is upper triangular, and

[
ki
0
∗
yti

]
is an unreduced

upper Hessenberg matrix of order i. We will show that
[
ki−1

0
∗

yti−1

]
is also an unreduced
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upper Hessenberg matrix and that Ri−1 is upper triangular. Thus, by induction we
will have (2.7). Now

MiJ
t
i−1 =

 ki ∗ ∗
0 ȳti ∗
0 0 Ri

 ,
and since (H − λI)v = 0 we must have that

0 = Mi−1(Ji−1Ji · · ·Jn−1v) = Mi−1

 xi−1
αi−1

0

 .

Therefore, ȳti must be of the form ȳti = (0, y) ∈ R1×2, with

Mi−1 =

 ki−1 ∗ ∗
0 yti−1 ∗
0 0 Ri−1

 ,
Ri−1 upper triangular, and [

ki−1 ∗
0 yti−1

]
unreduced upper Hessenberg. This completes the induction step; and since M1 is an
unreduced upper Hessenberg matrix, the proof is complete.

Quite simply, the rotations Ji that are defined by v provide the RQ factorization:
(H − λI)J tn−1J

t
n−2 · · ·J t1 = (H − λI)Qt = R.

We summarize the Petkov–Christov–Konstantinov method.
Algorithm 2.3. The RQ formulation of the single–input method of

Petkov, Christov, and Konstantinov.
Input: H, an unreduced n× n Hessenberg matrix, β 6= 0,

and Ω = {λ1, λ2, . . . , λn}
Output: k such that λ(H − βe1k

t) = Ω

Step 1 Set H1 = H, and β1 = β
For i = 1, 2, . . . , n− 1 do

Compute (Hi − λiI)Qti = Ui, the RQ factorization of
(Hi − λiI) by computing vi such that (Hi − λiI)vi = γe1
and then computing the rotations Ji such that
J1J2 · · ·Jn−i+1vi = ±||vi||2e1, and finally setting
Qi = J1J2 · · ·Jn−i+1

Compute τi = et1(Hi − λiI)Qtie1/βi and βi+1 = q
(i)
21 βi

Compute Hi+1, where QiUi + λiI =
[
∗ ∗
0 Hi+1

]
End

Step 2 Compute kn = (Hn − λn)/βn
For i = n− 1, n− 2, . . . , 1 do

Compute ki = Qti

(
τi
ki+1

)
End



450 MARK ARNOLD AND BISWA NATH DATTA

Flop count: If implemented with care, this algorithm takes about 5
3n

3 flops. When
combined with the 5

3n
3 flops required for the controller-Hessenberg reduction, the

total flop count is about 10
3 n

3.

2.3. The method of Patel and Misra [32]. We have now seen two methods
based on an explicit RQ step with immediate deflation. It should come as no sur-
prise that an implicit RQ step is possible, and in order to handle complex pairs of
eigenvalues with real arithmetic, an implicit double step is needed. Such a method
was proposed by Miminis [28] and Patel and Misra [32]. The method of Patel and
Misra is similar to the method of Miminis, but it includes an alternative to the “back-
ward sweep,” and is the first published description of the implicit double step in the
single-input eigenvalue assignment problem. We will outline an implicit single step
here.

First, compute an orthogonal matrix Pi such that etn(Hi − λiI)P ti = αetn; then
compute another orthogonal matrix Ui such that UiPiHiP

t
i U

t
i is an upper Hessenberg

matrix; finally, set Qi = UiPi. The matrix Ui “chases the bulge” up the subdiagonal
of PiHiP

t
i . We are now in the familiar situation of computing ki such that

Qi(Hi − βie1k
t
i)Q

t
i =

[
λi ∗
0 Hi+1 − βi+1e1k

t
i+1

]
.

If, as before, we set Qi =
[
yti
Q̃i

]
, then with τi ≡ ktiyi, we must have

τi =
λi − h(i)

11

βiq
(i)
11

=
h

(i)
21

βiq
(i)
21

,

with the continuation Hi+1 = Q̃iHiQ̃
t
i, βi+1 = q

(i)
21 βi, and ki+1 = Q̃iki. After n such

steps we expect the usual backward sweep, but it is shown in Patel and Misra [32]
that this computation need not be put off that long: the backward sweep

ki = Qti

(
τi
ki+1

)
, i = n− 1, n− 2, . . . , 1

is equivalent to the “forward update”

Q̂ = I, k = 0, and

kt = kt + τiyiQ̂, Q̂ = Q̃iQ̂, i = 1, 2, . . . , n− 1.

Algorithm 2.4. The single-input algorithm of Patel and Misra.
Input: H, an unreduced n× n Hessenberg matrix, β 6= 0,

and Ω = {λ1, λ2, . . . , λn}
Output: k such that λ(H − βe1k

t) = Ω
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Step 1 Set H1 = H,β1 = β, Q̂ = I, and k = 0
For i = 1, 2, . . . , n− 1 do

Compute Pi such that etn(Hi − λiI)P ti = αetn
Compute Ui such that UiPiHiP

t
i U

t
i

is an upper Hessenberg matrix

Set Qi =
[
yti
Q̃i

]
= UiPi

Compute τ = et1(Hi − λiI)Qtie1/βi

Compute βi+1 = q
(i)
21 βi

Compute Hi+1, where QiHiQ
t
i =

[
∗ ∗
0 Hi+1

]
Compute k = k + τQ̂tyti
Compute Q̂ = Q̃iQ̂

End

Step 2 Compute τ = (Hn − λn)/βn
Compute k = k + τQ̂t

Flop Count: This method requires about 5
6n

3 flops for a controller-Hessenberg
pair. When combined with the 5

3n
3 flops required for the controller-Hessenberg re-

duction, the total flop count is about 5
2n

3.

2.4. A recursive algorithm [17]. We reproduce below the recursive algorithm
of Datta [17], which is apparently different from the three just described, and show
how this algorithm produces an explicit formula for the single-input feedback vector.

In the next section, we will present an RQ formulation of this method. This new
RQ method will help elucidate the relationship between the other RQ methods and
the explicit expression for the feedback vector obtained by the recursive formula.

Algorithm 2.5. A recursive algorithm [17].
Input: H, an unreduced n× n Hessenberg matrix, β 6= 0,

and Ω = {λ1, λ2, . . . , λn}
Output: k such that λ(H − βe1k

t) = Ω

Step 1 Set l1 = en

Step 2 For i = 1, 2, . . . , n− 1 do
Compute l̂i+1 = (Ht − λiI)li
Compute li+1 = bi l̂i+1, where bi is chosen
so that ||li|| ∈ ( 1

2 , 1], say
End

Step 3 Compute k = 1
βl1n

(Ht − λnI)ln

Flop count: This method requires only about 1
6n

3 flops. When combined with
the 5

3n
3 flops required for the controller-Hessenberg reduction, the total flop count is

about 11
6 n

3. Given a system in controller-Hessenberg form, this method is more than
five times as fast as the method of Miminis and Paige. The assignment of complex
pairs of eigenvalues in real arithmetic requires a slight adjustment to the above method
but does not alter the operations count.
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A closed-form solution of the single-input eigenvalue assignment prob-
lem. We now show that this method yields an explicit closed-form solution for the
single-input problem. The recursion in Step 2 above yields

γli+1 = (Ht − λ1I)(Ht − λ2I) · · · (Ht − λiI)l1,(2.8)

for some (nonzero) scalar γ. Including Steps 1 and 3, (2.8) becomes

αk = (Ht − λ1I)(Ht − λ2I) · · · (Ht − λnI)en,(2.9)

where α = (βh21h32 · · ·hn,n−1)−1. If φ(x) = (x − λ1)(x − λ2) · · · (x − λn), then this
will be written as

kt = αetnφ(H).(2.10)

Since this solution is unique, it represents the Hessenberg formula for the single-input
eigenvalue assignment problem.

2.5. Of methods not discussed. Varga [40] proposed a method very different
from those considered here. It has largely been ignored by numerical linear algebraists
because of a reduction of the original system to controller-Schur form (T = PAP t is
block upper triangular with 1×1 or 2×2 diagonal blocks, and k = Pb is a “full” column
vector; see Varga [40] for details). It is argued that, besides the extra work involved,
the method suffers from the fact that possible ill conditioning of the eigenvalues of the
original system introduces unnecessary errors into the computation. These criticisms,
while entirely valid from an algorithmic perspective, may be unwarranted from a
more macroscopic view. It may be that knowledge of the original spectra (provided
by the controller-Schur form and not by the controller-Hessenberg form) is necessary
for intelligent eigenvalue/partial eigenvalue assignment. In that case the information
provided by the Schur decomposition might be used in choosing Ω. If the eigenvalues
of the original system were found to be ill conditioned, a Hessenberg method might
be preferable, but if not, continuing on with the method of Varga would be more
efficient.

There exist many methods for the eigenvalue assignment problem, and we have
chosen to discuss only those few with positive numerical attributes (e.g., stability and
efficiency). Methods that depend on Jordan or Frobenius forms are both expensive
and unstable. Most closed-form solutions for the feedback vector require such forms
and hence lead to poor numerical methods. One of the most well-known closed-form
solutions is due to Ackermann [1]; while it is often held as an example of how not to
solve the eigenvalue assignment problem, we will see in the next section that each of
the methods discussed in this paper are closely related to that solution.

3. Relationships between the various methods. In this section we will
explain the relationships between the methods of Miminis and Paige; Petkov, Christov,
and Konstantinov; Patel and Misra; and Datta. We will show that the Miminis–Paige,
Petkov–Christov–Konstantinov, and Patel–Misra methods yield the same data at each
deflation step, the only difference being the technique used for an RQ factorization.
Then we will present an RQ implementation of the recursive method that ties all four
of the methods together.

The Miminis–Paige, Petkov–Christov–Konstantinov, and Patel–Misra methods
all have an RQ factorization at the heart of the deflation step. With the original
method of Miminis and Paige we have the explicit Hessenberg RQ factorization, with
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that of Petkov, Christov, and Konstantinov we have a novel “triangular system”
Hessenberg RQ factorization, and with the method of Patel and Misra we have the
implicit Hessenberg RQ factorization.

These methods all begin with the same data, the pair (H,βe1) and the closed-
loop spectrum Ω; furthermore, it is clear that each of the methods generates the
(i + 1)st set of data by applying an RQ iteration step to the ith set of data. Thus,
given the matrix Hi, the implicit-Q theorem (or the uniqueness of the RQ factoriza-
tion) guarantees that whichever method we choose, the unreduced Hessenberg matrix
Hi+1 is essentially (that is, up to a diagonal scaling of ±1) the same. One might ques-
tion the uniqueness of the RQ factorization (or equivalently, the implicit RQ step)
if λi is an eigenvalue of Hi. Indeed, in this case it is not unique, for while Qi is
completely determined, the first row of Ri is underdetermined. But if we now note
that the deflation step is taken immediately in each of the methods, it is clear that
the first row of Ri plays no part in the computation. We have proven the following
lemma.

LEMMA 3.1. In exact arithmetic, the methods of Miminis and Paige, Petkov,
Christov, and Konstantinov, and Patel and Misra all generate the same data Hi, and
Qi at each deflation step, up to a sign scaling, for i = 1, 2, . . . , n.

The differences between these methods, at each step, depend only on finite pre-
cision. The discussion above allows us to give a generic formulation of all of the
QR-based single-input algorithms as follows.

Algorithm 3.1. Generic RQ-based single-input algorithm.
Input: H, an unreduced n× n Hessenberg matrix, β 6= 0,

and Ω = {λ1, λ2, . . . , λn}
Output: k such that λ(H − βe1k

t) = Ω

Step 1 Set H1 = H and β1 = β
For i = 1, 2, . . . , n− 1 do

Compute Qi from a shifted RQ step with Hi and λi:
H̃i = QiHiQ

t
i

Compute τi = h̃
(i)
21

βiq
(i)
21

= λi−h̃(i)
11

βiq
(i)
11

Compute βi+1 = βiq
(i)
21

Compute Hi+1, where H̃i =
[
∗ ∗
0 Hi+1

]
End

Step 2 Compute τn = λn−Hn
βn

Step 3 Compute kt = (τ1, τ2, . . . , τn)Qn−1Qn−2 · · ·Q1

The manner of computing the RQ steps in this generic method is not specified; an
explicitly shifted RQ step with Givens rotations yields the original method of Miminis–
Paige, explicitly computing the RQ factors using a closed-loop eigenvector gives the
method of Petkov–Christov–Konstantinov, and an implicit RQ step corresponds to
the methods of Patel–Misra and Miminis–Paige. We also note that τi can be computed
using either of the quantities given above, or if Ri is available, as τi = r

(i)
11 /βi.

4. A new RQ-based method. We now present a new RQ implementation of
the recursive algorithm of Datta that will make explicit the connections between all
of these methods and the explicit formula (2.10).
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While this method was discovered and proved in the context of the matrix equa-
tion

HtL− LB = cetn,

we can show its relationship with the often-maligned formula of Ackermann. Acker-
mann [1] showed that if

φ(x) = (x− λ1)(x− λ2) · · · (x− λn),

then the unique solution to the eigenvalue assignment problem for the controllable
pair (A, b) is

f t = etnC
−1φ(A),(4.1)

where

C ≡
[
b, Ab, . . . , An−1b

]
.

If (H,βe1) = (PAP t, P b) is the controller-Hessenberg form of (A, b), then from (4.1)

f tP t = etnC
−1φ(A)P t

= etnC
−1P tφ(H)

= etn(PC)−1φ(H),

where PC is an upper triangular matrix. If α−1 is the (n, n) element of PC, then
etn(PC)−1 = αetn, and we see that the formula, kt = αetnφ(H) is a Hessenberg case of
Ackermann’s formula (in fact α−1 = β

∏n−1
i=1 hi+1,i).

The recursive algorithm is an extremely efficient way to solve the Hessenberg
single-input problem, but as shown in [2], backward stability cannot be guaranteed.
Having been aware of possible instabilities in the recursive formulation, Datta [20]
suggested that this method could be implemented using QR iterations as follows:
Set H1 = H
For i = 1, 2, . . . , n compute the QR step

QiRi := Hi − λiI
Hi+1 := RiQi + λiI

Then it can be shown [36, p. 353] that

φ(H) = Q1Q2 · · ·QnRnRn−1 · · ·R1,

and setting Q = Q1Q2 · · ·Qn and R = RnRn−1 · · ·R1, formula (2.10) becomes

kt = αetnQR.

The difficulty of implementing this strategy is that the Ri need to be accumulated;
this is both expensive and unstable.

We now show how the method can be made computationally efficient by using
RQ factorizations instead of the QR factorizations:
Set H1 = H
For i = 1, 2, . . . , n compute the RQ step

RiQi := Hi − λiI
Hi+1 := QiRi + λiI

This time

φ(H) = R1R2 · · ·RnQnQn−1 · · ·Q1,(4.2)
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and by setting Q = QnQn−1 · · ·Q1 and R = R1R2 · · ·Rn, we have

kt = αetnRQ = αρetnQ,

where ρ =
∏n
i=1 r

(i)
nn. This is a much nicer situation! Furthermore, we will now show

that it is possible to “deflate” the problem at each RQ step.
Write Qi, i = 1, 2, . . . , n as a product of Givens rotations Qi = J

(i)
1 J

(i)
2 · · ·J

(i)
n−1,

where J (i)
k is a rotation in the k and k + 1 planes. Then

etnQ = etnJ
(n)
1 J

(n)
2 · · ·J (n)

n−1Qn−1Qn−2 · · ·Q1

= etnJ
(n)
n−1Qn−1Qn−2 · · ·Q1

= etnJ
(n)
n−1J

(n−1)
n−2 J

(n−1)
n−1 Qn−2Qn−3 · · ·Q1

...
= etn(J (n)

n−1)(J (n−1)
n−2 J

(n−1)
n−1 ) · · · (J (2)

1 J
(2)
2 · · ·J (2)

n−1)Q1,

(4.3)

or kt = αρetnQ̂nQ̂n−1 · · · Q̂1, where Q̂k ≡ J
(k)
k−1J

(k)
k · · ·J

(k)
n−1. Algorithmically we have

the following.
Algorithm 4.1. A proposed single-input algorithm.

Input: H, an unreduced n× n Hessenberg matrix, β 6= 0,
and Ω = {λ1, λ2, . . . , λn}

Output: k such that λ(H − βe1k
t) = Ω

Step 1 Compute R1Q1 := H − λ1I, the RQ factorization of H − λ1I
Compute H2 = Q1R1 + λ1I

Set Q = Q1 and ρ = r
(1)
nn

Step 2 For i = 2, 3, . . . , n− 1
Compute RiQi := H − λiI

Compute Hi+1, where QiRi + λiI =
[
∗ ∗
0 Hi+1

]
Update Q :=

[
I

Qk

]
Q

Update ρ := ρr
(i)
n+2−i,n+2−i (r(i)

n+2−i,n+2−i is the last element of Ri)
End

Step 3 Update ρ := ρ(Hn − λn)
Compute kt = αρetnQ

Remark. The RQ factorizations in this method can be implemented implicitly
with a double step, but as with the previous methods this has been omitted for the
sake of clarity. Note also that there are no divisions in this method until α is computed
in the last step, i.e., the computation of

τi =
h̃

(i)
21

βiq
(i)
21

=
λi − h̃(i)

11

βiq
(i)
11

=
r

(i)
11

βi

which appeared in the other methods does not appear here.
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Flop count: Implemented using implicit double steps with Q kept in factored
form, this method requires about 5

6n
3 flops. When combined with the 5

3n
3 flops

required for the controller-Hessenberg reduction, the total flop count is about 5
2n

3,
the same as the Miminis–Paige and Patel–Misra methods.

4.1. A relationship between the proposed method and other RQ meth-
ods. We promised that this method would shed some light on the relationship be-
tween the other RQ methods and the closed-form solution (2.10). While the connec-
tion between this RQ method and the closed-form solution is clear, we have yet to
close the final link. There are two differences between this method and the generic
RQ method: (i) deflation does not commence after the first iteration here as in the
generic method, and (ii) the scalar αρ in this method takes the place of the vector
xt = (τ1, τ2, . . . , τn).

When viewed from the perspective of the generic method, these two distinctions
are the result of transforming the vector xt into the vector αρetn, one step at a time.

To see how this works let us consider an explicit RQ factorization of Hi, an unre-
duced Hessenberg matrix of order k, say. In the generic method the RQ factorization
effectively stops when the matrix HiQ

t
i is of the form

HiQ
t
i =

[
A ∗
0 T

]
,(4.4)

where A is 2×2 and T is upper triangular. In the proposed RQ method above, we are
one deflation step behind, so that one more rotation is needed to put A into triangular
form. This rotation Vi will be such that HiQ

t
iV

t
i is upper triangular, but it also rolls

[τi, τi+1] into [0, γ], for

[a21, a22] = [r(i)
11

βi+1
βi

, r
(i+1)
11 ]

= βi+1[ r
(i)
11
βi
,
r
(i+1)
11
βi+1

]
= βi+1[τi, τi+1].

(4.5)

We have proven the following theorem.
THEOREM 4.1. The generic RQ method generates the orthogonal matrices Qi that

satisfy

kt = (τ1, τ2, . . . , τn)QnQn−1 · · ·Q1,

while the proposed method generates the orthogonal matrices Pi = QiVi such that

kt = αρetnPnPn−1 · · ·P1,

where

(τ1, τ2, . . . , τn)V1V2 · · ·Vn−1 = αρetn

and Vi is a rotation in the planes i and i+ 1.

5. Error analysis. A systematic round-off error analysis of most of the existing
and currently used algorithms in control theory is lacking. As far as algorithms for
the eigenvalue assignment problem are concerned, round-off error analyses of only the
methods of Miminis and Paige and Petkov, Christov, and Konstantinov have been
presented (Cox and Moss [13, 14], Miminis and Paige [29]).
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In this section we give a detailed round-off error analysis of our proposed single-
input algorithm (Algorithm 4.1) described in section 4, and prove that it is backward
stable. In the course of this proof we show that any algorithm for the eigenvalue
assignment problem is backward stable if it is backward stable for the corresponding
Hessenberg problem. We then give a round-off error analysis of the recursive algo-
rithm. Our analysis shows that the latter, while it may not be backward stable, is
reliable in the sense that we can detect precisely when the results are suspect.

5.1. An error analysis of the proposed single-input method. The back-
ward error analysis of eigenvalue assignment methods has turned out to be a non-
trivial task. For example, the RQ-based methods of section 2 are straightforward
adaptations of the Hessenberg QR iteration, and while a backward error analysis for
the QR iteration is quite simple, that for the eigenvalue assignment methods is not
(see, e.g., Cox and Moss [13, 14]). The major difference is that backward error analy-
sis for the QR iteration in the eigenvalue problem is naturally focused on showing that
the next iterate is (exactly) similar to a matrix that is close to the current iterate,
while for eigenvalue assignment similarity cannot be used in such a direct, sequen-
tial fashion. In order to simplify the analysis, we show that backward stability is
achieved if one can solve the Hessenberg single-input eigenvalue assignment problem
in a backward stable manner. First we prove that Algorithm 4.1 is backward stable.

THEOREM 5.1. The RQ-based single-input eigenvalue assignment (Algorithm 4.1)
is backward stable, i.e., it computes a feedback k such that

λ(H + δH − (β + δβ)e1(k + δk)t) = Ω,

where δH, δβ, and δk are small.
Proof. Let H̄1 = H1 = H, and let H̄i be the computed iterate at the ith QR step.

Let Q̄i be the computed transformation at each step. Then we have from basic error
analysis (see, e.g., [41, pp. 110–160]) that there exists an orthogonal matrix Q1 such
that

H̄2 = Q1(H1 + δH1)Qt1, Q̄1 + E1 = Q1,

where ||δH1||F ≤ f(n)umax{||H1||F , |λi|}, and ||E1||F ≤ g(n)u, where g and f
are modest functions of n, practically behaving like cn, with c a constant of order
unity. Note that with an implicit double RQ step, the upper bound on ||δH1||F is
independent of λi. Now iterating on these results leads to

H̄n = Pn−1(H1 + δH)P tn−1, P̄n−1 + E = Pn−1,(5.1)

where Pn−1 = Qn−1Qn−2 · · ·Q1, P̄n−1 = fl(Q̄n−1Q̄n−2 · · · Q̄1). Here, ||δH||F ≤
unf(n) max{||H||F , |λk|, k = 1, 2, . . . , n} and ||E||F ≤ ng(n)u. These bounds are
pessimistic now because of the maximum over |λk| and because we have not considered
the fact that Hi and Qi are actually (n−i+1)×(n−i+1), not n×n. Now with P = Pn,
the feedback k is computed as kt = γetnP , so up to the scalar γ, we are done. We
have shown that etn(P̄ +E) is exact for a matrix H+δH, where ||etnE|| ≤ ng(n)u and
||δH|| ≤ unf(n) max{||H||F , |λk|}. We now show that the scalar γ can be computed
in a backward stable fashion, thereby completing the proof.

Remember that γ = αρ, where ρ =
∏n
i=1 ri, α = (

∏n
i=1 βi)

−1, βi = hi,i−1, β0 = β,
and ri = r

(i)
nn is the (n, n) entry of Ri. Now let r̄i be the computed value of ri, where

Ri is exact for the computed matrix H̄i. Then we have

r̄i = ±
√
{h2

n,n−1(1 + ε1) + [(hnn − λi)(1 + ε2)]2(1 + ε3)}(1 + ε4)(1 + ε5),
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where |εj | < u. Write this as r̄i = ri(1 + δi), and using
√

1 + ε = 1 + ε/2 +O(ε2), we
have |δ| ≤ 3u+O(ε2). Now γ̄ = fl(ρ̄ᾱ) so that

γ̄ =
n∏
i=1

ri(1 + δi)(1 + τi)
βi(1 + εi)

,

where |τi|, |εi| ≤ u, i = 1, 2, . . . , n. Therefore,

γ − γ̄ = γ

n∏
i=1

(1 + δi)(1 + τi)
(1 + εi)

,

and if we assume that nu < 0.1, then conservatively

|γ − γ̄| ≤ 5nu|γ|.

If we write γ = γ(β,H), then our result reads

γ̄ = γ(β + δ̂β,H + δH),

where δH is the same as in (5.1), and |δ̂β| ≤ 5nu. Finally, the error from the scalar-
vector operation kt = γetnP can be thrown back into β, yielding a computed feedback
k̄ such that

k̄ = γ̄etnE + k(β + δβ,H + δH),

with |δβ| ≤ 5nu.
Remark. The popular definition for backward stability is not used here for a very

simple reason. Consider proving that the computation of a Householder reflection is
backward stable. One must show that the computed matrix is exact for a problem
close to the original. This is impossible, even for the n = 2 case, for the computed
matrix is almost always not an orthogonal matrix. This difficulty is removed by
adopting the more general definition of Stewart [36, p. 76], which requires that the
computed solution be “near the exact solution of a slightly perturbed problem.” Datta
[21, p. 87] has called such stability mild stability. In the above proof, the quantity
γ̄etnE is the difference between the computed solution and the exact solution for
the perturbed problem, and with k ≡ k(β + δβ,H + δH) we have (pessimistically)
‖k̄ − k‖/‖k‖ ≤ cn2u, where c is a constant of order unity.

THEOREM 5.2. The following three-step procedure for solving the controllable
single-input eigenvalue assignment problem for (A, b,Ω) is backward stable if Step 2
is backward stable in the mild sense.

Step 1 Using the method of Householder, reduce the pair (A, b)
to the controller-Hessenberg form (H, r) = (QAQt, Qb).

Step 2 Compute the solution k to the eigenvalue assignment problem for
(H, r,Ω).

Step 3 Compute f = Qtk.
Proof. Let H̄, r̄, and Q̄ be the computed versions of H, r, and Q, respectively.

There exists an orthogonal matrix Q̂ such that

Q̂− Q̄ = EQ, Q̂AQ̂
t = H̄ + ÊH , and Q̂b = r̄ + ε̂r,(5.2)

where ‖EQ‖ ≤ uy0(n), ‖ÊH‖ ≤ 2cnu‖A‖, ε̂r ≤ cnu‖b‖, and y0 behaves, for all
practical purposes, like cn3/2, with c of order 10 [41, pp. 160–161].
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Let k̄ be the computed solution to the reduced problem (H̄, r̄,Ω). Denote by f̄
the computed solution to the original problem; then

f̄ ≡ fl(Q̄tk̄) = Q̄tk̄ + ε̄f ,(5.3)

where ‖ε̄f‖ ≤ nu‖k̄‖. Substituting (5.2) into (5.3), we have

f̄ = Q̂t(k̄ + ε̂k).(5.4)

Here ε̂k = ε̄f − EtQk̄, and so ‖ε̂k‖ ≤ uny1(n)‖k̄‖, y1(n) = y0(n) + n.

Now by hypothesis there exist (H̃, r̃) close to (H̄, r̄), and k̃ close to k̄, such that
k̃ is the exact solution to the eigenvalue assignment problem with input (H̃, r̃,Ω).
Write H̄ = H̃ + ẼH , r̄ = r̃ + ε̃r, and k̄ = k̃ + ε̃k, where

‖ẼH‖ ≤ uzH‖A‖, ‖ε̃r‖ ≤ uzr‖b‖, and ‖ε̃k‖ ≤ uzk‖k̄‖.

Finally, taking δA ≡ Q̂t(ẼH + ÊH)Q̂, δb ≡ −Q̂t(ε̃r + ε̂r), and δf̄ = −Q̂t(ε̃k + ε̂k), we
have

A+ δA− (b+ δb)(f̄ + δf̄)t = Q̂t(H̃ − b̃k̃t)Q̂,(5.5)

with

‖δA‖ ≤ u‖A‖(zH + 2cn), ‖δb‖ ≤ u‖b‖(zr + cn), and ‖δf‖ ≤ u‖k̄‖(zk + y1(n)).

Remark. Since our proposed Hessenberg algorithm is backward stable in the more
general sense, the above theorem guarantees that our method is backward stable (in
the standard sense, if one prefers) for the original problem.

5.2. An error analysis of the recursive single-input method. Recall that
this method computes a matrix L and a vector k such that HL − LΛ = ketn. A
careful look at the iteration reveals that the forward error has a special form. Define
the polynomials φj,k for j ≤ k by

φj,k(x) = (x− λj)(x− λj+1) · · · (x− λk).

THEOREM 5.3. Let ᾱf̄ be the computed solution to the single-input eigenvalue
assignment problem for (H,βe1,Ω) using the recursive method. If αf is the exact
solution, then

ᾱf̄ − αf =
n∑
j=1

φj,n(H)εj .(5.6)

Proof. Let l̄i be the computed value of the ith column of L. Define εi by l̄i+1 =
(H − λiI)l̄i + εi. Since l̄1 = l1, we must have that l̄2 = l2 + ε1; suppose l̄i =
li +

∑i−1
j=1 φj,i−1(H)εj . Then

l̄i+1 = (H − λiI)l̄i + εi

= (H − λi)(li +
∑i−1
j=1 εjφj,i−1(H)) + εi

= li+1 +
∑i
j=1 φj,i(H)εj .

Now ᾱf̄ = l̄n+1, and therefore

ᾱf̄ = ln+1 +
n∑
j=1

φj,n(H)εj ,
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or

ᾱf̄ − αf =
n∑
j=1

φj,n(H)εj .

The εj can easily be bounded; for example, if a machine base scaling is used to
normalize l̄j , then it is simple to show that

||εj ||F ≤ βmnu||H − λj ||F ,

where βm is the base. Unfortunately, not much can be said about backward stability
from a result like this. It is not a necessarily bad result either, for the closed-form
expression for the single-input feedback is αetnφ1,n(H).

It is possible to shed some light on the stability of this method by looking at the
εj in a different way.

THEOREM 5.4. Let E = [ε1, ε2, . . . , εn] and let L̄ =
[
l̄1, l̄2 . . . , l̄n

]
. Then ᾱf̄ solves

(exactly) the single-input eigenvalue assignment program for the perturbed system
(H − EL̄−1, βe1,Ω), where the εi are the same as in Theorem 5.3.

Proof. Notice that, as defined, L̄ satisfies the Sylvester equation

HL̄− L̄Λ = E + ᾱf̄etn,

where Λ = diag(λi). Since L̄ is nonsingular by construction, we can solve the per-
turbed equation

(H + ∆H)L̄− L̄Λ = E + ᾱf̄etn(5.7)

for ∆H. This yields −∆H = EL̄−1, and by satisfying (5.7), ᾱf̄ solves the eigenvalue
assignment program for (H + ∆H,βe1,Ω).

5.3. Remarks on numerical stability and reliability. From the above result
we cannot say that the method is backward stable. We have simply provided an
upper bound on the size of the ball around the initial data, inside which there exist
(H + ∆H,β + δβ) for which the computed solution is exact. If ||∆H|| could be
bounded above by a small quantity that was relatively independent of the initial
data, then the method would be backward stable. But Theorem 5.4 does allow one
to say precisely when the results from the method are suspect. It is clear that ||E|| is
always small if the iterates are normalized every few steps, so that all of the backward
error information is contained in L̄−1. Since L̄ is triangular, it is possible to estimate
||L̄−1|| rather cheaply, even as the iteration proceeds.

The matrix L yields a bit more information about the eigenvalue assignment
problem. If the closed-loop eigenvalue problem is poorly conditioned, then we cannot
expect the closed-loop eigenvalues to be correct (or even well defined), even when the
feedback f is computed to very high accuracy. Now we know from construction that
the method yields matrices L and Λ such that

H − βe1f
t = LΛL−1,

where Λ is bidiagonal. It is easy to show that if the closed-loop eigenvalues are distinct,
then Λ is diagonalized by the matrix X = [xij ], where

xij =


1, i = j,∏j−1

k=1(λk − λj)−1, j > i,
0, j < i.
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Therefore, the closed-loop matrix is diagonalized by the matrix P = L−1X which is
conveniently factorized into triangular factors, with X a unit upper triangular matrix.
The inverse of P is given by P−1 = X−1L, where X−1 = [yij ], and

yij =


1, i = j,∏j

k=i+1(λj − λk)−1, j > i,
0, j < i.

This leads us to an upper bound on the eigencondition of the closed-loop matrix

‖P‖‖P−1‖ = ‖L−1X‖‖X−1L‖ ≤ ‖X‖‖X−1‖‖L‖‖L−1‖.

The triangular factors facilitate an O(n2) LINPACK-like condition estimator of
P = L−1X. We cannot say that whenever L is illconditioned, the closed-loop eigen-
values are ill-conditioned, for L is simply a factor of P , but computational experience
has shown that it is a good indicator.

Numerical experiments. We include here several computational experiments
that compare the accuracy of the proposed method (RQ) with that of Miminis and
Paige (M&P) and Datta. The M&P method was chosen as representative of the QR-
based methods primarily because of the MATLAB script SEVAS, written by Miminis,
and available to the public [30]. All computations were done on a SUN Sparcstation
LX. MATLAB, version 4.2C [26], was used to compute the feedback vector using the
m-files SEVAS.m for the M&P method, SIPPD.m for Datta’s method, and SIPPRQ.m
for the proposed method (SIPPD.m and SIPPRQ.m available from Arnold). MATLAB
computations are double precision with a machine epsilon of µ = 2−52. In all tests
an “exact” feedback was computed using the method of Datta, coded in Bailey’s
multiprecision FORTRAN [6] with a 500 decimal digit floating point representation.
Datta’s method was chosen for its efficiency and ease of implementation. In all of the
experiments, the initial data is in controller-Hessenberg form. The computation of
an exact solution allows one to avoid the eigenvalue computation (and the associated
errors) necessary in the common practice of measuring error by computing the eigen-
values of H, removing its first row, and then assigning the original eigenvalues to the
perturbed matrix.

For a backward stable method, one expects the size of the error in the computed
solution to be roughly equal to the product of the machine epsilon and the condition
number of the problem. We have included in these tests the computation of a relative
condition estimator (the estimator νφ, given in [2], requires about 1

15 the work of
either of the methods being compared). We would like to emphasize two points here:
first, we are measuring the error in the computed feedback, not in the closed-loop
eigenvalues; and second, this condition estimator is neither a lower nor upper bound
on the true condition number, which, while computable, requires at least O(n4) flops
for the general case.

For all of these experiments the MATLAB code that generates the test data, and
the seeds for the random number generator, are available from Arnold.

In the first experiment, a random matrix with elements uniformly distributed
in [−1, 1] was generated using MATLAB’s RAND function. This matrix was then
reduced to Hessenberg form and its elements rounded to 15 binary digits, resulting in
the system matrix H. Next, a unit random vector r was generated and the eigenvalues
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FIG. 1. Scatter plot for 30 problems of size 100. log10(ec) is (the negative of) the number of
correct decimal digits in the computed feedback. The predicted error is given by the “continuous”
curve, Datta’s method is represented by “*”, MP by “o”, and the RQ method by “x”.

of the matrix H − e1r
t computed. These eigenvalues, rounded to 15 binary digits,

become the desired closed-loop poles. For a relatively well-conditioned eigenvalue
assignment problem, we expect the exact feedback to have norm near unity.

Thirty such runs were performed on matrices of size n = 100. The results are
decribed in Figure 1 and Table 1. Figure 1 is a scatter plot showing − log10(ec), where
ec = ‖f − fc‖/‖f‖, f is the exact feedback, and fc is the feedback computed by one
of the methods being compared. The x-axis serves only to label the data points; each
integer k, from 1 to 30, represents a data point, and each data point consists of four
quantities, namely, the predicted error and the error for each of the three methods
being compared. The y-axis in the figure represents the (negative of) the number
of correct digits in the computation, thus a smaller (closer to −∞) y-component
represents a smaller error. In order to make the plot easier to read the data is sorted
by the predicted error µνφ and the predicted error is plotted as a continuous curve
by linear interpolation. Note that even for problems of size n = 100 (considered
large for single-input eigenvalue assignment), the feedback vector is computed to high
relative accuracy by the backward stable methods. This observation supports the
argument that the generically dismal behavior of eigenvalue assignment for large n is
not caused by innacurate feedback but is primarily attributable to the conditioning
of the closed-loop eigenvalues relative to the size of the feedback vector.

Table 1 provides some statistics associated with the data shown in Figure 1. The
quantity “digits accurate” is simply − log10(ec), which is approximately the number
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TABLE 1
Summary statistics of relative errors for 30 randomly generated systems of order 100.

Accurate Digits
Method Average Minimum Backward average Backward minimum
M&P 12.5 11.9 16.0 15.1
RQ 12.7 11.9 16.1 15.6
Datta 8.33 7.30 11.8 10.6
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FIG. 2. Scatter plot for 100 problems of size 20. log10(ec) is (the negative of) the number of
correct decimal digits in the computed feedback. The predicted error is given by the “continuous”
curve, Datta’s method is represented by “*”, MP by “o”, and the RQ method by “x”.

of correct decimal digits. The least accurate result in the sample is reported under
“Minimum” accurate digits, and the average number of correct digits in the sample is
reported under “Average”. In an attempt to remove the “bias” of conditioning from
the statistics, a backward error statistic is also computed as eb = ef/νdφ. The justi-
fication for this statistic is that given a backward stable method, the true condition
number ν, and a small (relative to 1/ν) machine epsilon µ, the quantity ef/ν should
be approximately bounded by µ. Thus, we define the quantity “backward digits ac-
curate” as − log10(eb). The least accurate sample with respect to this scaled error is
reported as “Backward minimum,” and the average of the scaled errors is reported as
“Backward average.”

The next experiment is constructed as the first, but with n = 20, and with ill
conditioning introduced by uniformly scaling the subdiagonal entries of H so that the
product of these entries is between 1× 10−10 and unity. Again, we include a scatter
plot for 100 runs, and a table summarizing the results; these are given in Figure 2
and Table 2, respectively.
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TABLE 2
Summary statistics of relative errors for 100 randomly generated systems of order 20 of varying

degrees of ill conditioning.

Accurate Digits
Method Minimum Average Backward average Backward minimum
M&P 5.31 10.8 16.0 14.5
RQ 5.50 10.8 16.0 14.5
Datta 5.21 10.8 16.0 13.9
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FIG. 3. Plot for 29 problems of size n = 3 to n = 32. Now the x-axis represents the size of
the system, and the data has not been sorted. log10(ec) is (the negative of) the number of correct
decimal digits in the computed feedback. The predicted error is given by the “continuous” curve,
Datta’s method is represented by “*”, MP by “o”, and the RQ method by “x”.

The last experiment is constructed as the first, but with the Hessenberg matrix
H always set to (see [28])

H =


−1 −1 −1 · · · −1
1 −1 −1 · · · −1
0 1 −1 · · · −1
...

. . . . . .
...

0 · · · 0 1 1

 .

A perturbation on the order of 21−n makes this system uncontrollable. The system
size varied from n = 3 to n = 32, and one sample was taken for each n. The results
are reported in Figure 3 and Table 3. In Figure 3, we display the errors as a function
of n, and as such, the data are not sorted.



EIGENVALUE ASSIGNMENT ALGORITHMS 465

TABLE 3
Summary statistics of relative errors for Example 3 of orders 3 to 32.

Accurate Digits
Method Average Minimum Backward average Backward minimum
M&P 8.52 1.22 16.1 15.5
RQ 8.48 1.67 16.1 15.4
Datta 9.16 2.18 16.7 15.5

Summary and conclusions. In this paper, we have considered various compu-
tational aspects of the single-input eigenvalue assignment problem in control theory.
We summarize the results of the paper below.

I. We have built a framework around which the QR-based methods are all spe-
cial cases. We have found that these apparently different methods differ only
on how the RQ decompositions are computed.

II. We have proposed a new method based on the RQ formulation of the recursive
algorithm of Datta [17]. An intimate relationship of the latter with the other
QR methods has been exposed via an explicit formula of the feedback vector
obtained from the recursive algorithm.

III. We have proved that the proposed algorithm is backward stable by a round-
off error analysis. A more general theorem obtained in this context shows
that an algorithm is backward stable if the associated Hessenberg algorithm
is stable. It remains to be seen if the stability of the other QR algorithms
can be reproved from the relationship mentioned in I.

IV. We have given a detailed round-off error analysis of the recursive algorithm.
Our analysis shows precisely when the results are suspect, and this phe-
nomenon can be determined as the algorithm proceeds, in a relatively inex-
pensive way.

V. We have reported the results of a numerical comparison of some of the meth-
ods.

In the multi-input case, even though the solution is not unique, it might still
be possible to obtain a relationship between the solutions obtained by different algo-
rithms. A parameterized expression for the closed-form solution obtained in the thesis
of Arnold [2] might play an important role in this context. Also, a QR formulation of
the multi-input algorithm in Arnold and Datta [3] is in order.

Acknowledgment. We gratefully acknowledge the constructive remarks made
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paper.
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Abstract. We propose a cubically convergent algorithm for computing the invariant subspaces
of an Hermitian matrix. The building blocks of the algorithm are matrix–matrix multiplication
and QR decomposition which are highly parallelizable. We present a detailed convergence analysis
and explore the so-called mixed convergence phenomenon, the understanding of which will be very
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and demonstrate convergence properties of the algorithm using several numerical examples.
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1. Introduction. The Hermitian eigenproblem is one of the fundamental prob-
lems in matrix computations. A number of methods have been proposed in the past for
computing the eigenvalues and eigenvectors of a dense Hermitian matrix, notably, the
QR method, Cuppen’s divide-and-conquer method, and Jacobi method [4, Chapter
8]. Recently, there has been much interest in developing algorithms for the Hermitian
and/or general eigenproblems that can be efficiently implemented on a variety of par-
allel computers [1, 2, 3, 6, 7, 8]. Those algorithms are iterative in nature and rely on a
few operations such as matrix–matrix multiplication, QR decomposition, and matrix
inversion as their building blocks at each iteration. Those operations have already
been successfully implemented on many parallel architectures, and portable parallel
library is now available for their efficient computation [9].

In this paper, we are concerned with the problem of computing the invariant
subspaces of an Hermitian matrix A corresponding to eigenvalues inside or outside the
interval (−1, 1).1 We use P|λ|<1 and P|λ|>1 to denote the orthogonal projections onto
these two invariant subspaces. Other intervals on the real line can also be considered
by using a suitable linear transformation. An elegant method for computing those
invariant subspaces is the matrix sign function method, a simple scheme of which is
the following iteration:2

Aj+1 = (Aj +A−1
j )/2, j = 0, 1, . . . , A0 = A.

However, as pointed out in [2], numerical difficulty will occur when A is ill conditioned
with respect to inversion. Another problem is that without explicitly forming the
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1Assume for the moment that A has no eigenvalue that is either 1 or −1.
2This iteration computes the invariant subspaces corresponding to eigenvalues less than and

greater than zero, respectively. The convergence rate is quadratic.
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product AHA, the matrix sign function method cannot readily be extended to the
case when singular subspaces of a general matrix A are desirable. For example, the
above iteration scheme converges to the unitary factor in the polar decomposition of A
[5]. The major inspiration for the work reported in this paper came from [8, 2], where a
quadratically convergent inverse-free method was proposed for computing the invariant
subspaces of a general matrix. In fact the work was started when we tried to simplify
the algorithms in [8, 2] for the Hermitian case. Another inspiration is the Project
PRISM reported in [3, 7] which forced us to think more carefully about a variety of
implementation issues. A number of issues will be addressed in this paper. We propose
a cubically convergent algorithm for computing the orthogonal projections P|λ|<1 and
P|λ|>1. We will also present a detailed and rigorous convergence analysis of the
proposed algorithm. We observed a phenomenon which we call mixed convergence that
will have practical important consequences in the implementations of the algorithm.
We show that certain quantities in our algorithm can be used to overcome mixed
convergence, and therefore accelerates the convergence of the algorithm. Here is an
outline of the rest of the paper. In section 2, we start with a very intuitive idea
based on computing the successive powers of A to find approximations of P|λ|<1 and
P|λ|>1, and we also provide a formal analysis. Concerns about the possible overflow
of Am leads to an improved method which we call the basic iterative scheme. In
section 3, we propose an algorithm based on several refinements of the basic iterative
scheme. Section 4 is devoted to a detailed convergence analysis of the algorithm, and
an exploration of the mixed convergence phenomenon. In section 5, we discuss several
implementation details, and we present several numerical examples in section 6. We
conclude the paper with some remarks about future research in section 7.

Notation. Let the eigenvalues of the Hermitian matrix A ∈ Cn×n be {λ1, . . . , λn},
and

|λi| < 1, 1 ≤ i ≤ r, |λi| = 1, r < i ≤ s, |λi| > 1, s < i ≤ n.(1.1)

If r = s, then A has no eigenvalue of absolute value one. We define

η− = max{|λi| | 1 ≤ i ≤ r}, η+ = max{|λ−1
i | | s < i ≤ n}, η = max{η−, η+}.

Then η < 1. We will also use the O(·) notation, so two sequences {xn} and {yn} xn =
O(yn) mean |xn| ≤ C|yn| for all integers n ≥ 1, where C is a constant independent
of n. The singular values of a matrix G are denoted by σ1(G) ≥ · · · ≥ σn(G) and we
also use σmax(G) = σ1(G) and σmin(G) = σn(G).

2. A basic iterative scheme and analysis. In this section we will first infor-
mally motivate the derivation of a basic iterative scheme by examining the convergence
property of the successive powers of A. The attempt to avoid overflow in forming the
powers {Am} leads us to the basic iterative scheme. We then present a convergence
analysis. In the next section, an algorithm will be proposed for computing the invari-
ant subspaces based on several refinements of the basic iterative scheme.

Let A be an Hermitian matrix and assume that A is block diagonalized as follows:

A = Qdiag(A11, A22)QH ,(2.1)

where Q is unitary, and A11 ∈ Cr×r with

λ(A11) = {λ ∈ λ(A) | |λ| < 1}, λ(A22) = {λ ∈ λ(A) | |λ| > 1},
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i.e., A has no eigenvalue of absolute value one. Our goal is to compute the unitary
matrix Q whose first r columns form an orthonormal basis of the invariant subspace
of A corresponding to the eigenvalues inside (−1, 1). To this end, it is easily verified
that

(I +Am)−1 = Qdiag((I +Am11)−1, (I +Am22)−1)QH

= Qdiag(Ir, 0)QH +O(εm)
= P|λ|<1 +O(εm),

where εm = ηm; here m is a nonnegative integer. Therefore, an approximation of
P|λ|<1 can be obtained by using a large enough m. In fact let (I+Am)−1 = QmRmΠm

be its QR decomposition with column pivoting. We now prove that the (2, 1) block
of QHmAQm converges to zero, and we will also establish its convergence rate. Before
we prove the convergence result, we need the following lemma.

LEMMA 2.1. Let V ∈ Cr×n satisfy V V H = Ir, and r < n. Let V = QRΠ be
the QR decomposition of V with column pivoting. Partition R as R = (R1, R2) with
R1 ∈ Cr×r. Then

σ2
min(R1) ≥ 1/Crn,

where Crn = n!/(r!(n− r)!).
Proof. Since σmax(R1) ≤ 1, we have

σmin(R1) ≥ σ1(R1) · · ·σr(R1) = det(R1).

Let R = [r1, . . . , rn]. It follows that r = ‖R‖2F ≤ nmax{ ‖rj‖22 | 1 ≤ j ≤ n}. Let
R1 = (Rij)ri,j=1. Now R11 is bounded below by

R11 = max{ ‖rj‖2 | 1 ≤ j ≤ n} ≥
√
r/n.

Similarly we have

Rjj ≥
√

(r − j + 1)/(n− j + 1), j = 1, 2, . . . , r.

Hence

σ2
min(R1) ≥ (det(R1))2 =

r∏
j=1

R2
jj ≥

r(r − 1) · · · 2 · 1
n(n− 1) · · · (n− r + 1)

=
1
Crn

,

completing the proof.
THEOREM 2.2. Let (I+Am)−1 = QmRmΠm be its QR decomposition with column

pivoting. Partition

QHmAQm =

[
A

(m)
11 A

(m)
12

A
(m)
21 A

(m)
22

]
,

with A(m)
11 ∈ Cr×r. Then we have

A
(m)
12 = (A(m)

21 )H = O(εm)

with εm = ηm.
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Proof. First let Pm = ΠmQ,Um = QHmQ. Then we have

RmPm = Um diag(Ir, 0) +O(εm),(2.2)

which gives

Rm = Um diag(Ir, 0)PHm +O(εm).(2.3)

Now partition Rm, Pm, and Um conformally as follows:

Rm =

[
R

(m)
11 R

(m)
12

R
(m)
21 R

(m)
22

]
, Pm =

[
P

(m)
11 P

(m)
12

P
(m)
21 P

(m)
22

]
, Um =

[
U

(m)
11 U

(m)
12

U
(m)
21 U

(m)
22

]

with R
(m)
11 ∈ Cr×r. It follows from (2.2) and (2.3) that

U
(m)
21 = R

(m)
22 P

(m)
21 +O(εm), R

(m)
22 = U

(m)
21 (P (m)

21 )H +O(εm),(2.4)

which implies

U
(m)
21 (I − (P (m)

21 )HP (m)
21 ) = O(εm).

Therefore, U (m)
21 (P (m)

11 )HP (m)
11 = O(εm).

Now we show that R(m)
22 → 0 as m → ∞. Since {R(m)

22 } is bounded, this is
equivalent to proving that any convergent subsequence of {R(m)

22 } has zero as its limit.
To this end, choose a convergent subsequence {R(mk)

22 } and without loss of generality
assume that {Rmk}, {Pmk}, and {Umk} are convergent to R, P , and U , respectively.
It is easy to see that

diag(Ir, 0)P = UHR

is the QR decomposition with column pivoting of diag(Ir, 0)P . Hence we have R22 = 0
because rank(R) = r, i.e., R(mk)

22 → 0 as k →∞.
Next we show that σmax(P (m)

21 ) ≤ 1 − 1/Crn,m = 0, 1, . . .. In fact take any
convergent subsequence {P (mk)

21 } of {P (m)
21 } and assume without loss of generality

Pmk →
[
P11 P21

P21 P22

]
, Umk →

[
U11 U21

U21 U22

]
, Rmk →

[
R11 R21

0 0

]
.

Since R(mk)
22 → 0, we have from (2.4) that U21 = 0 and then U12 = 0. Hence U11 is

orthogonal. Therefore,

(R11, R12) = U11(PH11 , P
H
21)

is the QR decomposition with column pivoting of (PH11 , P
H
21). By Lemma 2.1, we have

σmin(P11) = σmin(R11) ≥ 1/Crn,

which implies that σmin(P (m)
11 ) ≥ 1/Crn because the set {Pm} only contains a finite

number of elements. (Pm = ΠmQ, where Πm is a permutation matrix, and the number
of permutation matrices of order n is finite.)
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Therefore, we have (U (m)
21 , R

(m)
22 ) = O(εm). On the other hand

UHmRm = diag(Ir, 0)PHm +O(εm),

which gives (U (m)
12 )H(R(m)

11 , R
(m)
12 ) = O(εm). Recall that (R(m)

11 , R
(m)
12 )(R(m)

11 , R
(m)
12 )H →

Ir, we have U (m)
12 = O(εm). It follows from

A
(m)
21 = U

(m)
21 A11(U (m)

11 )H + U
(m)
22 A22(U (m)

12 )H

that A(m)
21 = O(εm).

Remark. Using the estimates U (m)
12 = O(εm) and U

(m)
21 = O(εm) in the above

proof, we can show that there exist unitary matrices P
(m)
1 ∈ Cr×r and P

(m)
2 ∈

C(n−r)×(n−r) such that

A
(m)
11 = P

(m)
1 A11(P (m)

1 )H +O(ε2m), A
(m)
22 = P

(m)
2 A22(P (m)

2 )H +O(ε2m).

The proof is similar to that of the second part of Theorem 4.5. Theorem 2.2 and the
above remark show that the first r columns of Qm span an approximate orthonormal
basis for the invariant subspace of A corresponding to its eigenvalues inside (−1, 1),
and the last n − r columns of Qm span an approximate orthonormal basis for the
invariant subspace of A corresponding to its eigenvalues outside (−1, 1).

Unfortunately, the above method cannot be used as it is because forming Am for
large m will result in overflow. As a remedy, we can rewrite

Am = Qdiag(I, A−m22 )−1QHQdiag(Am11, I)QH ≡W−1
m Zm,

where

Wm = Qdiag(I, A−m22 )QH , Zm = Qdiag(Am11, I)QH .

The computation of Wm and Zm now causes no overflow, and we also have

(I +Am)−1 = (I +W−1
m Zm)−1 = (Wm + Zm)−1Wm.

To speed up convergence, we will not generate the successive powers {(I+Am)−1}
one by one. Instead we will just generate (I + Am)−1 for m = 3k, k = 0, 1, . . .. The
following iterative scheme does this.

A basic iterative scheme.
1. Initialization. W0 = I, Z0 = A.
2. For k = 0, 1, 2, . . . , until convergence

2.1 Compute QR decomposition[
Wk

−Zk

]
=
[
Q11 Q12
Q21 Q22

] [
Rk
0

]
.

2.2 Modify Wk and Zk

Wk+1 = QH22WkQ22,

Zk+1 = QH12ZkQ12.
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Notice that step 2.1 amounts to the computation of an orthonormal basis for the
left null space of (WH

k ,−ZHk )H , i.e.,

[QH12, Q
H
22]

[
Wk

−Zk

]
= 0.(2.5)

The connections between the basic iterative scheme and the powers of {Am} are given
in the following results.

PROPOSITION 2.3. The matrices Wk and Wk + Zk, k = 0, 1, . . ., are all nonsin-
gular, and there exists a nonsingular matrix Gk such that

W−1
k Zk = G−1

k A3kGk, (I +A3k)−1 = Gk(Wk + Zk)−1GHk .

Proof. First we prove the nonsingularity of Wk by induction. It is trivial for k = 0
since W0 = I. Assume that Wk is nonsingular; then from[

Wk

−Zk

]
=

[
Q11 Q12

Q21 Q22

][
Rk

0

]
we obtain Wk = Q11Rk which implies that Q11 is also nonsingular. We prove Wk+1
is nonsingular by proving Q22 is so. Assume to the contrary that Q22 is singular, and
Q22x = 0 with x 6= 0. Since Q is unitary, we have QH11Q12x = 0. Hence Q12x = 0,
and [

Q12

Q22

]
x = 0,

a contradiction. At each step 2.1 in the algorithm, let Xk = QH22 and Yk = QH12. It
follows from (2.5) that YkWk = XkZk, and

Wk+1 = XkWkX
H
k , Zk+1 = YkZkY

H
k .

Using induction, it is easy to see that Wk and Zk, k = 0, 1, . . ., are all Hermitian, and
Wk = GHk Gk with Gk = (Xk−1 . . . X0)H . Now

W−1
k+1Zk+1 = X−Hk W−1

k X−1
k (Yk)Zk(Y Hk )

= X−Hk W−1
k X−1

k (XkZkW
−1
k )Zk(W−1

k ZkX
H
k )

= X−Hk (W−1
k Zk)3XH

k ,

which leads to

W−1
k Zk = G−1

k (W−1
0 Z0)3kGk = G−1

k A3kGk.

Moreover, with Wk = GHk Gk, we obtain

I +A3k = G−Hk (Wk + Zk)Gk.

Therefore, Wk + Zk is nonsingular, and

(I +A3k)−1 = Gk(Wk + Zk)−1GHk ,

completing the proof.
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With the relation (I + A3k)−1 = Gk(Wk + Zk)−1GHk , it is just a matter of com-
puting the QR decomposition of Gk(Wk +Zk)−1GHk with column pivoting to find an
approximation of P|λ|>1. Let this decomposition be Gk(Wk+Zk)−1GHk = QkRkΠk. A
simple corollary of Theorem 2.2 is this: if Qk is the unitary matrix in the QR decom-
position of Gk(Wk +Zk)−1GHk with column pivoting, then the (2, 1) block of QHk AQk
is of order η3k . This establishes its cubic convergence. However, the computation of
(Wk+Zk)−1 can introduce large errors if Wk+Zk is close to singular. Besides, we are
also interested in designing methods in which no inversion of any matrices is involved
which will give us truly inverse-free algorithms. This task is taken up in the next
section. The convergence analysis in Theorem 2.2 can be best described as using a
mixed convergence rate because η is actually the maximum of η+ and η−. A more
desirable feature will be to identify quantities in the iterative scheme that will have
convergence rates determined by either η+ or η−. It is easy to see that there are cases
where η+ can be much smaller than η− or vice versa.

3. The algorithm. In this section we will present an algorithm based on some
refinements of the basic iterative scheme proposed in the last section. We will also
give a much refined convergence analysis where convergence to P|λ|>1 and P|λ|<1 are
clearly separated with distinct convergence rates.

A key in the refinement of the basic iterative scheme is the observation that the
matrices Wk and Zk, k = 0, 1, . . ., in the basic iterative scheme actually commute with
each other, i.e., WkZk = ZkWk. This result is proved in Proposition 3.1 below, and it
allows us to replace the computation of an orthonormal basis for the left null space of
(WH

k ,−ZHk )H (cf. equation (2.5)) by the computation of an orthonormal basis for the
range space of (ZHk ,W

H
k )H . Moreover, instead of directly generating the matrices Wk

and Zk, we actually generate Gk and Hk such that Wk = GHk Gk and Zk = HH
k AHk.

Other alternatives are possible and will be discussed in section 5.
PROPOSITION 3.1. Let [(Q(k)

12 )H , (Q(k)
22 )H ] be any orthonormal matrix in step 2.1

of the basic iterative scheme such that

[(Q(k)
12 )H , (Q(k)

22 )H ]

[
Wk

−Zk

]
= 0.

Let Gk+1 = Gk(Q(k)
22 )H , Hk+1 = Hk(Q(k)

21 )H with G0 = H0 = I. Then there exists a
unitary matrix Mk such that for k ≥ 1

Gk = CkMk, Hk = A(3k−1)/2CkMk,

where Ck = [(I + A2)(I + A2·3) · · · (I + A2·3k−1
)]−1/2. Furthermore, Wk and Zk

commute with each other.
Proof. We use induction. At the first step of the basic iterative scheme, we have[

I

−A

]
=

[
Q

(0)
11 Q

(0)
12

Q
(0)
21 Q

(0)
22

][
R0

0

]
,

the QR decomposition of (I,−A)H . We also know R0 is nonsingular. It is easy to see
that [

A

I

]
(I +A2)−1/2 is orthogonal to

[
Q

(0)
11

Q
(0)
21

]
.
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Therefore, there exists a unitary matrix M1 such that

[
A

I

]
(I +A2)−1/2 =

[
Q

(0)
12

Q
(0)
22

]
MH

1 .

Hence

G1 = Q
(0)
22 = (I +A2)−1/2M1, H1 = Q

(0)
12 = A(I +A2)−1/2M1,

and the proposition holds for k = 1. Now assume that the result holds for k = m ≥ 1.
The QR decomposition of (WH

m ,−ZHm )H gives

[
Wm

−Zm

]
≡
[

GHmGm

HH
mAHm

]
=

[
MH
mC

2
mMm

MH
mA

3m−1C2
mMm

]
=

[
Q

(m)
11 Q

(m)
12

Q
(m)
21 Q

(m)
22

][
Rm

0

]
.

It can be verified that

[
MH
mA

3m

MH
m

]
(I +A2·3m)−1/2 is orthogonal to

[
Q

(m)
11

Q
(m)
21

]
.

Therefore, there exists a unitary matrix Mm+1 such that

[
MH
mA

3m

MH
m

]
(I +A2·3m)−1/2 =

[
Q

(m)
12

Q
(m)
22

]
MH
m+1.

Hence

Q
(m)
12 = MH

m (I +A2·3m)−1/2Mm+1, Q
(m)
22 = MH

mA
3m(I +A2·3m)−1/2Mm+1.

Therefore, we have

Gm+1 = GmQ
(m)
22 = Cm+1Mm+1, Hm+1 = HmQ

(m)
21 = A(3(m+1)−1)/2Cm+1Mm+1.

Since Wk = GHk Gk = MH
mC

2
mMm and Zk = HH

k AHk = MH
mA

3m−1C2
mMm, it’s

easy to see that Wk and Zk commute with each other.
With the results established in the above proposition, we can present the following

algorithm which modifies the basic iterative scheme using the fact that Wk and Zk
commute with each other.
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Algorithm Cubic.
1. Initialization. G0 = I, H0 = I.
2. For k = 0, 1, 2, . . . , until convergence

2.1 Compute QR decomposition[
HH
k AHk

GHk Gk

]
=

[
Q11 Q12

Q21 Q22

][
Rk

0

]
.

2.2 Modify Gk and Hk

Gk+1 = GkQ21,

Hk+1 = HkQ11.

2.3 If ‖Gk+1H
H
k+1‖F ≤ tol, then stop, p = k + 1.

Otherwise k = k + 1, go to step 2.1.
3. Compute the QR decomposition with column pivoting

Gp = QRΠ,

with Π a permutation matrix. Let r = rank(R).
4. Compute QHAQ as

QHAQ =

[
Â11 E12

E21 Â22

]
,

with Â11 ∈ Cr×r.

Here tol is a user-supplied tolerance which will influence the accuracy of the
approximate invariant subspaces. More details on the implementation are discussed
in section 5.

4. Convergence analysis. In this section we present a detailed convergence
analysis of the algorithm proposed in section 3. The analysis is based on several
key relations established in Proposition 3.1. We want to emphasize that the cubic
convergence of Algorithm Cubic comes from matrix powers, while that of Rayleigh
quotient iteration and QR algorithms comes from the choice of shifts. Even though
both classes of algorithms converge cubically, the mechanism by which the convergence
rate is achieved is entirely different. Now let the eigenvalue decomposition of A be
A = QΛQH with Λ = diag(λ1, . . . , λn) satisfying (1.1). Then it is easy to see that Ck
defined in Proposition 3.1 has the form Ck = QΛkQH , where Λk = diag(λ(k)

1 , . . . , λ
(k)
n )

and

λ
(k)
i = [(1 + λ2

i )(1 + λ2·3
i ) . . . (1 + λ2·3(k−1)

i )]−1/2, i = 1, . . . , n.(4.1)

The following lemma establishes that all the sequences {λ(k)
i }, i = 1, . . . , n,

converge.
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LEMMA 4.1. Let d ≥ 0, and define a sequence {ak} by the following recursion:

a1 = (1 + d)−1/2

ak+1 = ak(1 + d3k)−1/2, k ≥ 1.

Then the sequence {ak} converges to a(d), where a(d) is a well-defined function of d
satisfying a(d) = 0 for d ≥ 1, and 0 < a(d) < 1 for 0 ≤ d < 1. Moreover, we have

|ak − a(d)| ≤


a1

2(1−d3)d
3k , d < 1,

2−k/2, d = 1,√
d
d+1d

−(3k−1)/4, d > 1.

Proof. It is easy to see that ak → 0 as k → ∞ when d ≥ 1. We only need to
consider the case when 0 ≤ d < 1. By L’Hospital’s rule, we can establish that

lim
t→+∞

t2 ln(1 + d3t) = 0,

which implies that there exists a positive constant C such that

0 ≤ ln(1 + d3k) ≤ C/k2

holds for all k ≥ 1. Hence the series
∑∞
k=0 ln(1 + d3k) converges. Let E ≥ 0 be the

sum of the series. Then

lim
k→∞

ak = exp(−E/2) ≤ 1.

As for the upper bounds, we have if d < 1, then all k ≥ 1,

|ak+1 − ak| = ak
d3k

1 + d3k +
√

1 + d3k
≤ a1d

3k/2,

which gives, for m ≥ k,

|am+1 − ak| ≤ a1(d3k + d3(k+1)
+ · · ·+ d3m)/2 ≤ a1

2(1− d3)
d3k .

Let m → ∞; we obtain the inequality. If d = 1, it is easy to see that ak = 2−k/2. If
d > 1, we have

|ak − a(d)| = ak =
d−(3k−1)/4√∏k−1
j=0 (1 + d−3j )

≤
√

d

d+ 1
d−(3k−1)/4,

completing the proof.
Now we are in the position to establish the structure of the limits of the convergent

subsequences of {Gk} and {Hk}.
THEOREM 4.2. Let A = QΛQH be the eigenvalue decomposition of A defined in

(1.1). Then for any convergent subsequence {Gkj} of {Gk}, its limit G has the form
G = Qdiag(DG, 0)M , where M is unitary and

DG = diag(a(λ2
1), . . . , a(λ2

r)).
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For the corresponding subsequence {Hkj} of {Hk}, the subsequence of {Hkj} with odd
indices converges to H = Qdiag(0, DH)M , where

DH = diag(sign(λs+1)a(λ−2
s+1), . . . , sign(λn)a(λ−2

n )),

and the subsequence of {Hkj} with even indices converges to H = Qdiag(0, D̂H)M ,
where

D̂H = diag(a(λ−2
s+1), . . . , a(λ−2

n )).

Proof. Equation (4.1) and Lemma 4.1 imply that

Ck = [(I +A2)(I +A2·3) · · · (I +A2·3k−1
)]−1/2

converges toQ(DG, 0)QH . WriteA(3k−1)/2Ck = QDkQ
H withDk = diag(d(k)

1 , . . . , d
(k)
n ),

and

d
(k)
i = λ

(3k−1)/2
i [(1 + λ2

i )(1 + λ2·3
i ) · · · (1 + λ2·3k−1

i )]−1/2.

It can be verified that for 1 ≤ i ≤ r, d(k)
i → 0 · a(λ2

i ) = 0; for r < i ≤ s, |d(k)
i | →

a(λ2
i ) = 0; and for s < i ≤ n, we have

d
(k)
i = sign(λi)k[(I + λ−2

i )(I + λ
(−2)·3
i ) · · · (I + λ

(−2)·3k−1

i )]−1/2.

Hence d
(2k)
i → a(λ−2

i ) and d
(2k+1)
i → sign(λi)a(λ−2

i ). Therefore, for any conver-
gent subsequence {Mkj} of {Mk}, the subsequences {Gkj} and {Hkj} converge to
Qdiag(DG, 0)QHM̂ and Qdiag(0, DH)QHM̂ or Qdiag(0, D̂H)QHM̂ , provided that
Mkj → M̂ . Setting M = QHM̂ finishes the proof.

In Algorithm Cubic, ‖GkHH
k ‖F is used as a stopping criterion, and ‖GkHH

k ‖F ≤√
n‖GkHH

k ‖2. The following lemma establishes the convergence rate of the sequence
{‖GkHH

k ‖2}.
LEMMA 4.3. For k ≥ 1, we have ‖GkHH

k ‖2 ≤ η(3k−1)/2 when s = r and
‖GkHH

k ‖2 ≤ 2−k when s > r.
Proof. It is easy to verify that GkHH

k = A(3k−1)/2C2
k . Hence

‖GkHH
k ‖2 = max

i
α

(k)
i ,

where α(k)
i = |λi|(3

k−1)/2[(1 + λ2
i )(1 + λ2·3

i ) · · · (1 + λ2·3k−1

i )]−1. Now for 1 ≤ i ≤ r,

α
(k)
i ≤ |λi|(3

k−1)/2 ≤ η(3k−1)/2
− ; for r < i ≤ s, α(k)

i = 2−k; and for s < i ≤ n,

α
(k)
i = |λ−1

i |(3
k−1)/2[(1 + λ−2

i )(1 + λ
(−2)·3
i ) · · · (1 + λ

(−2)·3k−1

i )]−1 ≤ η(3k−1)/2
+ ,

completing the proof.
Before we prove our final result, we need a technical lemma that bounds the

diagonal elements of the upper triangular matrices obtained by applying the QR
decomposition with column pivoting to a bounded sequence of matrices.
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LEMMA 4.4. If for any convergent subsequence {Fkj} of a given bounded matrix
sequence {Fk} its limit F has rank t, then let Fk = QkRkΠk be its QR decomposition
with partial pivoting; we have

lim inf
k→∞

R
(k)
tt > 0, lim

k→∞
R

(k)
jj = 0, j > t,

where Rk = (R(k)
ij ).

Proof. Assume to the contrary that lim infk→∞R
(k)
tt = 0. For any convergent

subsequence {Rkjtt } of {Fk}, since {Fk} is bounded, we can assume without loss of
generality that {Rkj}, {Qkj}, and {Πkj} are also convergent and have the limits R, Q,
and Π, respectively. Then F = QRΠ is the QR decomposition with column pivoting
of F , and Rtt = 0. Column pivoting guarantees that the last n− t+ 1 rows of R are
also zero which contradicts the assumption that rank(R) = t.

On the other hand, if R(k)
t+1,t+1 does not converge to zero, then there exits a

subsequence R(kj)
t+1,t+1 that has a positive limit. Let F be the limit of a convergent

subsequence of F (kj). Then in its QR decomposition with column pivoting F = QRΠ,
R has at least t+ 1 nonzero diagonal elements, a contradiction to rank(R) = t. Since
R

(k)
t+1,t+1 ≥ R

(k)
jj , j > t+ 1, we also have R(k)

jj → 0.
So far, all the results we have obtained about convergence have a convergence

rate that is determined by η. Remember that η = max{η−, η+}. Therefore, the
convergence seems to always follow the slowest of η− and η+, even though one of
them can be much smaller than the other. This will correspond to the situation
when either the eigenvalues inside (−1, 1) or the eigenvalues outside (−1, 1) are far
from 1 and −1. Using the quantity η alone will not allow us to take advantage of a
much smaller η− or η+. We call the phenomenon mixed convergence. In the following
theorem, we will prove that the two sequences {Gk} and {Hk} have quite different
convergence properties: {Gk} and {Hk} will give a sequence of orthogonal matrices
that will block diagonalize A with convergence rate η− and η+, respectively.

THEOREM 4.5. Let Gk = QkRkΠk and Hk = Q̂kR̂kΠ̂k be QR decomposition
with column pivoting for Gk and Hk, respectively. Partition QHk AQk and Q̂Hk AQ̂k as
follows:

QHk AQk =

[
A11 A12

A21 A22

]
, Q̂Hk AQ̂k =

[
Â11 Â12

Â21 Â22

]
,

where A11 ∈ Cr×r and Â22 ∈ Cs×s. If r = s, then

A12 = AH21 = O(η3k/2
+ ), Â12 = ÂH21 = O(η3k/2

− ).

Moreover, there exist unitary matrices

P1 ∈ Cr×r, P2 ∈ C(n−r)×(n−r), P̂1 ∈ C(n−r)×(n−r), P̂2 ∈ Cr×r

such that

A11 − P1Λ−PH1 = O(η3k
+ ), A22 − P2Λ+P

H
2 = O(η3k

+ ),

Â11 − P̂1Λ−P̂H1 = O(η3k
− ), Â22 − P̂2Λ+P̂

H
2 = O(η3k

− ),
(4.2)

where Λ− = diag(λ1, . . . , λr) and Λ+ = diag(λr+1, . . . , λn).
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Proof. Denote Uk = QHk Q and Vk = Q̂Hk Q, and partition Uk and Vk as follows:

Uk =

[
U11 U12

U21 U22

]
, Vk =

[
V11 V12

V21 V22

]
,

where U11 ∈ Cr×r and V11 ∈ C(n−r)×s. Since Hk = AmGk, here m = (3k − 1)/2, we
have

V Hk R̂kΠ̂k = diag(Λm− ,Λ
m
+ )UHk RkΠk.

Then

diag(Ir,Λ−m+ )V Hk R̂kΠ̂k = diag(Λm− , In−r)U
H
k RkΠk.

It follows that

(V H11 , V
H
21 )R̂k = O(ηm− ), (UH12, U

H
22)Rk = O(ηm+ ).

Theorem 4.2 and Lemma 4.4 imply that inverses of the leading principal r × r sub-
matrix of Rk and (n − r) × (n − r) submatrix of R̂k have norms with positive lower
bounds. Hence V11 = O(ηm− ), U12 = O(ηm+ ), and then V22 = O(ηm− ), U21 = O(ηm+ )
which yields A12 = AH21 = O(ηm+ ), and Â12 = ÂH21 = O(ηm− ).

Moreover, since UH11U11 = Ir−UH21U21, it follows that there exists a unitary matrix
P1 ∈ Cr×r such that U11 = P1(Ir − UH21U21)1/2. Now we have

‖U11 − P1‖2 = ‖(Ir − UH21U21)1/2 − Ir‖2 ≤ ‖U21‖2/2.

Using the estimate U21 = O(η3k/2
+ ), we have U11 = P1 +O(η3k

+ ). Therefore, we have

A11 − P1∆−PH1 = U11∆−UH11 + U12∆+U
H
12 − P1∆−PH1

= (U11 − P1)∆−UH11 + P1∆−(U11 − P1)H + U12∆+U
H
12

= O(η3k
+ ).

Similarly, we can prove the other estimates in (4.2).
Remark. When r < s, i.e., A has eigenvalues |λi| = 1, Theorem 4.2 implies that

the matrix QHk AQk can be written as

QHk AQk =

 A11 E12 E13

E21 A22 E23

E31 E32 A33

 ,
where A11 corresponds to eigenvalues inside (−1, 1), A22 eigenvalues with absolute
value one, and A33 eigenvalues outside [−1, 1], then the convergence of [E12, E13] to
zero is still cubic.

5. Implementation details and related issues. In this section we address
several issues involved in implementing the Algorithm Cubic proposed in section 3.
We will also consider how to extend Algorithm Cubic to compute the complete eigen-
decomposition of an Hermitian matrix and how to handle the generalized eigenvalue
problem.
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Other intervals. In the case that we want to compute the invariant subspace
corresponding to eigenvalues inside the interval (a, b), we can use the following trans-
formation to map (a, b) to (−1, 1):

p(x) =
2

b− a

(
x− a+ b

2

)
.

It is easy to check that |p((a, b))| < 1 and |p((−∞,∞)− [a, b])| > 1.
Complexity. In step 2 of Algorithm Cubic, each iteration needs five matrix–matrix

multiplications of order n matrices and one QR decomposition of a 2n × n matrix.
The number of matrix multiplications can be reduced to four if we use the symmetry
of the matrices HH

k AHk and GHk Gk.
Storage. We first count the number of storage blocks of size n2 needed in Al-

gorithm Cubic. The matrix A needs to be stored. We need two blocks for storing
HH
k AHk and GHk Gk which are used for the QR decomposition in step 2.1. We also

need two blocks for updating Gk+1 and Hk+1 in step 2.2. Therefore, the total storage
space needed is 5n2. Using the symmetry of A,HH

k AHk, and GHk Gk, the storage
space can be reduced to 3.5n2.

The computation of the QR decomposition in step 2.1 can be done either using a
modified Gram–Schmidt method [4, section 5.2.8] or Householder transformations. It
is easy to see that the Gram–Schmidt method allows the generation of the orthonormal
matrix in place, one column at a time. Now we demonstrate that this is also the
case with Householder transformations. Let F ∈ Cm×n with m ≥ n. In the QR
decomposition, a sequence of Householder vectors u1, u2, . . . , un are generated so that

H(un)H(un−1) · · ·H(u2)H(u1)F = [RH , 0]H ,

where H(ui) = Im − 2uiuHi and R ∈ Cn×n is upper triangular. The matrix R is
stored in the upper triangular part of F , and those Householder vectors u1, u2, . . . , un
are stored in the lower triangular part of F . Now remember all we need is the first
n columns of the matrix H ≡ H(u1)H(u2) · · ·H(un−1)H(un), i.e., Hei, i = 1, . . . , n,
where ei is the ith column of Im. The key observation here is the fact that the vectors
ui+1, . . . , un are not needed in generating Hei, since the first i − 1 components of
ui are zero. Therefore, we can generate {Hei} one column at a time starting with
the last column Hen. In LAPACK implementation, a block version is used and
the Householder vectors are grouped into block columns of certain size. The above
technique can also be modified to handle the block case.

A brief comparison with ISDA. In [1, 3], a simple and elegant method, the so-
called invariant subspace decomposition algorithm (ISDA), was proposed to compute
invariant subspaces of a symmetric matrix A (some extensions were also considered
in [7].) The method first applies a linear transformation to A so that the spectrum
of the transformed matrix Â is within [0, 1]. Then a version of truncated incomplete
Beta function such as B1(x) = 3x2 − 2x3 is repeatedly applied to Â,

Ak+1 = B1(Ak), k = 0, 1, 2, . . . , A0 = Â;

the idea is to map the eigenvalues of Â inside [0, 1/2) to zero and those inside (1/2, 1]
to one. In the following we will just point out some differences of the two algorithms.
Compared with Algorithm Cubic, ISDA is much simpler and only requires matrix–
matrix multiplication in each iteration. The convergence rate of ISDA is quadratic
while that of Algorithm Cubic is cubic. However, the convergence mechanism of
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the two algorithms are rather different although both of them suffer slow convergence
when the eigenvalues are clustered around certain critical points; for ISDA, the critical
point is 1/2, and for Algorithm Cubic, they are −1 and 1. Certain preprocessing steps
will alleviate to some extent the slow convergence problem. But these measures will
not completely eliminate the problem. The linear transformation step of ISDA might
create a tighter cluster since it will squeeze the spectrum of A into [0, 1]. It seems that
Algorithm Cubic can be readily extended to handle the SVD case, operating only on
matrices of order n. It is certainly worthwhile to develop methods that will combine
the strength of both algorithms.

The complete eigendecomposition. A complete eigendecomposition of an Hermi-
tian matrix A ∈ Cn×n can be obtained by recursively applying Algorithm Cubic. In
the following we outline an algorithm which will be used in the numerical examples
in section 6. The algorithm starts by applying a linear transformation to A.

Algorithm CubicEig.
1. If n ≤ nmin, compute the eigendecomposition A =
UDUH by a conventional method such as QR algorithm.

2. Transform A to

A0 =
2

b− a

(
A− a+ b

2
I

)
,

where a = −‖A‖F , and b = trace(A)/n.
3. Compute the invariant subspace of A0 using Algorithm

Cubic to obtain a unitary matrix A and an integer r such
that

QHAQ =
[
A11 E12
E21 A22

]
, A11 ∈ Cr×r.

4. Compute the eigendecomposition of A11 and A22,

A11 = U1D1U
H
1 , A22 = U2D2U

H
2 ,

by recursively calling Algorithm CubicEig.
5. Set U = [Q1U1, Q2U2] and D = diag(D1, D2).

Notice that when n is small enough, i.e., n ≤ nmin, we will switch to a conventional
method for computing the eigendecomposition.

Parallel implementation issues. Algorithm CubicEig fits very well with the gen-
eral structure of divide-and-conquer algorithms. A parallel implementation of it can
be modeled after that proposed in [4, section 8.6.5] using a binary computation tree.
Here the gluing operations are even simpler: it amounts to modifying the orthogo-
nal matrices at the current level using the eigenvector matrices computed from the
next level. Implementation of the primitive matrix operations such as matrix–matrix
multiplication and QR decomposition can be found in the package ScaLAPACK [9].

Extension to generalized eigenvalue problem. We consider how to extend Algo-
rithm Cubic to handle the symmetric positive definite generalized eigenvalue problem

Ax = λBx,

where A and B are Hermitian, and B is positive definite. We need to modify steps 2.1
and 2.2 as follows:
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2.1 Compute the QR decomposition of[
−GHk BGk
HH
k AHk

]
=

[
Q11 Q12

Q21 Q22

][
Rk

0

]
.

2.2 Modify Gk and Hk

Gk+1 = GkQ22,

Hk+1 = HkQ12.

Let the Cholesky decomposition of B be B = LLH . Upon convergence, we compute
the QR decomposition with column pivoting of LHGp = QRΠ, and form V = L−HQ,
then V HBV = I, and V HAV is block diagonal. Notice that we obtained two smaller
ordinary eigenvalue problems.

6. Numerical results. In this section, we use several numerical examples to
illustrate the convergence behaviors of Algorithm Cubic. All the computation re-
ported in this section were carried out on a SPARC20 Workstation using MATLAB
Version 4.1.

Example 1. In this example, we test randomly generated matrices with eigenvalues
well separated from 1 and −1. The matrices are generated as A = QDQT with Q
orthogonal and D is a diagonal matrix with specified diagonal entries. All the matrices
have order n = 100, and exactly half of the eigenvalues are inside (−1, 1) and half of
them are outside. We first choose D as

[1 + rand(1, n/2),−(1− rand(1, n/2))],

where rand() gives a uniform distribution on the interval (0.0, 1.0). About 50 matrices
from this class were tested, and on average it takes about 10 steps for Algorithm Cubic
to deliver ‖E21‖2/‖A‖2 ≈ O(10−15). Another class of matrices have D of the form

[10 ∗ (1 + rand(1, n/2)),−(1− rand(1, n/2))/10].

About 50 matrices from this class were tested, and on average it takes about three
steps for Algorithm Cubic to deliver ‖E21‖2/‖A‖2 ≈ O(10−15). We observe that the
convergence of the algorithm can be very fast when the eigenvalues of the matrix A
are far from the two points 1 and −1.

Example 2. In this example, we illustrate the mixed convergence phenomenon
discussed in section 4. The matrix A = QDQT is of order n = 6, and the matrix D
has the form

[1.1, 1− 10 ∗ mu,−1− mu,−1 + tau, 1− 2 ∗ tau, 1− 3 ∗ tau],

where mu and tau are parameters that can be altered. Again, exactly half of the
eigenvalues of A are inside (−1, 1) and half of them are outside. At step 2.2, we
compute QR decomposition with column pivoting of Gk and Hk as follows: Gk =
QkRkΠk and Hk = Q̂kR̂kΠ̂k. Then we compute A(k)

G = QHk AQk and A(k)
H = Q̂Hk AQ̂k.

Set

normAG(k) = ‖A(k)
G (4 : 6, 1 : 3)‖F , normAH(k) = ‖A(k)

H (4 : 6, 1 : 3)‖F .

The plots of normAG(k) and normAH(k) are given in Figure 1 for three different choices
of mu and tau.
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FIG. 1. Comparison of convergence behavior.

Example 3. In this example, we demonstrate the possibility of employing a pre-
processing technique to accelerate the convergence of Algorithm Cubic. A similar idea
has also been used in [2, 3]. The matrix A = QDQT is of order n = 6, and the matrix
D has the form

[1.5, 1 + 10(−14),−1− 10(−15), 1− 10(−15),−1 + 10(−15),−0.5].

Notice that A has eigenvalues that are very close to 1 and −1. The purpose of
preprocessing is to apply a transform to A so that the eigenvalues of the transformed
matrix will be separated from 1 and −1. We first construct a polynomial φ(x) =
(10x2−9)x2, then we compute Â = φ(A). We apply Algorithm Cubic with A replaced
by Â with only a few steps in the loop step 2, say k = km. We then continue the loop
but with Â replaced by A. The km steps with Â constitutes the preprocessing phase.
The convergence behaviors of Algorithm Cubic with and without preprocessing are
plotted in Figure 2.

Example 4. In this example, we apply Algorithm CubicEig to a set of randomly
generated matrices and compare its accuracy with that obtained using the MATLAB
function schur. The matrices are generated as follows:

D = rand(n, 1) ∗ 10, [Q0, R] = qr(rand(n)), A = Q0 diag(D)QH0 .

We start with matrices of order n = 100 and increment by 10 until n = 200; for each
matrix size, we test 20 matrices. Let Q and U be the unitary matrices obtained from
Algorithm CubicEig with nmin = 1 and the MATLAB function schur, respectively.
We compute the residuals

‖QHAQ− diag(QHAQ)‖F , ‖UHAU − diag(UHAU)‖F .

Figure 3 plots the residuals for each of the matrix orders. The two sets of residuals
are rather comparable with each other.

7. Concluding remarks. We proposed a cubically convergent algorithm, Al-
gorithm Cubic, for computing an invariant subspace of an Hermitian matrix. Once
we have block diagonalized a matrix A, we can recursively apply Algorithm Cubic to
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FIG. 3. (Left) Residuals for Algorithm CubicEig; (Right) Residuals for MATLAB function schur.

each of the diagonal blocks. This in effect gives us an algorithm, Algorithm CubicEig,
for computing the eigenvalue decomposition of A. A detailed convergence analysis of
Algorithm Cubic was given that demonstrates its cubic convergence rate. A general
conclusion that can be drawn from the analysis and the numerical experiments is that
once the eigenvalues of A are cleared away from 1 and −1, convergence of Algorithm
Cubic can occur within just a few steps, around three or four steps at most for ma-
trices of order around a few hundred. If A has eigenvalues very close to either 1 or
−1, the convergence of Algorithm Cubic can be painfully slow, and the quality of
the block diagonalization deteriorates. One can, however, use a preprocessing step
to alleviate to some extent the slow convergence problem. If the goal is to find the
eigenvalue decomposition of A, it makes much sense to first divide the spectrum of
A into two clusters, and map the interval that contains one of the clusters into the
interval (−1, 1). Another interesting phenomenon we observed is that even in the case
where both η− and η+ are very close to one, which means Algorithm Cubic converges
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very slowly, the matrices QHk AQk and/or Q̂Hk AQ̂k converge quickly to block diagonal
form although the sizes of the diagonal blocks will not be r or n − r. This points to
another possible way to overcome the slow convergence of Algorithm Cubic in those
difficult situations: deflate QHk AQk and/or Q̂Hk AQ̂k when they become block diagonal
and work on the diagonal blocks. We need to extend the convergence analysis results
in order to better understand the convergence behavior of each individual eigenvalue.
Those two topics will be dealt with in a forthcoming paper.
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Abstract. Let C be a set of n × n complex matrices. For m = 1, 2, . . . , Cm is the set of all
products of matrices in C of length m. Denote by r̂(C) the joint spectral radius of C, that is,

r̂(C) def= lim sup
m→∞

[ sup
A∈Cm

‖A‖]
1
m .

We call C simultaneously contractible if there is an invertible matrix S such that

sup{‖S−1AS‖; A ∈ C} < 1,

where ‖ · ‖ is the spectral norm. This paper is primarily devoted to determining the optimal joint
spectral radius range for simultaneous contractibility of bounded sets of n×n complex matrices, that
is, the maximum subset J of [0, 1) such that if C is a bounded set of n × n complex matrices and
r̂(C) ∈ J , then C is simultaneously contractible. The central result proved in this paper is that this
maximum subset is [0, 1√

n
). Our method of proof is based on a matrix-theoretic version of complex

John’s ellipsoid theorem and the generalized Gelfand spectral radius formula.
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1. Introductory remarks. Let Cn be an n-dimensional complex linear space.
The inner product

〈x, y〉 =
n∑
i=1

xiyi (x, y ∈ Cn)

and the associated norm

‖x‖ = 〈x, x〉1/2 (x ∈ Cn)

make Cn into an n-dimensional Hilbert space, which is denoted by l2n(C). For an n×n
complex matrix A, r(A) stands for the spectral radius of A and ‖A‖ for the spectral
norm, the operator norm of A associated with the l2n(C) norm ‖x‖. Let C be a set of
n × n complex matrices. For m = 1, 2, . . . , Cm is the set of all products of matrices
in C of length m. Denote by r̂(C) the joint spectral radius of C [8], that is,

r̂(C) def= lim sup
m→∞

[ sup
A∈Cm

‖A‖] 1
m .

The quantity r̂(C) does not depend on the choice of a norm (since all norms are
equivalent on a finite-dimensional space).
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Let us call C simultaneously contractible if there is an invertible matrix S such
that

sup{‖S−1AS‖; A ∈ C} < 1.

For two complex matrices A and B, the order relation A ≤ B (or B ≥ A) means
that B − A is positive semidefinite. The strict inequality A < B (or B > A) means
that B − A is positive definite. With the ordering “≤”, it is readily proved that the
simultaneous contractibility of C is equivalent to the existence of a positive definite
matrix H and 0 < γ < 1 such that

A∗HA ≤ γH (A ∈ C).

Indeed if we take

sup{‖S−1AS‖; A ∈ C} ≡ √γ < 1,

then with H = (SS∗)−1

A∗HA ≤ γH (A ∈ C).

Conversely, if all of these inequalities hold, let S = H−1/2.
We now make two general remarks concerning the simultaneous contractibility.

First, a simultaneously contractible family C is necessarily bounded, namely,

‖A‖ < ‖S‖ · ‖S−1‖ (A ∈ C).

Second, if C is simultaneously contractible by an invertible matrix S, the multiplica-
tive semigroup generated by C as well as the convex span of C are simultaneously
contractible by the same matrix S.

Our starting point of this paper is furnished by the classical construction of Rota
[7]. If C consists of a single matrix A, then r̂(C) = r(A). If r(A) < 1, then

H
def=

∞∑
k=0

A∗kAk

is a well-defined positive definite matrix such that

A∗HA < H.

This is generalized as follows. If C consists of m complex matrices, C = {A1, . . . , Am},
and r̂(C) ≤ γ√

m
with γ < 1, then

H
def= I +

∞∑
k=1

∑
A∈Ck

A∗A

is a well-defined positive definite matrix such that

A∗iHAi ≤ γ2H (i = 1, . . . ,m).

The constant 1√
m

is optimal in the sense that there is a set C consisting of m complex
matrices such that r̂(C) = 1√

m
, but C is not simultaneously contractible (see the
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remark after the proof of Theorem 1.1 in section 3). Incidentally, this optimality also
serves to indicate the condition r̂(C) < 1 does not necessarily imply the simultaneous
contractibility of C even if C is multiplicative and convex. If r̂(C) ≥ 1, then clearly C
is not simultaneously contractible.

The above discussion suggests the following problem. To begin with, the optimal
joint spectral radius range for simultaneous contractibility of bounded sets of n ×
n complex matrices is defined as the maximum subset J of [0, 1) such that if C is
a bounded set of n × n complex matrices and r̂(C) ∈ J, then C is simultaneously
contractible. Accordingly, the optimal joint spectral radius range for simultaneous
contractibility of sets of m complex matrices is [0, 1√

m
). In this note we shall consider

the somewhat more complicated question of the determination of the optimal joint
spectral radius range for bounded sets of n×n complex matrices. Our principal result
is the following.

THEOREM 1.1. The optimal joint spectral radius range for simultaneous con-
tractibility of bounded sets of n× n complex matrices is [0, 1√

n
).

The method of proof employed involves a matrix-theoretic version of complex
John’s ellipsoid theorem as well as the generalized Gelfand spectral radius formula.

2. A matrix-theoretic version of complex John’s ellipsoid theorem. To
prove Theorem 1.1, we need a matrix-theoretic version of complex John’s ellipsoid
theorem. Let us recall that a set E in l2n(C) is an ellipsoid if there exist a vector
a ∈ l2n(C) and a positive definite matrix Q such that

E ≡ E(Q, a) def= {x ∈ l2n(C); 〈Q(x− a), x− a〉 ≤ 1}.

A set K in l2n(C) is balanced with respect to a ∈ l2n(C) if

x ∈ K =⇒ eiθ(x− a) + a ∈ K (0 ≤ θ < 2π).

John’s ellipsoid theorem [6]. If K is a convex body (≡ compact convex set
with nonempty interior) in l2n(R) which is (real) balanced with respect to a ∈ l2n(R),
then there is a (real) ellipsoid E(Q, a) such that

E(nQ, a) ⊂ K ⊂ E(Q, a).

John’s proof was based on Lagrange’s multiplier rule where the subsidiary con-
ditions are inequalities. A complex version of John’s ellipsoid theorem is seen in
Tomczak-Jaegermann [10, p. 54] in terms of the notion of Banach–Mazur distance.
We present a matrix-theoretic proof of a complex version of John’s theorem. We men-
tion here that John’s (real) ellipsoid theorem plays a fundamental role in the study of
ellipsoid method for linear programming and of algorithms for convex body (see [5]
and [2]).

THEOREM 2.1. Let {Aλ; λ ∈ Λ} be a bounded set of n × n positive semidefinite
matrices such that

sup
λ∈Λ
〈Aλx, x〉 > 0 (x ∈ l2n(C), x 6= 0).(1)

Then there is an n× n positive definite matrix H0 such that

〈H0x, x〉 ≥ sup
λ∈Λ
〈Aλx, x〉 ≥

1
n
〈H0x, x〉 (x ∈ l2n(C)).(2)

To prove Theorem 2.1, we need the following construction.
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LEMMA 2.2. Let A be an n×n complex matrix with I ≥ A ≥ 0 and let 0 ≤ α < 1
n .

If for some unit vector e1

〈Ae1, e1〉 ≤ α,

then, with the rank 1 projection P1
def= e1 ⊗ e∗1, the matrix

T
def= nαP1 +

n(1− α)
n− 1

(I − P1)

satisfies

T ≥ A and det(T ) < 1.

Proof. By the arithmetic-geometric means inequality we have

det(T )1/n =

{
nα×

(
n(1− α)
n− 1

)n−1
}1/n

<
nα+ n(1− α)

n
= 1.

Here strict inequality occurs because the equality implies

nα =
n(1− α)
n− 1

, hence nα = 1.

We have to prove that

〈Tx, x〉 ≥ 〈Ax, x〉 (x ∈ l2n(C)).

To see this, fix x0. Then there is a unit vector e2 (depending on x0), orthogonal to
e1, such that x0 is in the linear hull of e1 and e2. Let

P2
def= e2 ⊗ e∗2, and P

def= P1 + P2.

Then P is a projection of rank 2. Hence to establish that

〈Tx0, x0〉 ≥ 〈Ax0, x0〉,

we need to prove only the following inequality:

PTP ≥ PAP.(3)

The matrices PAP and PTP can be considered as 2× 2 matrices:

PAP =
[
a c
c b

]
, PTP =

[
nα 0
0 n(1−α)

n−1

]
.

To prove (3) it suffices to show that

nα− a ≥ 0,
n(1− α)
n− 1

− b ≥ 0,(4)

and

(nα− a)×
{
n(1− α)
n− 1

− b
}
≥ |c|2.(5)
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To prove (4) and (5), we use the inequality A ≥ 0 as

a ≥ 0, b ≥ 0, and ab ≥ |c|2,(6)

and the inequality I ≥ A as

1− a ≥ 0, 1− b ≥ 0, and (1− a)(1− b) ≥ |c|2.(7)

Also, the assumption is used as

α ≥ a, 1− nα > 0.(8)

Now by (7) and (8)

nα− a ≥ α− a ≥ 0,

and

n(1− α)
n− 1

− b = 1 +
1− nα
n− 1

− b ≥ 1− b ≥ 0,

proving (4).
To see (5) (under (4)), we consider two cases separately.
Case 1. b ≤ 1− α. Then by (6)

(nα− a)
{
n(1− α)
n− 1

− b
}
− |c|2 ≥ (n− 1)α

{
(1− b) +

1− nα
n− 1

}
− ab

≥ (n− 1)α
{
α+

1− nα
n− 1

}
− α(1− α)

= α{(n− 1)α+ (1− nα)− (1− α)} = 0,

proving (5).
Case 2. b > 1− α. Then by (7)

(nα− a)
{
n(1− α)
n− 1

− b
}
− |c|2 ≥ (nα− a)

{
(1− b) +

1− nα
n− 1

}
− (1− a)(1− b)

≥ α(1− nα)− (1− nα)(1− b)
≥ (1− nα)(α− α) = 0,

proving (5). This completes the proof of (3).
Proof of Theorem 2.1. By boundedness assumption there is H ≥ 0 such that

H ≥ Aλ (λ ∈ Λ).(9)

Claim: There exists a positive definite matrix H0 which has a minimum determi-
nant among all H satisfying (9).

Since by boundedness and assumption (1)

x 7−→
√

sup
λ∈Λ
〈Aλx, x〉

becomes a norm and all norms on l2n(C) are equivalent, there are ρ > δ > 0 such that

ρ〈x, x〉 ≥ sup
λ∈Λ
〈Aλx, x〉 ≥ δ〈x, x〉 (x ∈ l2n(C)).
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Let M be the set of H satisfying (9) and det(H) ≤ ρn. Then it is nonempty because
it contains ρI, and the minimum eigenvalue of any H in M is not smaller than δ.
Further, M is a compact set in the space of n × n complex matrices. In fact, since
for H > 0

‖H‖ = maximum eigenvalue of H ≤ det(H)
(minimum eigenvalue of H)n−1 ,

we can conclude that

‖H‖ ≤ det(H)
δn−1 ≤ ρn

δn−1 (H ∈M).

Therefore,M is a bounded set, hence a compact set because its closedness is obvious.
Since the determinant function attains its minimum on each nonempty compact

set, we can conclude that there is H0 which has a minimum determinant among all
H satisfying (9).

Now let us write

Ãλ
def= H

−1/2
0 AλH

−1/2
0 (λ ∈ Λ).

Then we have

I ≥ Ãλ ≥ 0 (λ ∈ Λ).

The requirement of minimum determinant leads to the property

T ≥ Ãλ (λ ∈ Λ)⇒ det(T ) ≥ 1.(10)

The first inequality of (2) is already in the definition of H0. The second inequality of
(2) is equivalent to the following:

sup
λ∈Λ
〈Ãλx, x〉 ≥

1
n
〈x, x〉 (x ∈ l2n(C)).(11)

If (11) is not valid, there is a unit vector e1 such that

α ≡ sup
λ∈Λ
〈Ãλe1, e1〉 <

1
n
.

Construct, according to Lemma 2.2, a matrix T with e1 and α. (A passing remark:
each individual Ãλ plays no role in this construction.) Therefore, T has the following
property:

T ≥ Ãλ (λ ∈ Λ) and det(T ) < 1,

which contradicts (10). This contradiction shows the validity of (11).
This completes the proof.

3. Proof of Theorem 1.1 of section 1. In order to prove the optimality of
the joint spectral radius range, let us recall the generalized Gelfand spectral radius
formula. For a bounded set of n × n complex matrices C, the generalized Gelfand
spectral radius formula asserts that

r(C) def= lim sup
m→∞

[ sup
A∈Cm

r(A)]
1
m

= r̂(C).
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This generalized Gelfand spectral radius formula was conjectured by Daubechies and
Lagarias [3] and proved by Berger and Wang [1] using tools from ring theory, and
then by Elsner [4] using analytic-geometric tools and by Shih, Wu, and Pang [9] using
dynamics method.

We now turn to the proof of Theorem 1.1
(I) Claim: If C is a bounded set of n×n complex matrices and r̂(C) < 1√

n
, then C

is simultaneously contractible.
We prove this claim by making use of Theorem 2.1.
Proof. Let

r̂(C) < α <
1√
n
.

Choose a positive integer m such that

sup
A∈Cm

‖A‖ ≤ αm.(12)

Since C is bounded, we can define a norm ||| · ||| on l2n(C) by setting

|||x|||2 def= sup
{
‖x‖2 +

1
α2 ‖B1x‖2 + · · ·+ 1

α2(m−1) ‖Bm−1x‖2;

Bj ∈ Cj , j = 1, . . . ,m− 1
}
, (x ∈ l2n(C)).

By (12) we have for A ∈ C

|||Ax|||2 = ‖Ax‖2 +
1
α2 sup

B1∈C1
‖B1Ax‖2 + · · ·+ 1

α2(m−1) sup
Bm−1∈Cm−1

‖Bm−1Ax‖2

≤ α2

(
1
α2 sup

B1∈C1
‖B1x‖2 + · · ·+ 1

α2(m−1) sup
Bm−1∈Cm−1

‖Bm−1x‖2 + ‖x‖2
)

= α2|||x|||2,

so that

|||Ax||| ≤ α|||x||| (A ∈ C ; x ∈ l2n(C)).(13)

We associate to any Bk from Ck (k = 1, . . . ,m− 1) an index λ such that

Aλ
def= I +

m−1∑
k=1

1
α2kB

∗
kBk.

Then

|||x|||2 = sup
λ
〈Aλx, x〉 (x ∈ l2n(C)).

By Theorem 2.1, there is a positive definite matrix H such that

〈Hx, x〉 ≤ |||x|||2 ≤ n〈Hx, x〉 (x ∈ l2n(C))(14)

and by (13) and (14)

〈HAx,Ax〉 ≤ |||Ax|||2 ≤ α2n〈Hx, x〉 (A ∈ C ; x ∈ l2n(C)),
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hence

A∗HA ≤ α2nH (A ∈ C).

This proves the claim (I).
(II) Claim: For any α ∈ [ 1√

n
, 1) there is a set C = {A1, . . . , An} of n×n complex

matrices such that r̂(C) = α and C is not simultaneously contractible.
Let {e1, . . . , en} be the standard basis for l2n(C). Let

e
def= e1 + · · ·+ en,

and

Ek
def= e⊗ e∗k (1 ≤ k ≤ n).

Let

W
def= diag (ω, ω2, . . . , ωn), where ω = e2π

√
−1/n is an nth root of unity.

Then

EjW
k = ωjkEj (j, k = 1, . . . , n),(15)

and

EjEk = Ek (j, k = 1, . . . , n).(16)

Let

Ak
def= αW kEk (k = 1, . . . , n),

and

C = {A1, . . . , An}.

Claim: r̂(C) = α.
First, by (15)

r(W jEk) = r(EkW j) = r(ωjkEk) = r(Ek) = 1 (j, k = 1, . . . , n).(17)

Let

Bj
def= αW kjEkj ∈ C (j = 1, . . . ,m).

From (15) and (16) we have

B1B2 · · ·Bm = αmωk1k2+k2k3+···+km−1kmW k1Ekm ,

and so

r(B1B2 · · ·Bm) = αmr(W k1Ekm)
= αm by (17).

Therefore,

r(B) = αm (B ∈ Cm; m = 1, 2, . . .),
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and so

r(C) = α.

By the generalized Gelfand spectral radius formula, we conclude that

r̂(C) = α.

Claim: C is not simultaneously contractible.
Suppose, by contradiction, that there is H > 0 such that

A∗kHAk < H (k = 1, . . . , n).(18)

Denote the entries of H by hij (i, j = 1, . . . , n). Then by (18) we have

0 < 〈(H −A∗kHAk)ek, ek〉 = 〈Hek, ek〉 − 〈HAkek, Akek〉
= hkk − α2〈HW ke,W ke〉

= hkk − α2
n∑
r=1

n∑
s=1

hrsω
(s−r)k (k = 1, . . . , n).(19)

Since ω = e2π
√
−1/n, we have

n∑
k=1

ωjk =
{

0 if n does not divide j,
n if n divides j.(20)

Since 1√
n
≤ α < 1, (19) and (20) together imply that

0 <
n∑
k=1

hkk − α2
n∑
k=1

n∑
r=1

n∑
s=1

hrsω
(s−r)k

= tr (H)− nα2tr (H)
≤ 0,

in contradiction. This contradiction proves that C is not simultaneously contractible.
This proves the theorem.
Remark. The optimality example shows also that 1√

m
is optimal in the general-

ization of Rota’s construction mentioned in section 1.

4. Zero joint spectral radius and triangularization. The case of r̂(C) = 0
shows the interesting fact that C is simultaneously upper triangularizable by a unitary
matrix, and so C is simultaneously contractible if C is bounded. Notice that r̂(C) = 0
implies simultaneous contractibility of C by Theorem 1.1.

LEMMA 4.1. Let C be a set of n × n complex matrices. If r̂(C) = 0, then C is
simultaneously upper triangularizable by a unitary matrix, that is, there is a unitary
matrix U such that U∗AU is an upper triangular matrix for all A in C.

Proof. We prove the assertion by induction on the dimension n. The case of n = 1
is trivial. Assume that n > 1 and the assertion is true for all cases of dimension less
than n.

Let A be the algebra spanned by C.
(i) Claim: r(A) = 0 (A ∈ A).
Since A is of finite dimension, there are linearly independent

Bi ∈ Cki (i = 1, . . . , N)
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which spans A. Let

p ≡ min
1≤i≤N

ki and q ≡ max
1≤i≤N

ki.

Each A ∈ A has a unique representation

A =
N∑
i=1

αiBi.

Since

Am =
∑

1≤ji≤N

(
m∏
i=1

αji

)
(Bj1 · · ·Bjm),

with α ≡ max1≤i≤N |αi| we have

‖Am‖1/m ≤ αN · max
mp≤k≤mq

{ sup
B∈Ck

‖B‖1/m}.

Assumption r̂(C) = 0 implies that for any 0 < ε < 1 there is m0 such that

sup
B∈Ck

‖B‖1/k ≤ ε (k ≥ m0).

Then we have for k ≥ mp and m ≥ m0

sup
B∈Ck

‖B‖1/m ≤ εk/m ≤ εp

so that

‖Am‖1/m ≤ αNεp (m ≥ m0).

Since 0 < ε < 1 is arbitrary, this implies

‖Am‖1/m → 0 as m→∞.

(ii) Claim: There is a nontrivial subspace M ⊂ l2n(C) which is invariant for all
A ∈ A.

This claim is trivial if A = {0}. If A 6= {0}, there is x0 ∈ l2n(C) such that
M

def= Ax0 6= {0}. Since CA ⊂ A, this subspace M is invariant for all A ∈ A. The
subspace M does not coincide with the whole space l2n(C). For otherwise x0 ∈ M,
that is, there is A ∈ A such that x0 = Ax0, in contradiction to r(A) = 0, guaranteed
in claim (i). Thus, M meets the requirement.

(iii) Since M in (ii) is invariant for all A ∈ C, according to the orthogonal decom-
position

l2n(C) = M ⊕M⊥,

A ∈ A is represented in the block matrix form[
A11 A12
0 A22

]
,
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that is, there is a unitary matrix V, common for all A ∈ C, such that

V ∗AV =
[
A11 A12
0 A22

]
.

(iv) Let 0 < dim(M) ≡ m < n. Since in the representation in (iii)

C1 ≡ {A11; A ∈ C}, C2 ≡ {A22; A ∈ C}

are sets of complex matrices of sizes m and n−m, respectively, and

r̂(Ci) ≤ r̂(C) = 0 (i = 1, 2),

by induction assumption there are unitary matrices V1 of order m (respectively, V2
of order n − m) such that V ∗1 A11V1 (respectively, V ∗2 A22V2) is an upper triangular
matrix of order m (respectively, n −m) for all A11 ∈ C1 (respectively, all A22 ∈ C2).
Let

U ≡ V · (V1 ⊕ V2).

Then we can conclude from the above that U∗AU is an upper triangular matrix for
all A ∈ C.

This completes the proof.
LEMMA 4.2. Let C be a bounded set of n×n complex matrices. If C is simultane-

ously upper triangularizable, then for each ε > 0 there is an invertible matrix P such
that

sup{‖P−1AP‖; A ∈ C} ≤ sup{r(A); A ∈ C}+ ε.

Proof. Let Q be an invertible matrix such that

Q−1AQ = [aij ]

is upper triangular for all A in C and aii (1 ≤ i ≤ n) are eigenvalues of A.
Let ε > 0 be given. For 0 < δ < ε, let

D
def= diag(1, δ, . . . , δn−1).

Then

D−1Q−1AQD =


a11 δa12 · · · δn−1a1n

a22 δa23 · · · δn−2a2n

. . .
...

...
O δan−1, n

ann

 .

Remark that for any matrix T = [tij ]

‖T‖ ≤ ‖diag(T )‖+ ‖T − diag(T )‖

≤ max
i=1,...,n

|tii|+
√∑

i6=j
|tij |2.

Since C is bounded, for all A ∈ C we have

sup
A∈C
‖D−1Q−1AQD‖ ≤ sup{r(A); A ∈ C}+ ε if δ > 0 is small enough.
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Let S def= QD. Then

sup{‖S−1AS‖; A ∈ C} ≤ sup{r(A); A ∈ C}+ ε,

completing the proof.
Combining Lemmas 4.1 and 4.2, we have the following.
THEOREM 4.3. Let C be a bounded set of n × n complex matrices. If r̂(C) = 0,

then for each ε > 0 there is an invertible matrix S such that S−1AS (A ∈ C) are upper
triangular and

sup{‖S−1AS‖; A ∈ C} < ε.

COROLLARY 4.4. If C is a bounded multiplicative semigroup of n × n nilpotent
complex matrices, then for each ε > 0 there is an invertible matrix S such that

sup{‖S−1AS‖; A ∈ C} < ε.

Proof. Since each A in C is nilpotent, r(A) = 0. Since C is multiplicative,

r(C) = lim sup
m→∞

[ sup
A∈Cm

r(A)]
1
m = 0.

By the generalized Gelfand spectral radius formula, we have r̂(C) = 0. Applying
Theorem 4.3, the assertion is proved.

A set of commuting matrices is another example of a simultaneously upper tri-
angularizable set. A proof is easy by induction on the dimension n. For a commuting
set C, r̂(C) = sup{r(A); A ∈ C} by the generalized Gelfand spectral radius formula.

Now the following theorem is immediate from Lemma 4.2.
THEOREM 4.5. The optimal joint spectral radius range for simultaneous con-

tractibility of bounded commuting sets of n× n complex matrices is [0, 1).
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Abstract. The problem of maximizing the determinant of a matrix subject to linear matrix
inequalities (LMIs) arises in many fields, including computational geometry, statistics, system iden-
tification, experiment design, and information and communication theory. It can also be considered
as a generalization of the semidefinite programming problem.

We give an overview of the applications of the determinant maximization problem, pointing out
simple cases where specialized algorithms or analytical solutions are known. We then describe an
interior-point method, with a simplified analysis of the worst-case complexity and numerical results
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the advantage is that it handles a much wider variety of problems.
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1. Introduction. We consider the optimization problem

minimize cTx+ log detG(x)−1

subject to G(x) � 0
F (x) � 0,

(1.1)

where the optimization variable is the vector x ∈ Rm. The functions G : Rm → Rl×l

and F : Rm → Rn×n are affine:

G(x) = G0 + x1G1 + · · ·+ xmGm,

F (x) = F0 + x1F1 + · · ·+ xmFm,

where Gi = GTi and Fi = FTi . The inequality signs in (1.1) denote matrix inequalities,
i.e., G(x) � 0 means zTG(x)z > 0 for all nonzero z and F (x) � 0 means zTF (x)z ≥ 0
for all z. We call G(x) � 0 and F (x) � 0 (strict and nonstrict, respectively) linear
matrix inequalities (LMIs) in the variable x. We will refer to problem (1.1) as a max-
det problem, since in many cases the term cTx is absent, so the problem reduces to
maximizing the determinant of G(x) subject to LMI constraints.

The max-det problem is a convex optimization problem, i.e., the objective func-
tion cTx + log detG(x)−1 is convex (on {x | G(x) � 0}), and the constraint set is
convex. Indeed, LMI constraints can represent many common convex constraints, in-
cluding linear inequalities, convex quadratic inequalities, and matrix norm and eigen-
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value constraints (see Alizadeh [1], Boyd, et al. [13], Lewis and Overton [47], Nesterov
and Nemirovsky [51, sect. 6.4], and Vandenberghe and Boyd [69]).

In this paper we describe an interior-point method that solves the max-det prob-
lem very efficiently, both in worst-case complexity theory and in practice. The method
we describe shares many features of interior-point methods for linear and semidefinite
programming. In particular, our computational experience (which is limited to prob-
lems of moderate size — several hundred variables, with matrices up to 100 × 100)
indicates that the method we describe solves the max-det problem (1.1) in a number
of iterations that hardly varies with problem size, and typically ranges between 5 and
50; each iteration involves solving a system of linear equations.

Max-det problems arise in many fields, including computational geometry, statis-
tics, and information and communication theory, so the duality theory and algorithms
we develop have wide application. In some of these applications, and for very simple
forms of the problem, the max-det problems can be solved by specialized algorithms
or, in some cases, analytically. Our interior-point algorithm will generally be slower
than the specialized algorithms (when the specialized algorithms can be used). The
advantage of our approach is that it is much more general; it handles a much wider
variety of problems. The analytical solutions or specialized algorithms, for example,
cannot handle the addition of (convex) constraints; our algorithm for general max-det
problems does.

In the remainder of section 1, we describe some interesting special cases of the
max-det problem, such as semidefinite programming and analytic centering. In sec-
tion 2 we describe examples and applications of max-det problems, pointing out ana-
lytical solutions where they are known, and interesting extensions that can be handled
as general max-det problems. In section 3 we describe a duality theory for max-det
problems, pointing out connections to semidefinite programming duality. Our interior-
point method for solving the max-det problem (1.1) is developed in sections 4–9. We
describe two variations: a simple “short-step” method, for which we can prove poly-
nomial worst-case complexity, and a “long-step” or adaptive step predictor-corrector
method which has the same worst-case complexity but is much more efficient in prac-
tice. We finish with some numerical experiments. For the sake of brevity, we omit
most proofs and some important numerical details, and refer the interested reader to
the technical report [70]. A C implementation of the method described in this paper
is also available [76].

Let us now describe some special cases of the max-det problem.

Semidefinite programming. When G(x) = 1, the max-det problem reduces to

minimize cTx
subject to F (x) � 0,(1.2)

which is known as a semidefinite program (SDP). Semidefinite programming unifies
a wide variety of convex optimization problems, e.g., linear programming,

minimize cTx
subject to Ax ≤ b

which can be expressed as an SDP with F (x) = diag(b − Ax). For surveys of the
theory and applications of semidefinite programming, see [1], [13], [46], [47], [51,
sect. 6.4], and [69].
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Analytic centering. When c = 0 and F (x) = 1, the max-det problem (1.1)
reduces to

minimize log detG(x)−1

subject to G(x) � 0,(1.3)

which we call the analytic centering problem. We will assume that the feasible set
{x | G(x) � 0} is nonempty and bounded, which implies that the matrices Gi,
i = 1, . . . ,m, are linearly independent, and that the objective φ(x) = log detG(x)−1

is strictly convex (see, e.g., [69] or [12]). Since the objective function grows without
bound as x approaches the boundary of the feasible set, there is a unique solution x?

of (1.3). We call x? the analytic center of the LMI G(x) � 0. The analytic center
of an LMI generalizes the analytic center of a set of linear inequalities, introduced by
Sonnevend [64, 65].

Since the constraint cannot be active at the analytic center, x? is characterized
by the optimality condition ∇φ(x?) = 0:

(∇φ(x?))i = −TrGiG(x?)−1 = 0, i = 1, . . . ,m(1.4)

(see, for example, Boyd and El Ghaoui [12]).
The analytic center of an LMI is important for several reasons. We will see in

section 5 that the analytic center can be computed very efficiently, so it can be used
as an easily computed robust solution of the LMI. Analytic centering also plays an
important role in interior-point methods for solving the more general max-det prob-
lem (1.1). Roughly speaking, the interior-point methods solve the general problem by
solving a sequence of analytic centering problems.

Parameterization of LMI feasible set. Let us restore the term cTx:

minimize cTx+ log detG(x)−1

subject to G(x) � 0,(1.5)

retaining our assumption that the feasible set X = {x | G(x) � 0} is nonempty and
bounded, so the matrices Gi are linearly independent and the objective function is
strictly convex. Thus, problem (1.5) has a unique solution x?(c), which satisfies the
optimality conditions c+∇φ(x?(c)) = 0, i.e.,

TrGiG(x?(c))−1 = ci, i = 1, . . . ,m.

Thus, for each c ∈ Rm, we have a (readily computed) point x?(c) in the set X.
Conversely, given a point x ∈ X, define c ∈ Rm by ci = TrG(x)−1Gi, i =

1, . . . ,m. Evidently we have x = x?(c). In other words, there is a one-to-one corre-
spondence between vectors c ∈ Rm and feasible vectors x ∈ X: the mapping c 7→ x?(c)
is a parameterization of the feasible set X of the strict LMI G(x) � 0, with parameter
c ∈ Rm. This parameterization of the set X is related to the Legendre transform of
the convex function log detG(x)−1, defined by

L(y) = − inf{−yTx+ log detG(x)−1 | G(x) � 0}.

Maximal lower bounds in the positive definite cone. Here we consider
a simple example of the max-det problem. Let Ai = ATi , i = 1, . . . , L, be positive
definite matrices in Rp×p. A matrix X is a lower bound of the matrices Ai if X � Ai,
i = 1, . . . , L; it is a maximal lower bound if there is no lower bound Y with Y 6= X,
Y � X.
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Since the function log detX−1 is monotone decreasing with respect to the positive
semidefinite cone, i.e.,

0 ≺ X � Y =⇒ log detY −1 ≤ log detX−1,

we can compute a maximal lower bound Amlb by solving

minimize log detX−1

subject to X � 0
X � Ai, i = 1, . . . , L.

(1.6)

This is a max-det problem with p(p + 1)/2 variables (the elements of the matrix X)
and L LMI constraints Ai −X � 0, which we can also consider as diagonal blocks of
one single block diagonal LMI

diag(A1 −X,A2 −X, . . . , AL −X) � 0.

Of course there are other maximal lower bounds; replacing log detX−1 by any
other monotone decreasing matrix function, e.g., −TrX or TrX−1, will also yield
(other) maximal lower bounds. The maximal lower bound Amlb obtained by solv-
ing (1.6), however, has the property that it is invariant under congruence transfor-
mations, i.e., if the matrices Ai are transformed to TAiT

T , where T ∈ Rp×p is
nonsingular, then the maximal lower bound obtained from (1.6) is TAmlbT

T .

2. Examples and applications. In this section we catalog examples and ap-
plications. The reader interested only in duality theory and solution methods for the
max-det problem can skip directly to section 3.

2.1. Minimum volume ellipsoid containing given points. Perhaps the ear-
liest and best-known application of the max-det problem arises in the problem of de-
termining the minimum volume ellipsoid that contains given points x1, . . . , xK in Rn

(or, equivalently, their convex hull Co{x1, . . . , xK}). This problem has applications
in cluster analysis (Rosen [58], Barnes [9]) and robust statistics (in ellipsoidal peeling
methods for outlier detection; see Rousseeuw and Leroy [59, sect. 7]).

We describe the ellipsoid as E = {x | ‖Ax + b‖ ≤ 1}, where A = AT � 0, so the
volume of E is proportional to detA−1. Hence the minimum volume ellipsoid that
contains the points xi can be computed by solving the convex problem

minimize log detA−1

subject to ‖Axi + b‖ ≤ 1, i = 1, . . . ,K
A = AT � 0,

(2.1)

where the variables are A = AT ∈ Rn×n and b ∈ Rn. The norm constraints ‖Axi +
b‖ ≤ 1, which are just convex quadratic inequalities in the variables A and b, can be
expressed as LMIs [

I Axi + b
(Axi + b)T 1

]
� 0.

These LMIs can in turn be expressed as one large block diagonal LMI, so (2.1) is a
max-det problem in the variables A and b.

Nesterov and Nemirovsky [51, sect. 6.5] and Khachiyan and Todd [43] describe
interior-point algorithms for computing the maximum volume ellipsoid in a polyhe-
dron described by linear inequalities (as well as the minimum volume ellipsoid covering
a polytope described by its vertices).
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Many other geometrical problems involving ellipsoidal approximations can be
formulated as max-det problems. References [13, sect. 3.7], [16], and [68] give several
examples, including the maximum volume ellipsoid contained in the intersection or in
the sum of given ellipsoids, and the minimum volume ellipsoid containing the sum of
given ellipsoids. For other ellipsoidal approximation problems, suboptimal solutions
can be computed via max-det problems.

Ellipsoidal approximations of convex sets are used in control theory and signal
processing in bounded-noise or set-membership techniques. These techniques were
first introduced for state estimation (see, e.g., Schweppe [62], [63], Witsenhausen [75],
Bertsekas and Rhodes [11], Chernousko [16], [17]) and later applied to system identifi-
cation (Fogel [35], Fogel and Huang [36], Norton [52], [53, sect. 8.6], Walter and Piet-
Lahanier [71], Cheung, Yurkovich, and Passino [18]) and signal processing Deller [23].
(For a survey emphasizing signal processing applications, see Deller, Nayeri, and
Odeh [24]).

Other applications include the method of inscribed ellipsoids developed by Tarasov,
Khachiyan, and Erlikh [66] and design centering (Sapatnekar [60]).

2.2. Matrix completion problems.

Positive definite matrix completion. In a positive definite matrix completion
problem we are given a symmetric matrix Af ∈ Rn×n, some entries of which are fixed;
the remaining entries are to be chosen so that the resulting matrix is positive definite.

Let the positions of the free (unspecified) entries be given by the index pairs
(ik, jk), (jk, ik), k = 1, . . . ,m. We can assume that the diagonal elements are fixed,
i.e., ik 6= jk for all k. (If a diagonal element, say the (l, l)th, is free, we take it to
be very large, which makes the lth row and column of Af irrelevant.) The positive
definite completion problem can be cast as an SDP feasibility problem:

find x ∈ Rm

such that A(x) ∆= Af +
m∑
k=1

xk (Eikjk + Ejkik) � 0,

where Eij denotes the matrix with all elements zero except the (i, j) element, which is
equal to one. Note that the set {x | A(x) � 0} is bounded since the diagonal elements
of A(x) are fixed.

Maximum entropy completion. The analytic center of the LMI A(x) � 0
is sometimes called the maximum entropy completion of Af . From the optimality
conditions (1.4), we see that the maximum entropy completion x? satisfies

2TrEikjkA(x?)−1 = 2
(
A(x?)−1)

ikjk
= 0, k = 1, . . . ,m,

i.e., the matrix A(x∗)−1 has a zero entry in every location corresponding to an unspec-
ified entry in the original matrix. This is a very useful property in many applications;
see, for example, Dempster [27] or Dewilde and Ning [30].

Parameterization of all positive definite completions. As an extension of
the maximum entropy completion problem, consider

minimize TrCA(x) + log detA(x)−1

subject to A(x) � 0,(2.2)
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where C = CT is given. This problem is of the form (1.5); the optimality conditions
are

A(x∗) � 0,
(
A(x∗)−1)

ikjk
= Cikjk , k = 1, . . . ,m,(2.3)

i.e., the inverse of the optimal completion matches the given matrix C in every free
entry. Indeed, this gives a parameterization of all positive definite completions: a
positive definite completion A(x) is uniquely characterized by specifying the elements
of its inverse in the free locations, i.e.,

(
A(x)−1

)
ikjk

. Problem (2.2) has been studied
by Bakonyi and Woerdeman [8].

Contractive completion. A related problem is the contractive completion prob-
lem: given a (possibly nonsymmetric) matrix Af and m index pairs (ik, jk), k =
1, . . . ,m, find a matrix

A(x) = Af +
m∑
k=1

xkEik,jk

with spectral norm (maximum singular value) less than one.
This can be cast as a semidefinite programming feasibility problem [69]: find x

such that [
I A(x)

A(x)T I

]
� 0.(2.4)

One can define a maximum entropy solution as the solution that maximizes the de-
terminant of (2.4), i.e., solves the max-det problem

maximize log det(I −A(x)TA(x))

subject to
[

I A(x)
A(x)T I

]
� 0.(2.5)

See Naevdal and Woerdeman [50], Helton and Woerdeman [38]. For a statistical
interpretation of (2.5), see section 2.3.

Specialized algorithms and references. Very efficient algorithms have been
developed for certain specialized types of completion problems. A well-known exam-
ple is the maximum entropy completion of a positive definite banded Toeplitz matrix
(Dym and Gohberg [31], Dewilde and Deprettere [29]). Davis, Kahan, and Wein-
berger [22] discuss an analytic solution for a contractive completion problem with a
special (block matrix) form. The methods discussed in this paper solve the general
problem efficiently, although they are slower than the specialized algorithms where
they are applicable. Moreover, they have the advantage that other convex constraints,
e.g., upper and lower bounds on certain entries, are readily incorporated.

Completion problems, and specialized algorithms for computing completions, have
been discussed by many authors; see, e.g., Dym and Gohberg [31], Grone, Johnson, Sá
and Wolkowicz [37], Barrett, Johnson and Lundquist [10], Lundquist and Johnson [49],
Dewilde and Deprettere [29], Dembo, Mallows, and Shepp [26]. Johnson gives a survey
in [41]. An interior-point method for an approximate completion problem is discussed
in Johnson, Kroschel, and Wolkowicz [42].

We refer to Boyd et al. [13, sect. 3.5] and El Ghaoui [32] for further discussion
and additional references.
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2.3. Risk-averse linear estimation. Let y = Ax + w with w ∼ N (0, I) and
A ∈ Rq×p. Here x is an unknown quantity that we wish to estimate, y is the mea-
surement, and w is the measurement noise. We assume that p ≤ q and that A has
full column rank.

A linear estimator x̂ = My, with M ∈ Rp×q, is unbiased if Ex̂ = x where E means
expected value, i.e., the estimator is unbiased if MA = I. The minimum-variance
unbiased estimator is the unbiased estimator that minimizes the error variance

E‖My − x‖2 = TrMMT =
p∑
i=1

σ2
i (M),

where σi(M) is the ith largest singular value of M . It is given by M = A+, where
A+ = (ATA)−1AT is the pseudoinverse of A. In fact the minimum-variance estimator
is optimal in a stronger sense: it not only minimizes

∑
i σ

2
i (M) but each singular

value σi(M) separately:

MA = I =⇒ σi(A+) ≤ σi(M), i = 1, . . . , p.(2.6)

In some applications estimation errors larger than the mean value are more costly,
or less desirable, than errors less than the mean value. To capture this idea of risk
aversion we can consider the objective or cost function

2γ2 log E exp
(

1
2γ2 ‖My − x‖2

)
,(2.7)

where the parameter γ is called the risk-sensitivity parameter. This cost function was
introduced by Whittle in the more sophisticated setting of stochastic optimal control;
see [72, sect. 19]. Note that as γ → ∞, the risk-sensitive cost (2.7) converges to the
cost E‖My − x‖2, and is always larger (by convexity of exp). We can gain further
insight from the first terms of the series expansion in 1/γ2:

2γ2 log E exp
(

1
2γ2 ‖x̂− x‖

2
)
' E‖x̂− x‖2 +

1
4γ2

(
E‖x̂− x‖4 −

(
E‖x̂− x‖2

)2)
= Ez +

1
4γ2 var z,

where z = ‖x̂− x‖2 is the squared error. Thus, for large γ, the risk-averse cost (2.7)
augments the mean-square error with a term proportional to the variance of the
squared error.

The unbiased, risk-averse optimal estimator can be found by solving

minimize 2γ2 log E exp
(

1
2γ2 ‖My − x‖2

)
subject to MA = I,

which can be expressed as a max-det problem. The objective function can be written
as

2γ2 log E exp
(

1
2γ2 ‖My − x‖2

)
= 2γ2 log E exp

(
1

2γ2w
TMTMw

)
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=
{

2γ2 log det(I − (1/γ2)MTM)−1/2 if MTM ≺ γ2I,
∞ otherwise,

=

 γ2 log det
[

I γ−1MT

γ−1M I

]−1

if
[

I γ−1MT

γ−1M I

]
� 0,

∞ otherwise,

so the unbiased risk-averse optimal estimator solves the max-det problem

minimize γ2 log det
[

I γ−1MT

γ−1M I

]−1

subject to
[

I γ−1MT

γ−1M I

]
� 0

MA = I.

(2.8)

This is in fact an analytic centering problem, and has a simple analytic solution: the
least squares estimator M = A+. To see this we express the objective in terms of the
singular values of M :

γ2 log det
[

I γ−1MT

γ−1M I

]−1

=

 γ2
p∑
i=1

log(1− σ2
i (M)/γ2)−1 if σ1(M) < γ,

∞ otherwise.

It follows from property (2.6) that the solution is M = A+ if ‖A+‖ < γ, and that the
problem is infeasible otherwise. (Whittle refers to the infeasible case, in which the
risk-averse cost is always infinite, as “neurotic breakdown.”)

In the simple case discussed above, the optimal risk-averse and the minimum-
variance estimators coincide (so there is certainly no advantage in a max-det problem
formulation). When additional convex constraints on the matrix M are added, e.g.,
a given sparsity pattern, or triangular or Toeplitz structure, the optimal risk-averse
estimator can be found by including these constraints in the max-det problem (2.8)
(and will not, in general, coincide with the constrained minimum-variance estimator).

2.4. Experiment design.

Optimal experiment design. As in the previous section, we consider the prob-
lem of estimating a vector x from a measurement y = Ax+ w, where w ∼ N (0, I) is
measurement noise. The error covariance of the minimum-variance estimator is equal
to A+(A+)T = (ATA)−1. We suppose that the rows of the matrix A = [a1 . . . aq]

T

can be chosen among M possible test vectors v(i) ∈ Rp, i = 1, . . . ,M :

ai ∈ {v(1), . . . , v(M)}, i = 1, . . . , q.

The goal of experiment design is to choose the vectors ai so that the error covariance
(ATA)−1 is “small.” We can interpret each component of y as the result of an exper-
iment or measurement that can be chosen from a fixed menu of possible experiments;
our job is to find a set of measurements that (together) are maximally informative.

We can write ATA = q
∑M
i=1 λiv

(i)v(i)T , where λi is the fraction of rows ak equal
to the vector v(i). We ignore the fact that the numbers λi are integer multiples of 1/q,
and instead treat them as continuous variables, which is justified in practice when q
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is large. (Alternatively, we can imagine that we are designing a random experiment:
each experiment ai has the form v(k) with probability λk.)

Many different criteria for measuring the size of the matrix (ATA)−1 have been
proposed. For example, in E-optimal design, we minimize the norm of the error
covariance, λmax((ATA)−1), which is equivalent to maximizing the smallest eigenvalue
of ATA. This is readily cast as the SDP

maximize t

subject to
M∑
i=1

λiv
(i)v(i)T � tI

M∑
i=1

λi = 1

λi ≥ 0, i = 1, . . . ,M,

in the variables λ1, . . . , λM , and t. Another criterion is A-optimality, in which we
minimize Tr(ATA)−1. This can be cast as an SDP:

minimize
p∑
i=1

ti

subject to

[ ∑M
i=1 λiv

(i)v(i)T ei

eTi ti

]
� 0, i = 1, . . . , p,

λi ≥ 0, i = 1, . . . ,M,

M∑
i=1

λi = 1,

where ei is the ith unit vector in Rp, and the variables are λi, i = 1, . . . ,M , and ti,
i = 1, . . . , p.

InD-optimal design, we minimize the determinant of the error covariance (ATA)−1,
which leads to the max-det problem

minimize log det

(
M∑
i=1

λiv
(i)v(i)T

)−1

subject to λi ≥ 0, i = 1, . . . ,M

M∑
i=1

λi = 1.

(2.9)

In section 3 we will derive an interesting geometrical interpretation of the D-optimal
matrix A, and show that ATA determines the minimum volume ellipsoid, centered at
the origin, that contains v(1), . . . , v(M).

Fedorov [33], Atkinson and Donev [7], Pukelsheim [55], and Cook and Fedorov [19]
give surveys and additional references on optimal experiment design. Wilhelm [74],
[73] discusses nondifferentiable optimization methods for experiment design. Jávorzky
et al. [40] describe an application in frequency domain system identification, and com-
pare the interior-point method discussed later in this paper with conventional algo-
rithms. Ko, Lee, and Wayne [44], Lee [45], and Anstreicher et al. [5] discuss a noncon-
vex experiment design problem and a relaxation solved by an interior-point method.
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FIG. 2.1. A D-optimal experiment design involving 50 test vectors in R2, with and without
the 90-10 constraint. The circle is the origin; the dots are the test vectors that are not used in the
experiment (i.e., have a weight λi = 0); the crosses are the test vectors that are used (i.e., have a
weight λi > 0). Without the 90-10 constraint, the optimal design allocates all measurements to only
two test vectors. With the constraint, the measurements are spread over 10 vectors, with no more
than 90% of the measurements allocated to any group of five vectors. See also Figure 2.2.

Extensions of D-optimal experiment design. The formulation of D-optimal
design as a max-det problem has the advantage that one can easily incorporate
additional useful convex constraints. For example, one can add linear inequalities
cTi λ ≤ αi, which can reflect bounds on the total cost of, or time required to carry out,
the experiments.

We can also consider the case where each experiment yields several measurements,
i.e., the vectors ai and v(k) become matrices. The max-det problem formulation (2.9)
remains the same, except that the terms v(k)v(k)T can now have rank larger than one.
This extension is useful in conjunction with additional linear inequalities represent-
ing limits on cost or time: we can model discounts or time savings associated with
performing groups of measurements simultaneously. Suppose, for example, that the
cost of simultaneously making measurements v(1) and v(2) is less than the sum of the
costs of making them separately. We can take v(3) to be the matrix

v(3) =
[
v(1) v(2)

]
and assign costs c1, c2, and c3 associated with making the first measurement alone,
the second measurement alone, and the two simultaneously, respectively.

Let us describe in more detail another useful additional constraint that can be
imposed: that no more than a certain fraction of the total number of experiments,
say 90%, is concentrated in less than a given fraction, say 10%, of the possible mea-
surements. Thus, we require

bM/10c∑
i=1

λ[i] ≤ 0.9,(2.10)

where λ[i] denotes the ith largest component of λ. The effect on the experiment design
will be to spread out the measurements over more points (at the cost of increasing
the determinant of the error covariance). See Figures 2.1 and 2.2.
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FIG. 2.2. Experiment design of Figure 2.1. The curves show the sum of the largest k components
of λ as a function of k, without the 90-10 constraint (“×”), and with the constraint (“ ◦”). The
constraint specifies that the sum of the largest five components should be less than 0.9, i.e., the curve
should avoid the area inside the dashed rectangle.

The constraint (2.10) is convex; it is satisfied if and only if there exists x ∈ RM

and t such that

bM/10c t+
M∑
i=1

xi ≤ 0.9,

t+ xi ≥ λi, i = 1, . . . ,M,

x ≥ 0

(2.11)

(see [14, p. 318]). One can therefore compute the D-optimal design subject to the 90-
10 constraint (2.10) by adding the linear inequalities (2.11) to the constraints in (2.9)
and solving the resulting max-det problem in the variables λ, x, t.

2.5. Maximum likelihood estimation of structured covariance matrices.
The next example is the maximum likelihood (ML) estimation of structured covari-
ance matrices of a normal distribution. This problem has a long history; see, e.g.,
Anderson [2], [3].

Let y(1), . . . , y(M) be M samples from a normal distribution N (0,Σ). The ML
estimate for Σ is the positive definite matrix that maximizes the log-likelihood function
log
∏M
i=1 p(y

(i)), where

p(x) = ((2π)p det Σ)−1/2 exp
(
−1

2
xTΣ−1x

)
.

In other words, Σ can be found by solving

maximize log det Σ−1 − 1
M

N∑
i=1

y(i)TΣ−1y(i)

subject to Σ � 0.

(2.12)



510 LIEVEN VANDENBERGHE, STEPHEN BOYD, AND SHAO-PO WU

This can be expressed as a max-det problem in the inverse R = Σ−1:
minimize TrSR+ log detR−1

subject to R � 0,
(2.13)

where S = 1
M

∑n
i=1 y

(i)y(i)T . Problem (2.13) has the straightforward analytical solu-
tion R = S−1 (provided S is nonsingular).

It is often useful to impose additional structure on the covariance matrix Σ or its
inverse R (Anderson [2], [3], Burg, Luenberger, and Wenger [15], Scharf [61, sect. 6.13],
Dembo [25]). In some special cases (e.g., Σ is circulant) analytical solutions are known;
in other cases where the constraints can be expressed as LMIs in R, the ML estimate
can be obtained from a max-det problem. To give a simple illustration, bounds on
the variances Σii can be expressed as LMIs in R:

Σii = eTi R
−1ei ≤ α⇐⇒

[
R ei
eTi α

]
� 0.

The formulation as a max-det problem is also useful when the matrix S is singular
(for example, because the number of samples is too small) and, as a consequence, the
max-det problem (2.13) is unbounded below. In this case we can impose constraints
(i.e., prior information) on Σ, for example, lower and upper bounds on the diagonal
elements of R.

2.6. Gaussian channel capacity.

The Gaussian channel and the water-filling algorithm. The entropy of
a normal distribution N (µ,Σ) is, up to a constant, equal to 1

2 log det Σ (see Cover
and Thomas [21, Chap. 9]). It is therefore not surprising that max-det problems arise
naturally in information theory and communications. One example is the computation
of channel capacity.

Consider a simple Gaussian communication channel: y = x+v, where y, x, and v
are random vectors in Rn; x ∼ N (0, X) is the input; y is the output, and v ∼ N (0, R)
is additive noise, independent of x. This model can represent n parallel channels, or
one single channel at n different time instants or n different frequencies.

We assume the noise covariance R is known and given; the input covariance X is
the variable to be determined, subject to constraints (such as power limits) that we
will describe below. Our goal is to maximize the mutual information between input
and output, given by

1
2

(log det(X +R)− log detR) =
1
2

log det(I +R−1/2XR−1/2)

(see [21]). The channel capacity is defined as the maximum mutual information over
all input covariances X that satisfy the constraints. (Thus, the channel capacity
depends on R and the constraints.)

The simplest and most common constraint is a limit on the average total power
in the input, i.e.,

ExTx/n = TrX/n ≤ P.(2.14)

The information capacity subject to this average power constraint is the optimal
value of

maximize 1
2 log det(I +R−1/2XR−1/2)

subject to TrX ≤ nP
X � 0

(2.15)

(see [21, sect. 10]). This is a max-det problem in the variable X = XT .
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There is a straightforward solution to (2.15), known in information theory as the
water-filling algorithm (see [21, sect. 10], [20]). Let R = V ΛV T be the eigenvalue
decomposition of R. By introducing a new variable X̃ = V TXV , we can rewrite the
problem as

maximize 1
2 log det(I + Λ−1/2X̃Λ−1/2)

subject to TrX̃ ≤ nP
X̃ � 0.

Since the off-diagonal elements of X̃ do not appear in the constraints, but decrease
the objective, the optimal X̃ is diagonal. Using Lagrange multipliers one can show
that the solution is X̃ii = max(ν − λi, 0), i = 1, . . . , n, where the Lagrange multiplier
ν is to be determined from

∑
X̃ii = nP . The term “water filling” refers to a visual

description of this procedure (see [21, sect. 10], [20]).

Average power constraints on each channel. Problem (2.15) can be ex-
tended and modified in many ways. For example, we can replace the average total
power constraint by an average power constraint on the individual channels, i.e., we
can replace (2.14) by Ex2

k = Xkk ≤ P , k = 1, . . . , n. The capacity subject to this
constraint can be determined by solving the max-det problem

maximize 1
2 log det

(
I +R−1/2XR−1/2

)
subject to X � 0

Xkk ≤ P, k = 1, . . . , n.

The water-filling algorithm does not apply here, but the capacity is readily computed
by solving this max-det problem in X. Moreover, we can easily add other constraints,
such as power limits on subsets of individual channels, or an upper bound on the
correlation coefficient between two components of x:

|Xij |√
XiiXjj

≤ ρmax ⇐⇒
[ √

ρmaxXii Xij

Xij
√
ρmaxXjj

]
� 0.

Gaussian channel capacity with feedback. Suppose that the n components
of x, y, and v are consecutive values in a time series. The question whether knowledge
of the past values vk helps in increasing the capacity of the channel is of great interest
in information theory [21, sect. 10.6]). In the Gaussian channel with feedback one
uses, instead of x, the vector x̃ = Bv+x as input to the channel, where B is a strictly
lower triangular matrix. The output of the channel is y = x̃+ v = x+ (B + I)v. We
assume there is an average total power constraint: Ex̃T x̃/n ≤ P .

The mutual information between x̃ and y is

1
2
(
log det((B + I)R(B + I)T +X)− log detR

)
,

so we maximize the mutual information by solving

maximize 1
2

(
log det((B + I)R(B + I)T +X)− log detR

)
subject to Tr(BRBT +X) ≤ nP

X � 0
B strictly lower triangular
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over the matrix variables B and X. To cast this problem as a max-det problem, we
introduce a new variable Y = (B + I)R(B + I)T +X (i.e., the covariance of y), and
obtain

maximize log detY
subject to Tr(Y −RBT −BR−R) ≤ nP

Y − (B + I)R(B + I)T � 0
B strictly lower triangular.

(2.16)

The second constraint can be expressed as an LMI in B and Y ,[
Y B + I

(B + I)T R−1

]
� 0,

so (2.16) is a max-det problem in B and Y .

Capacity of channel with crosstalk. Suppose the n channels are independent,
i.e., all covariances are diagonal, and that the noise covariance depends on X: Rii =
ri + aiXii, with ai > 0. This has been used as a model of near-end crosstalk (see [6]).
The capacity (with the total average power constraint) is the optimal value of

maximize
1
2

n∑
i=1

log
(

1 +
Xii

ri + aiXii

)
subject to Xii ≥ 0, i = 1, . . . , n,

n∑
i=1

Xii ≤ nP,

which can be cast as a max-det problem

maximize 1
2

n∑
i=1

log(1 + ti)

subject to Xii ≥ 0, ti ≥ 0, i = 1, . . . , n,[
1− aiti

√
ri√

ri aiXii + ri

]
� 0, i = 1, . . . , n,

n∑
i=1

Xii ≤ nP.

The LMI is equivalent to ti ≤ Xii/(ri + aiXii). This problem can be solved using
standard methods; the advantage of a max-det problem formulation is that we can add
other (LMI) constraints on X, e.g., individual power limits. As another interesting
possibility, we could impose constraints that distribute the power across the channels
more uniformly, e.g., a 90-10 type constraint (see section 2.4).

3. The dual problem. We associate with (1.1) the dual problem

maximize log detW −TrG0W −TrF0Z + l

subject to TrGiW + TrFiZ = ci, i = 1, ...,m,
W = WT � 0, Z = ZT � 0.

(3.1)
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The variables are W ∈ Rl×l and Z ∈ Rn×n. Problem (3.1) is also a max-det problem,
and can be converted into a problem of the form (1.1) by elimination of the equality
constraints.

We say W and Z are dual feasible if they satisfy the constraints in (3.1), and
strictly dual feasible if in addition Z � 0. We also refer to the max-det problem (1.1)
as the primal problem and say x is primal feasible if F (x) � 0 and G(x) � 0, and
strictly primal feasible if F (x) � 0 and G(x) � 0.

Let p∗ and d∗ be the optimal values of problem (1.1) and (3.1), respectively (with
the convention that p∗ = +∞ if the primal problem is infeasible, and d∗ = −∞ if the
dual problem is infeasible).

The optimization problem (3.1) is the Lagrange dual of problem (1.1), rewritten
as

minimize cTx+ log detX−1

subject to X = G(x)
F (x) � 0, X � 0.

(We introduce a new variable X = XT ∈ Rl×l and add an equality constraint.) To
derive the dual problem, we associate a Lagrange multiplier Z = ZT � 0 with the
LMI F (x) � 0, and a multiplier W = WT with the equality constraint X = G(x).
The optimal value can then be expressed as

p∗ = inf
x,X

sup
Z�0,W

(
cTx+ log detX−1 −TrZF (x) + TrW (X −G(x))

)
.

Changing the order of the supremum and the infimum, and solving the inner uncon-
strained minimization over x and X analytically, yields a lower bound on p∗:

p∗ ≥ sup
Z�0,W

inf
x,X

(
cTx+ log detX−1 −TrZF (x) + TrW (X −G(x))

)
= sup
Z�0,W�0, ci=TrZFi+TrWGi

(log detW −TrZF0 −TrWG0 + l)

= d∗.

The inequality p∗ ≥ d∗ holds with equality if a constraint qualification holds, as stated
in the following theorem.

THEOREM 3.1. p∗ ≥ d∗. If (1.1) is strictly feasible, the dual optimum is achieved;
if (3.1) is strictly feasible, the primal optimum is achieved. In both cases, p∗ = d∗.

The theorem follows from standard results in convex optimization (Luenberger [48,
Chap. 8], Rockafellar [57, sect. 29–30], Hiriart-Urruty and Lemaréchal [39, Chap. XII]),
so we will not prove it here. See also Lewis [46] for a more general discussion of convex
analysis of functions of symmetric matrices.

The difference between the primal and dual objective, i.e., the expression

cTx+ log detG(x)−1 + log detW−1 + TrG0W + TrF0Z − l

=
m∑
i=1

xiTrGiW + TrG0W +
m∑
i=1

xiTrFiZ + TrF0Z − log detG(x)W − l

= TrG(x)W − log detG(x)W − l + TrF (x)Z,(3.2)

is called the duality gap associated with x, W , and Z. Theorem 3.1 states that the
duality gap is always nonnegative, and zero only if x, W , and Z are optimal.
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Note that zero duality gap (3.2) implies G(x)W = I and F (x)Z = 0. This gives
the optimality condition for the max-det problem (1.1): a primal feasible x is optimal
if there exists a Z � 0, such that F (x)Z = 0 and

TrGiG(x)−1 + TrFiZ = ci, i = 1, . . . ,m.

This optimality condition is always sufficient; it is also necessary if the primal problem
is strictly feasible.

In the remainder of the paper we will assume that the max-det problem is strictly
primal and dual feasible. By Theorem 3.1, this assumption implies that the primal
problem is bounded below and the dual problem is bounded above, with equality at
the optimum, and that the primal and dual optimal sets are nonempty.

Example. Semidefinite programming dual. As an illustration, we derive from (3.1)
the dual problem for the SDP (1.2). Substituting G0 = 1, Gi = 0, l = 1, in (3.1)
yields

maximize logW −W −TrF0Z + 1
subject to TrFiZ = ci, i = 1, . . . ,m,

W � 0, Z � 0.

The optimal value of W is one, so the dual problem reduces to

maximize −TrF0Z
subject to TrFiZ = ci, i = 1, . . . ,m,

Z � 0,

which is the dual SDP (in the notation used in [69]).
Example. D-optimal experiment design. As a second example we derive the dual

of the experiment design problem (2.9). After a few simplifications we obtain

maximize log detW + p− z
subject to W = WT � 0

v(i)TWv(i) ≤ z, i = 1, . . . ,M,

(3.3)

where the variables are the matrix W and the scalar variable z. Problem (3.3) can
be further simplified. The constraints are homogeneous in W and z, so for each dual
feasible W , z we have a ray of dual feasible solutions tW , tz, t > 0. It turns out
that we can analytically optimize over t: replacing W by tW and z by tz changes the
objective to log detW + p log t + p − tz, which is maximized for t = p/z. After this
simplification, and with a new variable W̃ = (p/z)W , problem (3.3) becomes

maximize log det W̃
subject to W̃ � 0

v(i)T W̃v(i) ≤ p, i = 1, . . . ,M.

(3.4)

Problem (3.4) has an interesting geometrical meaning: the constraints state that W̃
determines an ellipsoid {x | xT W̃x ≤ p}, centered at the origin, that contains the
points v(i), i = 1, . . . ,M ; the objective is to maximize det W̃ , i.e., to minimize the
volume of the ellipsoid.

There is an interesting connection between the optimal primal variables λi and
the points v(i) that lie on the boundary of the optimal ellipsoid E . First, note that
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the duality gap associated with a primal feasible λ and a dual feasible W̃ is equal to

log det

(
M∑
i=1

λiv
(i)v(i)T

)−1

− log det W̃ ,

and is zero (hence λ is optimal) if and only if W̃ =
(∑M

i=1 λiv
(i)v(i)T

)−1
. Hence λ is

optimal if

E =

x ∈ Rp

∣∣∣∣∣∣ xT
(

M∑
i=1

λiv
(i)v(i)T

)−1

x ≤ p


is the minimum volume ellipsoid, centered at the origin, that contains the points v(j),
j = 1, . . . ,M . We also have (in fact, for any feasible λ)

M∑
j=1

λj

p− v(j)T
(

M∑
i=1

λiv
(i)v(i)T

)−1

v(j)


= p−Tr

 M∑
j=1

λjv
(j)v(j)T

( M∑
i=1

λiv
(i)v(i)T

)−1

= 0.

If λ is optimal, then each term in the sum on the left-hand side is positive (since E
contains all vectors v(j)), and therefore the sum can only be zero if each term is zero:

λj > 0 =⇒ v(j)T
(

M∑
i=1

λiv
(i)v(i)T

)−1

v(j) = p.

Geometrically, λj is nonzero only if v(j) lies on the boundary of the minimum volume
ellipsoid. This makes more precise the intuitive idea that an optimal experiment only
uses “extreme” test vectors. Figure 3.1 shows the optimal ellipsoid for the experiment
design example of Figure 2.1.

The duality between D-optimal experiment designs and minimum volume ellip-
soids also extends to nonfinite compacts sets (Titterington [67], Pronzato and Wal-
ter [54]). The D-optimal experiment design problem on a compact set C ⊂ Rp is

maximize log det EvvT(3.5)

over all probability measures on C. This is a convex but semi-infinite optimization
problem, with dual [67]

maximize log det W̃
subject to W̃ � 0

vT W̃v ≤ p, v ∈ C.
(3.6)

Again, we see that the dual is the problem of computing the minimum volume ellip-
soid, centered at the origin, and covering the set C.

General methods for solving the semi-infinite optimization problems (3.5) and (3.6)
fall outside the scope of this paper. In particular cases, however, these problems can
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FIG. 3.1. In the dual of the D-optimal experiment design problem we compute the minimum
volume ellipsoid, centered at the origin, that contains the test vectors. The test vectors with a nonzero
weight lie on the boundary of the optimal ellipsoid. Same data and notation as in Figure 2.1.

be solved as max-det problems. One interesting example arises when C is the union
of a finite number of ellipsoids. In this case, the dual (3.6) can be cast as a max-det
problem (see [70]) and hence efficiently solved; by duality, we can recover from the
dual solution the probability distribution that solves (3.5).

4. The central path. In this section we describe the central path of the max-
det problem (1.1), and give some of its properties. The central path plays a key role
in interior point methods for the max-det problem.

The primal central path. For strictly feasible x and t ≥ 1, we define

ϕp(t, x) ∆= t
(
cTx+ log detG(x)−1)+ log detF (x)−1.(4.1)

This function is the sum of two convex functions: the first term is a positive multiple
of the objective function in (1.1); the second term, log detF (x)−1, is a barrier function
for the set {x | F (x) � 0}. For future use, we note that the gradient and Hessian of
ϕp(x, t) are given by the expressions

(∇ϕp(t, x))i = t
(
ci −TrG(x)−1Gi

)
−TrF (x)−1Fi,(4.2) (

∇2ϕp(t, x)
)
ij

= tTrG(x)−1GiG(x)−1Gj + TrF (x)−1FiF (x)−1Fj ,(4.3)

for i, j = 1, . . . ,m.
It can be shown that ϕp(t, x) is a strictly convex function of x if the m matrices

diag(Gi, Fi), i = 1, . . . ,m, are linearly independent, and that it is bounded below
(since we assume the problem is strictly dual feasible). We define x?(t) as the unique
minimizer of ϕp(t, x):

x?(t) = argmin {ϕp(t, x) | G(x) � 0, F (x) � 0} .

The curve x?(t), parameterized by t ≥ 1, is called the central path.

The dual central path. Points x?(t) on the central path are characterized by
the optimality conditions ∇ϕp(t, x?(t)) = 0, i.e., using the expression (4.2),

TrG(x?(t))−1Gi +
1
t
TrF (x?(t))−1Fi = ci, i = 1, . . . ,m.
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From this we see that the matrices

W ?(t) = G(x?(t))−1, Z?(t) =
1
t
F (x?(t))−1(4.4)

are strictly dual feasible. The duality gap associated with x?(t), W ?(t), and Z?(t) is,
from expression (3.2),

TrF (x?(t))Z?(t) + TrG(x?(t))W ?(t)− log detG(x?(t))W ?(t)− l =
n

t
,

which shows that x?(t) converges to the solution of the max-det problem as t→∞.
It can be shown that the pair (W ?(t), Z?(t)) actually lies on the dual central

path, defined as

(W ?(t), Z?(t)) = argmin
{
ϕd(t,W,Z)

∣∣∣∣ W = WT � 0, Z = ZT � 0,
TrGiW + TrFiZ = ci, i = 1, . . . ,m

}
,

where

ϕd(t,W,Z) ∆= t
(
log detW−1 + TrG0W + TrF0Z − l

)
+ log detZ−1.

The close connections between primal and dual central path are summarized in the
following theorem.

THEOREM 4.1. If x is strictly primal feasible, and W , Z are strictly dual feasible,
then

ϕp(t, x) + ϕd(t,W,Z) ≥ n(1 + log t)(4.5)

with equality if and only if x = x?(t), W = W ?(t), Z = Z?(t).
Proof. If A = AT ∈ Rp×p and A � 0, then − log detA ≥ −TrA+ p (by convexity

of − log detA on the cone of positive semidefinite matrices). Applying this inequality,
we find

ϕp(t, x) + ϕd(t,W,Z) = t (TrG(x)W + TrF (x)Z − log detG(x)W − l)− log detF (x)Z

= t
(
− log detW 1/2G(x)W 1/2 + TrW 1/2G(x)W 1/2

)
− log det tZ1/2F (x)Z1/2 + TrtZ1/2F (x)Z1/2 + n log t− tl

≥ tl + n+ n log t− tl = n(1 + log t).

The equality for x = x?(t), W = W ?(t), Z = Z?(t) can be verified by substitution.

Tangent to the central path. We conclude this section by describing how the
tangent direction to the central path can be computed. Let φ1(x) = − log detG(x)
and φ2(x) = − log detF (x). A point x?(t) on the central path is characterized by

t (c+∇φ1(x?(t))) +∇φ2(x?(t)) = 0.

The tangent direction ∂x?(t)
∂t can be found by differentiating with respect to t:

c+∇φ1(x?(t)) +
(
t∇2φ1(x?(t)) +∇2φ2(x?(t))

) ∂x?(t)
∂t

= 0,

so that

∂x?(t)
∂t

= −
(
t∇2φ1(x?(t)) +∇2φ2(x?(t))

)−1
(c+∇φ1(x?(t))).(4.6)
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By differentiating (4.4), we obtain the tangent to the dual central path,

∂W ?(t)
∂t

= −G(x?(t))−1

(
m∑
i=1

∂x?i (t)
∂t

Gi

)
G(x?(t))−1,(4.7)

∂Z?(t)
∂t

= − 1
t2
F (x?(t))−1 − 1

t
F (x?(t))−1

(
m∑
i=1

∂x?i (t)
∂t

Fi

)
F (x?(t))−1.(4.8)

5. Newton’s method. In this section we consider the problem of minimizing
ϕp(t, x) for fixed t, i.e., computing x?(t), given a strictly feasible initial point:

minimize ϕp(t, x)
subject to G(x) � 0

F (x) � 0.
(5.1)

This includes, as a special case, the analytic centering problem (t = 1 and F (x) = 1).
Our main motivation for studying (5.1) will become clear in the next section, when
we discuss an interior-point method based on minimizing ϕp(t, x) for a sequence of
values t.

Newton’s method with line search can be used to solve problem (5.1) efficiently.

Newton method for minimizing ϕp(t, x)
given strictly feasible x, tolerance δ (0 < δ ≤ 0.5)
repeat

1. Compute the Newton direction δxN = −
(
∇2ϕp(t, x)

)−1∇ϕp(t, x)
2. Compute λ = ((δxN )T∇2ϕp(t, x)δxN )1/2

3. if (λ > 0.5), compute ĥ = argmin ϕp(t, x+ hδxN )
else ĥ = 1

4. Update: x := x+ ĥδxN

until λ ≤ δ

The quantity

λ = ((δxN )T∇2ϕp(t, x)δxN )1/2(5.2)

is called the Newton decrement at x. The cost of step 3 (the line search) is very
small, usually negligible compared with the cost of computing the Newton direction;
see section 8 for details.

It is well known that the asymptotic convergence of Newton’s method is quadratic.
Nesterov and Nemirovsky in [51, sect. 2.2] give a complete analysis of the global speed
of convergence. The main result of their convergence analysis applied to problem (5.1)
is the following theorem.

THEOREM 5.1. The algorithm terminates in fewer than

11(ϕp(t, x(0))− ϕp(t, x?(t))) + log2 log2(1/δ)(5.3)

iterations, and when it terminates, ϕp(t, x)− ϕp(t, x?(t)) ≤ δ.
A self-contained proof is given in [70].
Note that the right-hand side of (5.3) does not depend on the problem size (i.e., m,

n, or l) at all, and only depends on the problem data through the difference between
the value of the function ϕp(t, ·) at the initial point x(0) and at the central point x?(t).
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FIG. 5.1. Number of Newton iterations to minimize log detA(x)−1 versus log detA(x(0))−1 −
log detA(x?)−1 (with δ = 2.33·10−10, i.e., log2 log2(1/δ) = 5). Random matrix completion problems
of three sizes (“ +”: m = 20; l = 20, “×”: m = 100, l = 20, “ ◦”: m = 20, l = 100). The dotted
line is a least squares fit of the data and is given by 5 + 0.59(log detA(x(0))−1 − log detA(x?)−1).
The dashed line is the upper bound of Theorem 5.1 (5 + 11(log detA(x(0))−1 − log detA(x?)−1)).

The term log2 log2(1/δ), which is characteristic of quadratic convergence, grows
extremely slowly with required accuracy δ. For all practical purposes it can be consid-
ered a constant, say five (which guarantees an accuracy of δ = 2.33 ·10−10). Not quite
precisely then, the theorem says we can compute x?(t) in at most 11(ϕp(t, x(0)) −
ϕp(t, x?(t))) + 5 Newton steps. The precise statement is that within this number of
iterations we can compute an extremely good approximation of x?(t). In what follows,
we will speak of “computing the central point x?(t)” when we really mean computing
an extremely good approximation. We can justify this on several grounds. It is pos-
sible to adapt our exposition to account for the extremely small approximation error
incurred by terminating the Newton process after 11(ϕp(t, x(0)) − ϕp(t, x?(t))) + 5
steps. Indeed, the errors involved are certainly on the same scale as computer arith-
metic (roundoff) errors, so if a complexity analysis is to be carried out with such
precision, it should also account for roundoff error.

Theorem 5.1 holds for an “implementable” version of the algorithm as well, in
which an appropriate approximate line search is used instead of the exact line search.

Numerical experiment. The bound provided by Theorem 5.1 on the number
of Newton steps required to compute x?(t), starting from x(0), will play an important
role in our path-following method. It is therefore useful to examine how the bound
compares to the actual number of Newton steps required in practice to compute x?(t).

Figure 5.1 shows the results of a numerical experiment that compares the actual
convergence of Newton’s method with the bound (5.3). The test problem is a matrix
completion problem

minimize log detA(x)−1

subject to A(x) = Af +
m∑
k=1

xk (Eikjk + Ejkik) � 0,
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which is a particular case of (5.1) with c = 0, G(x) = A(x), F (x) = 1, and
ϕp(t, x) = log detA(x)−1. We considered problems of three different sizes: m = 20,
l = 20 (indicated by “+”); m = 100, l = 20 (indicated by “×”); m = 20, l = 100 (in-
dicated by “◦”). Each point on the figure corresponds to a different problem instance,
generated as follows.

• The matrices Af were constructed as Af = UUT with the elements of U
drawn from a normal distribution N (0, 1). This guarantees that x = 0 is
strictly feasible. The m index pairs (ik, jk), ik 6= jk, were chosen randomly
with a uniform distribution over the off-diagonal index pairs. For each of the
three problem sizes, 50 instances were generated.
• For each problem instance, we first computed x? using x = 0 as starting point.

We then selected a value γ (uniformly in the interval (0, 30)), generated a
random x̂ ∈ Rm (with distribution N (0, I)), and then computed x(0) =
x? + t(x̂− x?) such that

log det(A(x(0)))−1 − log det(A(x∗))−1 = γ.

This point x(0) was used as starting point for the Newton algorithm.
Our experience with other problems shows that the results for this family of random
problems are quite typical.

From the results we can draw two important conclusions.
• The quantity log det(A(x(0)))−1−log det(A(x?))−1 not only provides an upper

bound on the number of Newton iterations via Theorem 5.1, but it is also a
very good predictor of the number of iterations in practice. The dimensions m
and l, on the other hand, have much less influence (except, of course, through
log det(A(x(0)))−1 − log det(A(x?))−1).
• The average number of Newton iterations seems to grow as

α+ β
(

log det(A(x(0)))−1 − log det(A(x?))−1
)
,

with α ' 5, β ' 0.6. This is significantly smaller than the upper bound of
Theorem 5.1 (α = 5, β = 11).

In summary, we conclude that the difference ϕp(t, x(0))−ϕp(t, x?(t)) is a good measure,
in theory and in practice, of the effort required to compute x?(t) using Newton’s
method, starting at x(0).

A computable upper bound on the number of Newton steps. Note that
ϕp(t, x?(t)) is not known explicitly as a function of t. To evaluate the bound (5.3)
one has to compute x?(t), i.e., carry out the Newton algorithm (which, at the very
least, would seem to defeat the purpose of trying to estimate or bound the number
of Newton steps required to compute x?(t)). Therefore, the bound of Theorem 5.1
is not (directly) useful in practice. From Theorem 4.1, however, it follows that every
dual feasible point W , Z provides a lower bound for ϕp(t, x?(t)):

ϕp(t, x?(t)) ≥ −ϕd(t,W,Z) + n(1 + log t)

and that the bound is exact if W = W ?(t) and Z = Z?(t).
We can therefore replace the bound (5.3) by a weaker but more easily computed

bound, provided we have a dual feasible pair W , Z:

11(ϕp(t, x(0))− ϕp(t, x?(t))) + log2 log2(1/δ)

≤ 11ψub(t, x(0),W,Z) + log2 log2(1/δ),(5.4)
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where

ψub(t, x,W,Z) = ϕp(t, x) + ϕd(t,W,Z)− n(1 + log t).(5.5)

This is the bound we will use in practice (and in our complexity analysis): it gives a
readily computed bound on the number of Newton steps required to compute x?(t),
starting from x(0), given any dual feasible W , Z.

6. Path-following algorithms. Path-following methods for convex optimiza-
tion have a long history. In their 1968 book [34], Fiacco and McCormick worked
out many general properties, e.g., convergence to an optimal point, connections with
duality, etc. No attempt was made to give a worst-case convergence analysis, until
Renegar [56] proved polynomial convergence of a path-following algorithm for linear
programming. Nesterov and Nemirovsky [51, sect. 3] studied the convergence for non-
linear convex problems and provided proofs of polynomial worst-case complexity. See
[51, pp. 379–386] and den Hertog [28] for an historical overview.

We will present two variants of a path-following method for the max-det prob-
lem. The short-step version of section 6.2 is basically the path-following method
of [34], [51], with a simplified, self-contained complexity analysis (see also Anstreicher
and Fampa [4] for a very related analysis of an interior-point method for semidefi-
nite programming). In the long-step version of section 6.3 we combine the method
with predictor steps to accelerate convergence. This, too, is a well-known technique,
originally proposed by Fiacco and McCormick; our addition is a new step selection
rule.

6.1. General idea. One iteration proceeds as follows. The algorithm starts at
a point x?(t) on the central path. As we have seen above, the duality gap associated
with x?(t) is n/t. We then select a new value t+ > t, and choose a strictly feasible
starting point x̂ (which may or may not be equal to x?(t)). The point x̂ serves as
an approximation of x?(t+) and is called the predictor of x?(t+). Starting at the
predictor x̂, the algorithm computes x?(t+) using Newton’s method. This reduces
the duality gap by a factor t+/t. The step from x?(t) to x?(t+) is called an outer
iteration.

The choice of t+ and x̂ involves a trade-off. A large value of t+/t means fast
duality gap reduction, and hence fewer outer iterations. On the other hand, it makes
it more difficult to find a good predictor x̂, and hence more Newton iterations may
be needed to compute x?(t+).

In the method discussed below, we impose a bound on the maximum number of
Newton iterations per outer iteration, by requiring that the predictor x̂ and the new
value of t+ satisfy

ϕp(t+, x̂)− ϕp(t+, x?(t+)) ≤ γ.(6.1)

This implies that no more than 5 + 11γ Newton iterations are required to compute
x?(t+) starting at x̂. Of course, the exact value of the left-hand side is not known,
unless we carry out the Newton minimization, but as we have seen above, we can
replace the condition by

ψub(t+, x̂, Ŵ , Ẑ) = γ,(6.2)

where Ŵ and Ẑ are conveniently chosen dual feasible points.
The parameters in the algorithm are γ > 0 and the desired accuracy ε.
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Path-following algorithm

given γ > 0, t ≥ 1, x := x?(t)
repeat

1. Select t+, x̂, Ŵ , Ẑ such that t+ > t and ψub(t+, x̂, Ŵ , Ẑ) = γ
2. Compute x?(t+) starting at x̂, using the Newton algorithm of section 5
3. t := t+, x := x?(t+)

until n/t ≤ ε

Step 1 in this outline is not completely specified. In the next sections we will
discuss in detail different choices. We will show that one can always find x̂, Ŵ , Ẑ,
and t+ that satisfy

t+

t
≥ 1 +

√
2γ
n
.(6.3)

This fact allows us to estimate the total complexity of the method, i.e., to derive a
bound on the total number of Newton iterations required to reduce the duality gap
to ε. The algorithm starts on the central path, at x?(t(0)), with initial duality gap
ε(0) = n/t(0). Each iteration reduces the duality gap by t+/t. Therefore, the total
number of outer iterations required to reduce the initial gap of ε(0) to a final value
below ε is at most ⌈

log(ε(0)/ε)
log(1 +

√
2γ/n)

⌉
≤
⌈√

n
log(ε(0)/ε)

log(1 +
√

2γ)

⌉
.

(The inequality follows from the concavity of log(1+x).) The total number of Newton
steps can therefore be bounded as

Total #Newton iterations ≤ d5 + 11γe
⌈√

n
log(ε(0)/ε)

log(1 +
√

2γ)

⌉
= O

(√
n log(ε(0)/ε)

)
.(6.4)

This upper bound increases slowly with the problem dimensions: it grows as
√
n, and

is independent of l and m. We will see later that the performance in practice is even
better.

Note that we assume that the minimization in step 2 of the algorithm is exact.
The justification of this assumption lies in the very fast local convergence of Newton’s
method: we have seen in section 5 that it takes only a few iterations to improve a
solution with Newton decrement λ ≤ 0.5 to one with a very high accuracy.

Nevertheless, in a practical implementation (as well as in a rigorous theoretical
analysis), one has to take into account the fact that x?(t) can only be computed
approximately. For example, the stopping criterion n/t ≤ ε is based on the duality
gap associated with exactly central points x?(t), W ?(t), and Z?(t), and is therefore
not quite accurate if x?(t) is only known approximately. We give a suitably modified
criterion in [70], where we show that dual feasible points are easily computed during
the centering step (step 2) once the Newton decrement is less than one. Using the
associated duality gap yields a completely rigorous stopping criterion. We will briefly
point out some other modifications, as we develop different variants of the algorithm
in the next sections; full details are described in [70]. With these modifications, the
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algorithm works well even when x?(t) is computed approximately. (We often use a
value δ = 10−3 in the Newton algorithm.)

It is also possible to extend the simple worst-case complexity analysis to take into
account incomplete centering, but we will not attempt such an analysis here. For the
fixed-reduction algorithm (described immediately below), such a complete analysis
can be found in Nesterov and Nemirovsky [51, sect. 3.2].

6.2. Fixed-reduction algorithm. The simplest variant uses x̂ = x?(t), Ŵ =
W ?(t), and Ẑ = Z?(t) in step 1 of the algorithm. Substitution in condition (6.2)
gives

ψub(t+, x̂, Ŵ , Ẑ)
= t+(TrG(x?(t))W ?(t) + TrF (x?(t))Z?(t)− log detG(x?(t))W ?(t)− l)
− log detF (x?(t))Z?(t)− n(1 + log t+)

= n(t+/t− 1− log(t+/t)) = γ,(6.5)

which is a simple nonlinear equation in one variable, with a unique solution t+ >
t. We call this variant of the algorithm the fixed-reduction algorithm because it
uses the same value of t+/t — and hence achieves a fixed duality gap reduction
factor — in each outer iteration. The outline of the fixed-reduction algorithm is as
follows.

Fixed-reduction algorithm

given γ > 0, t ≥ 1, x := x?(t)
Find α such that n(α− 1− logα) = γ
repeat

1. t+ := αt
2. Compute x?(t+) starting at x, using the Newton algorithm of section 5
3. t := t+, x := x?(t+)

until n/t ≤ ε

We can be brief in the convergence analysis of the method. Each outer iteration
reduces the duality gap by a factor α, so the number of outer iterations is exactly⌈

log(ε(0)/ε)
logα

⌉
.

The inequality (6.3), which was used in the complexity analysis of the previous section,
follows from the fact that for y ≥ 1

n(y − 1− log y) ≤ n

2
(y − 1)2,

and hence α ≥ 1 +
√

2γ/n.
This convergence analysis also reveals the limitation of the fixed reduction method:

the number of outer iterations is never better than the number predicted by the the-
oretical analysis. The upper bound on the total number of Newton iterations (6.4) is
also a good estimate in practice, provided we replace the constant 5 + 11γ with an
empirically determined estimate such as 3 + 0.7γ (see Figure 5.1). The purpose of
the next section is to develop a method with the same worst-case complexity as the
fixed-reduction algorithm but a much better performance in practice.
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6.3. Primal-dual long-step algorithm. It is possible to use much larger val-
ues of t+/t, and hence achieve larger gap reduction per outer iteration, by using a
better choice for x̂, Ŵ , and Ẑ in Step 1 of the path-following algorithm.

A natural choice for x̂ is to take a point along the tangent to the central path,
i.e.,

x̂ = x?(t) + p
∂x?(t)
∂t

,

for some p > 0, where the tangent direction is given by (4.6). Substitution in (6.2)
gives a nonlinear equation from which t+ and p can be determined. Taking the idea
one step further, one can allow Ŵ and Ẑ to vary along the tangent to the dual central
path, i.e., take

Ŵ = W ?(t) + q
∂W ?(t)
∂t

, Ẑ = Z?(t) + q
∂Z?(t)
∂t

for some q > 0, with the tangent directions given by (4.7) and (4.8). Equation (6.2)
then has three unknowns: t+, the primal step length p, and the dual step length
q. The fixed-reduction update of the previous section uses the solution t+ = αt,
p = q = 0; an efficient method for finding a solution with larger t+ is described below.

The outline of the long-step algorithm is as follows.

Primal-dual long-step algorithm

given γ > 0, t ≥ 1, x := x?(t), W := W ?(t), Z := Z?(t)
Find α such that n(α− 1− logα) = γ
repeat

1. Compute tangent to central path. δx := ∂x?(t)
∂t , δW := ∂W?(t)

∂t , δZ := ∂Z?(t)
∂t

2. Parameter selection and predictor step.
2a. t+ := αt
repeat {

2b. p̂, q̂ = argminp,q ψub(t+, x+ pδx,W + qδW,Z + qδZ)
2c. Compute t+ from ψub(t+, x+ p̂δx,W + q̂δW,Z + q̂δZ) = γ

}
2d. x̂ = x+ p̂δx

3. Centering step. Compute x?(t+) starting at x̂, using the Newton algorithm of
section 5

4. Update. t := t+, x := x?(t+), W := W ?(t+), Z := Z?(t+)
until n/t ≤ ε

Again we assume exact centering in step 3. In practice, approximate minimiza-
tion works, provided one includes a small correction to the formulas of the tangent
directions; see [70].

Step 2 computes a solution to (6.2), using a technique illustrated in Figure 6.1.
The figure shows four iterations of the inner loop of step 2 (for an instance of the
problem family described in section 9). With a slight abuse of notation, we write
ψub(t+, p, q) instead of

ψub(t+, x?(t) + pδx,W ?(t) + qδW,Z?(t) + qδZ).(6.6)

We start at the value t(0) = t, at the left end of the horizontal axis. The first
curve (marked ψub(t+, 0, 0)) shows (6.6) as a function of t+, with p = q = 0, which
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FIG. 6.1. Parameter selection and predictor step in long-step algorithm alternates between
minimizing ψub(t+, p, q) over primal step length p and dual step length q, and then increasing t+

until ψub(t+, p, q) = γ.

simplifies to

ψub(t+, x?(t),W ?(t), Z?(t)) = n(t+/t− 1− log(t+/t))

(see section 6.2). This function is equal to zero for t+ = t, and equal to γ for the short-
step update t+ = αt. We then do the first iteration of the inner loop of step 2. Keeping
t+ fixed at its value t(1), we minimize the function (6.6) over p and q (step 2b). This
produces new values p̂ = p(1) and q̂ = q(1) with a value of ψub < γ. This allows us to
increase t+ again (step 2c). The second curve in the figure (labeled ψub(t+, p(1), q(1)))
shows the function (6.6) as a function of t+ with fixed values p = p(1), q = q(1). The
intersection with ψub = γ gives the next value t+ = t(2).

These two steps (2b, 2c) are repeated either for a fixed number of iterations or
until t+ converges (which in the example of Figure 6.1 happens after four or five
iterations). Note that in each step 2c, we increase t+ so that, in particular, the final
value of t+ will be at least as large as its initial (short-step) value, t+ = αt. Thus,
the complexity analysis for the short-step method still applies.

In practice, the inner loop (2b, 2c) often yields a value of t+ considerably larger
than the short-step value αt, while maintaining the same upper bound on the number
of Newton steps required to compute the next iterate x?(t+). In the example shown
in the figure, the final value of t+ is about a factor of 2.5 larger than the short-step
value; in general, a factor of 10 is not uncommon.

Using some preprocessing we will describe in section 8, the cost of the inner loop
(2b, 2c) is very small, in most cases negligible compared with the cost of computing
the tangent vectors.

Finally, note that the dual variables Z and W are not used in the fixed-reduction
algorithm. In the primal-dual long-step algorithm they are used only in the predictor
step to allow a larger step size p.
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7. Preliminary phases. The algorithm starts at a central point x?(t), for some
t ≥ 1. In this section we discuss how to select the initial t, and how to compute such
a point.

Feasibility. If no strictly primal feasible point is known, one has to precede the
algorithm with a first phase to solve the (SDP) feasibility problem: find x that satisfies
G(x) � 0, F (x) � 0. More details can be found in [69].

Choice of initial t. We now consider the situation where a strictly primal feasi-
ble point x(0) is known, but x(0) is not on the central path. In that case one has to se-
lect an appropriate initial value of t and compute a central point by Newton’s method
starting at x(0). In theory (and often in practice) the simple choice t = 1 works.

It is not hard, however, to imagine cases where the choice t = 1 would be inefficient
in practice. Suppose, for example, that the initial x(0) is very near x?(100), so a
reasonable initial value of t is 100 (but we don’t know this). If we set t = 1, we
expend many Newton iterations “going backwards” up the central path towards the
point x?(1). Several outer iterations, and many Newton steps later, we find ourselves
back near where we started, around x?(100).

If strictly dual feasible points W (0), Z(0) are known, then we start with a known
duality gap α associated with x(0), W (0), and Z(0). A very reasonable initial choice
for t is then t = max{1, n/α}, since when t = n/α, the centering stage computes
central points with the same duality gap as the initial primal and dual solutions. In
particular, the preliminary centering stage does not increase the duality gap (as it
would in the scenario sketched above).

We can also interpret and motivate the initial value t = n/α in terms of the
function ψub(t, x(0),W (0), Z(0)), which provides an upper bound on the number of
Newton steps required to compute x?(t) starting at x(0). From the definition (5.5) we
have

ψub(t, x(0),W (0), Z(0)) = tα+ log detF (x(0))−1 + log detZ(0)−1 − n(1 + log t),

which shows that the value t = n/α minimizes ψub(t, x(0),W (0), Z(0)). Thus, the value
t = n/α is the value which minimizes the upper bound on the number of Newton steps
required in the preliminary centering stage.

A heuristic preliminary stage. When no initial dual feasible Z, W (and hence
duality gap) are known, choosing an appropriate initial value of t can be difficult. We
have had practical success with a variation on Newton’s method that adapts the value
of t at each step based on the (square of) the Newton decrement λ(x, t),

λ(x, t)2 = ∇ϕp(t, x)T
(
∇2ϕp(t, x)

)−1∇ϕp(t, x),

which serves as a measure of proximity to the central path. It is a convex function
of t, and is readily minimized in t for fixed x. Our heuristic preliminary phase is as
follows.

Preliminary centering phase

given strictly feasible x
t := 1
repeat {

1. t := max{1, argminλ(x, t)}
2. δx = −

(
∇2ϕp(t, x)

)−1∇ϕp(t, x)
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3. ĥ = argmin ϕp(t, x+ hδxN )
} until λ ≤ δ

Thus, we adjust t each iteration to make the Newton decrement for the current
x as small as possible (subject to the condition that t remains greater than one).

8. Efficient line and plane searches. In this section we describe some simple
preprocessing that allows us to implement the line search in the Newton method of
section 5 and the plane search of section 6.3 very efficiently.

Line search in Newton’s method. We first consider the line search in New-
ton’s method of section 5. Let λk, k = 1, . . . , l, be the generalized eigenvalues of the
pair

∑m
i=1 δx

N
i Gi, G(x), and λk, k = l+ 1, . . . , l+n, be the generalized eigenvalues of

the pair
∑m
i=1 δx

N
i Fi, F (x), where δxN is the Newton direction at x. We can write

ϕp(t, x+ hδxN ) in terms of these eigenvalues as

f(h) = ϕp(t, x+ hδxN ) = ϕp(t, x) + hcT δxN + t
l∑

k=1

log
1

1 + hλk
+

l+n∑
k=l+1

log
1

1 + hλk
.

Evaluating the first and second derivatives f ′(h), f ′′(h) of this (convex) function of
h ∈ R requires only O(n + l) operations (once the generalized eigenvalues λi have
been computed). In most cases, the cost of the preprocessing, i.e., computing the
generalized eigenvalues λi, exceeds the cost of minimizing over h but is small compared
with the cost of computing the Newton direction. The function ϕp(t, x+ hδxN ) can
therefore be efficiently minimized using standard line search techniques.

Plane search in long-step path-following method. A similar idea applies
to the plane search of section 6.3. In step 2c of the primal-dual long-step algorithm
we minimize the function ψub(t, x+ pδx,W + qδW,Z + qδZ) over p and q, where δx,
δW , δZ are tangent directions to the central path. We can again reduce the function
to a convenient form

ψub(t, x+ pδx,W + qδW,Z + qδZ)

= ψub(t, x,W,Z) + pβ1 + qβ2 + t
l∑

k=1

log
1

1 + pλk
+

l+n∑
k=l+1

log
1

1 + pλk

+ t
l∑

k=1

log
1

1 + qµk
+

l+n∑
k=l+1

log
1

1 + qµk
,(8.1)

where λk, k = 1, . . . , l, are the generalized eigenvalues of the pair
∑m
i=1 δxiGi, G(x)

and λk, k = l + 1, . . . , l + n, are the generalized eigenvalues of the pair
∑m
i=1 δxiFi,

F (x); µk, k = 1, . . . , l, are the generalized eigenvalues of the pair δW , W , and µk,
k = l+ 1, . . . , l+n, are the generalized eigenvalues of the pair δZ, Z. The coefficients
β1 and β2 are

β1 = cT δx, β2 = TrG0δW + TrF0δZ.

The first and second derivatives of the function (8.1) with respect to p and q can
again be computed at a low cost of O(l+ n), and therefore the minimum of ψub over
the plane can be determined very cheaply, once the generalized eigenvalues have been
computed.
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FIG. 9.1. Duality gap versus number of Newton steps for randomly generated max-det problems
of dimension l = 10, n = 10, m = 10. Left: γ = 10. Right: γ = 50. The crosses are the results for
the fixed-reduction method; the circles are the results for the long-step method. Every cross/circle
represents the gap at the end of an outer iteration.

In summary, the cost of line or plane search is basically the cost of preprocessing
(computing certain generalized eigenvalues), which is usually negligible compared to
the rest of algorithm (e.g., determining a Newton or tangent direction).

One implication of efficient line and plane searches is that the total number of
Newton steps serves as a good measure of the overall computing effort.

9. Numerical examples.

Typical convergence. The first experiment (Figure 9.1) compares the conver-
gence of the fixed-reduction method and the long-step method. The left-hand plot
shows the convergence of both methods for γ = 10; the right-hand plot shows the
convergence for γ = 50. Duality gap is shown vertically on a logarithmic scale rang-
ing from 100 at the top to 10−9 at the bottom; the horizontal axis is the total number
of Newton steps. Each outer iteration is shown as a symbol on the plot (“◦” for
the long-step and “×” for the short-step method). Thus, the horizontal distance be-
tween two consecutive symbols shows directly the number of Newton steps required
for that particular outer iteration; the vertical distance shows directly the duality gap
reduction factor t+/t.

Problem instances were generated as follows: G0 ∈ Rl×l, F0 ∈ Rn×n were chosen
random positive definite (constructed as UTU with the elements of U drawn from a
normal distribution N (0, 1)); the matrices Gi, Fi, i = 1, . . . ,m, were random sym-
metric matrices, with elements drawn from N (0, 1); ci = TrGi + TrFi, i = 1, . . . ,m.
This procedure ensures that the problem is primal and dual feasible (x = 0 is primal
feasible; Z = I, W = I is dual feasible), and hence bounded below. We start on the
central path, with initial duality gap one.

We can make the following observations.
• The convergence is very similar over all problem instances. The number of

iterations required to reduce the duality gap by a factor 1000 ranges between
5 and 50. As expected, the long-step method performs much better than the
fixed-reduction method, and typically converges in less than 15 iterations.
• The fixed-reduction method converges almost linearly. The duality gap re-

duction t+/t per outer iteration can be computed from equation (6.5): t+/t =
3.14 for γ = 10, and t+/t = 8.0 for γ = 50. The number of Newton iterations
per outer iteration is less than five in almost all cases, which is much less than
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FIG. 9.2. Newton iterations versus problem size for family of random problems. Fixed-reduction
method (top curve) and long-step method (lower curve). γ = 10. Left: l = 10, n = 10–100, m = 10.
Middle: l = 10–100, n = 10, m = 10. Right: l = 10, n = 10, m = 10–100. The curves give the
average over 10 problem instances. The error bars indicate the standard deviation.

the upper bound 5 + 11γ. (Remember that this bound is a combination of
two conservative estimates: Theorem 5.1 is conservative; see Figure 5.1. In
addition we have replaced (6.1) with the weaker condition (6.2).)
• The long-step method takes a few more Newton iterations per centering step

but achieves a much larger duality gap reduction. Moreover, the convergence
accelerates near the optimum.
• Increasing γ has a large effect on the fixed-reduction method but only little

effect on the long-step method.

Complexity versus problem size. Figure 9.2 shows the influence of the prob-
lem dimension on the convergence. For each triplet (m, n, l) we generated 10 problem
instances as above. We plot the number of Newton iterations to reduce the duality
gap by a factor 1000, starting with duality gap 1. The plot shows the average number
of Newton steps and the standard deviation. The top curve shows the results for the
fixed-reduction method, the lower curve is for the long-step method.

• The number of Newton iterations in the short-step method depends on n as
O(
√
n). This is easily explained from the convergence analysis of section 6.2:

We have seen that the number of outer iterations grows as
√
n, in theory and

in practice, and hence the practical behavior of the fixed-reduction method
is very close to the worst-case behavior.
• We see that the number of iterations for the long-step method lies between 5

and 20, and is very weakly dependent on problem size.
Figure 9.3 shows similar results for a family of experiment design problems (2.9)

in R10, including a 90-10 constraint (2.10). The points v(i), i = 1, . . . ,M , were
generated from a normal distribution N (0, I) on Rp. Note that the dimensions of
the corresponding max-det problem are m = 2M , n = 3M + 1, l = p. Figure 9.3
confirms the conclusions of the previous experiment: it shows that the complexity
of the fixed-reduction method grows as

√
n, while the complexity of the long-step

method is almost independent of problem size.

10. Conclusion. The max-det problem (1.1) is a (quite specific) convex exten-
sion of the semidefinite programming problem, and hence includes a wide variety of
convex optimization problems as special cases. Perhaps more importantly, max-det
problems arise naturally in many areas, including computational geometry, linear
algebra, experiment design, linear estimation, and information and communication
theory. We have described several of these applications.
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FIG. 9.3. Newton iterations versus problem size for family of experiment design problems of
section 2.4 including 90-10 rule. Fixed-reduction method (top curve) and long-step method (lower
curve). γ = 10, p = 10, M = 15–50. The curves show the average over 10 problem instances. The
error bars indicate the standard deviation.

Some of the applications have been studied extensively in the literature, and in
some cases analytic solutions or efficient specialized algorithms have been developed.
We have presented an interior-point algorithm that solves general max-det problems
efficiently. The method can be applied to solve max-det problems for which no special-
ized algorithm is known; in cases where such a method exists, it opens the possibility
of adding useful LMI constraints, which is an important advantage in practice.

We have proved a worst-case complexity of O(
√
n) Newton iterations. Numerical

experiments indicate that the behavior is much better in practice: the method typi-
cally requires a number of iterations that lies between 5 and 50, almost independent
of problem dimension. The total computational effort is therefore determined by the
amount of work per iteration, i.e., the computation of the Newton directions, and
therefore depends heavily on the problem structure. When no structure is exploited,
the Newton directions can be computed from the least squares formulas in [70], which
require O((n2 + l2)m2) operations, but important savings are possible whenever we
specialize the general method of this paper to a specific problem class.
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Abstract. We present an algorithm for solving linear systems involving the probability or rate
matrix for a Markov chain. It is based on a UL factorization but works only with a submatrix of
the factor U. We demonstrate its utility on Erlang-B models as well as more complicated models of
a telephone multiplexing system.
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1. Introduction. Markov chain models can lend insight into the behavior of
many physical systems, such as telephone networks, highway systems, and ATM
switching networks. These models are based on properties of a matrix P whose
entries depend on the probabilities of transition from one state to another, or on the
arrival and departure rates for customers. The matrix P is nonnegative. If we define
D to be a diagonal matrix whose diagonal entries are the rowsums for P , then the
matrix D − P has zero rowsums. In other words

(D − P )e = 0,

where e is the column vector of all ones. Thus, D − P has a zero eigenvalue, and
we denote its left eigenvector, normalized so that its entries sum to one, as the row
vector πT :

πT (D − P ) = 0T , πT e = 1 .

The vector π gives information about the long-term behavior of the system; for ex-
ample, if the entries in P are transition probabilities (so that D = I), then π is the
stationary vector for the chain.

Systems analysts are interested in other computational quantities that give in-
formation about the short-term behavior of the chain. The fundamental matrix is
defined to be

F = (D − P − eπT )−1,

and the group generalized inverse of A = D − P is

A# ≡ F − eπT .

(See, for example, [6].) The entries in these matrices are useful in computing mean
first passage times, in computing biases in the entries in π as approximations to
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expected number of visits, and in determining decision rules to govern the control of
the system. See [2] and [5] for some discussion of these applications.

The Grassmann, Taksar, and Heyman (GTH) algorithm [1] is an efficient algo-
rithm for determining a factorization of the matrix D − P . From this factorization,
all the other quantities can easily be computed.

The GTH algorithm can be interpreted as a variant of Gauss elimination that
differs from the usual LU form in two ways:

1. The elimination proceeds from the bottom of the matrix to the top (rather
than top-to-bottom) and thus produces factors

D − P = UL,

where U is an upper triangular matrix with diagonal elements equal to −1,
and L is a lower triangular matrix, with top row zero.

2. Since the rowsums of D − P are zero, so are the rowsums of the matrix L.
We compute the main diagonal elements of L to satisfy this constraint, rather
than using the usual Gaussian elimination formulas. This modification has
been shown to provide a very strong form of numerical stability when making
use of these factors to compute the stationary vectors [7].

We assume that the rows of the matrix (one for each state of the chain) are
numbered {0, 1, . . . , n}, we let P(i:j,k:l) denote the submatrix of P consisting of
elements in rows i, i+ 1, . . . , j and columns k, k+ 1, . . . , l, and we let sum(P(i,j:k))
denote the sum of the elements in row i and columns j through k. Then the GTH
algorithm computes UL = D−P . It can be done using no additional matrix or vector
storage as follows:

For i=n, n-1, ... , 1,
s=sum(P(i,0:i-1))
P(i,i)=-s
P(0:i-1,i)=P(0:i-1,i)/s
P(0:i-1,0:i-1)=P(0:i-1,0:i-1) + P(0:i-1,i)*P(i,0:i-1)

end for
P(0,0)=0

Then the matrix L is stored in the lower triangular part of P (including the main
diagonal), and U is in the upper triangular, with main diagonal elements understood
to be equal to −1. The entire factorization process takes 2/3n3 +O(n2) operations.

Once the UL factors of D−P are determined, it is easy to compute the stationary
vector from

πTU = z,

where z is the first row of the identity matrix. Then the fundamental matrix can be
computed from

ULF = I − eπT ,

with normalization πTF = πT , or the group generalized inverse from

ULA# = I − eπT

with normalization πTA# = 0T .
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TABLE 2.1
Algorithm results on the examples of section 2.

n rorig rimproved cond(U) cond(D − P )
5 4.2e-15 1.0e-15 2.4e+02 8.1e+00

10 3.6e-13 3.0e-15 5.4e+04 2.0e+01
15 1.3e-12 9.0e-15 1.1e+07 3.4e+01
20 4.4e-09 1.5e-14 1.9e+09 5.0e+01
25 1.3e-06 1.7e-14 3.3e+11 6.6e+01
30 2.5e-04 2.9e-14 5.6e+13 8.2e+01
35 2.8e-02 3.2e-14 9.2e+15 9.9e+01
40 2.5e+00 3.3e-14 1.5e+18 1.2e+02
45 4.1e+00 3.8e-14 Inf 1.3e+02
50 1.1e+05 5.5e-14 Inf 1.5e+02

Clearly, the lower triangular matrix L is singular, since its first row is zero. Con-
ventional wisdom says that the matrix U is usually well conditioned, but occasionally
this fails to be true, even if the nonzero singular values of D − P are well behaved.

The purpose of this note is to exhibit examples of this phenomenon and to propose
a more stable way to use the UL factors to compute the fundamental matrix and other
quantities.

2. A troublesome family of examples. Consider an Erlang-B model of tele-
phone traffic. Calls arrive as a Poisson process at rate λ to be served by n parallel
servers at unit rate. A call that finds all servers busy is discarded.

This model yields a continuous-time Markov chain with states {0, 1, . . . , n}. Let
pij be the rate of passage from state i to state j. Then the only nonzero rates are

pi,i+1 = λ, for 0 ≤ i < n,

pi,i−1 = i, for 0 < i ≤ n.

Let the matrix P = (pij) and let D be the diagonal matrix whose entries are the
rowsums of P .

Then it is easy to compute the UL factors of D−P : both U and L are bidiagonal
matrices with nonzero entries

uii = −1, i = 0, . . . , n,

ui,i+1 =
λ

i+ 1
, i = 0, . . . , n− 1,

lii = −i, i = 0, . . . , n,
li,i−1 = i, i = 1, . . . , n.

The unnormalized steady-state probabilities are

πi =
λi

i!
, i = 0, . . . , n.1

If we set λ = n and use this data to compute the last column of the fundamental
matrix, we get the results in Table 2.1.

1Pete Stewart observes that this growth in the elements of the stationary vector can only occur
if there is ill conditioning in one of the UL factors. Thus, it may be worthwhile in practice to reorder
the states so that the stationary probabilities are decreasing.
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These results were computed using double-precision IEEE arithmetic (approxi-
mately 16 decimal digits) in MATLAB.

The column labeled rorig gives the norm of the residual vector when the last
column of F is computed using the UL factors, i.e.,

rorig = ‖en − πne− (D − P )forig‖,

where en is the last column of the identity matrix and forig is the result of using
forward and back substitution on the linear system

ULforig = en − πne.

We see that rorig grows rapidly as n grows, although in exact arithmetic rorig would
be zero.

Such large residuals are a symptom of ill conditioning or instability, so the table
also gives the condition number of U and the condition number of D − P . Here we
define the condition number as the ratio of the largest to the smallest singular value
of the matrix, although, since D − P is singular, we leave out its zero singular value
in computing this ratio. Clearly, the matrix U is rapidly approaching singularity, and
thus when we use U to solve for the last column of F , accuracy can be lost.

In the next section we describe an improved algorithm that produces the residuals
labeled rimproved in the table.

3. A more stable way to use the UL factors. To see what went wrong, we
need to look at the null spaces of our various matrices.

Suppose we are solving (D − P )z = b, where b is in the range of D − P . Then
the solution vector z satisfies

Lz = y,

where y is the solution to

Uy = b.

Since the top row of L is zero, the top element of y must also be zero in order for
the system to have a solution. Thus, before we begin the back substitution on U , we
already know the top component of y.

If, due to round-off error and ill conditioning of U , the top component of the
computed y fails to be close to zero, then our computation will not produce a good
solution.

This insight also leads to a remedy. Instead of solving Uy = b, we can solve a
system that involves only the last n components of y, knowing that the top one is
zero. If we let Ū be the matrix formed by deleting the zeroth column of U , and let ȳ
be the vector formed by deleting the zeroth element of y, then we can compute ȳ by
solving the linear system

Ū ȳ = b.

The matrix Ū is not upper triangular (in fact, it is zero above the main diagonal for
the examples in section 2, since U is bidiagonal). But Ū is always upper Hessenberg,
with zeros below the first subdiagonal. A sequence of n row operations reduces it to
upper triangular form, at a cost of at most O(n2) floating point operations. Since the
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system is compatible, the same sequence of operations reduces the last component of
b to zero, permitting back substitution starting with equation n− 1.

We choose to reduce the matrix Ū to upper triangular form using the LU algorithm
with partial pivoting. Just as in the GTH algorithm, only additions and divisions are
being performed and no cancellation can occur, and the factorization can be done in-
place, except for an auxiliary integer vector of permutation indices. Assume that we
apply the LU algorithm to obtain the factorization Ū = L̃Ũ and, for ease of notation,
assume that no interchange of rows is needed in the LU algorithm. Then we have
factored U as

[
e1 L̃

] [
e1

0T

Ũ

]
.

From this equation we can see the two reasons why the algorithm performs well: we
have effectively decoupled the top component of y from the others and can set it to
zero without introducing error. Further, the projection of b onto the range of D − P
is done using the diagonally dominant bidiagonal matrix L̃, which is guaranteed to
be full rank.

In the following code fragment, we factor the matrix Ū = L̃Ũ , assuming that Ū
is stored in the array P . We store Ũ in the upper triangle of P , rows 1 through n,
and we store the multipliers (off-diagonal elements of the L factor) in the zeroth row
of P . None of this disturbs the lower triangular factor L stored below the diagonal of
P .

Initialize two row vectors of length n+1:
all entries in ipos are zero,
and the i-th entry of ind is i.

for i=1, ... , n,
if |u(0,i)| > 1,

Interchange ind(0) with ind(i)
and P(0,i:n) with P(i,i:n).

Set ipos(i-1)=i.
end if
The pivot element is P(0,i)=-P(0,i)/P(i,i).
Update row 0 as

P(0,i+1:n)=P(0,i+1:n)+ P(0,i) *P(i,i+1:n).
end

This takes n2 + O(n) operations. The vector ipos is redundant but
included for clarity.
We use these factors as follows to solve the linear system ULz = b.
First we solve L̃q = b in O(n) operations, by using the multipliers
and the permutation information:

Let q be the vector b reordered
as indicated by ind.

for i=1, ... , n,
Set ispot=ipos(i).
Let q(ispot)=q(ispot)+P(0,i)*q(i).

end
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Then we solve Ũ ȳ = q using back substitution. This takes n2 +O(n)
operations.
Finally, we solve Lz = ȳ, setting z1 = 0. This takes n2 + O(n)
operations.

Applying this algorithm to the examples in section 2 yields the results labeled
rimproved in Table 2.1. The improved algorithm yields a small residual for all of the
examples. Since the residual norm divided by the condition number of D−P is close
to machine precision, we see that we have achieved attainable accuracy using this
algorithm.

4. An application. This work was motivated by difficulties encountered in com-
puting solutions to the telecommunications model described in Krishnan and Huebner
[5]. In their model, there are n channels that serve C classes of calls. Class j calls
arrive according to a Poisson process at rate λj , have exponential service times with
mean 1/µj , and each call requires rj channels. The classes represent different types of
applications, such as voice, data, and video. The problem is to construct an admission
rule that optimizes a given performance criterion, e.g., minimize the loss rate of calls.
To illustrate the nature of the problem, suppose r1 > r2, and exactly r1 channels are
free when a class 1 job arrives. Accepting this job may preclude accepting several
class 2 calls that might arrive soon. The class 1 job should be accepted when µ1
is sufficiently large and λ2 is sufficiently small so that the expected number of lost
calls is less than one. This expected value depends on which calls are currently in
progress (because some of them may finish soon enough to allow some class 2 calls to
be admitted in the near future) as well as on which type of call is under consideration.

Krishnan and Huebner formulate this problem as a Markov decision process. This
involves constructing a Markov chain to model the number of occupied channels at any
time, so there is an underlying continuous-time Markov chain with states {0, 1, . . . , n}.
The nonzero elements in the rate matrix P for this chain are defined by

pi,i+rk = λk for 0 ≤ i ≤ C − rk, k = 1, . . . , C,
pi,i−rk = µkE(mk|i) = λkq(i−rk)

q(i) for rk ≤ i ≤ n, k = 1, . . . , C.

The state probabilities q(i) are computed recursively using a method of Kaufman
[4].

The examples of section 2 are special cases of this model with C = 1 class.
Let cj be the “cost” per unit time of being in state j; e.g., the loss rate if the

objective is to minimize the loss rate of calls. This model is described in continuous
time, but it can be converted into a discrete-time model where transitions occur at
times 1, 2, . . . by “uniformizing” the model; see, e.g., Heyman and Sobel [3, section
8-7] for details. Let P be the transition matrix of the discrete-time Markov chain; P
inherits the state space {0, 1, 2, . . . , n} and has elements pij . If some rj = 1, then P is
irreducible and aperiodic and has no transient states. Otherwise, some states may not
be reachable (e.g., state 1 when starting empty); these states should be eliminated.

Krishnan and Huebner show that when i channels are occupied and a class j call
arrives, that call should be admitted if and only if

t(i) < t(i+ rj),

where

t(k) =
n∑
j=0

A#
kjcj , k = 0, 1, . . . , n .
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From this equation (a variant of the one used by Krishnan and Huebner) we see that
we need to compute the jth column of A# when cj 6= 0.

Example. Suppose we have n = 100 trunk lines, with C = 3 classes of traffic
defined by mean arrival times (λi), mean holding time (1/µi), and ri trunks required
per call as follows:

i λi µi ri
1 20 1 1
2 20 1/2 2
3 5 1/3 3

.

Using the standard algorithm, we obtain a residual of size 9.4e+12 for j = n. The
condition number of U is computationally infinite, even though the condition number
of D−P is only 83. Using the algorithm from section 3, however, we obtain a residual
of size 9.6e-14.

5. Conclusions. We have presented an improvement to algorithms that use the
UL factors to compute quantities related to Markov chains. For a dense matrix, it
requires only O(n2) additional operations compared to the standard O(n3) algorithm
but improves the accuracy obtained in the results. The same approach could be used
on sparse matrices arising from Markov chains.
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Abstract. Let

A =
[
M R
R∗ N

]
and Ã =

[
M 0
0 N

]
be Hermitian matrices. Stronger and more general O(‖R‖2) bounds relating the eigenvalues of A
and Ã are proved using a Schur complement technique. These results extend to singular values, to
eigenvalues of non-Hermitian matrices, and to generalized eigenvalues.
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Let

A =
[
M R
R∗ N

]
and Ã =

[
M 0
0 N

]
(1)

be Hermitian matrices. Since ||A− Ã|| = ||R|| one can bound the difference between
their eigenvalues in terms of ||R||. It is part of the folklore of numerical linear algebra
that if the spectra of M and N are well separated, then a residual of size ||R|| produces
a perturbation of size O(||R||2) in the eigenvalues. The quadratic bounds that we
prove are stronger, simpler, and more general than those in the literature.

For an n × n Hermitian matrix X let λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X) denote its
ordered eigenvalues. Throughout we shall assume that A and Ã are as in (1) and that
M is m×m and N is n× n. Let

αk = λk(A) and let α̃k = λk(Ã).

The eigenvalues of Ã are those of M and those of N . Fix indices i1 < i2 < · · · < im
such that

λij (Ã) = α̃ij = λj(M), j = 1, 2, . . . ,m.

If M and N have common eigenvalues, there will be some freedom in the choice of
indices ij . We let σ(X) denote the set of eigenvalues of X and use ‖ · ‖ to denote the
spectral norm (often called the 2-norm by numerical analysts).

Our results are based on the following simple observation: for any λ 6∈ σ(N)

A− λI =
[
M − λI R
R∗ N − λI

]
is congruent to[

M − λI −R(N − λI)−1R∗ 0
0 N − λI

]
= Ã− λI − E(λ),
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April 11, 1997.
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where

E(λ) ≡
[
R(N − λI)−1R∗ 0

0 0

]
,

and so A− λI and Ã− λI − E(λ) have the same inertia.
LEMMA 1. If αk 6∈ σ(N), then

αk = λk(A) = λk(Ã− E(αk))(2)

while if α̃k 6∈ σ(N), then

α̃k = λk(Ã) = λk(A+ E(α̃k)).(3)

Proof. Since λk(A − αkI) = 0 and because A − αkI and Ã − αkI − E(αk) have
the same inertia,

0 = λk(Ã− αkI − E(αk)) = λk(Ã− E(αk))− αk,

which implies (2). For (3) one can show that A + E(α̃k) − α̃kI and Ã − α̃kI are
congruent, and so

0 = λk(Ã− α̃kI) = λk(A+ E(α̃k)− α̃kI) = λk(A+ E(α̃k))− α̃k
as required.

Since λk(A) = λk(Ã − E(αk)) we can bound |αk − α̃k| by bounding ||E(αk)||.
This will give us the desired O(||R||2) bound. The rest of the paper is devoted to
quantifying this observation.

We define a number of measures of separation from the spectrum of N :

δk ≡ min
i=1,2,...,n

|αk − λi(N)|,

δ̃k ≡ min
i=1,2,...,n

|α̃k − λi(N)|,

δ ≡ min
j=1,2,...,m

δj = min
j=1,...,m k=1,...,n

|λij (A)− λk(N)|,

and δ̃ ≡ min
j=1,2,...,m

δ̃j = min
j=1,...,m i=1,...,n

|λj(M)− λi(N)|.

We could use just δ and δ̃ and the resulting bounds would be weaker, though slightly
simpler.

THEOREM 1. If αk 6∈ σ(N), then

|αk − α̃k| ≤ δ−1
k ||R||2(4)

while if α̃k 6∈ σ(N), then

|αk − α̃k| ≤ δ̃−1
k ||R||2.(5)

Proof. From (2) and the definition of δk

|αk − α̃k| = |λk(A)− λk(Ã)|
= |λk(Ã− E(αk))− λk(Ã)|
≤ ||E(αk)||
= ||R(N − αkI)−1R∗||
≤ δ−1

k ||R||2

which is (4). The inequality (5) can be proved in the same way.
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The bound (5) gives us a different bound on |αk − α̃k| for each eigenvalue α̃k of
M . So, for example, if α̃k is well separated from the spectrum of N , then |αk − α̃k|
is O(||R||2) even though M and N may have common eigenvalues.

We can maximize the right-hand sides of (4) and (5) over k and obtain weaker
but more familiar bounds.

COROLLARY 1. If ||R|| < δ, then

max
k=1,2,...,m

|αik − λk(M)| ≤ δ−1||R||2.(6)

Even without the condition ||R|| < δ,

max
k=1,2,...,m+n

|αk − α̃k| ≤ δ̃−1||R||2.(7)

The inequality (6) gives an affirmative answer to the question asked by Sun in
[12, section 5.2].1

These results are an improvement over the results given by Stewart [10, The-
orem 3.12] (or [11]) and Sun [12, Corollary 3.4] in a number of ways. First, their
results require that m eigenvalues of A lie outside [λn(N)− δ, λ1(N) + δ]. That is, m
eigenvalues of A must be well separated from the convex hull of σ(N), while here we
merely require that they be well separated from σ(N). Second, their bounds contain
a factor (1− ρ2)−1, where ρ = ||R||δ. This factor is always greater than one, though
in most applications it would be close to one. Our bound contains no such factor.2

Third, our proof is simpler—the proofs due to Stewart and Sun use theorems on the
perturbation of invariant subspaces and a perturbation result for matrices that are
similar to Hermitian matrices. Fourth, as observed above, our results are valid even
when M and N have common eigenvalues. Finally, our results are directly applicable
in a situation that often arises in numerical linear algebra—when one knows or has
bounds on the spectra of M and N but not that of A. Here our bounds in terms of δ̃k
and δ̃ are directly applicable and will give stronger bounds than using the information
about σ(M) and σ(N) to deduce information about σ(A) and σ(N) and then use this
to obtain 0(||R||2) bounds involving δ.

The idea of shifting A by an eigenvalue, applying a congruence, and then looking
at the resulting Schur complement is not new. It has been used a number of times
by Parlett [9, sections 9.5.1, 10.1, 10.4, 10.5]. It seems that our results are different
from the results in [9] where the primary focus is on multiple eigenvalues. Schur
complements arise in the work of Mathias and Stewart in analyzing the perturbation
of eigenvalues of graded matrices.

The key idea in this paper, which is summarized in (2)–(3), is that if one has a
special perturbation of the form (1), then the resulting perturbation in the eigenvalues
of A is the same as that if one makes a much smaller perturbation. That is, because
of the special structure of the perturbation one can use standard perturbation theory
to derive stronger perturbation bounds. This idea is not new: Stewart [11] has used
it, and it is an underlying idea in the work of Eisenstat and Ipsen [3, 4], although it
is not identified by them.

The relation (3) gives a perturbation of size O(‖R‖2) of A such that the kth
eigenvalue of Ã is the the kth eigenvalue of the slightly perturbed A. The perturbation

1Bhatia [2] and Mathias [7] have answered the question in [12, section 5.1] in the negative.
2Actually the factor (1 − ρ2)−1 in [10] can be reduced to (1 + ρ2)1/2, which does not blow up

as p→ 1, by noting that ||P (I + P ∗P )1/2|| ≤ ρ implies ||P || ≤ ρ because ||(I + P ∗P )−1/2|| ≤ 1. At
any rate, our result is cleaner for not having the factor (1 + ρ2)1/2.
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is different for each index. The inequality below, which is from the proof of Theorem
3, may be viewed as an extension of (3) giving two perturbations that yield O(‖R‖2)
bounds on all the eigenvalues.

λi(A− δ̃−1W ) ≤ λi(Ã) ≤ λi(A+ δ̃−1W ), i = 1, 2, . . . ,m+ n,

where W = RR∗ ⊕ R∗R. This inequality suggests that one can extend the results in
this section to a wider class of norms, and we do this in the next section, although
the bounds (4)–(7) should be sufficient for most purposes.

We conclude the paper by showing how this Schur complement technique can
be applied to the non-Hermitian eigenvalue problem and the singular value problem.
One can also apply it to the generalized eigenvalue problem, but it is necessary to
introduce a fair amount of new notation to state the strongest possible result so we
do not apply the Schur complement technique to this situation.

Extension to unitarily invariant norms. Let Φ denote a symmetric gauge
function and let || · ||Φ denote the corresponding unitarily invariant norm. It is known
that every unitarily invariant norm is equal to || · ||Φ for some Φ. (For a proof of this
fact see, for example, [10, Theorem II.3.6] or [5, Chapter 5].) Also, if X = X∗ is k×k,
then

||X||Φ = Φ(λ1(X), . . . , λk(X)).

Consider a symmetric gauge function Φ on Rk. It induces, in a natural way, a sym-
metric gauge function Φr on Rr for any positive integer r. If r ≤ k, then

Φr(x) = Φ(x1, . . . , xr, 0, . . . , 0),

while if r ≥ k, then

Φr(x) = max
1≤i1<i2<···<ik≤r

Φ(xi1 , . . . , xik).

In this way we may think of Φ acting on Rr for any r. This simplifies the statements
and proofs of some of the results in this section.

We shall make frequent use of Weyl’s monotonicity principle (see, e.g., [10, Corol-
lary IV.4.9, and the subsequent discussion] or [5, Corollary 4.3.3]): if X ≤ Y are k×k,
then

λi(X) ≤ λi(Y ), i = 1, 2, . . . , k.

We will also need the Lidskii–Wielandt bound which is the next result. See [10,
Theorem IV.4.8] or [1] for the traditional proof via Wielandt’s min-max theorem or
see [6] for a much more elementary proof using Weyl’s monotonicity principle.

THEOREM 2. Let X and Y be n×n Hermitian matrices, and let Φ be a symmetric
gauge function on Rn; then

Φ(λ1(X)− λ1(Y ), . . . , λn(X)− λn(Y )) ≤ ||X − Y ||Φ.

We will not use Theorem 2 directly; rather we will use Lemma 2 which is easily
deduced from it.

LEMMA 2. Let B and C be n× n Hermitian matrices and let α1, α2, . . . , αn and
α̃1, α̃2, . . . , α̃n be real numbers. Let Φ be any symmetric gauge function on Rn. If for
some sequence i1 < i2 < · · · < ik we have

λij (B) ≤ αij ≤ λij (C) and λij (B) ≤ α̃ij ≤ λij (C), j = 1, 2, . . . , k,



QUADRATIC RESIDUAL BOUNDS 545

then

Φ(αi1 − α̃i1 , . . . , αik − α̃ik , 0, . . . , 0) ≤ ||B − C||Φ.

Proof. Let γi = |λi(C)−λi(B)|. The bounds on αij and α̃ij imply |αij−α̃ij | ≤ γi.
Thus,

Φ(αi1 − α̃i1 . . . , αik − α̃ik) ≤ Φ(γi1 , . . . , γik)
≤ Φ(γ1, . . . , γn)
= Φ(λ1(B)− λ1(C), . . . , λn(B)− λn(C))
= ||B − C||Φ.

We can now generalize Corollary 1 to all unitary invariant norms.
THEOREM 3. For any symmetric gauge function Φ

Φ(αi1 − α̃i1 , . . . , αim − α̃im) ≤ 2δ−1||RR∗||Φ,(8)

Φ(α1 − α̃1, . . . , αim − α̃im) ≤ 2δ̃−1||RR∗||Φ,(9)

and

Φ(α1 − α̃1, . . . , αm+n − α̃m+n) ≤ 2δ̃−1||RR∗ ⊕R∗R||Φ.(10)

These results can easily be stated in the notation used in [12]. For example, (10)
would be

‖diag(α1 − α̃1, . . . , αm+n − α̃m+n)‖Φ ≤ 2δ̃−1||RR∗ ⊕R∗R||Φ.

Proof. We will prove (9) and (10) only; (8) can be proved in exactly the same
way as (9). Since

−δ−1(RR∗ ⊕ 0) ≤ E(αk) ≤ δ−1(RR∗ ⊕ 0),

the basic relation (3) gives us

α̃ik = λik(A+ E(αk)) ≤ λik(A+ δ−1RR∗ ⊕ 0)

and

α̃ik = λik(A+ E(αk)) ≥ λik(A− δ−1RR∗ ⊕ 0),

which together imply

λik(A− δ−1RR∗ ⊕ 0) ≤ α̃ik ≤ λik(A+ δ−1RR∗ ⊕ 0).(11)

Since RR∗ ≥ 0, Weyl’s monotonicity principle immediately yields exactly the same
bound on αik :

λik(A− δ−1RR∗ ⊕ 0) ≤ αik ≤ λik(A+ δ−1RR∗ ⊕ 0).(12)

The bounds (11) and (12) together with Lemma 2 imply (9). A similar proof shows
that for i 6∈ {i1, . . . , im}

λi(A− δ̃−1(0⊕R∗R)) ≤ α̃i ≤ λi(A+ δ̃−1(0⊕RR∗)).
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Thus, for any i ∈ {1, 2, . . . ,m+ n}

λi(A− δ̃−1(RR∗ ⊕R∗R)) ≤ α̃i ≤ λi(A+ δ̃−1(RR∗ ⊕R∗R))

and

λi(A− δ̃−1(RR∗ ⊕R∗R)) ≤ αi ≤ λi(A+ δ̃−1(RR∗ ⊕R∗R)).

Again, Lemma 2 implies (10).
One would like to remove the factor 2 from these bounds, but we have not been

able to. It is easy to show that if we fix M and N and let ‖R‖ → 0, then the bounds
are valid asymptotically without the factor 2. An examination of the proof of the
theorem shows that we can replace 2‖RR∗‖Φ in (8) and (9) by

Φ(λ1(RR∗), λ1(RR∗), λ2(RR∗), λ2(RR∗), . . .),

where Φ has m arguments. This is slightly stronger but is still not the ideal result.
One can completely remove the factor 2 from the bounds in (8)–(10) by imposing a
more stringent condition on the spectra of Ã and A. Notice that the condition for the
validity of (14) is not symmetric in M and N .

THEOREM 4. Let Φ be a symmetric gauge function. If exactly n of the eigenvalues
of A lie outside (λm(M)− δ, λ1(M) + δ), then

Φ(αi − α̃i1 , . . . , αim − α̃im) ≤ δ−1||RR∗||Φ.(13)

If all the eigenvalues of N lie outside (λm(M)− δ̃, λ1(M) + δ̃), then

Φ(αi1 − α̃i1 , . . . , αim − α̃im) ≤ δ̃−1||RR∗||Φ.(14)

If λ1(N) = λm(M)− δ̃, then

αi ≥ α̃i, i = 1, . . . ,m,
αi ≤ α̃i, i = m+ 1, . . . ,m+ n,

and

Φ(α1 − α̃1, . . . , αm+n − α̃m+n) ≤ ||RR∗ ⊕R∗R||Φ.(15)

Proof. We shall prove only (14); the rest of the theorem can be proved in the
same way. We may apply a unitary similarity of the form[

I 0
0 U

]
to A and Ã without changing any of the quantities in the theorem. Thus, without
loss of generality we may assume that

A =

 M R1 R2
R∗1 N1 0
R∗2 0 N2

 ,
where the spectrum of N1 is in (−∞, λm(M)− δ̃] and that of N2 is in [λ1(M)+ δ̃,∞).
Thus, for any α ∈ [λm(M), λ1(M)]

0 ≤ R2(N2 − αI)−1R∗2 ≤ δ̃−1R2R
∗
2
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and

−δ̃−1R1R
∗
1 ≤ R1(N1 − αI)−1R∗1 ≤ 0.

Since

R(N − αI)−1R∗ = R1(N1 − αI)−1R∗1 +R2(N2 − αI)−1R∗2,

if α ∈ [λm(M), λ1(M)], it follows that

−δ−1R1R
∗
1 ⊕ 0 ≤ E(α) ≤ δ−1R2R

∗
2 ⊕ 0.(16)

Take any αik . Then from (2), Weyl’s monotonicity principle, and (16) we have

λik(Ã− δ̃−1R2R
∗
2 ⊕ 0) ≤ αik ≤ λik(Ã+ δ̃−1R1R

∗
1 ⊕ 0)

and, of course,

λik(Ã− δ̃−1R2R
∗
2 ⊕ 0) ≤ α̃ik ≤ λik(Ã+ δ̃−1R1R

∗
1 ⊕ 0).

Lemma 2 now implies

Φ(αi1 − α̃i1 , . . . , αim − α̃im) ≤ ||(Ã− δ̃−1R1R
∗
1 ⊕ 0)− (Ã− δ̃−1R2R

∗
2 ⊕ 0)||Φ

= ||δ̃−1(R1R
∗
1 +R2R

∗
2)⊕ 0||Φ

= δ̃−1||RR∗||Φ

as desired.
Notice that our bounds are in terms of ||RR∗||Φ rather than ||R||2Φ. This is an

advantage, since one can show that if Φ is normalized, that is, if

Φ(1, 0, 0, . . . , 0) = 1,

as is the case for the spectral, Frobenius, trace, Schatten-p and Ky–Fan-k norms, then

||RR∗||Φ ≤ ‖R‖ ‖R‖Φ ≤ ||R||2Φ.

The first inequality shows that our bound is stronger than Sun’s [12, Corollary 3.4]
which has ‖R‖‖R‖Φ in the bound, as well as an additional factor (1− ρ2)−1/2.

Extension to non-Hermitian matrices. One can apply these techniques to
non-Hermitian matrices. However, the results are rather clumsy as shown below.

THEOREM 5. Let

A =
[
M R
S N

]
be a diagonalizable (m + n) × (m + n) matrix. Let λ̃ 6∈ σ(N) be an eigenvalue of M
and let X be a matrix that diagonalizes A. Then there is an eigenvalue λ of A such
that

|λ− λ̃| ≤ κ(X)||R|| ||S|| ||(N − λ̃I)−1||.(17)

Proof. The singular matrix

A+
[
R(N − λ̃I)−1S 0

0 0

]
− λ̃I
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is equivalent to [
M 0
0 N

]
− λ̃I.

Consequently, λ̃ is an eigenvalue of

A+ [R(N − λ̃I)−1S]⊕ 0.

The result now follows from this and standard results on the perturbation of diago-
nalizable matrices, e.g., [10, Theorem IV.3.3].

The bound (17) may be useful when A is normal and N = ν is 1× 1. In this case
X can be chosen unitary, with κ(X) = 1, and also ||R|| = ||S|| and (N − λ̃I)−1 =
(ν − λ̃)−1, so we have

|λ− λ̃| ≤ ||R||
2

|ν − λ̃|

which is analogous to the Hermitian case. Of course ν is also an estimate of an
eigenvalue of A; there is an eigenvalue λν of A such that

|ν − λν | ≤ ||R||2||(M − νI)−1||.

This is a quadratic version of the residual bound [10, Theorem IV.3.2].

Application to residual bounds for singular values. The results for eigen-
values imply similar results for singular values. For example, let

A =
[
M R
S N

]
be a general matrix—we do not require M and N to be square, and let

Ã =
[
M 0
0 N

]
.

Since the Jordan–Wielandt matrix
0 0 M R
0 0 S N
M∗ S∗ 0 0
R∗ N∗ 0 0


is permutation similar to 

0 M 0 R
M∗ 0 S∗ 0
0 S 0 N
R∗ 0 N∗ 0

 ,
the results in the first two sections imply a number of bounds on the difference between
the singular values of A and Ã. Theorem 1, for example, yields

max |σi(A)− σi(Ã)| ≤ max{||R||2, ||S||2}
minj,k |σ2

j (M)− σ2
k(N)| .
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One may also be interested in the relative error in approximating the singular
values of

A =
[
M R
0 N

]
by those of

Ã =
[
M 0
0 N

]
,

where in this case M and N are again square. We consider the case σmin(M) > σ1(N).
(We could omit this restriction at the cost of a considerably more complicated bound.)
Then

AA∗ =
[
M R
0 N

] [
M∗ 0
R∗ N∗

]
=
[
MM∗ +RR∗ RN∗

NR∗ NN∗

]
.

Let σi+m be the i+mth singular value of A. Then λm+i(AA∗ − σ2
i+mI) = 0, and as

before this implies that

λm+i

[
MM∗ +RR∗ − σi+mI 0

0 NN∗ − σi+mI −NR∗(MM∗ +RR∗ − σ2
i+mI)−1RN∗

]
= 0.

Because σm(M) > σ1(N) it follows that MM∗ + RR∗ − σ2
i+mI is positive definite.3

So

λi(NN∗ −NR∗(MM∗ +RR∗ − σ2I)−1RN∗ − σ2
i+mI) = 0

and hence

λi(N [I −R∗(MM∗ +RR∗ − σ2
i+mI)−1R]N∗) = σ2

mi .

Since

0 ≤ R∗(MM∗ +RR∗ − σ2I)−1R ≤ (σ2
min − σ2

i+m)−1||R||2,

it follows that

1 ≥
σ2
i+m

λi(NN∗)
≥
(

1− ||R||2
σ2

min(M)− σ2
i+m

)
.

Of course λi(NN∗) = σ2
i (N).

To summarize, we have shown

1 ≥
σ2
m+i

σi(N)
≥
(

1− ||R||2
σ2

min(M)− σ2
i

)1/2

.

3If MM∗ + RR∗ − σ2
m+iI were not positive definite, then σ2

min(M) ≤ σ2
m+i and so NN∗ −

σ2
m+iI < 0. That is, an n × n principal submatrix of AA∗ − σ2

m+iI is negative definite and so
AA∗−σ2

m+iI must have at least n negative values. This contradicts the fact that since λm+i(AA∗) =
σ2
m+i the matrix AA∗ − σ2

m+iI has exactly (m+ n)− (m+ i) = (n− i) negative eigenvalues.
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This is always at least slightly stronger than [8, equation (3.3)], and is considerably
stronger when σmin(M)/σ1(N) is close to one, but σmin(M)/σi(N) is far from one.
The result in [8] was proved in a very different way.

Using similar techniques one can show(
1 +

||R||2 · ρ2

σ2
i (A)− σ2

1(N)

)1/2

≥ σi(A)
σi([M R])

≥ 1.

This bound is also stronger than [8, equation (3.4)]. Not only is our “gap” larger, but
there is also the additional factor ρ2, where

ρ =
||E||

σmin(M)
< 1,

multiplying the ||R||2 term.
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1. Summary. In this section we assume that the reader is familiar with LR and
QR. The transformations are presented in the next section. A slight variation of the
LR algorithm that is suitable for positive definite Hermitian matrices is the Cholesky
(LR) algorithm: A = CC∗ is mapped into Â = C∗C.

In the positive definite Hermitian case, two steps of Cholesky yield the same
matrix as one step of QR. At first glance this is surprising (how can LR produce a
unitary similarity?) and the proof is sometimes given as an exercise in textbooks;
see [4], [1], and [9]. Students are often left with the (false) impression that positive
definiteness is essential.

In recent years understanding of these algorithms has improved. Both the LR
and QR algorithms are instances of GR algorithms [10]. For all such algorithms k
steps applied to A are equivalent to a similarity driven by a factorization of Ak:

Ak = GkRk, A→ G−1
k AGk.(1.1)

Consequently, two steps of LR on A is equivalent to a similarity driven by A2 : A2 =
LU,A → L−1AL. On the other hand, one step of QR on A is equivalent (up to a
diagonal similarity) to a similarity driven by A∗A:

A = QR, A∗A = R∗R(= LD2L∗), A→ Q∗AQ = RAR−1.

If A is Hermitian, then A∗A = A2 and two steps of LR must be equivalent to one
of QR. Despite these remarks it is still interesting to see the equivalence in detail, and
that is the topic of section 2.

The catch is that LR can break down so the more careful statement is that two
LR steps (if they exist) are equivalent to one QR step (which always exists). What is
of more than passing interest is that LR is entirely rational in operation whereas QR
requires square roots and is not rational. The remarks made above show that these
square roots in QR are somehow not essential; QR may be better thought of as LR
driven by A∗A. It is this viewpoint that leads to the various root-free QR algorithms
that have been so successful for symmetric tridiagonal matrices. Four versions are
described in [6] and an even faster one appeared recently in [3].

∗Received by the editors March 1, 1996; accepted for publication (in revised form) by J. Varah
April 17, 1997.
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For non-Hermitian matrices there is a similar rational version of QR and it is
described in section 3.

We follow Householder conventions for notation except for denoting the conjugate
transpose of F by F ∗ instead of FH . We ignore shifts because they complicate the
analysis and add nothing to a theoretical paper.

2. Connection of QR to LR. Two algorithms that play an important role
in matrix eigenvalue computations are the LR and QR algorithms. The former was
discovered by Rutishauser in 1958 [7] and the latter developed by Francis in 1959–1960
[2]. A formal derivation of QR was given in [5]. Both algorithms have been widely
studied and good references are [9], [8], and [6].

Recall the basic decompositions.
Triangular factorization (LU). If and only if B ∈ Cn×n has nonzero leading

principal minors of orders 1, 2, . . . , n− 1, then B has a unique decomposition

B = LDU,

where L is unit lower triangular, D is diagonal, and U is unit upper triangular.
Gram-Schmidt factorization (QR). All B ∈ Cn×n may be written

B = QR,

where Q∗ = Q−1 and R is upper triangular with nonnegative diagonal entries. The
factorization is unique if and only if the columns of B are linearly independent.

From the basic factorizations come the basic transforms.
LR transform. If B = LDU , then its LR transform is defined by

◦
B= DUL = L−1BL = (DU)B(DU)−1.

Here is the irritating ambiguity in LR; the definition
◦
B= ULD would be equally

legitimate. For theoretical purposes one could consider the equivalence class of all
diagonal similarities on a given matrix.

QR Transform. If B = QR (uniquely), then its QR transform is defined by

B̂ = RQ = Q∗BQ = RBR−1.

Remark 1. If A is Hermitian and positive definite, then A = LD2L∗ and its
Cholesky transform is given by A′ = DL∗LD. Note that

A′ = D−1 ◦
A D

is a diagonal similarity transformation but uses square roots. LR destroys the Her-
mitian property but only by a diagonal similarity.

Denote the Cholesky transform of A′ by A′′ and the LR transform of
◦
A by

◦◦
A. If

A is Hermitian and positive definite, then A′′ = Â: two steps of Cholesky equal one
of QR. However, the positive definite property is not essential as the following result
shows.

All L’s are unit lower triangular and all D’s are diagonal and real. For complete-
ness we include all the diagonal matrices.

THEOREM 2.1. If A is Hermitian, and permits triangular factorization, then
◦◦
A

is diagonally similar to Â.
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Proof. By hypothesis A = L1D1L
∗
1 and so

◦
A= D1L

∗
1L1.

Since L∗1L1 is positive definite it permits triangular factorization

L∗1L1 = L2D
2
2L
∗
2 (D2 positive).(2.1)

Consequently, the triangular factorization of
◦
A is

◦
A= (D1L2D

−1
1 )(D1D

2
2)L∗2.

Thus,

◦◦
A = D1D

2
2L
∗
2D1L2D

−1
1

= (D1D2)M(D1D2)−1,

where

M := D2L
∗
2D1L2D2.

It remains to show that M is similar to Â with a diagonal unitary transformation.
Rewrite (2.1) as

I = (L−∗1 L2D2)(D2L
∗
2L
−1
1 ).

Since D2 is real

Q = L−∗1 L2D2(2.2)

is unitary. Use Q = Q−∗ to obtain another triangular factorization of Q

Q = L1L
−∗
2 D−1

2 .(2.3)

Now use Q to rewrite M as

M = (D2L
∗
2L
−1
1 )(L1D1L

∗
1)(L−∗1 L2D2)

= Q∗AQ.(2.4)

Finally, using (2.3),

A = L1D1L
∗
1

= (L1L
−∗
2 D−1

2 )(D2L
∗
2D1L

∗
1)

= Q sign(D1) · sign(D1)D2L
∗
2D1L

∗
1

= Q sign(D1)R

reveals the QR factorization of A since R has nonnegative diagonal. By (2.4)

Â = sign(D1)M sign(D1)

= sign(D1)(D1D2)−1 ◦◦
A (D1D2) sign(D1)−1,

as claimed.



554 HONGGUO XU

Remark 2. When the LR transform is to be applied to an Hermitian matrix it is
possible to modify the algorithm so that the Hermitian property is restored after two
steps. In the notation used above

◦
A= D1L

∗
1L1 = D1(L2D2)(L2D2)∗

and one then redefines
◦◦
A by

◦◦
A:= (L2D2)∗D1(L2D2) = M.

Such a modification forces a different mapping for odd and even steps and employs
square roots.

The advantage of Theorem 2.1 over the explanation (1.1) mentioned in section 1
is that it reveals explicitly in (2.2) and (2.3) how the triangular factors L1 and L2D2
from LR yield the triangular factorization of Q from QR.

Remark 3. The QR transform does not require that A permit triangular factor-
ization. In fact Â cannot be derived from two steps of LR when, and only when, the
orthogonal factor Q does not permit factorization as

Q = L1D
−1
2 (D2L

−∗
2 D−1

2 ).

In many cases, but not all, a well-chosen symmetric permutation A→ ΠAΠt will give
rise to a new Q that permits triangular factorization.

3. The non-Hermitian case. For general matrices the LR transform preserves
band structure while the QR transform destroys the upper bandwidth. So the two
procedures are not equivalent. Nevertheless it is legitimate to ask whether the QR
transform can be represented in an alternative form related to triangular factorization.

The answer is yes. The key to extending the result of the previous section is to
factor the given matrix B with a congruence transformation

B = FCF ∗.

This appears to be a strange representation of a non-Hermitian matrix.
Suppose B permits triangular factorization

B = L1D1U1.

Rewrite this as

B = L1(D1U1L
−∗
1 )L∗1

and note that the middle factor is upper triangular instead of diagonal. Define, as
earlier,

◦
B= (D1U1L

−∗
1 )(L∗1L1),

and use the Cholesky factorization

L∗1L1 = (L2D2)(L2D2)∗

to define
◦◦
B = D2L

∗
2(D1U1L

−∗
1 )L2D2

= (D2L
∗
2L
−1
1 )(L1D1U1)(L−∗1 L2D2)

= Q∗BQ, using (2.2).
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Moreover,

B = L1D1U1

= (L1L
−∗
2 D−1

2 )(D2L
∗
2D1U1)

= Q sign(D1)(sign(D1)D2L
∗
2D1U1)

is the QR factorization of B.
Now, in general, sign(D1) = diag(exp(iϕ1), . . . , exp(iϕn)).
Another way to interpret these expressions is to observe that, ignoring diagonal

unitary matrices, the Q factor of B is the Q factor of its lower triangular factor L1.
Note that

◦
B= L−1

1 BL1,
◦◦
B= (D2L

∗
2)
◦
B (D2L

∗
2)−1, and so the nice unitary matrix

Q is again split into its two triangular factors L1 and (D2L
∗
2)−1.
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Abstract. The Grassmann, Taksar, and Heyman (GTH) algorithm for the computation of the
stationary distribution of a finite stochastic matrix is shown to apply for the general case when there
is a unique stationary distribution. The approach is elementary and matrix based, with probabilistic
arguments avoided, to give insight into the essential structural properties. A byproduct is a necessary
and sufficient determinantal condition for regularity of a stochastic matrix.
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complement, Bartlett identity, determinantal conditions
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1. Introduction. Suppose for the moment P = {pij}, i, j = 0, 1, . . . , N , is an
irreducible aperiodic stochastic matrix (pij ≥ 0,

∑N
j=0 pij = 1), so there is a unique

stationary vector p = {pi} , p > 0 (pT P = pT , pT1 = 1).
Writing A = P − I, Grassmann, Taksar, and Heyman (GTH) [1] have shown

how to construct an elegant and economical algorithm for the computation of p by
applying, initially, the steps of Gaussian elimination to the matrix A. That is, in
pT A = 0T considered as equations with labels 0, 1, . . . , N , first solve for pN in theNth
equation, and eliminate pN from the other equations. Then solve equation N − 1 for
pN−1, and eliminate pN−1 from all other equations, except for equation N . Continue
in this way until the equation 1 is solved for p1 in terms of p0.

Equation 0 is redundant and can be omitted. Then if anij are the values obtained
before solving for pn, then (with δij the Kronecker delta)

aNij = pij − δij
an−1
in = −anin/annn , 0 ≤ i < n,(1)
an−1
ij = anij + annj a

n−1
in , 0 ≤ i < n, 0 ≤ j < n,

an−1
ij = anij , i ≥ n or j > n,

for n = N, . . . , 1. A crucial element of this argument is that the pivotal element annn
is never zero. GTH show this using a sophisticated probabilistic argument, which also
shows that

annn = −
n−1∑
j=0

annj(2)

∗Received by the editors October 7, 1996; accepted for publication (in revised form) by G. P.
Styan April 17, 1997.
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so that, from (1),

an−1
in = anin

/ n−1∑
j=0

annj , 0 ≤ i < n .

The above forms Item 1 of the following simple algorithm [1, p. 1112] (see also
[2]).
Item 1. For n = N,N − 1, . . . , 1, do the following:

Let S =
n−1∑
j=0

anj .

Let ain = ain/S , i < n.

Let aij = aij + ain anj , i, j < n.

Item 2. Let TOT = 1, r0 = 1.
Item 3. For j = 1, 2, . . . , N , do the following:

Let rj =
j−1∑
k=0

rk akj .

Let TOT = TOT + rj .

Item 4. Let pj = rj/TOT , j = 0, 1, . . . , N .
Note that the line under Item 3 may also be written rj = a0j +

∑j−1
k=1 rk akj .

Items 2, 3, and 4 of the algorithm arise in GTH from the same sophisticated
probabilistic argument, and lead to a probabilistic interpretation of the quantities
rj = pj/p0, 1 ≤ j ≤ N .

The algorithm, for this setting, may well be close to optimal. The number of
operations, on account of underlying Gaussian elimination, is asymptotically optimal
at order 2N3/3. The aij with i 6= j are always nonnegative, and no subtractions
are used. According to GTH, it is therefore still effective for problems of size N =
1000. Stewart [12, p. 68] states that although this algorithm remains unanalyzed
from the numerical standpoint, he believes it is stable and should be used routinely.
A numerical analysis by O’Cinneide [9] has appeared in the same year.

We examine the matrix underpinnings of the algorithm, essentially in sections
3 and 4, without probabilistic intervention in the form of regenerative notions used
in GTH. This is done in sections 2–4 under the more general assumption that the
stochastic matrix P = {pij}, i, j = 0, 1, . . . , N contains a single irreducible set of
indices. We call such a stochastic matrix regular. This assumption is necessary and
sufficient for there to be a unique stationary distribution vector p ≥ 0. (The entries
of this vector corresponding to the irreducible set of indices are positive, and are zero
otherwise.)

We also assume in regard to the algorithm, without loss of generality, that the
labeling of the indices is such that zero is in the irreducible set.

We note Heyman [4] who shows implicitly that if P is irreducible (so p > 0)
and periodic, and the matrix P is first rewritten in the usual cyclic-block structure,
then the algorithm works (and computational economies result). Earlier Heyman [3,
p. 227] had asserted without proof that the algorithm can be made to work in the
regular case under a less general relabeling.
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Our treatment covers the most general structure of P giving unique stationary
distribution, and gives some insight into what specific matrix features of the core
irreducibility assumption make the procedure work. This leads to some understanding
of how the setting may be generalized away from the usual Markovian situations, and
is in itself consistent with matrix theory approaches to finite Markov chains.

We shall use the convention (as above) that a lowercase boldface letter denotes a
column vector. The vector e used in section 3 does not have the conventional meaning
of a column of ones.

2. Partition and complementation: Background. Recall that a stochastic
matrix P with a single irreducible set of indices may, with suitable permutation of
indices, be written in the canonical form

P =
[
P1 0
R Q

]
, so P k =

[
P k1 0
Rk Qk

]
,(3)

where P1 contains the matrix entries within the irreducible class of indices, and Q
refers to indices (if any) outside this class, where Qk → 0 as k →∞. The fact that
there is a solution p to pT P = pT ,p 6= 0, and is unique to constant multiples and
may be taken as a multiple of an elementwise nonnegative vector (with the positive
entries corresponding to the irreducible set) follows, without probabilistic reasoning,
from the fact that Qk → 0 and the Perron–Frobenius theory [11]. The norming
pT 1 = 1 then specifies p(≥ 0) uniquely as the stationary vector.

Suppose now the index 0 of the set of indices to be a member of the irreducible
set. Writing P k = {p(k)

ij }, it is seen from (3), since P1 is irreducible and since with
increasing k the row sums of Rk tend to unity, that for any iε{0, 1, . . . , N} there is a
k ≡ k(i) such that p(k)

i0 > 0. Thus, for any subset J of {0, 1, 2, . . . , N} containing the
index 0, for this same k ≡ k(i) ∑

jεJ

p
(k)
ij > 0 .(4)

The properties discussed above are clearly not dependent on the reordering of
the indices {0, 1, 2, . . . , N} to give the canonical form (3). Thus, we assume P =
{pij} , i, j = 0, 1, . . . , N to be in some arbitrary initial given form, with the proviso
that the first index, 0, is in the irreducible set. Consider the regular matrix P now
partitioned as

P =
[
P11 P12
P21 P22

]
,

where P11 is (n× n), n = 1, . . . , N , and pT = {pT1 , pT2 } is partitioned accordingly.
LEMMA 2.1. I − P22 is nonsingular and (I − P22)−1 =

∑∞
k=0 P

k
22 elementwise.

Proof. Consider the stochastic matrix P̃ = {p̃ij}, i, j = 0, 1, . . . , N − n+ 1,

P̃ =
[

1 0
′

p0 P22

]
.

Then for iε{1, 2, . . . , N − n + 1}, using (4) and regarding J there as the set of
indices which here are compressed into the zero index, there is a k ≡ k(i) such that

p̃
(k)
i0 > 0, so

N−n+1∑
j=1

p̃
(k)
ij < 1,
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where P̃ k = {p̃(k)
ij } . Then following the proof of Seneta [11, Theorem 4.3], with

I = {1, 2, . . . , N − n+ 1} and Q = P22 we find P k22 → 0. The conclusion follows from
Lemma B.1 of Appendix B in Seneta [11].

LEMMA 2.2. The n× n matrix

S11 = P11 + P12(I − P22)−1P21(5)

is stochastic and regular, and the corresponding stationary distribution vector is
p1/pT1 1.

Proof. The various components of the lemma are well known for irreducible P
(see, for example, Kemeny and Snell [6, 6.1.1] and Meyer [8, Theorems 2.1 and 2.2]).
To recapitulate briefly, continuing to avoid any probabilistic argument, we have that

pT1 P11 + pT2 P21 = pT1 ,

pT1 P12 + pT2 P22 = pT2 ,

where the first entry of pT1 is positive, since zero is in the irreducible set of P .
From the second of these equations and Lemma 2.1, pT2 = pT1 P12(I − P22)−1 so

that, from the first equation, pT1 (P11 + P12(I − P22)−1 P21) = pT1 . Again by Lemma
2.1, the matrix S11 is elementwise nonnegative, and stochastic since in P111+P12(I−
P22)−1P211 we have that P211 = (I−P22)1. If S11 does not have a unique stationary
distribution, it is possible to find a nonzero solution x1 to xT1 S11 = xT1 which is
nonunique to constant multiples. Putting xT2 = xT1 P12(I − P22)−1, the solution x to
xT P = xT , where xT = (xT1 ,x

T
2 ), would have this property, which is a contradiction

to the fact that regular P has unique stationary distribution.
The matrix S11 corresponding to P is called the stochastic complement of P11 in

P . It is the central idea behind the next section, in showing that the pivotal elements
are all nonzero. A connection between the ideas behind the GTH algorithm and
stochastic complementation is touched on by Heyman [5].

3. Partitioned inversion and coefficient matrices. In what follows we write
S(n− 1) in place of S11 of (5) and

P =

 P11 a B
bT c eT

C d D

 ,
where P11 is n × n, corresponding to indices 0, 1, . . . , n − 1. Thus, for N ≥ n ≥ 1,
keeping in mind Lemmas 2.1 and 2.2,

S(n− 1) = P11 + (a B)
[
I −

[
c eT

d D

]]−1 [ bT

C

]
.(6)

S(n) =
[
P11 a
bT c

]
+
[

B
eT

]
(I −D)−1(C d)(7)

with S(N) = P . Write pT = (pT1 (n−1) , pT2 (n−1)) = (pT1 (n) ,pT2 (n)), the partitions
according with S(n− 1) and S(n), respectively.

By partitioned inversion[
I −

[
c eT

d D

]]−1

=
[
k (1− c)−1eT K
k(I −D)−1 d K

]
,(8)
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where k = (1− c− eT (I −D)−1d)−1 and

K = (I −D − (1− c)−1d eT )−1 = (I −D)−1 + k(I −D)−1d eT (I −D)−1,(9)

the last expression following from the Bartlett (Sherman–Morrison) identity, since
(I −D)−1 exists and

1− c− eT (I −D)−1d 6= 0(10)

from the stochasticity and regularity of S(n), since otherwise existence of more than
one irreducible set would be implied (recall that zero is already in one irreducible set).

Next, write pT1 (n) = (pT1 (n − 1), pn), and consider the first step of Gaussian
elimination (that is, for pn) in the system for 1 ≤ n ≤ N

pT1 (n)A(n) = 0T , where A(n) = S(n)− I.(11)

From (7) we find that

pn(1− c− eT (I −D)−1 d) = pT1 (n− 1){a +B(I −D)−1d},(12)

where, from (10) the coefficient of pn, viz., k−1, is not zero. Thus, for 1 ≤ n ≤ N

pn = pT1 (n− 1){k(a +B(I −D)−1d)}.(13)

Substituting (13) into the remaining equations of (11) we obtain

pT1 (n−1){P11−I+B(I−D)−1 C+k{a+B(I−D)−1d} {bT+eT (I−D)−1 C}} = 0T .
(14)

We now prove that the matrix appearing on the left of (14) is in fact A(n− 1) =
S(n − 1) − I. This enables us to conclude that the pivotal element of A(n − 1)
analogous to that of A(n) is likewise nonzero in the manner of (10) for A(n), since
A(n− 1) has parallel structure to A(n), N ≥ n ≥ 2. The fact that (2) holds for each
n , N ≥ n ≥ 1, is now merely a consequence of the stochasticity of each S(n), which
follows from Lemma 2.2.

LEMMA 3.1. The coefficient matrix in (14) is A(n− 1) = S(n− 1)− I.
Proof. From (6) and (8)

S(n−1)−I = P11−I+k{a+B(I−D)−1 d}bT +(1−c)−1 a eT KC+BKC .(15)

Now, from (9)

KC = (I −D)−1 C + k(I −D)−1 d eT (I −D)−1 C ,

so (15) becomes

A(n− 1) = P11 − I +B(I −D)−1 C + k{a +B(I −D)−1 d}bT

+(1− c)−1a eT (I −D)−1 C + (1− c)−1 a eT k(I −D)−1 d eT (I −D)−1 C

+k B (I −D)−1 d eT (I −D)−1 C.(16)

Focus on the two penultimate terms of (16): their sum simplifies to

(1− c)−1 a{1 + k eT (I −D)−1 d} eT (I −D)−1 C

= (1− c)−1 (1 + k eT (I −D)−1 d) a eT (I −D)−1 C .(17)
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Now, since k−1 = (1− c− eT (I −D)−1 d) we see that

k(1− c) = 1 + k eT (I −D)−1 d,

so

(1− c)−1 (1 + k eT (I −D)−1 d) = k.(18)

Combining (18), (17), and (16), and comparing with (14) completes the proof.

4. The probability-normed solution. We now justify Items 2, 3, 4 of the al-
gorithm restated in section 1 from GTH without probabilistic interpretation of p1/p0.
From the structure of the coefficient matrices as demonstrated in section 3, at the last
stage we are able to solve for p1 in terms of p0. Let us put p̃0 = 1, so that the cor-
responding p1 = p̃1 may be obtained by back substitution, and so on to obtain all
elements of p̃ = {p̃i} , i = 0, 1, . . . , N .

Indeed, the key back substitution step may be expressed as

p̃n = p̃T1 (n− 1){a +B(I −D)−1d}/(1− c− eT (I −D)−1 d)(19)

from (13), keeping in mind (10), and having written p̃T1 (n) = (p̃T1 (n − 1), p̃n). The
quantity “S” in the algorithm at this stage is just (1− c − eT (I −D)−1 d), and our
equation (19) is equivalent to equations (20)–(21) of GTH, and p̃n to quantity rn in
the algorithm.

By the Perron–Frobenius theorem for P , we have that p̃j = const. pj , j =
0, 1, . . . , N , and since

∑N
j=0 pj = 1, we see that

∑N
j=0 p̃j = const., so pj =

p̃j/
∑N
i=0 p̃i = rj/TOT as in Item 4 of the algorithm.

Incidentally, from the uniqueness to constant multiples of the Perron–Frobenius
eigenvector, it follows that p̃i = pi/p0 , i = 0, 1, . . . , N , so that

N∑
i=0

p̃i = 1 + (1− p0)/p0 = 1/p0 ,

so that

pj = p0 p̃j = p0 rj , j = 1, . . . , N,

which is the probabilistically deduced starting point for GTH’s justification of final
Items 2, 3, 4 of the algorithm.

5. Essence. In this concluding section we review the key matrix features of the
preceding to show that the algorithm will work for certain matrices P which may
not have the structure of either a probability transition matrix or a Markov intensity
matrix. An example is the matrix

P =


0 1/3 1/3 1/3
0 2/3 2/3 −1/3

1/3 0 4/3 −2/3
−1/3 1/3 −1/3 4/3

 .
More generally, let P = {pij}, i, j = 0, 1, . . . , N , be a matrix of real entries

and A = P − I. Consider P written in partitioned form as in section 3, and assume
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I −D is nonsingular for each (N + 1− n)× (N + 1− n) matrixD, n = 1, 2, . . . , N ,
which implies that the bottom right-hand corner entry of P is not unity. Successive
(I −D)−1 are then defined by (8) and (9) providing it is further assumed (10) holds
for each before defining the next, so that each pivotal element is nonzero.

S(n− 1) and S(n) are now defined by (6) and (7).
We notice that if an (n × 1) p1 (n − 1) satisfies pT1 (n − 1)A(n − 1) = 0T ,

where A(n − 1) = S(n − 1) − I, and we define pn by (13), then by reversing the
argument of Lemma 3.1 and (14), we find that pT1 (n)A(n) = 0T , where pT1 (n) =
(pT1 (n− 1) , pn), and A(n) = S(n)− I. Thus, if we define p̃0 = 1 as in section 4, and
proceed through the back substitution steps (19) to produce p̃ = {p̃j}, j = 0, 1, . . . , N ,
this vector is a solution p ,p 6= 0 , to pT A = 0T . Since (D − I) is nonsingular in
particular when it is of dimension (N ×N), by one of the assumptions in this section
it follows that P − I has the last N rows of its (N + 1) rows linearly independent.
It is, however, singular, since we have just shown that there is a solution p 6= 0 to
pT (P − I) = 0T . Thus, the 0th row of P − I is a linear combination of the last N
rows. Thus, any solution p = {pi} 6= 0 to pT A = 0T must have p0 6= 0 and must be
of form p0p̃; that is, p̃i = pi/p0 , i = 0, 1, . . . , N .

In summary: (1) the conditions which P above is supposed to satisfy imply that
there is a nonzero solution p to pT P = pT , with 0th position entry of p not zero,
and this solution is unique to constant multiples (thus, one is an eigenvalue of P and
p is a corresponding left eigenvector, unique to constant multiples). (2) The solution
may be obtained by Gaussian elimination with all pivots nonzero, and simple back
substitution, after setting p̃0 = 1.

We have retained the “equal row sums” property possessed by stochastic ma-
trices in our numerical example above. In this example the {p̃i}, i = 0, 1, 2, 3, is
(1, −2, 0, −3). The conditions would have continued to apply to the example if we
had made it (5 × 5) by adding a final (1 × 4) row of zeros, a final 1 × 4 column
of zeros, and a (5 , 5) element 1/2, say to remove resemblance to irreducibility and
stochasticity. The vector {p̃i} would then have a fifth entry equal to zero.

The conditions imposed on P in this section have perhaps some independent in-
terest in that they resemble the determinant conditions imposed by Markov [7]—see
Schneider [10] for an analysis—on a finite stochastic matrix in place of irreducibil-
ity. Indeed, if a stochastic matrix P has more than one irreducible (i.e., closed)
class of indices, the condition that I − D is nonsingular for each (N + 1 − n)×
(N + 1 − n) matrixD, n = 1, 2, . . . , N , is broken. To see this, note that the sub-
set of indices corresponding to one of the irreducible classes must be within the set
{1, 2, . . . , N} of the index set {0, 1, 2, . . . , N} and one of the I − D’s will contain
these indices, and its determinant will be zero. This may be seen by considering a
simultaneous permutation of rows and columns of this I − D to obtain a canonical
form of D which has an isolated stochastic matrix (corresponding to the irreducible
class) on the diagonal. Thus, det(I − D) = 0, since a simultaneous permutation of
rows and columns is a similarity transformation.

The reader will notice that the condition is also broken if P has only one irre-
ducible set of indices, if index 0 is not a member of this set.

Thus, regularity of a stochastic P is guaranteed if each index in turn is considered
as the zero index, and the condition that each (N+1−n)×(N+1−n) matrixD , n =
1, 2, . . . , N , is nonsingular is satisfied for one such choice. This is thus a necessary
and sufficient determinantal condition for regularity, a more fundamental structural
property of stochastic P in Markov chain applications than irreducibility. Of course
such determinantal conditions are now of theoretical interest only.
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Abstract. Let Ln be a lower triangular matrix of dimension n each of whose nonzero entries
is an independent N(0, 1) variable, i.e., a random normal variable of mean 0 and variance 1. It is
shown that κn, the 2-norm condition number of Ln, satisfies

n
√
κn → 2 almost surely

as n→∞. This exponential growth of κn with n is in striking contrast to the linear growth of the
condition numbers of random dense matrices with n that is already known. This phenomenon is
not due to small entries on the diagonal (i.e., small eigenvalues) of Ln. Indeed, it is shown that a
lower triangular matrix of dimension n whose diagonal entries are fixed at 1 with the subdiagonal
entries taken as independent N(0, 1) variables is also exponentially ill conditioned with the 2-norm
condition number κn of such a matrix satisfying

n
√
κn → 1.305683410 . . . almost surely

as n → ∞. A similar pair of results about complex random triangular matrices is established.
The results for real triangular matrices are generalized to triangular matrices with entries from any
symmetric, strictly stable distribution.

Key words. random triangular matrices, matrix condition numbers, exponentially nonnormal
matrices, strong limit theorems

AMS subject classifications. 15A52, 15A12, 65F35, 60F15

PII. S0895479896312869

1. Introduction. Random dense matrices are well conditioned. Edelman has
shown that if each of the n2 entries of a matrix of dimension n is an independent
N(0, 1) variable, the probability density function (PDF) of κn/n, where κn is the
2-norm condition number of such a matrix, converges pointwise to the function

2x+ 4
x3 exp(−2x−1 − 2x−2)

as n→∞ [5]. Since the distribution of κn/n is independent of n in the limit n→∞,
we can say that the condition numbers of random dense matrices grow only linearly
with n. Using this PDF, it can be shown, for example, that E(log(κn)) = log(n) +
1.537 . . .+ o(1) [5].

In striking contrast, the condition number of a random lower triangular matrix Ln,
a matrix of dimension n all of whose diagonal and subdiagonal entries are independent
N(0, 1) variables, grows exponentially with n. If κn is the 2-norm condition number
of Ln (defined as ‖Ln‖2‖L−1

n ‖2), we show that

n
√
κn → 2 almost surely

as n→∞ (Theorem 4.3). Figure 1.1a illustrates this result.
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2
↓

1.305683410...
↓

(a) (b)

FIG. 1.1. Empirical cumulative density functions of n
√
κn, for triangular and unit triangular

matrices, respectively, with n = 25, 50, 100 obtained from 1000 random matrices for each n. The
random entries are N(0, 1) variables. The higher values of n correspond to the steeper curves. In
the limit n→∞, the cumulative density functions converge to Heaviside step functions with jumps
at the dashed lines.

The matrices that arise in the experiments reported in Figure 1.1 are so ill con-
ditioned that the standard, normwise stable method of finding the condition number
using the SVD [10] fails owing to rounding errors. The method used to generate the
figures finds the inverse of the triangular matrix explicitly using the standard algo-
rithm for triangular inversion, and then computes the norms of the matrix and its
inverse independently. This works because the computation of each column of the
inverse by the standard triangular inversion algorithm is componentwise backward
stable [12].

The exponential growth of κn with n is not due to small entries on the diagonal
since the probability of a diagonal entry being exponentially small is also exponen-
tially small. For a further demonstration that the diagonal entries do not cause the
exponential growth in κn, we consider condition numbers of unit triangular matrices,
i.e., triangular matrices with ones on the diagonal. If κn is the condition number
of a unit lower triangular matrix of dimension n with subdiagonal entries taken as
independent N(0, 1) variables, then

n
√
κn → 1.305683410 . . . almost surely

as n→∞ (Theorem 5.3). Obviously, in this case the ill conditioning has nothing to
do with the diagonal entries (i.e., the eigenvalues) since they are all equal to 1. The
relationship of the exponential ill conditioning of random unit triangular matrices to
the stability of Gaussian elimination with partial pivoting is discussed in section 7.

We will use Ln to refer to triangular matrices of various kinds — real or complex,
with or without a unit diagonal. But Ln always denotes a lower triangular matrix
of dimension n. If the entries of Ln are random variables, they are assumed to be
independent. Thus, if we merely say that Ln has entries from a certain distribution,
those entries are not only identically distributed but also independent. Of course,
only the nonzero entries of Ln are chosen according to that distribution. The condi-
tion number always refers to the 2-norm condition number. However, all our results
concerning the limits limn→∞ n

√
κn apply to all the Lp norms, 1 ≤ p ≤ ∞, since
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n1/n → 1 as n → ∞ and the Lp norms differ by at most a factor of n. The 2-norm
condition number of Ln, defined as ‖Ln‖2‖L−1

n ‖2, is denoted by κn. The context will
make clear the distribution of the entries of Ln.

The analyses and discussions in this paper are phrased for lower, not upper,
triangular matrices. However, all the theorems are true for upper triangular matrices
as well, as is obvious from the fact that a matrix and its transpose have the same
condition number.

We obtain similar results for triangular matrices with entries chosen from the
complex normal distribution Ñ(0, σ2). By Ñ(0, σ2) we denote the complex normal
distribution of mean 0 and variance σ2 obtained by taking the real and imaginary
parts as independent N(0, σ2/2) variables. Let Ln denote a triangular matrix with
Ñ(0, σ2) entries. Then

n
√
κn → e1/2 almost surely

as n → ∞ (Theorem 7.3). Since e1/2 < 2, triangular matrices with complex normal
entries tend to have smaller condition numbers than triangular matrices with real
normally distributed entries.

Similarly, let Ln denote a unit lower triangular matrix with Ñ(0, 1) subdiagonal
entries. Then

n
√
κn → 1.347395784 . . . almost surely

as n→∞ (Theorem 7.4). Thus, unit triangular matrices with complex normal entries
tend to have slightly bigger condition numbers than unit triangular matrices with real
normal entries.

Our results are similar in spirit to results obtained by Silverstein for random
dense matrices [16]. Consider a matrix of dimension n× (yn), where y ∈ [0, 1], each of
whose n2y entries is an independent N(0, 1) variable. Denote its largest and smallest
singular values by σmax and σmin, respectively. It is shown in [16] that

σmax√
n
→ 1 +

√
y,

σmin√
n
→ 1−√y almost surely

as n→∞. The complex analogues of these results can be found in [4]. The technique
used in [16] is a beautiful combination of what is now known as the Golub–Kahan
bidiagonalization step in computing the SVD with the Gerschgorin circle theorem
and the Marčenko–Pastur semicircle law. The techniques used in this paper are more
direct.

The exponential growth of κn = ‖Ln‖2‖L−1
n ‖2 is due to the second factor. We

outline the approach for determining the rate of exponential growth of κn by assuming
Ln triangular with N(0, 1) entries. In section 2, we derive the joint probability density
function (JPDF) for the entries in any column of L−1

n (Proposition 2.1). If Tk is the 2-
norm of column n−k+1 of L−1

n , i.e., the column with k nonzero entries, both positive
and negative moments of Tk are explicitly derived in section 3 (Lemma 3.2). These
moments allow us to deduce that n

√
κn converges to 2 almost surely (Theorem 4.3).

A similar approach is used to determine the limit of n
√
κn for Ln unit triangular with

N(0, σ2) entries, triangular with Ñ(0, σ2) entries, and unit triangular with Ñ(0, σ2)
entries (Theorems 5.3, 7.3, and 7.4, respectively).

The same approach is used more generally to determine the limit of n
√
κn as

n → ∞ for Ln with entries drawn from any symmetric, strictly stable distribution
(Theorems 8.4 and 8.6). These theorems are specialized to the Cauchy distribution,
which is symmetric and strictly stable, in Theorems 8.5 and 8.7.
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(a) (b)

FIG. 2.1. Entries of L−1
n on the same solid line in (a) have the same PDF. Sets of entries of

L−1
n in the boxes in (b) have the same JPDF.

2. Inverse of a random triangular matrix. Consider the matrix

Ln =


α11
−α21 α22

...
...

. . .
−αn1 −αn2 . . . αnn

 ,

where each αij is an independent N(0, 1) variable. Then L−1
n is also lower triangular.

Denote the first k entries in the first column of L−1
n by t1, . . . , tk. The ti satisfy the

following relations:

t1 = 1/α11,

t2 = (α21t1)/α22,

t3 = (α31t1 + α32t2)/α33,

...
tk = (αk1t1 + · · ·+ αk,k−1tk−1)/αkk.(2.1)

This system of equations can be interpreted as a system of random recurrence rela-
tions. The first entry t1 is the reciprocal of an N(0, 1) variable. The kth entry tk
is obtained by summing the previous entries t1, . . . , tk−1 with independent N(0, 1)
variables as coefficients, and dividing that sum by an independent N(0, 1) variable.

Next, consider an arbitrary column of L−1
n and denote the first k entries of that

column from the diagonal downwards by t1, . . . , tk. The entries ti satisfy random
recurrence relations similar in form to (2.1), but the αij are a different block of
entries in Ln for different columns. For example, any diagonal entry of L−1

n is the
reciprocal of an N(0, 1) variable; in particular, the kth diagonal entry is 1/αkk.

These observations about triangular inversion can be represented pictorially.
Every entry of L−1

n at a fixed distance from the diagonal has the same PDF. We
may say that the matrix L−1

n , like Ln, is “statistically Toeplitz.” See Figure 2.1a.
Moreover, if we consider the first k entries of a column of L−1

n from the diagonal
downwards, those k entries will have the same JPDF irrespective of the column. See
Figure 2.1b. The different columns of L−1

n , however, are by no means independent.
The description of triangular inversion above and later arguments are stated in

terms of the columns of L−1
n . However, rows and columns are indistinguishable in this

problem; we could equally well have framed the analysis in terms of rows.
Denote the JPDF of ti, 1 ≤ i ≤ k, by fk = fk(t1, . . . , tk). In the next proposition,

a recursive formula for fk is derived. For simplicity, we introduce the further notation
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Tk =
√
t21 + · · ·+ t2k. Throughout this section, Ln is the random triangular matrix of

dimension n with N(0, 1) entries.
PROPOSITION 2.1. The JPDF fk = fk(t1, . . . , tk) satisfy the following recurrence:

f1 =
exp(−1/2t21)√

2πt21
,(2.2)

fk =
1
π

Tk−1

T 2
k

fk−1 for k > 1.(2.3)

Proof. The tk are defined by the random recurrence in (2.1).
The expression for f1 is easy to get. If x is an N(0, 1) variable, its PDF is

1√
2π

exp(−x2/2).

The change of variable x = 1/t1 gives (2.2).
To obtain the recursive expression (2.3) for fk, consider the variable τk obtained by

summing the variables t1, . . . , tk−1 as
∑k−1
i=1 αkiti, where αki are independent N(0, 1)

variables. For fixed values of ti, 1 ≤ i ≤ k− 1, the variable τk, being a sum of random
normal variables, is itself a random normal variable of mean 0 and variance T 2

k−1.
Therefore, the JPDF of τk and t1, . . . , tk−1 is given by

1√
2π

exp(−τ2
k/2T

2
k−1)

Tk−1
fk−1.

By (2.1), the variable tk can be obtained as τk/α, where α is an independent N(0, 1)
variable. The JPDF of α, τk, and t1, . . . , tk−1 is given by

1√
2π

exp(−α2/2)
1√
2π

exp(−τ2
k/2T

2
k−1)

Tk−1
fk−1.

Changing the variable τk to tk = τk/α and integrating out α, we obtain

fk =
1
π

Tk−1

T 2
k−1 + t2k

fk−1 =
1
π

Tk−1

T 2
k

fk−1,

i.e., fk is given by (2.3).
Note that the form of the recurrence for fk in Proposition 2.1 mirrors the random

recurrence (2.1) for obtaining tk from the previous entries t1, . . . , tk−1. In the following
corollary, an explicit expression for fk in terms of the ti is stated.

COROLLARY 2.2. For k > 1, the JPDF fk = fk(t1, . . . , tk) is given by

fk =
1

πk−1
√

2π
1

(t21 + · · ·+ t2k)
1√

t21 + · · ·+ t2k−1

· · · 1√
t21 + t22

exp(−1/2t21)
|t1|

.

3. Moments of Tk . In this section and the next, Ln continues to represent a
triangular matrix of dimension n with N(0, 1) entries. As we remarked earlier, the
exponential growth of κn = ‖Ln‖2‖L−1

n ‖2 is due to the second factor ‖L−1
n ‖2. Since

the 2-norm of column i+1 of L−1
n has the same distribution as Tn−i, we derive formulas

for various moments of Tk with the intention of understanding the exponential growth
of ‖L−1

n ‖2 with n.
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In the lemma below, we consider the expected value E(T ξk ) for both positive and
negative values of ξ. By our notation, T1 = |t1|. The notation dΩk = dtk . . . dt1 is
used to reduce clutter in the proof. As usual, Rk denotes the real Euclidean space of
dimension k.

The next lemma is stated as a recurrence to reflect the structure of its proof.
Lemma 3.2 contains the same information in a simpler form.

LEMMA 3.1. For any real ξ < 1, E(T ξk ) is given by the following recurrence:

E(T ξ1 ) =
1√
2π

∫ ∞
−∞

exp(−1/2x2)
|x|2−ξ dx,(3.1)

E(T ξk ) =
E(T ξk−1)

π

∫ ∞
−∞

dx

(1 + x2)1−ξ/2 for k > 1.(3.2)

For ξ ≥ 1 and k ≥ 1, E(T ξk ) is infinite.
Proof. To obtain (3.1), use T1 = |t1| and the PDF of t1 given by (2.2). It is easily

seen that the integral is convergent if and only if ξ < 1.
Next, assume k > 1. By definition,

E(T ξk ) =
∫
Rk
T ξk fkdΩk.

Using the recursive equation (2.3) for fk, and writing Tk in terms of tk and Tk−1, we
get

E(T ξk ) =
1
π

∫
Rk

Tk−1

T 2−ξ
k

fk−1dΩk

=
1
π

∫
Rk−1

∫ ∞
−∞

dtk
(t2k + T 2

k−1)1−ξ/2Tk−1fk−1dΩk−1.(3.3)

By the substitution tk = xTk−1, the inner integral with respect to dtk can be reduced
to

T ξ−1
k−1

∫ ∞
−∞

dx

(1 + x2)1−ξ/2 .

Inserting this in the multiple integral (3.3) gives the recursive equation (3.2) for E(T ξk ).
It is easily seen that the integral in (3.2) is convergent if and only if ξ < 1.

Define γξ by

γξ =
1
π

∫ +∞

−∞

dx

(1 + x2)1−ξ/2 .(3.4)

Beginning with the substitution x = tan θ in (3.4), it can be shown that γξ =
π−1B((1 − ξ)/2, 1/2), where B is the beta function. The relevant expression for
the beta function B(x, y) is (6.2.1) in [1]. Also, if x is chosen from the standard
Cauchy distribution, then γξ = E((1 + x2)ξ/2). We do not need γξ in terms of the
beta function, however; the integral expression (3.4) is more suitable for our purposes.
Lemma 3.1 can be restated in a more convenient form using γξ as follows.

LEMMA 3.2. For ξ < 1, E(T ξk ) = Cξγ
k
ξ for a finite positive constant Cξ. Also,

γ0 = 1, γξ < 1 for ξ < 0, and γξ > 1 for ξ > 0.



570 D. VISWANATH AND L. N. TREFETHEN

Proof. The expression for E(T ξk ) is a restatement of Lemma 3.1. By elementary
integration, γ0 = 1, and by the form of the integral in (3.4), γξ < 1 for ξ < 0 and
γξ > 1 for ξ > 0.

Lemma 3.2 implies that the positive moments of Tk grow exponentially with k
while the negative moments decrease exponentially with k.

Obtaining bounds for P (Tk > Mk) and P (Tk < mk) is now a simple matter.
LEMMA 3.3. For k ≥ 1, ξ > 0, and m > 0,

P (Tk < mk) < C−ξ(m/γ
−1/ξ
−ξ )ξk.

Proof. Since ξ > 0, P (Tk < mk) = P (T−ξk > m−ξk). Use Lemma 3.2 with ξ = −ξ
to obtain an expression for E(T−ξk ) and apply Markov’s inequality [2].

LEMMA 3.4. For k ≥ 1, 0 < ξ < 1, and M > 0,

P (Tk > Mk) < Cξ(γ
1/ξ
ξ /M)ξk.

Proof. As in Lemma 3.3, ξ > 0 implies that P (Tk > Mk) = P (T ξk > Mξk). Again,
the proof can be completed by obtaining an expression for E(T ξk ) using Lemma 3.2
followed by an application of Markov’s inequality.

4. Exponential growth of κn . We are now prepared to derive the first main
result of the paper, namely, n

√
κn → 2 almost surely as n→∞ for triangular matrices

Ln with N(0, 1) entries. In what follows, a.s. means almost surely as n → ∞. The
definition of almost sure convergence for a sequence of random variables can be found
in most textbooks on probability; for example, see [2]. Roughly, it means that the
convergence holds for a set of sequences of measure 1.

LEMMA 4.1. ‖Ln‖1/n2 → 1 almost surely as n→∞.
Proof. The proof is easy. We provide only an outline. The Frobenius norm of Ln,

‖Ln‖2F , is a sum of n(n+ 1)/2 independent χ2 variables of mean 1. By an argument
exactly analogous to the proof of the strong law of large numbers with finite fourth
moment assumption [2, p. 80],

‖Ln‖2F
n(n+ 1)/2

→ 1 a.s.

The proof can be completed using the inequalities n−1/2‖Ln‖F ≤ ‖Ln‖2 ≤ ‖Ln‖F .
Note that the suggested proof relies on the existence of the fourth moment of the χ2

variables.
The proof of Lemma 4.2 uses the first Borel–Cantelli lemma in a way that is

typical of several proofs in probability. We use lim infn→∞ xn and lim supn→∞ xn for
limn→∞ infk≥n xk and limn→∞ supk≥n xk in the following lemma and later.

LEMMA 4.2. As n→∞, for any 0 < ξ < 1,

γ
−1/ξ
−ξ ≤ lim inf

n→∞
n
√
κn ≤ lim sup

n→∞
n
√
κn ≤ γ1/ξ

ξ almost surely.

Proof. By Lemma 4.1, it suffices to show that

γ
−1/ξ
−ξ ≤ lim inf

n→∞
n

√
‖L−1

n ‖2 ≤ lim sup
n→∞

n

√
‖L−1

n ‖2 ≤ γ1/ξ
ξ a.s.

We consider the lower bound first. The 2-norm of the first column of L−1
n , which has

the same distribution as Tn, is less than or equal to ‖L−1
n ‖2. Therefore, for 0 < ε < 1,

P

(
n

√
‖L−1

n ‖2 < γ
−1/ξ
−ξ − ε

)
≤ P (Tn < (γ−1/ξ

−ξ − ε)n).
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Using Lemma 3.3 with k = n and m = γ
−1/ξ
−ξ − ε, we get

P

(
n

√
‖L−1

n ‖2 < γ
−1/ξ
−ξ − ε

)
< C−ξ

(
γ
−1/ξ
−ξ − ε
γ
−1/ξ
−ξ

)ξn
= C−ξp

ξn
ε ,

where pε = γ
1/ξ
−ξ (γ−1/ξ

−ξ − ε) < 1. Since |pε| < 1,
∑∞
n=1 p

ξn
ε is finite. The first Borel–

Cantelli lemma [2] can be applied to obtain

P

(
n

√
‖L−1

n ‖2 < γ
−1/ξ
−ξ − ε infinitely often as n→∞

)
= 0.

Taking the union of the sets in the above equation over all rational ε in (0, 1) and
considering the complement of that union, we obtain

P

(
lim inf
n→∞

n

√
‖L−1

n ‖2 ≥ γ−1/ξ
−ξ as n→∞

)
= 1.

In other words, γ−1/ξ
−ξ ≤ lim infn→∞ n

√
‖L−1

n ‖2 a.s.
The upper bound can be established similarly. At least one of the columns of L−1

n

must have 2-norm greater than or equal to n−1/2‖L−1
n ‖2. Since the 2-norm of column

k + 1 has the same distribution as Tn−k,

P

(
n

√
‖L−1

n ‖2 > γ
1/ξ
ξ + ε

)
≤

n∑
k=1

P (Tk > n−1/2(γ1/ξ
ξ + ε)n).

Bounding each term in the summation using Lemma 3.4 gives

P

(
n

√
‖L−1

n ‖2 > γ
1/ξ
ξ + ε

)
< Cξn

ξ/2
n∑
k=1

(
γkξ

(γ1/ξ
ξ + ε)ξn

)
.

Since γξ > 1 by Lemma 3.2, the largest term in the summand occurs when k = n.
Therefore,

P

(
n

√
‖L−1

n ‖2 > γ
1/ξ
ξ + ε

)
< Cξn

1+ξ/2

(
γ

1/ξ
ξ

γ
1/ξ
ξ + ε

)ξn
.

From this point, the proof can be completed in the same manner as the proof of the
lower bound.

THEOREM 4.3. For random triangular matrices with N(0, 1) entries, as n→∞,

n
√
κn → 2 almost surely.

Proof. By an inequality sometimes called Lyapunov’s [13, p. 144], [2],

γ
1/β
β < γ1/α

α

for any real β < α. Thus, the bounding intervals [γ−1/ξ
−ξ , γ

1/ξ
ξ ] in Lemma 4.2 shrink

as ξ decreases from 1 to 0. A classical theorem [13, p. 139] says that these intervals
actually shrink to the following point:
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lim
ξ→0

γ
1/ξ
ξ = lim

ξ→0

(
1
π

∫ ∞
−∞

1
(1 + x2)1−ξ/2 dx

)1/ξ

= exp
(

1
2π

∫ ∞
−∞

log(1 + x2)
1 + x2 dx

)
.

The exact value of the limit can be evaluated to 2 using the substitution x = tan θ
followed by complex integration [3, p. 121]. Thus, n

√
κn → 2 a.s.

Theorem 4.3 holds in exactly the same form if the nonzero entries of Ln are inde-
pendent N(0, σ2) variables rather than N(0, 1) variables, since the condition number
is invariant under scaling.

Our approach to Theorem 4.3 began by showing that E(T ξk ) = Cξγ
k
ξ for both

positive and negative ξ. Once these expressions for the moments of Tk were obtained,
our arguments did not depend on how the recurrence was computed. The following
note summarizes the asymptotic information about a recurrence that can be obtained
from a knowledge of its moments.

Note. Let t1, t2, . . . be a sequence of random variables. If E(|tn|ξ) grows exponen-
tially with n at the rate νnξ for ξ > 0, then lim supn→∞

n
√
|tn| ≤ ν

1/ξ
ξ almost surely.

Similarly, if E(|tn|ξ) decreases exponentially with n at the rate νnξ as n → ∞ for

ξ < 0, then ν
1/ξ
ξ ≤ lim infn→∞ n

√
|tn| almost surely. Thus, knowledge of any positive

moment of tn yields an upper bound on n
√
|tn| as n → ∞, while knowledge of any

negative moment yields a lower bound.

5. Unit triangular matrices. So far, we have considered triangular matrices
whose nonzero entries are independent, real N(0, 1) variables. In this section and
in section 7, we establish the exponential growth of the condition number for other
kinds of random triangular matrices with normally distributed entries. The key steps
in the sequence of lemmas leading to the analogues of Theorem 4.3 are stated but not
proved. The same techniques used in sections 2, 3, and 4 work here, too.

Let Ln be a unit lower triangular matrix of dimension n with N(0, σ2) subdiagonal
entries. Let s1, . . . , sk be the first k entries from the diagonal downwards of any column
of L−1

n . The entries si satisfy the recurrence

s1 = 1,
s2 = α21s1,

s3 = α31s1 + α32s2,

...
sk = αk1s1 + · · ·+ αk,k−1sk−1,(5.1)

where αij , i > j, are N(0, σ2) variables. The notation Sk =
√
s2

1 + s2
2 + · · ·+ s2

k is
used below.

PROPOSITION 5.1. The JPDF of s1, . . . , sk, gk(s1, . . . , sk), is given by the recur-
rence

g2 =
1√
2πσ

exp(−s2
2/2σ

2),

gk =
1√
2πσ

exp(−s2
k/2σ

2S2
k−1)

Sk−1
gk−1 for k > 2,

and the fact that s1 = 1 identically.
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LEMMA 5.2. For any real ξ, E(Sξk) = λk−1
ξ , where

λξ =
1√
2πσ

∫ ∞
−∞

(1 + x2)ξ/2 exp(−x2/2σ2)dx.

The note at the end of section 4 provides part of the link from Lemma 5.2 to the
following theorem about κn.

THEOREM 5.3. For random unit triangular matrices with N(0, σ2) entries, as
n→∞,

n
√
κn → exp

(
1

2
√

2πσ

∫ ∞
−∞

log(1 + x2)e−x
2/2σ2

dx

)
almost surely.

If this limit is denoted by C(σ), then

C(σ)− 1 ∼ σ2/2 as σ → 0,
C(σ) ∼ Kσ as σ →∞,

where K =
√

exp(−γ)/2 = 0.5298 . . . , with γ being the Euler constant.
Proof. The constant K is given by

K = exp

(√
2
π

∫ ∞
0

log x exp(−x2/2)dx

)
.

To evaluate K, we used integral 4.333 of [8].
In contrast to the situation in Theorem 4.3, the constant that n

√
κn converges to

in Theorem 5.3 depends on σ. This is because changing σ scales only the subdiagonal
entries of the unit triangular matrix Ln while leaving the diagonal entries fixed at
one. For σ = 1, the case discussed in the Introduction, numerical integration shows
the constant to be 1.305683410 . . . .

6. A comment on the stability of Gaussian elimination. The conditioning
of random unit triangular matrices has a connection with the phenomenon of numer-
ical stability of Gaussian elimination. We pause briefly to explain this connection.

For decades, the standard algorithm for solving general systems of linear equa-
tions Ax = b has been Gaussian elimination (with “partial” or row pivoting). This
algorithm generates an “LU factorization” PA = LU , where P is a permutation ma-
trix, L is unit lower triangular with subdiagonal entries less than or equal to one in
absolute value, and U is upper triangular.

In the mid-1940s it was predicted by Hotelling [14] and Goldstine and von Neu-
mann [9] that rounding errors must accumulate exponentially in elimination algo-
rithms of this kind, causing instability for all but small dimensions. In the 1950s,
Wilkinson developed a beautiful theory based on backward error analysis that, while
it explained a great deal about Gaussian elimination, confirmed that for certain ma-
trices, exponential instability does indeed occur [19]. He showed that amplification
of rounding errors by factors on the order of ‖L−1‖ may take place, and that for
certain matrices, ‖L−1‖ is of order 2n. Thus, for certain matrices, rounding errors are
amplified by O(2n), causing a catastrophic loss of n bits of precision.

Despite these facts, the experience of 50 years of computing has established that
from a practical point of view, Hotelling and von Neumann were wrong: Gaussian
elimination is overwhelmingly stable. In fact, it is not clear that a single matrix
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problem has ever led to an instability in this algorithm, except for the ones produced
by numerical analysts with that end in mind, although Foster [7] and Wright [20]
have devised problems leading to instability that plausibly “might have arisen” in
applications. The reason appears to be statistical: the matrices A for which ‖L−1‖
is large occupy an exponentially small proportion of the space of all matrices, so
small that such matrices “never” arise in practice. Experimental evidence of this
phenomenon is presented in [18].

This raises the question, why are matrices A for which ‖L−1‖ is large so rare? It
is here that the behavior of random unit triangular matrices is relevant. A natural
hypothesis would be that the matrices L generated by Gaussian elimination are, to a
reasonable approximation, random unit triangular matrices with off-diagonal entries
of a size dependent on the dimension n. If such matrices could be shown to be
almost always well conditioned, then the stability of Gaussian elimination would be
explained.

We have just shown, however, that unit triangular matrices are exponentially ill
conditioned. Thus, this attempted explanation of the stability of Gaussian elimination
fails, and indeed, the same argument suggests that Gaussian elimination should be
unstable in practice as well as in the worst case. The resolution of this apparent
paradox is that the matrices L produced by Gaussian elimination are far from random.
The signs of the entries of these matrices are correlated in special ways that have the
effect of keeping ‖L−1‖ almost always very small. For example, it is reported in [18]
that a certain random matrix A with n = 256 led to ‖L−1‖ = 33.2, whereas if L̃ was
taken to be the same matrix but with the signs of its subdiagonal entries randomized,
the result became ‖L̃−1‖ = 2.7 × 108. In fact, even unpivoted Gaussian elimination
does not produce triangular matrices as severely ill conditioned as random triangular
matrices [22].

From a comparison of Theorem 5.3 with half a century of the history of Gaussian
elimination, then one may conclude that unit triangular factors of random dense
matrices are very different from random unit triangular matrices. An explanation of
this difference is offered in [17] along the following lines. If A is random, then its
successive column spaces are randomly oriented in n-space in the sense that the first
column of A is oriented in a random direction, the span of the first two columns is a
random two-dimensional space, and so on. Since the span of the first k columns of L
is the same as the span of the first k columns of PA, where P is the row permutation
matrix produced by partial pivoting, the same holds approximately for the successive
column spaces of L. That condition, in turn, implies that large values ‖L−1‖ can arise
only exponentially rarely.

7. Complex matrices. We now consider matrices with complex entries. Let Ln
be a lower triangular matrix with Ñ(0, 1) entries. The complex distribution Ñ(0, 1)
was defined in the Introduction. Let t1, . . . , tk denote the first k entries from the
diagonal downwards of any column of L−1

n . The quantities tk satisfy (2.1), but the
αij are now independent Ñ(0, 1) variables. Let rk = |tk|2, and denote r1 + · · · + rk
by Rk.

PROPOSITION 7.1. The JPDF of r1, . . . , rk, hk(r1, . . . , rk), is given by the recur-
rence

h1 =
exp(−1/r1)

r2
1

,(7.1)
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hk =
Rk−1

R2
k

hk−1 for k > 1,(7.2)

for ri ≥ 0, 1 ≤ i ≤ k.
Proof. We sketch only the details that do not arise in the proof of Proposition

2.1. If x and y are independent N(0, σ2) variables, x =
√
r cos(θ) and y =

√
r sin(θ),

then r and θ are independent. Moreover, the distribution of r is exponential with the
PDF

(1/2σ2) exp(−r/2σ2)(7.3)

for r > 0.
Consider the sum τk = αk1t1 + · · · + αk,k−1tk−1 with αki taken as independent

Ñ(0, 1) variables. For fixed t1, . . . , tk−1, Re(τk) and Im(τk) are independent. To see
their independence, we write out the equations for Re(τk) and Im(τk) as follows:

Re(τk) =
k−1∑
i=1

Re(αki)Re(ti)− Im(αki)Im(ti),

Im(τk) =
k−1∑
i=1

Re(αki)Im(ti) + Im(αki)Re(ti).

The linear combinations of Re(αki) and Im(αki) in these two equations can be realized
by taking inner products with the two vectors

v = [Re(t1), . . . ,Re(tk−1),−Im(t1), . . . ,−Im(tk−1)],

w = [Im(t1), . . . , Im(tk−1),+Re(t1), . . . ,+Re(tk−1)].

The independence of Re(τk) and Im(τk) is a consequence of the orthogonality of v and
w, i.e., (v, w) = vw′ = 0, and the invariance of the JPDF of independent, identically
distributed normal variables under orthogonal transformation [15].

Thus, for fixed t1, . . . , tk−1, the real and imaginary parts of τk are independent
normal variables of mean 0 and variance Rk−1/2. By (7.3), the PDFs of x = |τk|2
and y = |αkk|2 are given by

1
Rk−1

exp(−x/Rk−1), exp(−y)

for positive x, y. The expression (7.2) for hk can now be obtained using rk =
|τk|2/|αkk|2.

LEMMA 7.2. For any ξ < 1, E(Rξk) = Cµk−1
ξ , where

C =
∫ ∞

0

exp(−1/r1)

r2−ξ
1

dr1, µξ =
∫ ∞

0

dx

(1 + x)2−ξ .

The constant µξ in Lemma 7.2 can be reduced to (1−ξ)−1 for ξ < 1. However, as
with γξ in section 3, the integral expression for µξ is more suitable for our purposes.
As before, the note at the end of section 4 is an essential part of the link from the
previous lemma to the following theorem about κn.
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THEOREM 7.3. For random triangular matrices with complex Ñ(0, 1) entries, as
n→∞,

n
√
κn → exp

(
1
2

∫ ∞
0

log(1 + x)
(1 + x)2 dx

)
= e1/2 almost surely.

Theorem 7.3 holds unchanged if the entries are Ñ(0, σ2) variables. As with The-
orem 4.3, this is because the condition number is invariant under scaling.

Now, let Ln be a unit lower triangular matrix of dimension n with Ñ(0, σ2)
subdiagonal entries. We state only the final theorem about κn.

THEOREM 7.4. For random unit triangular matrices with complex Ñ(0, σ2) en-
tries, as n→∞,

n
√
κn → exp

(
1
4

∫ ∞
0

log(1 + σ2x/2)e−x/2dx
)

= exp(− exp(σ−2)Ei(−σ−2)/2) almost surely,

where Ei is the exponential integral. If this limit is denoted by C(σ), then

C(σ)− 1 ∼ σ2/2 as σ → 0,
C(σ) ∼ Kσ as σ →∞,

where K = exp(−γ/2) = 0.7493 . . . , with γ being the Euler constant.
Proof. To obtain K, we evaluated

K = exp
(

1
4

∫ ∞
0

log(x/2) exp(−x/2)dx
)

using the Laplace transform of log(x) given by integral 4.331.1 of [8]. The explicit
formula involving Ei(σ−2) was obtained using integral 4.337.2 of [8].

For σ2 = 1, n
√
κn converges to 1.347395784 . . . .

8. Matrices with entries from stable distributions. The techniques used
to deduce Theorem 4.3 require that we first derive the joint density function of the tk,
defined by recurrence (2.1), as was done in Proposition 2.1. That proposition made
use of the fact that when the αki are independent and normally distributed, and the
ti are fixed, the sum

k−1∑
i=1

αkiti

is also normally distributed. This property of the normal distribution holds for any
stable distribution.

A distribution is said to be stable if for Xi chosen independently from that dis-
tribution,

n∑
i=1

Xi

has the same distribution as cnX + dn, where X has the same distribution as Xi and
cn > 0 and dn are constants [6, p. 170]. If dn = 0, the distribution is said to be
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strictly stable. As usual, the distribution is symmetric if X has the same distribution
as −X. A symmetric, strictly stable distribution has exponent a if cn = n1/a. A
standard result of probability theory says that any stable distribution has an exponent
0 < a ≤ 2. The normal distribution is stable with exponent a = 2 [6].

The techniques used for triangular matrices with normal entries work more gen-
erally when the entries are drawn from a symmetric, strictly stable distribution. Let
Ln be a unit lower triangular matrix with entries chosen from a symmetric, strictly
stable distribution. Denote the PDF of that stable distribution by φ(x). The recur-
rence for the entries si of the inverse L−1

n is again given by (5.1), but αki, k > i, are
now independent random variables with the density function φ(x).

Our program for deriving the constants that n
√
κn converge to as n → ∞ began

with Lemma 4.1 in all the previous examples. One of referees pointed out to us that a
new proof is needed for that lemma in the present context since a stable distribution
of index a < 2 does not have the ath or higher moments.

LEMMA 8.1. For a < 2, ‖Ln‖1/n2 → 1 almost surely as n→∞.
Proof. Define ‖Ln‖α = (

∑
i,j |lij |α)1/α for some 0 < α < a/4. Then the inequality

n(1/2−2/α)‖Ln‖α ≤ ‖Ln‖2 ≤ n‖Ln‖α
and the existence of the fourth moment of |lij |α make possible a proof analogous to
what was outlined for Lemma 4.1.

The proposition, the lemma, and the theorem below are analogues of Proposi-
tion 5.1, Lemma 5.2, and Theorem 5.3, respectively. If the exponent of the stable
distribution is a, denote (|s1|a + · · ·+ |sk|a)1/a by Sk.

PROPOSITION 8.2. If φ(x) is the density function of a symmetric, strictly stable
distribution with exponent a, the JPDF of s1, . . . , sk, gk(s1, . . . , sk), is given by the
recurrence

g2 = φ(s2),

gk =
φ(sk/Sk−1)

Sk−1
gk−1 for k > 2,

and the fact that s1 = 1 identically.
Proof. The proof is very similar to the proof of Proposition 2.1. We note that

if αki, k > i, are independent random variables with the PDF φ(x), and the si are
fixed, then the sum

αk1s1 + · · ·+ αk,k−1sk−1

has the PDF φ(x/Sk−1)/Sk−1 [6, p. 171].
LEMMA 8.3. For any real ξ, E(Sξk) = λk−1

ξ , where

λξ =
∫ +∞

−∞
(1 + |x|a)ξ/aφ(x)dx,

with λξ =∞ for ξ ≥ a.
THEOREM 8.4. For random unit triangular matrices with entries from a symmet-

ric, strictly stable distribution with density function φ(x) and exponent a, as n→∞,

n
√
κn → exp

(
1
a

∫ ∞
−∞

log(1 + |x|a)φ(x)dx
)

almost surely.
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Theorem 5.3 is a special case of Theorem 8.4 when φ(x) is the density function
for the symmetric, strictly stable distribution N(0, σ2). Another notable symmetric,
strictly stable distribution is the Cauchy distribution with the density function

φ(x) =
1
π

1
1 + x2 .

The exponent a for the Cauchy distribution is 1 [6]. Using Theorem 8.4 we obtain
the following.

THEOREM 8.5. For random unit triangular matrices with entries from the stan-
dard Cauchy distribution, as n→∞,

n
√
κn → exp

(
1
π

∫ +∞

−∞

log(1 + |x|)
1 + x2 dx

)
almost surely.

Numerical integration shows the constant to be 2.533737279 . . . .
A similar generalization can be made for triangular matrices without a unit diag-

onal. However, the analogue of Theorem 8.4 for such matrices involves not φ(x) but
the density function ψ(x) of the quotient x = y/z obtained by taking y, z as indepen-
dent variables with the PDF φ. The distribution ψ can be difficult to compute and
work with. We state only the final theorem about κn for triangular matrices with
entries drawn from a symmetric strictly stable distribution.

THEOREM 8.6. For random triangular matrices with entries from a symmetric,
strictly stable distribution with density function φ(x) and exponent a, as n→∞,

n
√
κn → exp

(
1
a

∫ ∞
−∞

log(1 + |x|a)ψ(x)dx
)

almost surely,

where ψ(x) is the density function of the quotient of two independent variables with
the density function φ(x).

Theorem 4.3 is a special case of Theorem 8.6 when φ(x) is the density function of
the distribution N(0, σ2). The ψ(x) corresponding to N(0, σ2) is the standard Cauchy
distribution. To apply Theorem 8.6 for the Cauchy distribution, we note that

ψ(x) =
2
π2

log |x|
x2 − 1

is the density function of the quotient if the numerator and the denominator are
independent Cauchy variables [11]. Therefore, Theorem 8.6 implies the following.

THEOREM 8.7. For random triangular matrices with entries from the standard
Cauchy distribution, as n→∞,

n
√
κn → exp

(
2
π2

∫ ∞
−∞

log(1 + |x|) log |x|
x2 − 1

dx

)
almost surely.

The constant of convergence in Theorem 8.7 is 3.063094192 . . . .

9. Summary. Below is a summary of the exponential growth factors limn→∞ n
√
κn

that we have established for triangular matrices with normal entries:
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Real triangular 2 Theorem 4.3

Real unit triangu-
lar, σ2 = 1 1.305683410 . . . Theorem 5.3

Complex triangular e1/2 = 1.647 . . . Theorem 7.3

Complex unit trian-
gular, σ2 = 1 1.347395784 . . . Theorem 7.4

The theorems about unit triangular matrices with normally distributed, real or com-
plex entries apply for any variance σ2, not just σ2 = 1. Constants of convergence
for any symmetric, strictly stable distribution were derived in Theorems 8.4 and 8.6.
Those two theorems were specialized to the Cauchy distribution in Theorems 8.5 and
8.7.

Similar results seem to hold more generally, i.e., even when the entries of the
random triangular matrix are not from a stable distribution. Moreover, the complete
knowledge of moments achieved in Lemma 3.2 and its analogues might be enough to
prove stronger limit theorems than Theorem 4.3 and its analogues. We will present
limit theorems and results about other kinds of random triangular matrices in a later
publication. We will also discuss the connection between random recurrences and
products of random matrices, and the pseudospectra of infinite random triangular
matrices.

For the random recurrences we have considered here, every new term is a random
sum of all the previous terms in the sequence. The exponential increase of successive
terms with probability 1 holds even for some random recurrences that generate a new
term as a random sum of a fixed number of previous terms. For example, if we define
random Fibonacci sequences by t1 = t2 = 1, and for n > 2, tn = ±tn−1 ± tn−2,
where each ± sign is independent and either + or − with probability 1/2, then
n
√
|tn| → 1.13198824 . . . almost surely [21]. Thus, the condition number increases

exponentially even for some random triangular matrices that are banded.
We close with two figures that illustrate the first main result of this paper, namely,

for random triangular matrices withN(0, 1) entries, n
√
κn → 2 almost surely as n→∞

(Theorem 4.3). Figure 9.1 plots the results of a single run of the random recurrence
(2.1) to 100, 000 steps, confirming the constant 2 to about two digits. The expense
involved in implementing the full recurrence (2.1) for so many steps would be pro-
hibitive. However, since tk grows at the rate 2k, we need include only a fixed number of
terms in (2.1) to compute tk to machine precision. For the figure, we used 200 terms,
although half as many would have been sufficient. Careful scaling was necessary to
avoid overflow while computing this figure.

Figure 9.2 plots the condition number of a single random triangular matrix for
each dimension from 1 to 200. The exponential trend at the rate 2n is clear, but as
in Figure 1.1, the convergence as n→∞ is slow.
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FIG. 9.1. Illustration of Theorem 4.3. After 100, 000 steps of the random recurrence (2.1),
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|tn| has settled to within 1% of its limiting value 2. The implementation is explained in the text.
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FIG. 9.2. Another illustration of Theorem 4.3. Each cross is obtained by computing the condi-
tion number κn for one random triangular matrix of dimension n with N(0, 1) entries. The solid
line represents 2n.
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Abstract. This paper classifies the ranks and inertias of hermitian completion for the partially
specified 3 × 3 block band hermitian matrix (also known as a “bordered matrix”)

P =

(
A B ?
B∗ C D
? D∗ E

)
.

The full set of completion inertias is described in terms of seven linear inequalities involving inertias
and ranks of specified submatrices. The minimal completion rank for P is computed.

We study the completion inertias of partially specified hermitian block band matrices, using a
block generalization of the Dym–Gohberg algorithm. At each inductive step, we use our classification
of the possible inertias for hermitian completions of bordered matrices. We show that when all the
maximal specified submatrices are invertible, any inertia consistent with Poincaré’s inequalities is
obtainable. These results generalize the nonblock band results of Dancis [SIAM J. Matrix Anal.
Appl., 14 (1993), pp. 813–829].

All our results remain valid for real symmetric completions.

Key words. matrices, hermitian, rank, inertia, completion, minimal rank
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PII. S0895479895296471

1. Introduction. We address the following completion problem: given a par-
tially specified hermitian matrix P, characterize all the possible inertias In H =
(p, n, d) of the various hermitian completions H of P. We call this set the “inertial
set” or “inertial polygon” of P .

The issue of classifying positive definite and semidefinite completions of partial
matrices is relevant to various applications involving interpolation and has been stud-
ied thoroughly, e.g., [AHMR], [D5], [GJSW]. Invertible completions have been studied
in [DG] and [EGL2], for band patterns, in [L] for general patterns, and are associated
with maximum entropy and statistics. For other results concerning ranks and general
inertias, see [D1], [D2], [D3], [D4], [D5], [D6], [EL], [G], [H], [JR1], [CG3], [BJL],
[CG1], [CG2], [D7], [HO], and [I].

Following some preliminary material (sections 2–4), we present in sections 5 and
6 several contributions to the inertia classification problem.

In (H) = (π(H), ν(H), δ(H)) will denote the inertia, that is, the number of
positive, negative, and zero eigenvalues of a hermitian matrix H. They are also
called the positivity, negativity, and nullity of H.

The main result is the following.
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Fig. 1.1. Graph of the inertial polygon for the bordered matrix.

Theorem 1.1. Given the block “bordered” matrix

P (Z) = In


 A B Z

B∗ C D
Z∗ D∗ E


 ,

where A, B, C, and E are hermitian (real or complex) matrices of sizes α×α, β×β,
and γ × γ, respectively, and B and D are matrices of sizes α × β and β × γ,
respectively, set

(π, ν, δ) = In

(
A B
B∗ C

)
and (π′, ν′, δ′) = In

(
C D
D∗ E

)
,

r = rank(B∗ C D),

∆′ = r − rank(B∗ C) and ∆′′ = r − rank(C D),

p0 = max{π + ∆′, π′ + ∆′′} and n0 = max{ν + ∆′, ν′ + ∆′′}.

For given integers n and p, there exist an α × γ (real or complex, respectively)
matrix Z such that

In P (Z) = (p, n, α + β + γ − n− p)

if and only if

p0 ≤ p ≤ min{α + π′, γ + π, },(1.1)

n0 ≤ n ≤ min{α + ν′, γ + ν},(1.2)
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r − ν − ν′ ≤ p− n ≤ π + π′ − r,(1.3)

p + n ≤ α + γ + r.(1.4)

The block partition is not required to be uniform; rectangular (nonsquare) blocks
are permitted. For this partial matrix P (Z), Theorem 1.1 shows that the inertial set
is a (possibly degenerate) convex seven-sided lattice polygon as depicted in Fig. 1.1.

The proof of Theorem 1.1 is presented in section 5, along with a variety of corol-
laries including a small application to the algebraic matrix Riccati equation.

Cain and Sa established the 2 × 2 case (i.e., β = 0) in [CS]. The result was
generalized to an arbitrary number of diagonal blocks by Cain in [C], with further
results by Dancis in [D1]. The 2× 2 case with one given diagonal block was proven
as Theorem 1 of [S] and as Theorem 1.2 of [D1]. These cases are reviewed in detail
in section 4, and are later used as milestones in computing the inertial polygon of
Theorem 1.1.

The possible inertias for a bordered matrix missing a single (scalar) entry were
cataloged by the second author in [D6], mostly using his extended Poincaré’s inequal-
ities (3.3). In [JR] the lower bounds in (5.5) and (5.6) were determined for the case
when the given principal blocks are invertible (i.e., α+β = π+ν and β+γ = π′+ν′).
Their result extends to the case of “chordal patterns.”

In computing the inertial set for Theorem 1.1, we combine four simple elements:
(i) Schur complements, (ii) Poincaré and Extended Poincaré Inequalities (3.3) as
necessary conditions on the inertia, (iii) the technique of “restricted congruence”
(presented in section 2.4), including a new formula (2.7) for simplifying a partial
hermitian matrix, and (iv) elimination of variables in systems of linear inequalities
(see sections 2–3 for details). These techniques enable us to reduce Theorem 1.1 to a
combination of the simpler cases presented in section 4. These four elements of the
proof, without (2.7), are commonly used in the matrix literature, and in particular in
the completion literature cited above.

Staircase hermitian matrices are the mild generalization of block band matrices
described as generalized block band matrices in the appendix of [JR2]; they look like
a double staircase which is symmetric about and includes the main diagonal.

A staircase (or generalized block band) matrix with s steps is a partial hermitian
n × n matrix, R with precisely s + 1 maximal specified hermitian submatrices,
{R1 · · · Rs+1}, which are defined by

Ri =

(
aji,ji · · · aji,ki

· · · · ·
aki,ji · · · aki,ki

)
,

where j1 = 1, ji < ki, ks+1 = n , and ji < ji+1 ≤ ki + 1 ≤ ki+1 + 1. The inertia
of each of the Ri’s is denoted by In Ri = (πi, νi, δi).

Staircase matrices allow the nondiagonal blocks to be nonsquare rectangles. Note
that R1 need not overlap R3 as would be required in a block band matrix. In fact,
R1 need not even overlap R2, but the main diagonal must be contained in the union
of the Ri’s. Also, the definition includes block diagonal matrices.

The next theorem shows that a staircase matrix, with all maximal submatri-
ces being invertible, has hermitian completions with all the inertias consistent with
Poincare’s inequalities.
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Theorem 1.2 (an inertial triangle). Given an s-step hermitian staircase m×m
matrix R, suppose that each of the maximal submatrices R1, R2, . . . , Rs of R is
invertible. Then the inertial polygon of R is the triangle

max{πi} ≤ p, max{νi} ≤ n, p + n ≤ m.

The proof of Theorem 1.2 is presented in section 6, along with several theorems
about the possible inertias of hermitian completions of staircase matrices. We will
employ the method of Dym and Gohberg [DG], which decomposes the completion
process into a succession of simple steps, each of which is a Theorem 1.1 step.

These results generalize the (scalar) band hermitian completion results of the
second author in [D6]. A related result of Johnson and Rodman is restated as Lemma
5.4 herein.

We state our results for complex hermitian matrices, but they are all equally valid
in the real symmetric case.

2. Preliminaries.
2.1. Notation. We shall denote by p, n and p, n the minimal and maximal,

respectively, possible values of the positivity and the negativity of the completions of
a given partially specified matrix.

Similarly, r and r will denote the minimal and maximal possible values for
the rank of completion matrices of a given partially specified matrix. We have the
obvious inequality r ≤ p + n, which is generally strict. The determination of the
maximal rank r for arbitrary (including nonband) hermitian completion problems
is done in [CD]. In fact, it is shown there that the maximal completion rank does not
increase if the assumption that the completion is hermitian is dropped; consequently,
this rank can be computed explicitly using a result of [CJRW].

The inequality r ≥ p + n is similarly obvious; however, it becomes an equality
(i.e., r = p+ n) in many cases, including that of Theorem 1.1 (see Corollary 5.1) and
certain block band matrices (see Theorem 6.2).

J(p, n, d) will denote the square matrix Ip ⊕ −In ⊕ 0d of inertia (p, n, d) .
Sometimes we shall use the triple (π, ν, δ) to denote the inertia of a given (maximal)
specified submatrix and (p, n, d) to denote the inertia of a hermitian completion of
a given partial matrix. Congruence of matrices is denoted by ∼=.

If a square matrix X is written in block form, say X = ( Xij , i, j = 1, . . . , k )
and Xij is of size ai×aj , we shall describe X as having block sizes (a1, . . . , ak).

2.2. Schur complements. Let H = (A B
B∗ C ) If A is invertible then the Schur

complement of A is

C× = C −B∗A−1B.(2.1)

Haynesworth [H] has shown that H is congruent to A⊕ C×. In particular,

In

(
A B
B∗ C

)
= In(A) + In(C×).(2.2)

More generally, if H is a k × k block matrix, and T is a subset of {1, . . . , k},
let A be the principal submatrix whose block indices are in T. We can move A
to the left upper corner by a permutation of the coordinates, and proceed as before,
provided A is invertible. This procedure will be referred to as complementation with
respect to coordinates T . The block division will always be clear from the context.
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A similar procedure is available for non-hermitian matrices, yielding the weaker

identity for H = (A B
D C ) and Cx = C −DA−1B:

rank(H) = rank(A) + rank(C×).(2.3)

We shall refer to this procedure as non-hermitian complementation.
2.3. Canonical forms. We shall repeatedly use the following terminology:
(i) Equivalence canonical form: It is well known that two matrices A and B are

equivalent if there exist two invertible matrices S and T such that A = SBT . Every

matrix A can be transformed by equivalence to the form ( Ia 0
0 0 ), where a = rank A.

We shall also need the following case of “block equivalence”: For every matrix in
block form X = (A,B) of size n × (m1 + m2), there are invertible matrices S, T1,
and T2 of size n× n, m1 ×m1, and m2 ×m2, respectively, such that

S(A B )

(
T1 0
0 T2

)
=




Ia 0 0 0 0 0
0 Ib 0 0 Ib 0
0 0 0 0 0 Ic
0 0 0 0 0 0


 ,(2.4)

where

a = rank(A,B)− rank(B), c = rank(A,B)− rank(A),
b = rank(A) + rank(B)− rank(A,B).

(2.5)

(ii) Strong congruence canonical form: Every hermitian matrix A of inertia
(p, n, d) is congruent to a matrix of the form J(p, n, d).

(iii) Weak congruence canonical form: Every hermitian matrix A of rank r is
congruent to a matrix of the form A′ ⊕ 0, where A′ is an invertible r × r matrix.

2.4. Restricted congruence. If P is a partial matrix, and S is invertible,
the matrix P ′ = S∗PS can be interpreted as a partial matrix in the following sense:
an entry p′ij of P ′ is determined if it is equal to {S∗HS}ij for every possible
completion H of P. We call P → S∗PS a restricted congruence if pij being a
specified entry of P implies that p′ij is specified in P ′.

There are some similarities between our concept of “restricted congruence” and
Ball, Gohberg, Rodman, and Shalom’s concept of “lower similarity” in [BGRS].

We will use restricted congruence in two ways:
1) block-diagonal congruence is used to put some (specified or unspecified) blocks

of P in canonical form;
2) some row and column operations are used to annihilate blocks in P.

In some cases, unspecified blocks may become specified (in fact, annihilated) by con-
gruence.

For example, the 1,1 block of ( ? I
I 0 ) can be annihilated by the process

(
I − 1

2Z
0 I

)(
Z I
I 0

)(
I 0
−1

2Z I

)
=

(
0 I
I 0

)
.(2.6)

Similarly, 
 Z X I

X∗ Y 0
I 0 0
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can be simplified to 
 0 0 I

0 Y 0
I 0 0




as follows:


 I 0 −1

2Z
0 I −X∗

0 0 I





 Z X I

X∗ Y 0
I 0 0





 I 0 0

0 I 0
−1

2Z −X I


 =


 0 0 I

0 Y 0
I 0 0


 .(2.7)

3. Inequalities: Necessary conditions. The shape of an inertial polygon for
a hermitian completion problem is, to a large extent, determined by a few inequalities
relating matrices and submatrices:

(i) Rank interlacing. If A is a k × l rectangular block of the m ×m matrix
H, we have

rank(A) ≤ rank(H) ≤ rank(A) + (m− k) + (m− l).(3.1)

(ii) Poincaré inequalities. Let A be a k× k principal submatrix of the m×m
hermitian matrix H. Let λi and µi be the ordered eigenvalues of A and H,
respectively. The Cauchy interlacing theorem states that λi ≤ µi ≤ λi+m−k (see, e.g.,
Theorem 4.3.15 in [HJ]). Equivalent statements are the Poincaré inequalities:

π(A) ≤ π(H) ≤ π(A) + m− k, ν(A) ≤ ν(H) ≤ ν(A) + m− k.(3.2)

The upper and lower bounds of (3.2) were strengthened in Theorem 1.2 of [D2];
the lower bound was strengthened as follows:

(iii) Extended Poincaré’s inequalities.([D2]) Given a hermitian matrix in block

form, H = (A B
B∗ C ), set

∆ = rank (A B )− rank A = Dim Ker A−Dim Ker (A B )
∗
.

Then

In H ≥ In A + ∆(1, 1,−1),

π(H) ≥ π(A) + ∆, and ν(H) ≥ ν(A) + ∆.(3.3)

Inequalities (3.1), (3.2), (3.3) form a set of a priori bounds on completion inertias. In
fact, in [CJRW] it is proved that the upper bound in (3.1) is sufficient for the deter-
mination of the maximal completion rank in the case of non-hermitian completions,
and in [CD] the same is shown in the case of hermitian completions. It turns out that
the necessary conditions of type (3.1), (3.2), (3.3) are also sufficient in determining
the full inertial polygon in many cases, including the bordered matrix case (Theorem
1.1) and the block diagonal case [D1]. We shall emphasize cases of sufficiency of these
conditions in the text.
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4. Towards the 3 × 3 bordered case. This section paves the way for the
analysis of the bordered case, which is carried out in section 5. The material in this
section has independent value, and much of it is well known. We shall compute the
inertial polygon for a 3× 3 block pattern of the form


A ? ?

? B ?
? ? ?


(4.1)

as Lemma 4.8. The special cases (A ?
? ? ) and (A ?

? B ) originally due to Cain and

Sá, will also be reviewed as Lemmas 4.1 and 4.5. We shall also compute the possible
inertias of a matrix of the form A+X with inertia limitations on the unknown matrix
X as Lemma 4.3. The results of Lemma 4.1 will be used to establish Lemmas 4.3
and 4.8 . The result of Lemma 4.3 will be used to establish Lemma 4.5 which in turn
will be used in the proof of Lemma 4.8 which, in turn, will be used in the proof of
Theorem 1.1. The proofs of Theorem 1.1 and Lemma 5.7 consist of reductions to the
case of (4.1), which itself is of independent interest.

Lemma 4.1. Let H = (H1 ?
? ? ) be a partially specified hermitian matrix of block

sizes (α, β). Then the inertial polygon for H is the pentagon that contains all the
lattice points (π(H), ν(H)) which satisfy the inequalities

π(H1) ≤ π(H) ≤ π(H1) + β,
ν(H1) ≤ ν(H) ≤ ν(H1) + β,

π(H) + ν(H) ≤ α + β.(4.2)

Proof. The necessity of (4.2) follows from (3.1) and (3.2). For sufficiency, put
H1 in diagonal form, and complete H to a diagonal matrix. It is easy to show that
every inertia in (4.2) is obtained.

See also Theorem 1 in [S] and Theorem 1.2 in [D2].
Corollary 4.2. In Lemma 4.1 the extremal values are

p = π(H1), p = π(H1) + β, r = rankH,
n = ν(H1), n = ν(H1) + β, r = min{α + β, p + n}.

Moreover, H in Lemma 4.1 admits positive definite, nonnegative definite, or in-
vertible completions if and only if H1 is positive definite, nonnegative definite, or
rank(H1) ≥ α− β, respectively.

The following result can be deduced with some effort from Theorem 2 in [S].
Lemma 4.3. Let A and X be m×m hermitian matrices. We consider A to be fixed

and X to be a variable matrix with π(X) ≤ a and ν(X) ≤ b. Then the possible inertias
of B = A + X are the nonnegative lattice points satisfying the following inequalities:

π(A) − b ≤ π(B) ≤ π(A) + a,
ν(A) − a ≤ ν(B) ≤ ν(A) + b,

rankB ≤ m.
(4.3)

Proof. Necessity is obvious due to Sylvester’s inertia principle. For sufficiency,
take A to be diagonal, and restrict X to be diagonal as well. It is easy to show
that every inertia in (4.3) is obtained.
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Corollary 4.4. In Lemma 4.3, r = max{π − b, 0}+ max{ν − a, 0}. Also, A
admits positive definite completions if and only if ν ≤ a and π ≥ m−a , nonnegative
definite completions if and only if ν ≤ a, and invertible completions if and only if
δ ≤ a + b .

For the values of n, n in Lemma 4.3, see also [CG3, Lemma 2.2].
The following result is due to Cain and Sá.

Lemma 4.5. ([CS]) Let H = ( F ?
? G ) be hermitian of block sizes (α, γ). Then the

inertial polygon of H is determined by these inequalities:

max{π(F ), π(G)} ≤ π(H) ≤ min{π(F ) + γ, π(G) + α},
max{ν(F ), ν(G)} ≤ ν(H) ≤ min{ν(F ) + γ, ν(G) + α},
−ν(F ) − ν(G) ≤ π(H) − ν(H) ≤ −π(F ) − π(G),

rankH ≤ α + γ .

(4.4)

A generalization of Lemma 4.5 and (4.4) to more than two diagonal blocks can be
found in Brian Cain’s paper [C]. A short proof of the necessity part of Cain’s result
was obtained by J. Dancis ([D1, Corollary 11.1 and Lemma 11.2]). In the 2× 2 block
case, this proof is given below.

Proof of necessity of inequalities (4.4). LetH(X) = ( F X
X∗ G ) be a completion of

H. Set

t = dim

(
ker

(
F
X∗

)
∩ kerF

)
, t′ = dim

(
ker

(
X
G

)
∩ ker G

)
.

Noting that

rank

(
F
X∗

)
− rankF = δ(F )− t, δ(H(X)) ≥ t + t′,

we apply the extended Poincare inequalities (3.3) to both F and G and we obtain

2ν(H(X)) ≥ ν(F ) + ν(G) + δ(F )− t + δ(G)− t′

≥ ν(F ) + ν(G) + δ(F ) + δ(G)− δ(H(X)) .

Subtracting this inequality from ν(H)+π(H) = α+γ− δ(H) will yield the right side
of (4.4). A symmetric argument produces the left inequality.

Proof of Lemma 4.5. We show by reduction to Lemma 4.3 that inequalities (4.4)

describe the inertial polygon. Let H(X) = ( F X
X∗ G ) be a completion of H. Putting

F in weak canonical form, and taking the Schur complement of the new first coordi-
nate F ′, we calculate, using (2.2),

H(X) ∼=
(

F ′ 0 X1

0 0 X2

X∗
1 X∗

2 G

)
∼= F ′ ⊕H ′, H ′ =

(
0 X2

X∗
2 G×

)
,

where G× = G−X∗
1F

′−1X1. Hence

In(H(X)) = In(H ′) + (π(F ), ν(F ), 0).(4.5)
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Putting G× in weak canonical form, we get

H ′ ∼=
(

0 X3 X4

X∗
3 G×′

0
X∗

4 0 0

)
.

Putting X4 in equivalence canonical form, we get

H ′ ∼=




0 0 X5 Ir 0
0 0 X6 0 0
X∗

5 X∗
6 G×′

0 0
Ir 0 0 0 0
0 0 0 0 0


.

We set V ′′ = −X6G
×′−1X∗

6 , and denote

In(G×) = (π′′, ν′′, δ′′); In(V ′′) = (π̂, ν̂, δ̂); rank(X4) = r.(4.6)

Removing coordinate 5 and taking the Schur complement of coordinates 1, 3, and 4,
in H ′, we calculate using (2.2) and (2.7)

H ′ ∼= J(r + π′′, r + ν′′, ∗)⊕ V ′′.(4.7)

We now develop the relevant inequalities involving the dummy variables in (4.6). By
Lemma 4.3 the inertial polygon of G× is determined by the inequalities on (π′′, ν′′) :

−ν(F ) ≤ π′′ − π(G) ≤ π(F ), 0 ≤ π′′, 0 ≤ ν′′,
−π(F ) ≤ ν′′ − ν(G) ≤ ν(F ), π′′ + ν′′ ≤ m2.

(4.8)

By Lemma 4.3 again, we compute the inertial polygon for V ′′:

0 ≤ π̂ ≤ ν′′, 0 ≤ ν̂ ≤ π′′, π̂ + ν̂ ≤ m1 − rank F − r.(4.9)

The only restriction on r is the size of X4 :

0 ≤ r ≤ m2 − π′′ − ν′′.(4.10)

Now (4.4) is obtained from (4.5)–(4.9) by eliminating π′′, ν′′, π̂, ν̂ , and r.
The values of p, p, n, n can easily be computed from Lemma 4.5. The values n

and n were computed in [CS].
Lemma 4.6. (See [D1].) In Lemma 4.5 we have

p = max{π(F ), π(G)}, n = max{ν(F ), ν(G)}, r = p + n.(4.11)

Moreover, there exists a matrix X which simultaneously achieves the minimal

possible ranks for ( F X
X∗ G ) ( F

X∗ ), and (X
G ), namely,

rank

(
F X
X∗ G

)
= max{π(F ), π(G)}+ max{ν(F ), ν(G)},

rank(F X ) = rank(F ), and rank

(
X
G

)
= rank(G).



592 NIR COHEN AND JEROME DANCIS

Proof. The values of p and n follow directly from Lemma 4.5. To show the rest,
we may put F and G in strong canonical form:

F =

(
I 0 0
0 −I 0
0 0 0

)
, G =

(
I 0 0
0 −I 0
0 0 0

)
, X =

(
X1,1 X1,2 X1,3

X2,1 X2,2 X2,3

X3,1 X3,2 X3,3

)
.

Choose the diagonal entries of X1,1 and X2,2 by the rule (X1,1)ii = 1 and (X2,2)ii = 1.
Choose all other entries of X to be zero. We get a completion with the desired minimal
ranks.

The original result of J. Dancis ([D1, Theorem 1.3]) is in fact more general in
two respects: first, it extends to more than two block diagonals. Moreover, it is not
restricted to minimal ranks: it shows, more generally, that any choice of kernels of
a column decomposition as well as any choice of inertia which is consistent with the
extended Poincaré inequalities can be obtained.

Theorem 4.7 (a constrained hermitian completion (see [D1])). Given hermitian
matrices Hii, i = 1, . . . , s, with inertias In Hii = (πi, νi, δi) and sizes ni = πi+νi +δi,
let S = ⊕Hii be the block diagonal matrix of size n = Σni. Choose a subspace
Ki ⊂ ker Hii such that dim ker Hii − dim Ki ≤ n− ni. Let ri = ni − dim ker Ki.
Set

∆i = ri − Rank Hii for each i = 1, 2, . . . , s.

Then an integer triple (π, ν, δ) satisfying the equality π + ν + δ = n is the inertia of
a hermitian completion H of S with column block structure:

H = (M1,M2, . . . ,Ms), where each Mi is an n×ni matrix, and ker Mi = Ki

if and only if (π, ν, δ) satisfies the inequalities

π ≥ Max{πi + ∆i}, ν ≥ Max{νi + ∆i}, and δ ≥ Σ(δi −∆i).

(The notation here is different than the one used in [D1]: the ri and ∆i here corre-
spond to πi + νi + δi − di and δi − di of [D1], respectively.)

The next lemma is the main result of this section; it combines Lemmas 4.1 and
4.5.

Lemma 4.8. Let P be a partial matrix of the form(
F ? ?
? G ?
? ? ?

)

and of block sizes (α, γ, ε). Then the inertial polygon of P consists of the lattice
points determined by these inequalities:

max{π(F ), π(G)} ≤ π(P ) ≤ ε + min{π(F ) + γ, π(G) + α},
max{ν(F ), ν(G)} ≤ ν(P ) ≤ ε + min{ν(F ) + γ, ν(G) + α},
−ε− ν(F ) − ν(G) ≤ π(P ) − ν(P ) ≤ ε + π(F ) + π(G),

π(P ) + ν(P ) = rankP ≤ α + γ + ε .

(4.12)

The sufficiency proof of inequalities (4.12) is the same as for inequalities (4.4).

Proof. Every completion H of P has the form (H1 ∗
* * ), where ( F ∗

* G ). In(H1)

was computed in Lemma 4.5. By Lemma 4.1, In(H1) and In(H) are connected by
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0 ≤ π(H)− π(H1) ≤ ε, 0 ≤ ν(H)− ν(H1) ≤ ε,(4.13)

and eliminating In(H1) from inequalities (4.4) and (4.13), and using the identities

α = π(F ) + ν(F ) + δ(F ), γ = π(G) + ν(G) + δ(G),

we get inequalities (4.12).

5. Inertias of block bordered matrices. In this section we establish Theorem
1.1 using the results stated in sections 3 and 4. The material in this section is new.
The scalar case was classified in [D3]. Other special cases of Theorem 1.1 occur in
[D1], [L], [G], and [CG3].

Sections 5.3–5.5 contain additional results and corollaries of Theorem 1.1 concern-
ing minimal rank completions of various types, and the case where the two maximal
specified hermitian submatrices R1 and R2 of P (Z) of Theorem 1.1 are invertible.
In section 5.6 we present a small application to the algebraic matrix Riccati equation
A+AZ∗ +ZB∗ +ZCZ∗ = 0: a criterion for solvability and a characterization of the
possible inertias of the solution matrix Z (which need not be hermitian).

5.1. Internal relations for bordered matrices. For the bordered matrix
P (Z) of Theorem 1.1, we note that R1 = (A B

B∗ C ) and R2 = (C D
D∗ E ) are

the maximal specified hermitian submatrices of P (Z) and Q = [B∗, C, D] is the
maximal specified non-hermitian submatrix of P (Z).

Observation 5.1 (internal relations for a bordered matrix). With the notation of
Theorem 1.1, we define

∆̂ = max{∆′,∆′′}

and

d′ = rank [B∗, C]− rank C, d′′ = rank [C,D]− rank C, d̂ = max{d′, d′′}.

Then

d′ −∆′′ = d′′ −∆′ ≥ 0,(5.1)

ν ≥ ν(C) + d′, π′ ≥ π(C) + d′′,(5.2)

rank R1 ≥ rank C + 2d̂,(5.3)

r = rank C + d′ + ∆′ = rank C + d′′ + ∆′′.(5.4)

Proof. The inequality of (5.1) follows from rank considerations. The equality, as
well as (5.4), follows from the definitions. Applying the extended Poincaré’s inequal-
ities to C as a submatrix of R1 or R2 provides (5.2). Equation (5.3) also follows
from the extended Poincaré’s inequalities.
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Fig. 5.1. A seven-sided inertial polygon

5.2. Proof of Theorem 1.1. Before proving the theorem, let us comment on
the necessity and minimality of its conditions:

Minimality. The inertial polygon for a simple matrix, with all seven edges present,
is illustrated in Fig. 5.1. The matrix chosen was of block sizes (6, 1, 6) with A =
I2⊕−I2⊕ 02, E = 1⊕−1⊕ 04, and B, C, and D are zero matrices of appropriate
order. This results in r and the three ∆’s being zero. This example shows that the
set of seven inequalities defining the inertial diamond is not redundant.

Necessity. Necessity of each one of the seven inequalities can be easily demon-
strated: inequality (1.4) follows from (3.1). The upper bounds in inequalities (1.1)–
(1.2) are a consequence of (3.2). The lower bounds in (1.1) and (1.2) are just the
extended Poincaré’s inequalities (3.3). It remains to derive (1.3).

Claim 5.2. The extended Poincaré’s inequalities (3.3) imply (1.3).
Proof. We define the partial matrices

N ′ =

(
A B ?
B∗ C D

)
, N ′′ =

(
B∗ C D
? D∗ E

)
,(5.5)

and their completions

N ′(Z) =

(
A B Z
B∗ C D

)
, N ′′(Z) =

(
B∗ C D
Z D∗ E

)
.(5.6)

Let

Γ = rank N ′ − rank R1 and Γ′ = rank N ′′ − rank R2.

Using the extended Poincaré’s inequalities(3.3) twice, we have

2p ≥ π + π′ + Γ + Γ′.

Substituting p = α+ β + γ − n− d for one of the p’s on the left-hand side, we obtain

p− n ≥ π + π′ + Γ + Γ′ + d− α− β − γ.(5.7)
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Using the identities π + ν + δ = α + β and π′ − β − γ = −ν′ − δ′ and (5.7) we
obtain

p− n ≥ −ν − ν′ − δ − δ′ + Γ + Γ′ + d + β.(5.8)

We note that

dim ker P ≥ dim ker N ′ + dim ker N ′′ − dim ker N ′ ∩N ′′.

But this translates into

d ≥ (δ − Γ) + (δ′ − Γ′)− (β − r),

or equivalently

−r − δ − δ′ + Γ + Γ′ + d + β ≥ 0.(5.9)

Finally, (5.8) and (5.9) establish (1.3).
We will establish Theorem 1.1 by using Schur complements (equation (2.2)) and

row and column operations (equation(2.7)) and the other forms presented in section
2, repeatedly, in order to reduce Theorem 1.1 to Lemma 4.8.

Proof of Theorem 1.1. We begin by putting C in weak canonical form:

P (Z) =




A B′ B” Z
B′∗ C′ 0 D′

B”∗ 0 0 D”
Z∗ D′∗ D”∗ E


,(5.10)

with block sizes (α, rank C, β − rank C, γ). Taking the Schur complement of C ′ in
P (Z) as in (2.2) yields

In P (Z) = In Ĥ + In C ′,(5.11)

where

Ĥ =

(
F B” Y

B”∗ 0 D”
Y ∗ D”∗ G

)
,

F = A−B′C′−1B′∗,
G = E −D′∗C′−1D′,
Y = Z −B′C′−1D′.

Next we put [B”∗, D”] in the canonical form (2.4). Using (5.10), we obtain the
matrix

Ĥ =




F11 F12 F13 I∆′′ 0 0 0 X11 X12 X13

F ∗
12 F22 F23 0 Ib 0 0 X21 X22 X23

F ∗
13 F ∗

23 F33 0 0 0 0 X31 X32 X33

I∆′′ 0 0 0 0 0 0 0 0 0
0 Ib 0 0 0 0 0 0 Ib 0
0 0 0 0 0 0 0 0 0 I∆′

0 0 0 0 0 0 0 0 0 0
X∗

11 X∗
21 X∗

31 0 0 0 0 G11 G12 G13

X∗
12 X∗

22 X∗
32 0 Ib 0 0 G∗

12 G22 G23

X∗
13 X∗

23 X∗
33 0 0 I∆′ 0 G∗

13 G∗
23 G33



.(5.12)
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The block sizes here are (∆′′, b, α′,∆′′, b,∆′, β′, γ′, b,∆′) , where b = d′ −∆′′ and
the Xij ’s are blocks of Y , the Fij ’s and Gij ’s are conforming blocks of F and G. The
new block sizes are related to α, β, γ via

α = α′ + d′, β = rank C + β′ + d′ + ∆′, γ = γ′ + d′′.(5.13)

Next we use restricted congruence, see section 2. By row and column operations
based on H41 = H14 = I∆′′ and H10,6 = H6,10 = I∆′ , we may assume without loss of
generality that F11, F12, F13, X11, X12, X13, X23, X33, G13, G23, and G33 are all zero.
This modifies the matrix Ĥ , without changing its inertia, to

H ′ =




0 0 0 I∆′′ 0 0 0 0 0 0
0 F22 F23 0 Ib 0 0 X21 X22 0
0 F ∗

23 F33 0 0 0 0 X31 X32 0
I∆′′ 0 0 0 0 0 0 0 0 0
0 Ib 0 0 0 0 0 0 Ib 0
0 0 0 0 0 0 0 0 0 I∆′

0 0 0 0 0 0 0 0 0 0
0 X∗

21 X∗
31 0 0 0 0 G11 G12 0

0 X∗
22 X∗

32 0 Ib 0 0 G∗
12 G22 0

0 0 0 0 0 I∆′ 0 0 0 0



.(5.14)

We may discard row 7 and column 7, which are all zero. Next we complement H ′

with respect to the block

H ′
[1,2,4,5,6,10] =




0 0 I∆′′ 0 0 0
0 F22 0 Ib 0 0

I∆′′ 0 0 0 0 0
0 Ib 0 0 0 0
0 0 0 0 0 I∆′

0 0 0 0 I∆′ 0


.

The Schur complement turns out to be

H ′′ =

(
F33 X31 X32

X∗
31 G11 G12

X∗
32 G∗

12 G22

)

−
(

0 F ∗
23 0 0 0 0

0 X∗
21 0 0 0 0

0 X∗
22 0 Ib 0 0

)


0 0 I∆′′ 0 0 0
0 0 0 Ib 0 0

I∆′′ 0 0 0 0 0
0 Ib 0 −F22 0 0
0 0 0 0 0 I∆′

0 0 0 0 I∆′ 0







0 0 0
F23 X21 X22

0 0 0
0 0 Ib
0 0 0
0 0 0




=

(
F33 X31 X32 − F ∗

23

X∗
31 G11 G12 −X∗

21

X∗
32 − F23 G∗

12 −X21 G22 −X22 −X∗
22 + F22

)
=

(
F33 ? ?
? G11 ?
? ? ?

)
,(5.15)

with block sizes (α′, γ′, b) . By the Schur complement inertia formula (2.2), we get

In H ′ = In H ′
[1,2,4,5,6,10] + In H ′′ + (0, 0, β)

= In H ′′ + (d′ + ∆′, d′ + ∆′, β′).
(5.16)
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(The β′ accounts for removing coordinate 7 from H ′.) Thus we have

In P (Z) = In C′ + In H ′′ + (d′ + ∆′, d′ + ∆′, β′).(5.17)

We will use (5.17) and Lemma 4.8 to calculate In P (Z); to find In H ′′, we must
first calculate In F33 and In G11 :

Claim 5.3.

In F33 = In R1 − (d′, d′, ∗)− In C ′,(5.18)

In G11 = In R2 − (d′′, d′′, ∗)− In C ′.

Proof. By restricting (5.10)–(5.14) to the upper left corner R1, we may take the
Schur complement of C ′ as a submatrix of R1; this yields

In R1 = In

(
A B′ B”
B′∗ C′ 0
B”∗ 0 0

)
= In C ′ + In

(
F B”

B”∗ 0

)
,(5.19)

where F is as in (5.11). Using elimination, (2.7), we note that

In

(
F B”

B”∗ 0

)
= In




0 0 0 I∆′′ 0 0
0 0 0 0 Ib 0
0 0 F33 0 0 0

I∆′′ 0 0 0 0 0
0 Ib 0 0 0 0
0 0 0 0 0 0


 = In F33 + (d′, d′, ∗),(5.20)

where F33 is as in (5.12). Solving for In F33 in (5.19) and (5.20) yields the first part
of (5.18). A similar argument holds for the second part.

We proceed with the proof of Theorem 1.1. Applying the size identities

α′ = π(F33) + ν(F33) + δ(F33), γ′ = π(G11) + ν(G11) + δ(G11),

and Lemma 4.8 (with its submatrices F and G corresponding to F33 and G11 here),
we obtain these inequalities for In H ′′:

max{π(F33), π(G11)} ≤ π(H ′′) ≤ d′ −∆′′ + min{π(F33) + γ′, π(G11) + α′},(5.21)

max{ν(F33), ν(G11)} ≤ ν(H ′′) ≤ d′ −∆′′ + min{ν(F33) + γ′, ν(G11) + α′},
−(d′ −∆′′)− ν(F33)− ν(G11) ≤ π(H ′′)− ν(H ′′) ≤ d′ −∆′′ + π(F33) + π(G11),

π(H ′′) + ν(H ′′) ≤ α′ + γ′ + d′ −∆′′.

Inequalities (1.1)–(1.4) are obtained by plugging inequalities (5.21) and equation
(5.18) into equation (5.17) and then using equations (5.1), (5.4), and (5.13) to elimi-
nate all the intermediary inertias.

5.3. Extremal inertia values and inertia-preserving completions. In this
section and the next, we use the geometry of the inertial polygon as the basis (i) for
establishing a minimum rank completion for the bordered matrix P of Theorem
1.1 (Corollary 5.2); and (ii) for showing that, assuming invertibility of R1 and R2,
all the inertias which are consistent with Poincare’s inequalities can be obtained by
completion (Corollary 5.5). In section 6 we will use these results as building blocks
for our proofs of completion theorems for “staircase” matrices.
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First we show, under the notation of Theorem 1.1, that there is always a com-
pletion whose positivity and negativity are the minimal ones allowed by the extended
Poincaré’s inequalities. This implies that the minimal rank is r = p + n.

Corollary 5.1 (minimal rank completions). With the notation of Theorem 1.1,
there exists a hermitian completion P = P (Z) such that

π(P (Z)) = p0, ν(P (Z)) = n0.

Proof. We argue by inspection on Figure 5.1. If the vertex v0 = (p0, n0) is not in
the inertial polygon for P (z), this vertex must be cut off by one of the extremal lines
defining inequalities (1.2)–(1.4). Since these inequalities are consistent, it is clear that
(p0, n0) must satisfy (1.2) and (1.4). It remains to check the two inequalities (1.3).
We have to consider four possible choices for p0 and n0 in the notation of Theorem
1.1:

(I) Suppose that

(p0, n0) = (π, ν) + ∆′(1, 1).(5.22)

Rank considerations imply that Rank C + d′ + d′′ ≥ r. Equation (5.1) implies
that π′ + ν ≥ Rank C + d′ + d′′. Hence −ν ≤ +π′ − r. This and (5.22) imply that
p0 − n0 = π − ν ≤ π + π′ − r, proving the right inequality in (1.3). Interchanging the
roles of the π′s and the ν′s establishes the left inequality.

(II) A similar proof applies to the case (p0, n0) = (π, ν) + ∆′′(1, 1).
(III) If

p0 = π′ + ∆′′ and n0 = ν + ∆′,(5.23)

then a combination of (5.1), (5.3), and (5.4) yields rank R1 ≥ r + ∆′′ − ∆′. By
simple algebra we get π′ − ν + ∆′′ − ∆′ ≤ π + π′ − r. This and (5.23) imply that
p0 − n0 = π′ − ν + ∆′′ − ∆′ ≤ π + π′ − r, proving the right inequality in (1.3).
Interchanging the roles of the π′s and the ν′s establishes the left inequality.

(IV) A similar proof applies to the case p0 = π + ∆′ and n0 = ν′ + ∆′′.
Remark. Corollary 5.1 implies that the minimal rank of the set of hermitian

completions of P is r = p0 + n0.
Constantinescu and Gheondea presented in [CG3] another formula for n.
Of particular interest is the case where the minimal rank solutions inherit their

inertia values p and n from the specified blocks R1 and R2, i.e.,

p0 = max{πi}, n0 = max{νi}.(5.24)

We call such completions inertia preserving. Note that (5.24) does not guarantee that
the minimal completion rank is max{rankR1, rankR2}. The following simple result will
play a major role in finding inertia-preserving completions for block band matrices in
section 6.

Corollary 5.2 (inertia preserving completions). Assume the notation of The-
orem 1.1. Suppose that P satisfies an “equality of ranks” condition

r = rank [B∗, C] = rank [C,D].(5.25)

Then P admits inertia-preserving completions.
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Indeed, under condition (5.25), the formulas of the inertial polygon simplify, since
we have ∆′ = ∆′′ = ∆̂ = 0. In particular, (5.24) holds.

Condition (5.24) and Corollary 5.2 are implied by the stronger condition

r = rank C.(5.26)

In the notation of Observation 5.1, (5.26) is equivalent to any of the following:

rank C = rank[B∗, C] = rank[C,D], d′ = d′′ = 0, d̂ = 0.

This condition is satisfied if, e.g., C is invertible.
Condition (5.25) is not necessary for the existence of inertia-preserving comple-

tions. As an example, consider the partial matrix

P =

(
1 1 ?
1 0 0
? 0 0

)
.

A simple argument, using the extended Poincaré’s inequalities (3.3), shows that if
(5.25) is not satisfied, then the inertia-preserving completion must inherit both p and
n from the same block. Hence r = max{rank R1, rank R2}. In the above example,
r = rank R1.

5.4. The width of the inertial set. We define the width w of the inertial
polygon to be the maximal value of |(p− n)− (p′ − n′)| over all pairs of points (p, n)
and (p′, n′) belonging to the inertial polygon. See Fig. 1.1. This width equals the sum
of the lengths of the two perpendicular sides of the inertial polygon. It is clear that
inequality (1.3) puts a limitation on the width, namely, w cannot exceed the modulus
of the difference of the right-and left-hand sides in this inequality:

w ≤ rank R1 + rank R2 − 2r.(5.27)

(It can be shown directly that this value is always nonnegative.)
The sides, with slope of minus 1, come from inequality (1.3), which may be

rewritten as

π − ν′ − (rank R1 − r) ≤ p− n ≤ π − ν′ + (rank R2 − r).(5.28)

In this way

w ≤ (rank R1 − r) + (rank R2 − r)(5.29)

is related to the width of the inertial polygon. The width of the inertial polygon tends
to increase as we increase the ranks of R1 and R2. In this section we study the two
extreme cases. The “slim” case is when Rank R1 = Rank R2 = Rank C. Here the
polygon degenerates to a segment with a 45 degree inclination. The “fat” case occurs
under the maximal rank condition det R1 det R2 6= 0; here the polygon extends to
maximum capacity, and fills a triangle (Corollary 5.5 ). We start with the “slim” case.

Corollary 5.3. Given the notation of Theorem 1.1, suppose that

Rank R1 = Rank R2 = Rank C.(5.30)

Then the inertial polygon coincides with the segment

(p, n) = (π + k, ν + k), k = 0, ...,min{α, γ}.
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Moreover, the minimal rank completion is unique.
Proof. Condition (5.30) together with the Poincaré inequalities imply that C,R1,

and R2 all have the same inertia (π, ν, ∗) (with possibly different nullities). The same
condition also implies (5.26), hence (5.25), and Corollary 5.2 can be used. We conclude
that

r = rank R1 = rank R2, p0 = π, n0 = ν.(5.31)

That condition (5.31) implies zero width is clear from (5.27). The rest restricts
the polygon to a line segment of the form (π + k, ν + k), k = 0, . . . ,K. The value
K = min{α, γ} follows from Theorem 1.1 with some algebra. It can also be deduced
from the maximal rank considerations in [CD].

To prove uniqueness of the minimal rank completion, we note that (5.30) forces the

factorizations R1 =

(
S
I

)
C(S∗ I), R2 =

(
I
T

)
C(I T ∗). Setting Z = SCT ∗+Z ′,

one can check that the completion rank is rank C+2 rank Z ′. So the unique solution
requires that Z ′ = 0.

Observation 5.3 represents the extreme case of a “slim” inertial set. We now turn
to examine the other extreme case of a “fat” inertial set. Under the assumption that
R1 and R2 are invertible matrices, four inequalities among (1.1)–(1.4) are redundant,
and the inertial polygon becomes a triangle, admitting any inertia compatible with
the Poincaré inequalities and the size limitation. First we quote the following known
result about matrices with chordal graphs. Chordality is discussed in [GJSW], [JR1],
and [JR2], and it suffices to say that block bordered 3 × 3 patterns (and in fact the
general staircase patterns of section 6) have chordal graphs.

Lemma 5.4 (Corollary 6 of [JR1]). In any hermitian partial matrix P of size
m × m whose pattern has a chordal graph and all its maximal hermitian specified
submatrices are invertible, the points v1 = (p,m − p, 0) and v2 = (m − n, n, 0),
together with all the lattice points on the straight line segment connecting them, belong
to the inertial set of P.

In the bordered case we can say more.
Corollary 5.5. Assume the notation of Theorem 1.1. Suppose that R1 and R2

are invertible. Then the inertial polygon is the triangle whose vertices are

v0 = (p0, n0), v1 = (p0, α + β + γ − p0), v2 = (α + β + γ − n0, n0).

In other words, every inertia consistent with the Poincaré inequalities p0 ≤ p, n0 ≤ n,
and p + n ≤ α + β + γ is allowed.

Proof. Let T be the triangle defined by the above three inequalities. Let D be the
inertial polygon. It is easy to check that v0, v1, v2 are the three vertices of T. Since
the Poincaré inequalities are a subset of (1.1)–(1.4), we get the inclusion D ⊂ T. Note
that in (1.4) our hypothesis implies that r = β.

On the other hand, v0 ∈ D by Corollary 5.1, and v1, v2 ∈ D by Lemma 5.4. By
convexity, we conclude that T ⊂ D.

5.5. Simultaneous rank minimization. We now strengthen the minimal rank
result obtained in the last section (Corollary 5.1). Consider the partial matrices
N ′ and N ′′ of (5.5). We wish to find a matrix Z which will simultaneously induce
minimal rank completions in N ′ and N ′′ as well as in the full bordered matrix P .

Before we tackle the general case, let us make the simplifying assumption (5.26),
for which a slightly stronger result is available. This very simple special case also
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serves as an outline and motivation for the general case. Also, readers who are only
interested in Theorems 6.2 and 1.2 and Corollary 6.4 but not in Theorem 6.6 may
read the proof of Lemma 5.6 and skip the calculations of Lemma 5.7.

Lemma 5.6. Assume, along with the notation of Theorem 1.1, that

rank C = rank[B∗, C] = rank[C,D].

Then there exists a matrix Z0 satisfying simultaneously the inertia-preserving con-
dition

π(P (Z0)) = max{π, π′}, ν(P (Z0)) = max{ν, ν′},(5.32)

and (using the notation of (5.5) and (5.6)) the two minimal rank conditions

rank(N ′(Z0)) = rank(R1), rank(N ′′(Z0)) = rank(R2).(5.33)

Such a completion also satisfies the kernel condition

Ker P (Z0) ⊃ Ker (R1 ⊕ I) + Ker (I ⊕R2).

Proof. Since (5.26) implies Corollary 5.2, P admits inertia-preserving comple-
tions (5.32). The fact that rank(R1) and Rank(R2) are the minimal completion ranks
for N ′ and N ′′ is obvious. To prove that conditions (5.32)–(5.33) are attainable si-
multaneously, we re-examine the proof of Theorem 1.1, and reduce the situation to
Lemma 4.6, where a positive answer is available.

We assume the rank condition (5.26), which implies ∆̂ = d̂ = 0, and follow the
proof of Theorem 1.1. The matrices B′′ and D′′ in (5.10) turn out to be zero:

H =




A B′ 0 Z
B′∗ C′ 0 D′

0 0 0 0
Z∗ D′∗ 0 E


,

of block sizes (α, rank C, δ(C), γ) . Now removing the zero row and column and then
taking the Schur complement with respect to C ′ yields

Ĥ(Y ) =

(
F Y
Y ∗ G

)
,

F = A−B′C′−1B′∗,
G = E −D′∗C′−1D′,
Y = Z −B′C′−1D′.

We get, therefore,

rank H = rank Ĥ(Y ) + rank C,
rank N ′ = rank C + rank (F Y ) ,

rank N ′′ = rank C + rank

(
Y
G

)
.

(5.34)

Lemma 4.8 shows that a matrix Y = Y0 exists for which Ĥ(Y ), (F Y0 ) , and (Y0

G )
are simultaneously minimum rank completions. Choosing Z0 = Y0 + B′C ′−1D′, we
see from (5.34) that Z0 minimizes all the three ranks involved.

It remains to show the kernel condition. First, we observe, for all Z, that

Ker P (Z) ⊃ Ker (N ′(Z)⊕ I) and Ker(N ′(Z)) ⊂ Ker(R1).

For Z0 just obtained, we actually have (5.33), hence the second containment must be
equality: Ker(N ′(Z)) = Ker(R1). Now the first containment becomes

Ker P (Z0) ⊃ Ker (N ′(Z0)⊕ I) = Ker (R1 ⊕ I).
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Similarly Ker P (Z0) ⊃ Ker (I ⊕R2). Thus

Ker P (Z0) ⊃ Ker (R1 ⊕ I) + Ker (I ⊕R2).

In the general situation, when the simplifying assumption rank C = rank[B∗, C] =
rank[C,D] is not assumed, a simultaneous minimal rank solution still exists, but it
is not necessarily an inertia-preserving solution, and the additional kernel condition
cannot be guaranteed.

Lemma 5.7 (a simultaneous minimal rank completion lemma). With the notation
of Theorem 1.1, the minimal completion ranks for P,N ′, and N ′′ are, respectively,

r(P ) = p0 + n0, r(N ′) = rank(R1) + ∆′, r(N ′′) = rank(R2) + ∆′′.

Moreover, there exists a matrix Z0 which produces these ranks simultaneously.
Proof. Assume the notation of Theorem 1.1 and Observation 5.1. First we verify

the expressions for the minimal ranks involved. Corollary 5.1 implies that r(p) =
p0 + n0 for all bordered matrices. Using our definitions of ∆′ and ∆′′, the identities
r(N ′) = ∆′ + rankR1 and r(N ′′) = ∆′′ + rankR2 are obvious.

Having computed the minimum completion ranks for these three matrices, we now
demonstrate that the three minimum ranks can be achieved simultaneously. Our plan
is to perform all the steps of the proof of Theorem 1.1 simultaneously on the three
matrices involved. We call a step permissible if a completion exists which preserves
the three minimal ranks. As will be seen, not all steps are permissible, and some
modification will be necessary.

The reduction of H to Ĥ in (5.12) is permissible, since C is a common block
in all three matrices. Besides Ĥ, this reduction applied to N ′ and N ′′ yields

Ĥ1 =




F11 F12 F13 I∆′′ 0 0 0 X11 X12 X13

F ∗
12 F22 F23 0 Ib 0 0 X21 X22 X23

F ∗
13 F ∗

23 F33 0 0 0 0 X31 X32 X33

I∆′′ 0 0 0 0 0 0 0 0 0
0 Ib 0 0 0 0 0 0 Ib 0
0 0 0 0 0 0 0 0 0 I∆′

0 0 0 0 0 0 0 0 0 0



,

Ĥ2 =




I∆′′ 0 0 0 X11 X12 X13

0 Ib 0 0 X21 X22 X23

0 0 0 0 X31 X32 X33

0 0 0 0 0 0 0
0 0 0 0 0 Ib 0
0 0 0 0 0 0 I∆′

0 0 0 0 0 0 0
0 0 0 0 G11 G12 G13

0 Ib 0 0 G∗
12 G22 G23

0 0 I∆′ 0 G∗
13 G∗

23 G33



.

Using (2.3), these operations preserve ranks:

rank N = rank Ĥ1, rank N ′ = rank Ĥ2.

Our aim now is to minimize simultaneously rank Ĥ in (5.12) and rank Ĥ1 and rank Ĥ2

above.
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The passage from Ĥ in (5.12) to H ′ in (5.14) is also permissible, and may be
followed by a similar passage from Ĥi to new matrices H ′

i, where all the F,G,X

entries located in first and last block rows and columns in Ĥi are made zero. We
also discard zero rows and columns in these matrices (the seventh block coordinate
in H ′ ).

Permissibility is violated in the passage from H ′ to H ′′ in (5.15). More precisely,
complementation of H ′ with respect to coordinates 1, 4, 6, 10 is permissible; unfor-
tunately, symmetric complementation with respect to coordinates 2 and 5 is not per-
missible, since these coordinates are not present in both H ′

1 and H ′
2. Consequently,

the proof of Theorem 1.1 has to be modified: we perform on H ′ non-hermitian
complementation (2.3) with respect to block rows 1, 2, 5, 6 and block columns 4, 5,
9, 10, i.e. with respect to the matrix

H ′
[1,2,5,6][4,5,9,10] =




I∆′′ 0 0 0
0 Ib X22 0
0 0 Ib 0
0 0 0 I∆′


,

where b = d′−∆′′. The Schur complement of H ′ with respect to H ′
[1,2,5,6][4,5,9,10] is




0 F ∗
23 F33 0 X31

I∆′′ 0 0 0 0
0 X∗

21 X∗
31 0 G11

0 X∗
22 X∗

32 0 G∗
12

0 0 0 I∆′ 0


−




0 0 X32 0
0 0 0 0
0 0 G12 0
0 Ib G22 0
0 0 0 0


×




I∆′′ 0 0 0
0 Ib −X22 0
0 0 Ib 0
0 0 0 I∆′




×




0 0 0 0 0
0 F22 F23 0 X21

0 Ib 0 0 0
0 0 0 0 0




=




0 X32 + F ∗
23 F33 0 X31

I∆′′ 0 0 0 0
0 G12 + X∗

21 X∗
31 0 G11

0 G22 + F22 −X∗
21 + X∗

22 X∗
32 + F23 0 X21 + G∗

12

0 0 0 I∆′ 0


.

This matrix is of the general form


0 W1 F33 0 W2

I∆′′ 0 0 0 0
0 W3 W ∗

2 0 G11

0 W4 W5 0 W ∗
3

0 0 0 I∆′ 0


,

where the Wi ’s are unspecified. Indeed, it is easy to see that any arbitrary choice
of the Wi’s can be achieved by appropriate choice of the Xi’s. The respective Schur
complements of H ′

1 and H ′
2 with respect to H ′

[1,2,5,6][4,5,9,10] turn out to be

H̃1 =

(
0 W1 F33 0 W2

I∆′′ 0 0 0 0

)
, H̃2 =




0 W2

0 0
0 G11

0 W ∗
3

I∆′ 0


.
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Taking W1,W3,W4, and W5 equal to zero is obviously a minimal rank choice for
all three matrices. We have reduced the original problem to the simpler problem of
simultaneously minimizing the ranks of the three matrices(

F33 W2

W ∗
2 G11

)
, (F33 W2 ) ,

(
W2

G11

)
.

Reduction to Lemma 4.8 is completed.
In section 6 we shall use the following weakened form of Lemma 5.7, which has

better propagation properties.
Corollary 5.8 (propagation of internal inequalities of bordered matrices). Given

the notation of Theorem 1.1 and Observation 5.1, then there exists a matrix Z1 such
that

rank N ′(Z1) ≤ ∆̂ + rank R1, π(P (Z1)) ≤ ∆̂ + max{π, π′},
rank N ′′(Z1) ≤ ∆̂ + rank R2, ν(P (Z1)) ≤ ∆̂ + max{ν, ν′}.(5.35)

Corollary 5.8 follows directly from Lemma 5.7 and Observation 5.1.

5.6. Solvability of the Riccati equation. We end this section with a small
contribution connected to the theory of Lyapunov and Riccati equations (see [LR]).

Lemma 5.9. Given matrices A, B, and C of sizes α × α, α × β, and
β × β, respectively, with A and C hermitian, define

H =

(
A B
B∗ C

)
, r = rank

(
B
C

)
.

Then the possible inertias of matrices of the form P (Z) = A+BZ∗ +ZB∗ +ZCZ∗ ,
with arbitrary Z, form the septagon

π(A) − r ≤ π(P (Z)) ≤ min{α, π(A)},
ν(A) − r ≤ ν(P (Z)) ≤ min{α, ν(A)),

−ν(A) ≤ π(Z) − ν(P (Z)) ≤ π(A),
π(P (Z)) + ν(P (Z)) ≤ α.

Proof. This is an easy corollary of Theorem 1.1, using complementation on the
last two block coordinates of the bordered matrix(−A B Z

B∗ C I
Z∗ I 0

)
.

In [CG3] the values of n and n were determined for this case.
Corollary 5.10. The Riccati equation A+BZ∗+ZB∗+ZCZ∗ = 0 is solvable

if and only if max{ π, ν} ≤ r.
These results apply also for the Lyapunov or Stein equations: simply assume that

C or B is a zero matrix. We emphasize, however, that in the classical context of these
equations Z is assumed hermitian (at least), and then it is not clear whether this puts
additional restrictions on the set of inertias.

6. Some completion results for general band matrices. In this section, we
consider hermitian matrices with general block band or “staircase structure,” where
again the blocks may vary in size. We follow the method of Dym and Gohberg [DG],
which decomposes the completion process into a succession of simple steps, each
involving the completion of one bordered submatrix. Combining this procedure with
the results of section 5, we are able to draw several interesting conclusions:
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(I) In section 6.3 we identify certain classes of staircase hermitian matrices which
admit inertia-preserving completions; these are completions which inherit their inertia
values p and n from (possibly two different) specified blocks of the given partial
matrix P . Such completions are obviously minimal rank completions (see Theorem
6.2 and Corollaries 6.3 and 6.8). These results generalize the (scalar) band hermitian
completion results of the second author in [D6].

(II) In section 6.3 we consider block band or staircase matrices for which all
maximal specified hermitian submatrices are invertible. We show that such matrices
admit all the possible completion inertias consistent with Poincaré’s inequalities (see
Theorem 1.2) which includes inertia-preserving completions. These results generalize
the (scalar) band hermitian completion results of the second author in [D6].

(III) Not every partial matrix admits inertia-preserving completions. In section
6.4 we establish modest upper bounds on the minimal possible rank for hermitian
completions of staircase hermitian matrices.

6.1. The staircase matrix notation. In dealing with staircase partial matrices,
we shall adhere to the following notation and observations, which shall collectively be
referred to as the staircase notation.

(I) We recognize the bordered matrix of Theorem 1.1 in each pair (Ri and Ri+1)
of successive maximal hermitian submatrices. We therefore define the s bordered
partial submatrices Pi to be

Pi =

(
Ai Bi ?
B∗

i Ci Di

? D∗
i Ei

)
,

where these specified submatrices Ai, Bi, Ci, Di, Ei, i = 1, . . . , s, of R are

Ai = {am,l}ji+1−1
m,l=ji+1

, Bi = {am,l}ji+1−1, ki

m=ji, l=ji+1
, Ci = {am,l}ki

m,l=ji+1
,

Di = {am,l}ki, ki+1

m=ji+1, l=ki+1, Ei = {am,l}ki+1

m,l=ki+1.

As in the notation of Theorem 1.1, we observe that the Ri are the specified block
submatrices:

Ri =

(
Ai Bi

B∗
i Ci

)
, Ri+1 =

(
Ci Di

D∗
i Ei

)
,

and that each Ci is the overlap of Ri and Ri+1. The submatrices R1, C, and
R2 of the notation of Theorem 1.1 correspond to the submatrices Ri, Ci, and
Ri+1, respectively of each bordered submatrix Pi.

(II) We shall denote by Pi(Zi) the completions of Pi, using Zi in the right upper
block of Pi. We denote the inertias of Pi(Zi) by (π′

i, ν
′
i, δ

′
i).

(III) In dealing with the ith bordered submatrix Pi, the incremental ranks ∆′,∆′′, ∆̂,

and d′, d′′, d̂ defined in the notation of Theorem 1.1 and Observation 5.1 will be dis-
tinguished by the subscript i.

6.2. The diagonal completion formalism. (I) A diagonal (partial) comple-
tion R+ of an s-step staircase partial matrix R is an (s − 1)-step staircase partial
hermitian matrix obtained by completing all the s bordered matrices Pi of R. This
entails the addition of a matched pair of whole block diagonals alongside the spec-
ified band. In a diagonal completion the different bordered completions Pi(Zi) are
independent of each other, that is, the Zi do not overlap.
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(II) A standard procedure for completing a staircase matrix is by a succession of
diagonal completions. Let F denote a full hermitian completion of R. We may obtain
F via a chain of s + 1 staircase partial matrices,

R,R+, R++, . . . , F.(6.1)

Each matrix in (6.1) is obtained from its precursor via diagonal completion, and its
staircase pattern is reduced by one step. We shall distinguish between the relevant
submatrices Pi, Ci, Ri of each matrix in this chain by attaching to them the appro-
priate number of (subscript) plus signs.

(III) The N+1−st matrix (1 ≤ N ≤ s) in the above chain is called an N -diagonal
(partial) completion of R.

(IV) We will identify certain submatrices of R with their counterparts in R+.
For example, the completed bordered matrices Pi(Zi) of R will be identified with the
matrices R+i of R+. In addition, the maximal submatrices Ri of R will be identified
with the submatrices C+i of R+. The ordering of these matrices will always be from
top left to bottom right.

This technique of completing a hermitian scalar band matrix by adding successive
pairs of diagonals was developed by Dym and Gohberg in [DG]. This technique of
completing a hermitian scalar band matrix was later used in many papers, including
[D5], [D6], [DG], [EGL1], [EGL1], and [EL]. We shall use the more general staircase
or general block band approach of the appendix of [JR2].

In applying the bordered case (for example, Theorem 1.1) to sections of a band
matrix or the more general staircase matrices, the key concept is propagation. Those
properties which survive a single (Theorem 1.1) completion step will by induction sur-
vive the full completion process. Our results in this section are all based on properties
which propagate.

6.3. Inertia-preserving completions. We call an N -step completion R′ of R
inertia preserving if it satisfies the equations

maxi{ π(Ri)} = maxi {π(R′
i)}, maxi{ ν(Ri)} = maxi{ ν(R′

i)}.(6.2)

In particular, if F is a fully specified completion, then it is inertia-preserving if

max{ π(Ri)} = π(F ), max{ ν(Ri)} = ν(F ).(6.3)

Such a completion is necessarily a minimal rank completion.
Not every partial staircase matrix admits an inertia-preserving completion. In

fact, Example 6.2 will present an infinite sequence of partial staircase matrices whose
maximal specified submatrices all have rank 2, but all the full hermitian completions
are invertible.

Lemma 6.1 (propagation of inertia preservation). Given an s-step hermitian
staircase matrix R, using the notation of section 6.1, suppose that the blocks of R
satisfy these propagation equations:

Rank (B∗
i , Ci) = Rank Ci = Rank (Ci, Di)(6.4)

for each i = 1, 2, . . . , s. Then (using the notation of section 6.2) we have the following:
(i) There exists a one step inertia-preserving completion R+ of R for which

Rank (B∗
+i, C+i) = Rank C+i = Rank (C+i, D+i)(6.5)
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for each i = 1, 2, . . . , s− 1.
(ii) This completion R+ satisfies the kernel condition

Ker R+i ⊃ Ker (Ri ⊕ I) + Ker (I ⊕Ri+1).

Proof. The proof of (i) is a straightforward application of Lemma 5.6 repeated
s times. Equation (6.4) implies that each Pi fulfills the hypothesis of that lemma.
Therefore each Pi admits a completion Pi(Zi) which achieves simultaneously

rank P = max{π, π′}+ max{ν, ν′}, rank N ′ = rank R1, rank N ′′ = rank R2,

using the notation of (5.5) and (5.6). For Pi, the condition rank N ′′ = rank R2

translates into

Rank C+i = Rank (C+i, D+i).

For Pi+1, the condition rank N ′ = rank R1 translates into

Rank (B∗
+i, C+i) = Rank C+i.

Together this is precisely (6.5). The condition π(P ) = max{π, π′} of Lemma 5.4
applied to each Pi will establish

maxi {π(Ri)} = maxi {π(R+i)}.
Part (ii) follows from part (i), (3.3), and Lemma 5.6.
We observe that (6.4) is a propagation condition: Lemma 6.1 shows that this

condition can be made to survive a single diagonal completion. Repeating Lemma 5.9
s times along the chain (6.1), we get the following.

Theorem 6.2 (inertia-preserving completions). Given an s-step hermitian stair-
case matrix R fulfilling the propagation (6.4),

rank (B∗
i , Ci) = rank Ci = rank (Ci, Di).

Then R admits an inertia-preserving fully specified completion F for which

p = π(F ) = max{πi}, n = ν(F ) = max{νi}, r = rank F = max{πi}+ max{νi}.
Moreover, for this completion F , Ker F contains all the appropriate kernels of the
form Ker (I ⊕Ri ⊕ I).

Theorem 6.2 and its proof are largely a block generalization of Dancis’ proof in
[D6]. The Poincaré inequalities show that the expressions in the theorem are lower
bounds for p, n, r. Theorem 6.2 shows that they are achieved.

Corollary 6.3. If all the matrices, Ci and Ri in a staircase matrix R, have
the same rank r, then there exists a hermitian completion F with rank r.

Proof. The condition that all the Ci and Ri matrices have the same rank
implies (6.4) and hence Theorem 6.2 is applicable.

This corollary was established for (hermitian and non-hermitian) completions of
hermitian and non-hermitian, respectively, band matrices in [EL].

An important special case where Theorem 6.2 is applicable is when all the Ci

submatrices of R are invertible.
Corollary 6.4 (inertia-preserving completions). Given an s-step staircase

hermitian matrix R. Suppose that the s submatrices Ci of R are all invert-
ible. Then R admits an inertia-preserving completion F whose kernel contains all the
appropriate kernels of the form Ker (I ⊕Ri ⊕ I).

Proof. Since all the Ci are invertible, the propagation (6.4) holds and Theorem
6.2 applies.
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6.4. Incremental bounds on inertia growth. In general, even assuming a
minimal rank completion in each step, the ranks of the matrices in (6.1) may increase.
At present, we cannot compute the minimal rank for the completions of a general
staircase matrix or even for a general scalar band matrix. The reason is lack of
propagation: the inertias of Pi(Zi) do not depend exclusively on the inertias of Ri

and Ci, as is evident from Theorem 1.1. However, use of Corollary 5.8 will enable us
to obtain an upper bound on the inertia increase.

In the next observation and lemma, the B+i, C+i, and D+i matrices are the Bi, Ci,
and Di matrices of a diagonal completion R+; the d+i will be

d′+i = rank [B∗
+i, C+i]− rank C+i, d′′+i = rank [C+i, D+i]− rank C+i,

and d̂+i = max{d′+i, d
′′
+i},

which is consistent with our general notation.
Observation 6.1. Let R be a staircase matrix, together with the notation

of sections 6.1 and 6.2. Suppose that R+ is a diagonal completion of R for
which all bordered completions Pi(Zi) satisfy the simultaneous minimal rank comple-
tion Lemma 5.7. Then the incremental ranks of the bordered submatrices of R and
of R+ are related via

d′+i = ∆′′
i and d′′+i−1 = ∆′

i.(6.6)

Proof. We have the following connections between R-related and R+-related
objects:

B+i = (Bi Zi ) , C+i =

(
Ci Di

D∗
i Ei

)
= Ri+1,

N ′′
i (Zi) = (B+i C+i )∗ , d′+i = rank [B∗

+i, C+i] − rank C+i.

From Lemma 5.7 we note that

rank N ′′
i (Zi) = rank Ri+1 + ∆′′

i .

Combining these equations yields d′+i = ∆′′
i . The other equation may be similarly

observed.
Lemma 6.5 (propagation of incremental ranks). Let R be an s-step hermitian

staircase matrix. We use the notation

d̂i = max{rank[Ci, Di], rank[B∗
i , Ci]} − rankCi,

d̂+i = max{rank[C+i, D+i], rank[B∗
+i, C+i]} − rankC+i,

which is consistent with our bordered and band matrix notation. Set d̂ = max{d̂i},
d̂+ = max{d̂+i}. Then there exists a diagonal completion R+ of R for which

d̂ + max {πi} ≥ max {π+i}, d̂ + max {νi} ≥ max {ν+i}, d̂ ≥ d̂+.(6.7)
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Proof. The proof is a straightforward application of Corollary 5.8. The definition
of d̂ and (6.6) implies that d̂ ≥ ∆̂i. Therefore for each Pi there exists a completion
Pi(Zi) which achieves simultaneously

π(P (Z)) ≤ d̂ + max{π, π′}, ν(P (Z)) ≤ d̂ + max{ν, ν′}(6.8)

and

rank N ′ ≤ d̂ + rank R1, rank N ′′ ≤ d̂ + rank R2.(6.9)

The last inequalities (6.9) translate to d′+i ≤ d̂ and d′′+i ≤ d̂, which repeated over all

i implies that d̂+ ≤ d̂. The former inequalities (6.8) prove the rest of (6.7).
We observe that inequalities (6.7) combine to form a propagation condition:

Lemma 6.5 shows that these inequalities may be transferred from a staircase ma-
trix to a diagonal completion. Repeating Lemma 6.5 until R is fully completed, we
get the following.

Theorem 6.6 (incremental bounds on inertia growth). Given an s-step hermi-
tian staircase matrix R (together with the notation of section 6.1), then there exists
a hermitian completion F of R whose inertia (p, n, d) satisfies

p ≤ s max{d̂i}+ max{π(Ri)}, n ≤ s max{d̂i}+ max{ν(Ri)}.

Corollary 6.7. Given a hermitian staircase matrix R (together with the
notation of section 6.1), suppose there is an integer t such that

rank Ri ≤ 2t + 1 + rank Ci and rank Ri+1 ≤ 2t + 1 + rank Ci, i = 1, 2, . . . , s,

then there exists a hermitian completion F of R such that

π(F ) ≤ st + max{π(Ri)}, and ν(F ) ≤ st + max{ν(Ri)}.

Proof. The hypotheses and (5.3) provide rank Ci + 2d̂i ≤ rank Ri ≤ 2t + 1 +

rank Ci, hence 2d̂i ≤ 2t+1. Since both t and d̂i are integers, this inequality becomes
d̂i ≤ t. In this way, one sees that t ≥ max{d̂i} and the theorem is applicable.

The case t = 0 is of particular interest.
Corollary 6.8. Given a hermitian staircase matrix R (together with the

notation of section 6.1), suppose that

rank Ri ≤ 1 + rank Ci and rank Ri+1 ≤ 1 + rank Ci, i = 1, 2, . . . , s;

then there exists an inertia-preserving hermitian completion F of R .
The fact that Theorem 6.6 is best possible without additional hypotheses is

demonstrated by the next example.

Example 6.2. Consider the matrix R(U) = ( 0 I + U
I + U∗ 0 ), where U is an

(s + 1) × (s + 1) strictly upper triangular matrix. We consider R(U) as a partial
s-step band matrix, in which U is unspecified. In the notation of Theorem 6.6, all
d̂i = 1 = π(Ri) = ν(Ri). Thus, by this theorem, we expect to find a completion with

p ≤ s + 1, n ≤ s + 1.(6.10)

However, since det R(U) = ±1, we have p + n = 2s + 2, hence (6.10) can only be
satisfied with equality. In fact, using the extended Poincaré inequalities, we see that
every completion R(U) satisfies (6.10) with equality.
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6.5. Proof of Theorem 1.2: A staircase of invertible maximal hermitian
submatrices. Throughout this section we shall assume that R is an s-step staircase
partial matrix with all maximal submatrices Ri invertible. In this case, all inertias
compatible with Poincarés inequalities are achievable with a hermitian completion.

First we present the minimal-rank inertia-preserving case as the next lemma.
Lemma 6.9 (an inertia-preserving lemma). Given an s-step staircase hermitian

matrix R (together with the notation of section 6.1), suppose that each of the maximal
submatrices R1, R2, . . . , Rs of R is an invertible matrix. Then there is a hermitian
completion F of R such that

π(F ) = Max{π(Ri), i = 1, 2, . . . , s} and ν(F ) = Max{ν(Ri), i = 1, 2, . . . , s}
and such that

Ker F contains Ker R1 + Ker R2 + . . . + Ker Rs.

Proof. We use Corollary 5.10 s times as we construct an inertia-preserving
diagonal completion R+ of R. Then R+ will satisfy the hypotheses of Corollary
6.4, which will produce the desired hermitian completion F with π(F ) = π(F ) =
Max{π(Ri)} and ν(F ) = Max{ν(Ri)}.

Proof of Theorem 1.2. We will use Corollary 5.5 repeatedly to construct successive
diagonal completions with invertible maximal matrices and increasing inertias.

Construction of the (first) diagonal completion (R+).
Case 1. If the size of Pi(Zi) < p+r, then Corollary 5.5 is used to choose a matrix

Zi such that Pi(Zi) is an invertible matrix with

π(Pi(Zi)) ≤ p, ν(Pi(Zi)) ≤ n,

π(Pi(Zi)) ≥ max{π(Ri), π(Ri+1)}, ν(Pi(Zi)) ≥ max{ν(Ri), ν(Ri+1)}.
Case 2. If the size of Pi(Zi) ≥ p+r, then Corollary 5.5 is used to choose a matrix

Zi such that

In (Pi(Zi)) = (p, n, ∗).
Depending only on its size, Pi(Zi) may be an invertible or a noninvertible matrix.

In both cases, the new {C+i} are the previous maximal submatrices {Ri}, and
hence all the new {C+i} of R+ are invertible matrices.

If Case 2 occurred at least once, then the desired positivity and negativity has
been achieved. Then Corollary 6.4 applied to R+ will provide the desired full
completion F , with In F = (p, n, ∗).

If no Case 2 has occurred, only Case 1, then all the maximal submatrices of R+

are invertible.
In this manner, one constructs a number of successive diagonal completions until

Case 2 is used. With each successive diagonal completion, the values of the positivity
and negativity grow. At some point, at least one of the new π(Ri) and one of the new
ν(Rj) (for the latest successive diagonal completion R+ . . .+) will reach the desired
values p and n . Then π(R+ . . .+) = p and ν(R+ . . .+) = n. This will occur when
Case 2 is used, possibly sooner. With the possible exception of the current diagonal
completion, all the maximal specified submatrices of the various successive diagonal
completions were invertible (since only Case 1 was used). Therefore all the Ci of the
current diagonal completion were the invertible maximal submatrices of the previous
diagonal completion. Therefore Corollary 6.4 is applicable and it completes the proof.
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Abstract. The introduction of cone inclusion numbers allows one to view seemingly different
problems from one general perspective. Using this perspective several new results are obtained, such
as: (a) the distance constant for Tn ⊗ Tn, where Tn denotes the algebra of n × n strictly upper
triangular matrices, is bounded above by dlog2 ne + 1; (b) for every natural number n there exists
an n×n partial correlation matrix for which the largest possible minimal eigenvalue of a completion

is 1 −
√

bn
2
c; and (c) the lowest possible entry-wise supremum norm among all n× n matrices that

induce a norm one Schur map is 1√
n

.

Key words. cones of matrices, matrix completion, positive semidefinite matrices, distance
constants, sparsity patterns

AMS subject classifications. 15A48, 15A57, 05C50, 47D25, 47D20, 15A60
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1. Introduction. An inclusion number may, in its full generality, be introduced
as follows: given a cone C in a vector space V , a set S ⊆ V and a point a ∈ V , define

α = inf{λ ∈ R : S + λa ⊆ C }.(1)

It is our goal to bring some seemingly different problems together under the notion
of cone inclusion number with closely related choices for V , C, a, and S. In fact, we
will restrict our attention to the following setting. The Hilbert space V consists of
Hermitian matrices with a certain sparsity pattern, C is a cone derived from the cone
of positive semidefinite matrices, a is the identity matrix, and S is the intersection
of a second cone Ĉ with the affine space consisting of matrices with 1’s on the main
diagonal. The cone inclusion numbers that we study measure in some sense how the
two cones C and Ĉ compare in size. (See Figure 1.)

Our starting point was the theory of distance constants and, in particular, the
still unresolved question posed by K. R. Davidson [13]: Is there a uniform bound on
the distance constants for Tn ⊗ Tn, n ∈ N? Here Tn denotes the algebra of strictly
upper triangular matrices. It was not a big step to consider Hermitian variations
of these types of problems. Let us elaborate on a question that has been posed by
C. R. Johnson as a natural follow-up on the results in [19].

It is known that a partially defined matrix may fail to have a positive semidefinite
completion even though all of its specified principal submatrices are positive semidefi-
nite. Recall that a partially defined matrix (or partial matrix) is a matrix with some of
its entries specified (real or complex, in our case) numbers and the remaining entries
specified free variables (over R or C). A completion of a partially defined matrix is
obtained by choosing (real or complex) numbers for the free variables, resulting in an
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Fig. 1. The cone inclusion number.

ordinary matrix. An example of a partially defined matrix with positive semidefinite
specified principal submatrices, but without a positive semidefinite, completion is


1 1 ? −1
1 1 1 ?
? 1 1 1
−1 ? 1 1


 .(2)

Indeed, all the specified principal submatrices are 2 × 2 matrices with 1’s on the
diagonal, ±1 off the main diagonal, and are thus all positive semidefinite. However,
it is easy to see (see [19]) that (2) does not have a positive semidefinite completion.

It is natural to ask how “bad” the situation can be; more specifically, let A be
an n × n partial correlation matrix, i.e., a partial matrix with the property that all
its specified principal submatrices are correlation matrices. A correlation matrix is a
matrix which is positive semidefinite, and with 1’s on the diagonal. Consider

ν(A) := max
B=B∗completion of A

λmin(B),

where λmin(B) denotes the smallest eigenvalue of the Hermitian matrix B. We study
the minimum value that ν(A) can attain as A varies over the n×n partial correlation
matrices. As we shall see, the lowest possible ν(A) appears as a cone inclusion number.

We shall provide the following answer to this question. For r ∈ R, let brc (dre)
denote the largest (smallest) integer smaller (greater) or equal to r.

Theorem 1.1. For every n ∈ N there exists an n × n partial complex valued
correlation matrix A so that

max
B=B∗completion of A

λmin(B) = 1−
√
bn
2
c.(3)

When n = 2m or 2m + 1 for some m ∈ N, the partial matrix may be chosen to be
real.

The partial matrix in (2) provides an illustration of the statement of Theorem 1.1
for the case n = 4: the completion of (2) with largest minimal eigenvalue is obtained
by putting ? = 0, and this largest minimal eigenvalue equals 1−√2 (this computation
may be found in [28]).
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We will also prove a partial converse.
Theorem 1.2. If A is an n×n partial correlation matrix A such that all specified

submatrices of A have all their eigenvalues ≥ 1− 1
n−1 , then by choosing the unknown

entries to be zero one obtains a positive semidefinite matrix Ac which is the sum
of rank one positive semidefinite matrices with the same sparsity pattern as Ac. In
particular, A has a positive semidefinite completion.

As a corollary of Theorems 1.1 and 1.2 we may state that

2− n ≤ min ν(A) ≤ 1−
√
bn
2
c,(4)

where the minimum is taken over all n×n complex partial correlation matrices A. In
our examples we have not encountered a partial correlation matrix A such that

ν(A) < 1−
√
dn
2
e,

and in fact, we conjecture that this cannot occur (for the exact statement, see Con-
jecture 4.10). In other words, we conjecture that when a partial correlation matrix
has all specified submatrices ≥ (1 −√1/bn/2c)I, then A has a positive semidefinite
completion. Here I denotes the identity matrix.

There are many other specific instances of cone inclusion numbers, which all
represent in some sense a worst case scenario. They include questions such as:

1. What is the lowest minimal eigenvalue among the spectra of graphs with n
vertices? (See Theorem 3.1.)

2. What is the largest distance constant among partial matrices of size n? (An
upper bound is given in Corollary 5.3.)

3. How far off (in the sense of adding a multiple of the identity matrix) can
an n × n correlation matrix with a given sparsity pattern be from a sum of positive
semidefinite rank 1’s with the same sparsity pattern? (See Corollary 2.2.)

4. What is the lowest possible entry-wise supremum norm among all n × n
matrices that induce a norm one Schur map? (See Corollary 4.3.)

Our paper is organized as follows. In section 2 we introduce the cone inclusion
numbers we study and obtain some of their basic properties. These include a duality
result showing, for instance, that question 3 above is equivalent to finding min ν(A),
where A ranges over all n × n partial correlation matrices (see Corollary 2.2). In
section 3 we address the question of finding extreme values for some of the cone
inclusion numbers and thereby obtain Theorem 1.2. In section 4 we focus on the cone
inclusion numbers most pertinent to the positive semidefinite completion problem and
so prove Theorem 1.1. In sections 5 and 6, we turn to the contractive and Toeplitz
case, respectively.

2. Cone inclusion numbers. The notions we introduce involve cones in matrix
space. The book [6] may be used as a general reference on such cones. All notions
defined below may be interpreted as notions in real or complex matrix space (i.e.,
in R

n×n or C
n×n). In this section the statements are the same in either setting,

making it unnecessary to distinguish between the two. We will therefore suppress any
reference to the underlying field. In subsequent sections we will, however, occasionally
distinguish between the two cases. We will indicate this by attaching to the notations
a subscript or superscript R or C. For instance, HC

n, qR(P ), etc. Note that a Hermitian
matrix in R

n×n is just a symmetric matrix.
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The sparsity pattern (location of required zeroes) of an n×n Hermitian matrix can
be indicated in two ways. The first is via an undirected graph with vertices {1, ..., n}
which has an edge between vertices i and j (i 6= j) precisely when the entries (i, j)
and (j, i) are not required to be zero. We will never require the diagonal entries to be
zero; however, the graph does not have edges {i, i}, i ∈ {1, ..., n}. The second way is
via a subset P of {1, ..., n} × {1, ..., n}, where (i, j) and (j, i) belong to P if and only
if the entries (i, j) and (j, i) are not required to be zero. The pairs (i, i), i ∈ {1, ..., n}
always belong to P . Whether or not we represent the sparsity pattern via a graph or
via a subset of {1, ..., n}×{1, ..., n}, we will refer to it as the pattern of the matrix/set
of matrices. We will use the graph and the subset of {1, ..., n}×{1, ..., n} to represent
the pattern interchangeably.

A clique K of a pattern P is a subset of the form K = I× I of P . In graph terms
a clique corresponds to a full subgraph induced by a subset of the vertices. We say
that the clique K of P is maximal in P when K ⊆ L ⊆ P with L a clique implies
that K = L. When A is an n × n matrix A = (Aij)

n
i,j=1 and K = I × I, then A|K

denotes the |I| × |I| principal submatrix

A|K = (Aij)i,j∈I = (Aij)(i,j)∈K .

Let Hn denote the Hilbert space over R consisting of n× n (real or complex; see
discussion above) Hermitian matrices with inner product

〈A,B〉 = trace(AB),

where traceM denotes the trace of the square matrix M . For a pattern P we introduce
the subspace

HP = {H ∈ Hn : Hij = 0 for (i, j) 6∈ P }.
Given a convex cone C in a Hilbert space H (i.e., C+C ⊆ C and λC ⊆ C for λ ≥ 0)

and a subspace W , there are at least six cones in W which one can associate with
C, namely, (i) the intersection of C and W ; (ii) the orthogonal projection of C onto
W ; (iii) the cone generated by the extreme rays of C that lie in W ; and (iv), (v), and
(vi) the duals of (i), (ii), and (iii) in W . Recall that the dual of a cone C̃ in a Hilbert
space H̃ is given by C̃∗ = {D ∈ H̃ : 〈C,D〉 ≥ 0 for all C ∈ C̃ }. We will study the case
where C = PSD := {H ∈ Hn : H ≥ 0 } consists of the n × n positive semidefinite
matrices, and where W = HP ⊆ Hn. Since PSD∗ = PSD (i.e., PSD is self-dual)
the procedure above yields at most four different cones in HP as follows.

For a pattern P we define the following cones:

AP = {A ∈ HP : A|K ≥ 0 for all cliques K ⊆ P },
XP = {X ∈ HP : X ≥ 0 },
X ∗

P = {Y ∈ HP : there is a W ∈ Hn 	HP such that Y + W ≥ 0 },

A∗
P =

{
B ∈ HP : B =

nB∑
i=1

Bi where Bi ∈ XP and Bi has rank 1 for all i

}
.

All four cones are closed. For the first three this follows trivially. In order to show
that A∗

P is closed, one may use an argument similar to the one in the proof of [36,
Lemma 1.3].

Note that Hn 	 HP = H⊥
P = {H ∈ Hn : Hij = 0 for (i, j) ∈ P }, so that

members of X ∗
P may be viewed as (partial) matrices which have a positive semidefinite
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completion. The cones XP and X ∗
P are one another’s dual in HP , the proof of which

essentially appears independently in [33] and [34]. It may also be viewed as an instance
of the general rule that for a closed convex cone C,

(C ∩W )∗ = PW (C∗),
where PW is the orthogonal projection on the subspace W in H, ∗ in the left-hand
side denotes the dual in W , and ∗ in the right-hand side denotes the dual in H. The
fact that AP and A∗

P are one another’s dual in HP is not hard to prove.
In general we have the following relationships:

A∗
P ⊆ XP ⊆ X ∗

P ⊆ AP .

Equality between XP and X ∗
P holds only in case the maximal cliques of P are disjoint,

and in that case all four cones are equal. Equality betweenA∗
P and XP (or equivalently

X ∗
P and AP ) holds if and only if P is chordal. Recall that an undirected graph P is

called chordal when every cycle

{i1, i2}, {i2, i3}, ..., {im−1, im}, {im, i1}
(with ik 6= il for k 6= l) with length m ≥ 4 consisting of edges in P has a chord,
i.e., there is an edge {ip, iq}(6= {i1, im} ) with q > p + 1 in P . The equivalence of
AP = X ∗

P and P being chordal was obtained in [19]. The equivalent statement that
A∗

P = XP if and only if P is chordal was subsequently stated as such in [34]. In order
to go beyond the chordal case, the extreme rays of XP were studied in [1], [22], [21],
and [37].

We have now laid the groundwork for introducing our cone inclusion numbers.
For any pair of cones C1 and C2 from A∗

P ,XP ,X ∗
P , and AP we define

α(C1, C2) = min{λ : C1D + λI ⊆ C2 },(5)

where for any set C ⊆ Hn we denote

CD = {A ∈ C : Aii = 1, i = 1, ..., n }.
Figure 2 illustrates the notion.

It is not hard to see that the number α(C1, C2) is well defined since C2 is closed, I
belongs to its interior (relative to HP ), and C1D is compact. Furthermore, note that
the numbers α(C1, C2) are only of interest if C1 6⊆ C2. Clearly, when C1 ⊆ C2 then
α(C1, C2) ≤ 0. But strict inequality cannot occur, since the matrix E consisting of
all 0’s, except for 1’s on the main diagonal and in one symmetrically located pair of
entries, can easily be seen to belong to A∗

P and to have the property that E−εI 6∈ AP

for any ε > 0. So, α(A∗
P ,AP ) = 0. But then α(C1, C2) = 0 follows also for the other

possibilities of C1 ⊆ C2. Thus, in all cases α(C1, C2) ≥ 0.
We next present different characterizations for α(C1, C2). For any set C ⊆ Hn we

denote

CN = {A ∈ C : traceA = 1 },
and ∂C denotes the topological boundary of C. Furthermore, to relate the result to
convex optimization terminology, let δ∗(x|C) = sup{ 〈x, c〉 : c ∈ C } denote the support
function of a convex set C, and let δ(x|C) = {0 x∈C

∞ x6∈C denote the indicator function
(see [35]). In the next proposition we exclude the trivial case P = { (i, i) : i = 1, ..., n }.

Proposition 2.1. Consider C1, C2 ∈ {A∗
P ,XP ,X ∗

P ,AP }. Then α(C1, C2) is equal
to
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Fig. 2. Definition of α(C1, C2).

(i) −minA∈C1D minX∈C∗
2N 〈A,X〉.

(ii) p
1−p , where p = maxY ∈∂C2D minX∈C∗

1N 〈Y,X〉.
(iii) −minH∈HP

−δ∗(H| − C∗2N ) + δ(H|C1D).
(iv) α(C∗2 , C∗1 ).
Proof.

(i) If we denote the number in (i) by α, we obtain that

min
A∈C1D

min
X∈C∗

2N
〈A + αI,X〉 = 0.

Consequently, for every A ∈ C1D and X ∈ C∗2 we have that 〈A + αI,X〉 ≥ 0. Thus
A + αI ∈ C2 for every A ∈ C1D. This yields α(C1, C2) ≤ α.
Conversely, since A + α(C1, C2)I ∈ C2 for every A ∈ C1D, we get that

min
A∈C1D

min
X∈C∗

2N
〈A + α(C1, C2)I,X〉 ≥ 0.

Consequently, α ≤ α(C1, C2).
(ii) First note that p ≤ 1, since one may always choose X = 1

nI. Since P 6=
{ (i, i) : i = 1, ..., n }, we have that ∂C2D contains only elements Y that have a nonzero
off-diagonal entry (because I belongs to the interior of C2). But then for every such
Y , an X ∈ C1N can be found so that 〈X,Y 〉 < 1. Since ∂C2D is compact, we thus
obtain that p < 1.

Suppose that the minimum in (i) is attained at Aopt ∈ C1D. Thus

min
X∈C∗

2N
〈Aopt + α(C1, C2)I,X〉 = 0.

So Aopt + α(C1, C2)I ∈ C2, and for every ε > 0 there is an X ∈ C∗2N such that

〈Aopt + α(C1, C2)I − εI,X〉 < 0.

Thus Aopt + α(C1, C2)I ∈ ∂C2, and thus (use that α(C1, C2) ≥ 0),

Y :=
1

1 + α(C1, C2) (Aopt + α(C1, C2)I) ∈ ∂C2D.
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Consequently, since Aopt ∈ C1,

p ≥ min
X∈C∗

1N
〈Y,X〉 ≥ α(C1, C2)

1 + α(C1, C2) .

Conversely, suppose that the maximum in (ii) is attained at Yopt ∈ ∂C2D. Then
Yopt − pI ∈ C1. So

1

1− p
(Yopt − pI) ∈ C1D.

Let X ∈ C∗2N so that 〈Yopt, X〉 = 0, which is possible since Yopt ∈ ∂C2. Then

−α(C1, C2) ≤
〈

1

1− p
(Yopt − pI), X

〉
=
−p

1− p
.

(iii) This follows immediately from (i) and the observation that (iii) is equal to

− min
H∈C1D

−δ∗(H| − C∗2N ).

(iv) Use (i) and the observation that, for positive semidefinite diagonal matrices
D with

∑
D2

ii = 1, we have that 〈A,DXD〉 = 〈DAD,X〉. Furthermore, if Aii = 1
then trace(DAD) = 1. Conversely, if X ≥ 0 and traceX = 1 then X can be rewritten
in the form DAD, with A and D as above. These observations allows one to simul-
taneously replace in (i) the set C1D by C1N and C∗2N by C∗2D without affecting its
value.

Remark. Proposition 2.1 is valid in more general cases. Analyzing the proof, one
may check that, for instance, (i) and (iii) are valid when C1D and C∗2N are compact
and C∗2 \ {0} ⊆ {A : traceA > 0 }. Part (iv) is valid for any pair of cones that have,
in addition, the property that one can carry out the diagonal scaling conversion as
performed in the proof of (iv). To avoid a cumbersome statement, we chose to present
the statement as above. It is easy to check, when necessary, whether the proof applies
to other cones of the reader’s interest.

The numbers α(C1, C2) may be further interpreted in terms of eigenvalues by
using the following observations. When M = M∗ we let λmin(M) denote the smallest
eigenvalue of M . For M ∈ HP it is not hard to prove that

minA∈A∗
P
N 〈A,M〉 = minL×L⊆P λmin(M |L× L)

= “smallest minimal eigenvalue among all principal
submatrices of M that lie in the pattern P .”

(6)

When the number in (6) is nonnegative we say that M is a partial positive semidefinite
matrix with respect to P . Furthermore,

minA∈XPN 〈A,M〉 = maxW∈Hn	HP
λmin(M + W )

= “ the largest possible minimal eigenvalue of a completion
of M with respect to the pattern P .”

(7)

This consequence of the Hahn-Banach separation theorem is a useful fact in some
optimization problems and appears implicitly in the optimality conditions in [33] (see
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also [8, Section 1.6]). When the number in (7) is nonnegative we say that M has a
positive semidefinite completion with respect to P . Lastly,

min
A∈X∗

P
N
〈A,M〉 = λmin(M),(8)

which when nonnegative means that M is positive semidefinite. The inequality ≥ in
(8) follows immediately from M ≥ λmin(M)I, while the inequality ≤ may be obtained
by choosing A = PHP

(vv∗), where v is a normalized eigenvector of M at λmin(M).
As an illustration of how one may apply Proposition 2.1 we state the following

corollary.
Corollary 2.2. Let P be a pattern and let ν(·) be as defined in the introduction.

Then

min
A∈APD

ν(A) =(9)

− max
X∈XPD

min
{
λ : ∃yi ∈ F

n such that λI + X =
∑

yiy
∗
i and supp yiy

∗
i ⊆ P

}
,

where F = R or C.
Proof. Note that the left-hand side of (9) equals −α(AP ,X ∗

P ) and the right-hand
side equals −α(XP ,A∗

P ). Now apply Proposition 2.1(iv).
Note that the right-hand side of (9) corresponds to problem 3 in the introduction.
We will return to the computation of α(C1, C2) for specific patterns in the following

sections. In particular, we are interested in determining which patterns P give extreme
cases.

Let us end this section with the observation that the number α(X ∗
P ,XP ) is con-

nected to the smallest eigenvalue of the spectra of the graph P . Recall that the
adjacency matrix of an undirected graph is a matrix which has a one in the entry
(i, j) if vertex i is connected to vertex j, and the entry is zero otherwise. For a graph
P we denote the adjacency matrix by AP . With this notation we get the following
result.

Theorem 2.3.

α(X ∗
P ,XP ) = −λmin(I + AP ),(10)

where AP is the adjacency matrix of the graph P .
Proof. Let α = −λmin(I + AP ). This is a lower bound for α(X ∗

P ,XP ), since
I + AP ∈ X ∗

PD, and for ε > 0 we have (α − ε)I + I + AP 6∈ XP . For the converse,
observe that by the Schur product theorem for positive semidefinite matrices the Schur
product between any matrix from X ∗

P with a matrix from XP is positive semidefinite
(see, e.g., [34, Theorem 2.1]). In particular, this means that for any C ∈ X ∗

PD we get

C ◦ (I + AP + αI) = C + αI ∈ XP .

Thus, α(X ∗
P ,XP ) ≤ α.

If P is a chordal graph we have the following corollary, taking into account that
A∗

P = XP and AP = X ∗
P in this case.

Corollary 2.4. Let P be a chordal pattern. Then

α(AP ,A∗
P ) = α(AP ,XP ) = α(X ∗

P ,A∗
P ) = −λmin(I + AP ),

where AP is the adjacency matrix of the graph P .
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3. Extreme patterns. In this section we will consider the following problem.
Given a dimension n and a combinationM,N of cone types withM∈ {A,X ∗ } and
N ∈ {X ,A∗ }, which pattern(s) P ⊆ { 1, . . . , n}×{1, . . . , n } yields the highest values
for α(MP ,NP )?

In what follows, the complete bipartite graph will appear several times. The com-
plete bipartite graph Km,n is the graph whose vertex set consists of m + n vertices.
The vertices can be divided in two sets, V1, V2, consisting of m and n vertices, re-
spectively, and for each vertex in V1 there is an edge to each vertex in V2, and Km,n

has no other edges. The complete bipartite graph Kn,n is extreme in the sense that
it contains the maximal number of edges among the graphs with 2n vertices without
any triangles (i.e. all their maximal cliques are of size 2); this is a part of Turan’s
theorem (see, e.g., [7, Chapter VI]).

We first consider the cone inclusion number α(X ∗
P ,XP ). In this case we are

in the fortunate situation where Theorem 2.3 gives α(X ∗
P ,XP ) for every pattern P .

This reduces the proof of the following theorem to computing the smallest minimal
eigenvalue of all n× n adjacency matrices.

Theorem 3.1. For any pattern P ⊆ { 1, . . . , n} × {1, . . . , n },

α(X ∗
P ,XP ) ≤

√
bn
2
c · dn

2
e − 1.(11)

Equality holds if and only if P = Kbn
2 c,dn

2 e.
Proof. The inequality follows from Theorem 2.3 and Proposition 2 of [10], which

gives the lower bound of the minimal eigenvalue of adjacency matrices of simple graphs
on n vertices.

The following proposition gives an upper bound of α(AP ,A∗
P ), and also provides

a proof of Theorem 1.2.
Proposition 3.2. Let P be a pattern in { 1, ..., n } × { 1, ..., n }. Then

− min
A∈APD

min
B∈APN

〈A,B〉 = α(AP ,A∗
P ) ≤ n− 2.(12)

Proof. Let A = (aij) ∈ APD. Then for i 6= j we have that |aij | ≤ 1. Let Eij

denote the matrix with a 1 in position (i, j) and 0 elsewhere. Then

A+ (n− 2)In =
∑
i<j

(|aij |(Eii +Ejj) + aijEij + ajiEji) +

n∑
i=1


n− 1−

∑
j 6=i

|aij |

Eii.

Thus we have written A + (n − 2)In as the sum of positive semidefinite rank one
matrices with support in P . Consequently, A + (n − 2)In ∈ A∗

P , so by definition
α(AP ,A∗

P ) ≤ n− 2.
Note that we in fact showed that

α(AP ,DDP ) ≤ n− 2,

where DDP is the cone of all diagonally dominant matrices in HP . Clearly, DDP ⊆
A∗

P . Moreover, for any A ∈ HP ,

min{λ : A + λI ⊆ DDP } = max
i


−|Aii|+

∑
j 6=i

|Aij |

 .
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Proof of Theorem 1.2. Let A be as in the statement of Theorem 1.2. Then
X := (n−1)A−(n−2)I ∈ APD. Thus by Proposition 3.2 we have that (n−1)A ∈ A∗

P ,
yielding that (n − 1)A =

∑m
i=1 Yi for some positive semidefinite rank one Yi’s with

sparsity pattern P . Thus A = 1
n−1

∑m
i=1 Yi, which is a sum of positive semidefinite

rank one’s with sparsity pattern P .
The current knowledge of the extreme patterns for α(MP ,A∗

P ), with M ∈
{A,X ∗ }, can then be summarized in the following theorem. The k × m matrix
with one in every entry is denoted by Jk×m.

Theorem 3.3. Let M be any of the two cone types A and X ∗. For any pattern
P ⊆ { 1, . . . , n} × {1, . . . , n } (n ≥ 2),

α(MP ,A∗
P ) ≤ n− 2.(13)

When P = Kk,m with k + m = n, we have

α(MP ,A∗
P ) =

√
km− 1 ≤

√
dn
2
e · bn

2
c − 1.(14)

Proof. The first statement of the theorem follows from Proposition 3.2.
To simplify notation let β =

√
km. Let(
Ik F ∗

F Im

)
∈ AP .

Then, by an argument similar to the proof of Proposition 3.2, one can see that(
Ik F ∗

F Im

)
+ (β − 1)

(
Ik 0
0 Im

)

can be written as a sum of rank one positive semidefinite matrices with the specified
pattern. This gives the inequality

α(X ∗
P ,A∗

P ) ≤ α(AP ,A∗
P ) ≤

√
km− 1.

The fact that these are equalities follows by putting F = Jkm.
Note that from Theorem 3.3 we may conclude that the highest values for

α(AP ,A∗
P ) and α(X ∗

P ,A∗
P ) = α(AP ,XP ), with P ⊆ { 1, ..., n } × { 1, ..., n }, are O(n).

The exact values lie between
√dn2 e · bn2 c − 1 and n− 2.

For triangle free graphs it can be seen that the number
√dn2 e · bn2 c − 1 is the

extreme value of α(AP ,XP ) = α(X ∗
P ,A∗

P ) as follows. Recall that a graph is called
triangle free if it does not contain any cliques of size 3 (or higher).

Theorem 3.4. If P is a triangle free graph, then α(AP ,XP ) = λmax(AP )− 1.
Proof. Let B ∈ APD. Then, obviously, |B| ≤ AP + I element wise. By a

theorem of Ky Fan (see, e.g., [23, Theorem 8.2.12]), and the fact that AP and B are
Hermitian, it follows that every eigenvalue λ of B satisfies the inequality−λmax(AP ) ≤
λ − 1 ≤ λmax(AP ). This implies that B + (λmax(AP ) − 1)I ∈ XP , which yields
α(AP ,XP ) ≤ λmax(AP )− 1.

Since P is triangle free, I −AP ∈ APD and λmin(I −AP ) = 1− λmax(AP ).
Corollary 3.5. If P is triangle free, then

α(AP ,XP ) = α(X ∗
P ,A∗

P ) ≤
√
dn
2
e · bn

2
c − 1.
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Equality is attained for P = Kbn
2 c,dn

2 e.
Proof. This follows by combining the proof of [11, Theorem 7.25] with Theo-

rem 3.4.
In the next section we turn our attention to the cone inclusion numbers

α(AP ,X ∗
P ) = α(XP ,A∗

P ).

4. Applications to matrix completion problems. In this section we will
present some computations of cone inclusion numbers α(AP ,X ∗

P ) for different types
of patterns P . These results have immediate interpretations in terms of positive
semidefinite matrix completion problems.

To simplify the notation in this section set

q(P ) = α(AP ,X ∗
P ) = α(XP ,A∗

P ),(15)

p(P ) =
q(P )

1 + q(P )
.(16)

By Proposition 2.1 we know that

q(P ) = − min
A∈APD

min
X∈XPN

〈A,X〉,(17)

which by (7) may be interpreted in terms of a matrix completion problem for partial
positive semidefinite matrices with pattern P . The interpretation is that any partial
positive semidefinite matrix with pattern P , and 1’s on the diagonal, has a completion
whose minimal eigenvalue is at least −q(P ). Moreover, there exists a partial positive
semidefinite partial matrix A with pattern P such that the largest possible minimal
eigenvalue of any completion of A is −q(P ).

It can also be shown that if A is a partial Hermitian matrix with pattern P , 1’s
on the diagonal, and the minimal eigenvalue of every specified principal submatrix
of A is greater or equal to p(P ), then A has a positive semidefinite completion. The
number p(P ) corresponds to the number p introduced in Proposition 2.1(ii).

The following theorem gives the value of q(P ) for a new class of patterns in the
positive semidefinite completion problem, which contains among others the complete
bipartite graphs Kn,n.

Theorem 4.1. Let P be the pattern associated with the matrix

M =

(
A C∗

C B

)
,(18)

where A = diag(A1, . . . , Am), B = diag(B1, . . . , Bn), where Ai = Jpi×pi
, 1 ≤ i ≤ m,

and Bi = Jk×k, 1 ≤ i ≤ n, p =
∑m

i=1 pi, and C = Jkn×p. If m ≤ n, then

qR(P ) ≤ qC(P ) = −λmin

(
A Jp×k

Jk×p Jk×k

)
.(19)

Proof. Start with an arbitrary partial correlation matrix, E, with pattern P . By
filling in zeros on all the entries corresponding to the entries outside the pattern in the
block diagonal matrix A, a new partial matrix, Ê, is obtained. Each of the maximal
specified principal submatrices of Ê is obtained by filling in zeros in a partial matrix
with pattern given by the matrix

X̃1 =

(
A Jp×k

Jk×p Jk×k

)
.(20)
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Since this pattern is chordal, it follows by Corollary 2.4 that none of the specified
principal submatrices of Ê has an eigenvalue less than λmin(X̃1). Since the new
partial matrix has a chordal pattern, it follows that

q(P ) = α(AP ,X ∗
P ) ≤ −λmin(X̃1).

Now we will construct complex matrices X ∈ APD, Y ∈ XPN such that 〈X,Y 〉 =
λmin(X̃1), i.e., we show that the above inequality in the complex case is in fact an
equality. Let us first assume that m = n.

Define the unitary matrices

Ûl = diag
(
Ip1

, e
2π(l−1)i

m Ip2
, e

2π(l−1)2i
m Ip3

, . . . , e
2π(l−1)(m−1)i

m Ipm

)
,

Ul = diag(Ûl, Ik), l = 1, ...,m.

Note that U1 = I.
Let Ỹ1 be a rank one positive semidefinite matrix with the properties that

〈X̃1, Ỹ1〉 = λmin(X̃1) and trace(Ỹ1) = 1. Write

Ỹ1 =

(
Ŷ11 Ŷ ∗

21

Ŷ21 Ŷ22

)
,

using the same block decomposition of Ỹ1 as of X̃1. Define matrices

X̃l = U∗
l X̃1Ul,

Ỹl = U∗
l Ỹ1Ul.

It clearly follows that 〈X̃l, Ỹl〉 = λmin(X̃1). Construct matrices Yl by embedding the
matrix Ỹl in a matrix with the same size as M by letting

Y1 =



Ŷ11 Ŷ ∗

21 0 . . .

Ŷ21 Ŷ22 0 . . .
0 0 0
...

. . .


 ,

Y2 =




Û∗
2 Ŷ11Û2 0 Û∗

2 Ŷ
∗
21 0 . . .

0 . . . 0 0

Ŷ21Û2 0 Ŷ22 0 . . .
0 0 0
...

. . .


 ,

...

Ym =




Û∗
mŶ11Ûm 0 . . . 0 Û∗

mŶ ∗
21

0 . . . . . . . . . 0
...

...
0 . . . . . . . . . 0

Ŷ21Ûm 0 . . . 0 Ŷ22


 .

Define

Y =
1

m

m∑
l=1

Yl
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and

X =




A Û∗
1 Jp×k Û∗

2 Jp×k . . . Û∗
mJp×k

Jk×pÛ1 Jk×k 0 . . . 0

Jk×pÛ2 0
. . .

. . .
...

...
...

. . .
. . . 0

Jk×pÛm 0 . . . 0 Jk×k




.

The Ûl’s are chosen such that the entries off the block diagonal given by the matrix
A cancel in the sum

∑m
i=1 Û

∗
i Ŷ11Ûi. Therefore Y ∈ XPN .

Moreover, X ∈ APD and

〈X,Y 〉 =
1

m

m∑
l=1

〈X,Yl〉

=
1

m

m∑
l=1

〈X̃l, Ỹl〉

= λmin(X̃1).

This completes the proof if m = n. If n ≥ m, one can extend X and Y by adding
extra zeroes.

Corollary 4.2. For the complete bipartite graphs we have qC(Kn,n) =
√
n− 1,

and if m < n then qC(Km,n) =
√
m− 1. If n is a power of 2, qR(Kn,n) =

√
n− 1.

Proof. By Theorem 4.1 it follows that

qC(Km,n) = −λmin

(
Im Jm×1

J1×m 1

)
=
√
m− 1.

If n = 2k, let F be the real symmetric unitary matrix obtained using the Kronecker
product by setting

F =

 
1√
2

1√
2

1√
2
− 1√

2

)⊗k

.

Then we may choose

X =

(
I −√nF

−√nF I

)
,

Y =
1

2n

(
I F
F I

)

in the last part of the proof of Theorem 4.1. This choice yields that qR(Kn,n) =√
n− 1.

Proof of Theorem 1.1. This follows immediately from Corollary 4.2.
Necessary and sufficient conditions for the existence of positive semidefinite com-

pletions for partial matrices with the completely bipartite graphs can be stated as
follows in terms of contractivity of an inflated Schur map. When A ∈ C

n×m, we
denote by φA : C

n×m → C
n×m the Schur map X → A ◦ X, where ◦ denotes the

Schur (or Hadamard) product for matrices. If we endow C
n×m with the spectral
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norm (the largest singular value), we may rephrase a result by Haagerup [20] (see also
[34, Lemma 3.1] and [30, Theorem 3.1(a)]) as follows:

φA is a contraction⇐⇒
(

I A
A∗ I

)
∈ X ∗

Kn,m
.

When we use this correspondence, Corollary 4.2 is equivalent to the following. The
k × k Fourier matrix is given by

F =
(
e

2πipq
k

)k−1

p,q=0
.

Corollary 4.3. Let A = (aij)
n,m
i=1,j=1 ∈ C

n×m. Then

min
‖φA‖=1

max
i,j
|aij | = 1√

min{n,m} .

The extreme case is obtained when A contains a p × p Fourier matrix, with p =
min{n,m}, and the remaining rows or columns are zero.

Proof. All specified principal submatrices of a matrix A ∈ X ∗
Kn,m

are of the form(
1 aij
aij 1

)
.

By Corollary 4.2 and the correspondence (16) it follows that the smallest eigenvalue of
the principal matrices must be at least 1− 1√

min{m,n} if we have ‖φA‖ = 1. This holds

if |aij | ≤ 1√
min{m,n} . By the proof of Corollary 4.2, we know that we get equality

when A is the p×p Fourier matrix, possibly adjoined with zero rows or columns.
In recent years some results have been obtained that give conditions for the ex-

istence of positive semidefinite completions for nonchordal patterns. We have taken
advantage of these results to compute some cone inclusion numbers. The first of these
results concerns the cycles.

If the graph G is a cycle, conditions for the existence of a positive semidefinite
completion of a real partial, positive, semidefinite matrix were found by Fiedler [16].
His result was expressed in the language of completion problems by Barrett, Johnson,
and Tarazaga [5], and from their result we can compute pR(Cn), where Cn is an
n-cycle.

Theorem 4.4. Let Cn be an n-cycle, n ≥ 4. Then pR(Cn) = 1− cos(π/n).
Proof. We are following the notation used in [5, Corollary 1, p. 19]. A real

partial correlation matrix specified on an n-cycle may be written in the form (doing
a permutation if necessary)

C =




1 cos θi1 cos θin
cos θi1 1 cos θi2 ?

cos θi2 1
. . .

?
. . .

. . . cos θin−1

cos θin cos θin−1
1




.

Here the θi’s may be numbered such that 0 ≤ θn ≤ θn−1 ≤ · · · ≤ θ2 ≤ θ1 ≤ π. Then
the partial matrix C has a positive semidefinite completion if and only if

k∑
i=1

θi ≤ (k − 1)π +

n∑
i=k+1

θi,(21)
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for k odd. A simple computation shows that (21) is satisfied if

π

n
≤ θn ≤ · · · ≤ θ1 ≤

(
1− 1

n

)
π.(22)

Since all specified principal submatrices of C are 2× 2 matrices, it follows easily that
(22) is satisfied if pR(Cn) ≥ 1 − cos(π/n). On the other hand, it is not difficult to
see that for a certain choice of θi’s, we get an example for which the smallest eigen-
value of a specified principal submatrix of C is 1− cos(π/n), and there is equality in
(21).

For certain graphs, a necessary and sufficient condition for the existence of a real
partial positive definite completion is that the cycle condition given in [5] is met for all
cycles of the graph. The graphs with this property are classified in [4] and are called
cycle completable graphs. A minimal cycle in a graph G is a cycle with no chord.

We have the following result for the cycle completable graphs.

Theorem 4.5. Let G be a cycle completable graph and let Cn be its shortest
minimal cycle of length 4 or more. Then pR(G) = pR(Cn).

Proof. Since Cn is an induced subgraph of G, it clearly follows that p(G) ≥ p(Cn).

Now let A be any partial positive semidefinite matrix with pattern G. Let its
specified principal submatrices be denoted by Ai. The theorem follows by proving
that λmin(Ai) ≥ p(Cn) for every Ai ensures the existence of a positive semidefinite
completion.

Now

λmin

((
1 aij
aji 1

))
≥ p(Cn)

implies |aij | ≤ 1 − p(Cn). This holds for every specified entry of A. Since Cn is the
shortest cycle in G, it follows by Theorem 4.4 that the cycle condition is met for any
cycle in G, and since A is also partial positive semidefinite it clearly has a positive
semidefinite completion.

Although the paper [4] considers only the real positive definite completion prob-
lem, its characterization of the cycle completable graphs makes it possible to obtain
an upper bound for p in the complex case.

Theorem 4.6. Let G be a cycle completable graph. Then pC(G) ≤ 1−
√

2
2 .

Proof. If G is a cycle completable graph, it has a 3-clique chordal supergraph, [4,
Theorem 3]. This means that it is possible to add edges to G to obtain a chordal
graph G′ in such a way that all maximal cliques in G′ not present in G are of size 3
(or lower).

A partial positive semidefinite matrix M with pattern G has a positive semidefi-
nite completion if it is possible to fill in the entries corresponding to edges in G′ \G
such that the extended partial matrix is partial positive semidefinite. The new maxi-
mal cliques are 3× 3 matrices, and if the smallest eigenvalues of a specified principal

submatrix of M is greater or equal to 1 −
√

2
2 , then |mij | ≤

√
2

2 , and the new 3 × 3
principal submatrices can be constructed by filling in zero in the unspecified entries.
An easy calculation shows that

 1 mij 0
mij 1 mjk

0 mjk 1


 ≥ 0.



628 GEIR NÆVDAL AND HUGO WOERDEMAN

An interesting question is to find operations on the graph G that immediately
give information about p(G). One such result follows immediately from Theorem 4.4,
in [22]. This result considers the case where G is a graph with a subset S ⊂ V (G),
with the property that G restricted to S is a clique, and S is also a cut set of G. (A
cut set of G is a subset of the vertices of G with the property that removing these
vertices from the graph disconnects G.) In this case

q(G) = max{ q(G(S1 ∪ S)), . . . , q(G(Sr ∪ S)) },

where G(Si) denotes each of the connected components (with vertex set Si) of G after
removing the vertices S, and G(Si ∪ S) denotes G restricted to the vertices Si ∪ S.

Another result concerning q(G) which can be expressed in terms of a graph the-
oretic property of G is the following.

Theorem 4.7. Let G be a graph. Suppose v is a vertex of G connected to all the
other vertices in G. Then p(G \ v) = p(G).

To prove Theorem 4.7 we need the following auxiliary result.
Lemma 4.8. Let B be an n × n correlation matrix, 0 ≤ t ≤ 1, and x an n × 1

vector. Then

λmin

((
1 x∗

x B

))
≥ 1− t

implies that

λmin(D(−1/2)(B − xx∗)D(−1/2)) ≥ 1− t,

where D = diag(B − xx∗) = diag(I − xx∗), and D(−1/2) denotes the Moore-Penrose

inverse of D
1
2 .

Proof. If t = 1, the result follows by a straightforward use of the Schur complement
together with the fact that ∗congruence preserves positive semidefiniteness. If t = 0,
then it follows from the assumptions that B = I and x = 0.

Now, assuming 0 < t < 1, it follows that |xi| < 1, and the matrix D is invertible.
By a standard application of Schur complements, we have that(

1 x∗

x B

)
≥ (1− t)

(
1 0
0 I

)

if and only if

B − xx∗

t
+ (t− 1)I ≥ 0.

Let J be the n × n matrix which is one for every entry. Now, we add the positive
semidefinite matrix xx∗ ◦ (( 1

t − 1)J + (1− t)I) to the left-hand side of the inequality
above, and manipulate this new inequality until we get the desired result, as follows:

B − xx∗

t
+ (t− 1)I + xx∗ ◦

((
1

t
− 1

)
J + (1− t)I

)
≥ 0,

B − xx∗ + (t− 1)I + diag((1− t)xx∗) ≥ 0,

B − xx∗ ≥ (1− t) diag(I − xx∗),
D(−1/2)(B − xx∗)D(−1/2) ≥ (1− t)I.
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Proof of Theorem 4.7. The fact that p(G) ≥ p(G \ v) is obvious. To obtain
the other inequality, first note that any completion problem on the pattern G can
be reduced to a completion problem on the pattern G \ v by taking a Schur com-
plement eliminating the vertex v. Now make the observation that if B is a partial
correlation matrix, then the matrix D(−1/2)(B − xx∗)D(−1/2) in Lemma 4.8 will be
a partial correlation matrix (with possibly some zero rows and columns adjoined).
The proposition then follows, since the lemma implies that for a partial matrix with
pattern G, and for which every specified principal submatrix has minimum eigenvalue
larger than 1− t, the minimum eigenvalue of any specified principal submatrix for the
corresponding problem with pattern G \ v is also bounded below by 1− t.

Let Wn denote the n-wheel, the graph obtained from the n − 1 cycle Cn−1 by
adjoining one new vertex which is connected to every vertex in Cn−1. Then as a
corollary to Theorem 4.7 we have the following.

Corollary 4.9. If n ≥ 5, then p(Wn) = p(Cn−1).
To address the question of the highest value for α(AP ,X ∗

P ), we next present the

following conjecture. For n odd, let K̂dn
2 e,bn

2 c denote the graph obtained by adding
one edge in the largest vertex set in Kdn

2 e,bn
2 c.

Conjecture 4.10. For any pattern P ⊆ { 1, . . . , n} × {1, . . . , n } (with n ≥ 4),

α(AP ,X ∗
P ) ≤ α(AQn

,X ∗
Qn

),(23)

where

Qn =

{
Kn

2 ,n2
when n is even,

K̂dn
2 e,bn

2 c when n is odd.
(24)

Note that from Theorem 4.1 it follows that the cone inclusion number α(AQn
,X ∗

Qn
)

is given by

αC(AQn
,X ∗

Qn
) =




√
n
2 − 1 when n is even,

−λmin


 J2×2 0

0 Idn
2 e−2

Jdn
2 e×1

J1×dn
2 e 1


 when n is odd.

(25)

When Qn is the complete bipartite graph Kn
2 ,n2

, the cone inclusion number given
in (25) is obtained, for instance, when

A =

(
In

2
F

F ∗ In
2

)
∈ AQn

D,

X =
1

n


 In

2
− 1√

n
2

F

− 1√
n
2

F ∗ In
2


 ∈ X ∗

Qn
N ,

where F is the n
2 × n

2 Fourier matrix.
Let us show that

α(AKk,k
,X ∗

Kk,k
) < α(AK̂k+1,k

,X ∗
K̂k+1,k

) < α(AKk+1,k+1
,X ∗

Kk+1,k+1
).

The left- and right-hand sides of the inequality are computed in Corollary 4.2. The
inequalities follow by computing an estimate of the middle expression.
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To compute this estimate, we use the fact that the characteristic polynomial of


 J2×2 0

0 Ik−1
J(k+1)×1

J1×(k+1) 1


− Ik+2

is (λ3 − λ2 − (k + 1)λ + (k − 1))(λ + 1)λk−2. (To show this, use induction and [11,
Theorem 2.11].)

Let Pk+1(λ) = λ3−λ2− (k+1)λ+(k− 1), which is the third degree factor of the
above characteristic polynomial. Since Pk+1(−

√
k + 1) = −2, Pk+1(−

√
k) =

√
k − 1,

Pk+1(1) = −2, and limx→∞ Pk+1(x) =∞, it follows that

√
k − 1 < α

(
AK̂k+1,k

,X ∗
K̂k+1,k

)
<
√
k + 1− 1.

We end this section by proving that Conjecture 4.10 is true for n ≤ 5.

As there is only one nonchordal graph with four vertices, namely K2,2, our con-
jecture is trivially true in that case.

The list of nonchordal graphs of size 5 given in [4] includes six different graphs.
These include K2,3, C5, and two other graphs which are also shown to be cycle
completable. Therefore, by Theorem 4.6 it holds that α(AP ,X ∗

P ) ≤ √2− 1 for these
graphs.

One of the two remaining graphs is the 5-wheel, W5. By Corollary 4.9, it follows
that α(AW5

,X ∗
W5

) =
√

2− 1.

To compute the cone inclusion number for the last graph, which is K̂3,2, we use
Theorem 4.1. The matrix for this graph is

AK̂3,2
=




1 1 0 1 1
1 1 0 1 1
0 0 1 1 1
1 1 1 1 0
1 1 1 0 1


 .

Now apply the theorem with A = diag(J2×2, 1), B = I2, and C = J2×3 which gives

α(AK̂3,2
,X ∗

K̂3,2
) = −λmin




1 1 0 1
1 1 0 1
0 0 1 1
1 1 1 1


 ≈ 0.4812.

By using the construction given in the proof of Theorem 4.1, we obtain




1 1 0 1 1
1 1 0 1 1
0 0 1 1 −1
1 1 1 1 0
1 1 −1 0 1




as a matrix which realizes this cone inclusion number.
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5. The contractive case. Arveson [3] provided an elegant formula for the dis-
tance of a bounded linear operator on a Hilbert space H to a nest algebra in the
C*-algebra of bounded linear operators on H. For a finite nest we may restate this
as follows: The minimal (operator) norm of a completion of


A11 ?
...

. . .

An1 · · · Ann


(26)

is

max
i=1,...,n

∥∥∥∥∥∥∥


Ai1 · · · Aii

...
...

An1 · · · Ani



∥∥∥∥∥∥∥ .(27)

The result holds also in the case where the resulting operator matrix acts between
different Hilbert spaces. It is obvious that, for any pattern of known and unknown
entries, the minimal norm of a completion is always bounded below by the maximum
among the norms of specified submatrices. As Arveson’s distance formula implies,
these two numbers are the same for triangular patterns. In [25] it was shown that, in
fact, direct sums of triangular patterns are the only ones for which this equality holds.
To study what happens with other patterns, the following notion of a distance constant
was introduced: For a partial matrix A with pattern K ⊆ { 1, . . . , n } × { 1, . . . ,m },
we introduce

µ(A) = min
B completion of A

‖ B ‖

and

%(A) = max
I×J⊆K

‖ A | I × J ‖ .

Note that in this section the pattern K does not need to be symmetric nor necessarily
contain the main diagonal. We say that c(K) = c ≥ 1 is the distance constant for
pattern K if, for every partial matrix A with pattern K, we have that

µ(A) ≤ c%(A),

and c is the smallest number with this property. From [3] we obtain that if K is
triangular, then c(K) = 1, and from [25] we obtain that if K is not (permutation
equivalent to) a direct sum of triangular patterns, then c(K) > 1. The recent paper
[14] provides some distance constants for some low dimensional cases, and in addition,
provides a guide to the literature on the subject.

The description of the pattern in terms of a graph in the contractive case is
different from the Hermitian case. In the contractive case we use the following corre-
spondence between a pattern and a bipartite graph. For an n×m partial matrix A,
the set of vertices of the corresponding bipartite graph G is the union of two disjoint
subsets U = {u1, u2, . . . , un } and V = { v1, v2, . . . , vm }. An edge (up, vq) occurs in
G if and only if the (p, q) entry of A is specified. G has no edges among the vertices
in V nor among the vertices in U . In this section we will use both this description
of a pattern and the description used for partial Hermitian matrices. It should follow
from the context which one we are using.
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The following type of question is of particular interest: Given a sequence of
patterns Kn ⊆ { 1, . . . , n }×{ 1, . . . , n }, is limn→∞ c(Kn) finite or not? An important
example is the case when Tn,n ⊆ { 1, . . . , n2 }×{ 1, . . . , n2 } corresponds to the pattern
for which the minimal norm completion problem is equivalent to determining the
distance to Tn ⊗ Tn in C

n2

, where Tn is the nest algebra of upper triangular n × n
matrices. The patterns for n = 2 and n = 3 are

T2,2 =




? ? ? ?
? ?

? ?
?


(28)

and

T3,3 =




? ? ? ? ? ? ? ? ?
? ? ? ? ? ?

? ? ?
? ? ? ? ? ?

? ? ? ?
? ?

? ? ?
? ?

?




.(29)

Let us view these problems in a broader context and relate them to the previous
sections. To do this we use H. Wielandt’s [41] convenient equivalence(

I A
A∗ I

)
≥ 0 ⇔ ‖ A ‖≤ 1.(30)

For K ⊆ { 1, . . . , n } × { 1, . . . ,m }, denote by MK the matrices with support in
K, i.e.,

MK = {C ∈ F
n×m : Cij = 0, (i, j) 6∈ K }.

We say that C ∈ MK has a K-subordinate isometric/co-isometric factorization if
there exist isometries U ∈ F

n×k and V ∈ F
m×k such that

C = UV ∗,(31)

with the property that for all (i, j) 6∈ K and all p ∈ { 1, . . . , k } we have uip = 0 or
vjp = 0. From C ∈MK and (31), we obtain that for (i, j) 6∈ K,

0 = cij =
k∑

p=1

uipv̄jp.

Thus the requirement that uipv̄jp = 0 for all p = 1, . . . , k is a stronger one.
Denote Kc = { 1, . . . , n } × { 1, . . . ,m }\K. Introduce the following closed convex

sets in MK :

CK = {C ∈MK : C has a K-subordinate isometric/co-isometric factorization },
DK = {C ∈MK : ||C|| ≤ 1 },
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EK = {C ∈MK : there is a W ∈MKc such that ||C + W || ≤ 1 }
= “all C ∈MK that have a contractive completion,”

FK = {C ∈MK : ||C|P×Q|| ≤ 1 for all P ×Q ⊆ K }
= “all partial contractions inMK .”

To show that CK is convex, observe that when C = UV ∗ and D = WY ∗ are K-
subordinate isometric/co-isometric factorizations for C and D, respectively, then

(αC + βD) =
(
α

1
2U β

1
2W

)(α 1
2V ∗

β
1
2Y ∗

)

is a K-subordinate isometric/co-isometric factorization of αC+βD. Furthermore, we
have that

CK ⊆ DK ⊆ EK ⊆ FK .(32)

For any pair P,Q of sets from CK ,DK , EK ,FK , we define

β(P,Q) = inf{µ : P ⊆ µQ}.

To relate this number to cone inclusion numbers, let Q̂ denote the cone associated to
Q defined by

Q̂ =

{
λ

(
I Q
Q∗ I

)
: λ ≥ 0, Q ∈ Q

}
.

Then, for all possible choices of P, Q from CK ,DK , EK ,FK , we have

β(P,Q) = α(P̂, Q̂) + 1 := min{λ : P̂D + λI ⊆ Q̂ }+ 1.(33)

It should be noted that some of the β’s correspond to familiar numbers, e.g.,

β(FK , EK) = c(K) = “distance constant of K,”

β(EK ,DK) = ||PK ||,

where PK : F
n×m →MK is the canonical projection.

As an aside, let us observe that

ĈK ⊆ A∗
K̂
, D̂K ⊆ XK̂ , ÊK ⊆ X ∗

K̂
, F̂K ⊆ AK̂ ,(34)

where
K̂ = { 1, . . . , n } × { 1, . . . , n } ∪ {n + 1, . . . , n + m } × {n + 1, . . . , n + m }

∪{ (i, j) : (i, j −m) ∈ K or (j, i− n) ∈ K }.
Proposition 5.1. For all K ⊆ { 1, . . . , n } × { 1, . . . ,m }, we have that

β(FK , CK) ≤
√

min{n,m}.(35)

Proof. Without loss of generality, n ≤ m. Let C ∈ FK , and consider

( √
nIn C
C∗ √

nIm

)
=

n∑
i=1

( √
neie

∗
i cie

∗
i

eic
∗
i

1√
n
Im

)
∈ ĈK ,
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where ei and ci are the ith columns of In and C, respectively. Thus α(F̂KD, ĈK) ≤√
n− 1, and thus (35) follows from (33).

Corollary 5.2. For all K ⊆ { 1, . . . , n } × { 1, . . . ,m } and all possible choices
P and Q from CK ,DK , EK ,FK , we have that

β(P,Q) ≤
√

min{n,m}.
Proof. All β(P,Q) are bounded above by β(FK , CK) because of (32). Now use

Proposition 5.1.
Corollary 5.3. For any pattern K ⊆ { 1, . . . , n } × { 1, . . . ,m }, we have

c(K) ≤
√

min{n,m} , ||PK || ≤
√

min{n,m}.
Let us remark that in [15], patterns Kn ⊆ { 1, . . . , n }2 are described in which

n is of the form n = 2(3m) with the property that c(Kn) ≥ (n2 )log3(
3
4

√
2) (which is

approximately O(n.0536)). This shows that there are sequences of patterns Kn for
which limn→∞ c(Kn) = ∞. It should be noticed that in this example the growth
rate is much lower than the growth rate of the upper bound in Corollary 5.3. It
remains to improve on this result and create (if existent), for instance, a sequence
Kn ⊆ { 1, . . . , n } × { 1, . . . , n } for which c(Kn) = O(

√
n).

Let Tn,m ⊆ { 1, . . . , nm } × { 1, . . . , nm } denote, as before, the pattern

Tn,m = { (i, j) : i > j or (i mod m) > (j mod m) }.
Theorem 5.4.

c(Tn,m) = β(FTn,m
, ETn,m

) ≤ dlog2(min{n,m})e+ 1.

In particular,

c(Tn,n) ≤ dlog2 ne+ 1.

Proof. Without loss of generality, n ≤ m. As c(Tn,m) ≤ c(Tn̂,m) when n ≤ n̂, we
may assume that n = 2k for some k = N0. We shall perform induction on k. When
k = 0, c(T1,m) = 1 by Arveson’s distance formula [3]. Suppose c(T2k−1,m) ≤ k, and
let C ∈ FT

2k,m
. Decompose C as a 2× 2 block matrix

C =

(
C11 C12

C21 C22

)
,

with Cij of size (2k−1m)× (2k−1m). Note that

C11, C22 ∈ FT
2k−1,m

,

C21 ∈ FP , C12 ∈ FQ,

where P = { 1, . . . , 2k−1m }2, and Q ⊆ { 1, . . . , 2k−1m }2 is a pattern which after
permutation is block triangular. In particular, ‖C21‖ ≤ 1. By Arveson’s distance for-
mula, there is a W12 ∈MQc such that ||C12 +W12|| ≤ 1. By the induction hypothesis,
there exist W11,W22 ∈MT c

2k−1,m
such that

||Cii + Wii|| ≤ k, i = 1, 2.
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But then (
W11 W12

0 W22

)
∈MT c

2k,m

and ∥∥∥∥
(

C11 + W11 C12 + W12

C21 C22 + W22

)∥∥∥∥ ≤ k + 1.

This shows that c(T2k,m) ≤ k + 1, proving the theorem.
The question of whether

c(Tn,n)→∞
as n→∞ remains open.

Let us end this section with some remarks regarding the triangular truncation
operator PTn

, where

Tn = { (i, j) : 1 ≤ j < i ≤ n } (= Tn,1).

It is well known that ||PTn
|| grows like log n (see [27]). To see that

β(ETn
,DTn

) = ||PTn
|| ≤ dlog2 ne+ 1,

one may use that if

A =

(
A11 A12

A21 A22

)
,

then

PT
2k

(A) =

(
PT

2k−1
(A11) 0

A21 PT
2k−1

(A22)

)
.

So, by an induction argument, we get that

||PT
2k

(A)|| ≤
∣∣∣∣
∣∣∣∣
(

PT
2k−1

(A11) 0
0 PT

2k−1
(A22)

)∣∣∣∣
∣∣∣∣+
∣∣∣∣
∣∣∣∣
(

0 0
A21 0

)∣∣∣∣
∣∣∣∣

≤ max{k||A11||, k||A22||}+ ||A21||
≤ (k + 1)||A||.

In [12, Example 4.1] an example was given showing that

lim inf
n→∞

||PTn
||

logn
≥ 4

5π
.

Recently, in [2] it was shown that

lim
n→∞

||PTn ||
logn

=
1

π
.

Some more recent bounds can be found in [29]. Finally, the book [18] has a compre-
hensive account of triangular truncation and triangular integral operators.
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6. The Toeplitz case. A variation of the theory presented so far is to endow
the matrices with some structure. A natural choice is to consider the Toeplitz case.
Positive definite Toeplitz matrices are of importance in several applications. Comple-
tion problems for partial positive semidefinite Toeplitz matrices have attracted some
attention due to their connection to problems in function theory and engineering. It
follows as a corollary of The Carathéodory–Toeplitz interpolation theorem [9, 17, 39]
that any partial positive semidefinite Toeplitz matrix specified in a band has a positive
semidefinite completion.

Since a Toeplitz matrix is characterized by the property that all entries along
a certain diagonal are constant (i.e., ti,j = ti−j), the natural way of describing the
pattern P of a partial Hermitian Toeplitz matrix is in terms of a set on the natural
numbers, where j ∈ P if tj(= t−j) is specified and j > 0. As before, we shall always
assume that the main diagonal is specified.

Let T Hn denote subspace of Hn consisting of the n× n Hermitian Toeplitz ma-
trices. For a pattern P we introduce the subspace

T HP = {T ∈ T Hn : Ti−j = 0 if |i− j| 6∈ P }.
In this section we consider only the two cones

T AP = {A ∈ T HP : A ∈ AP },
T X ∗

P = {Y ∈ T HP : there is a W ∈ T Hn 	 T HP such that Y + W ≥ 0 }.
We have retained here the notation introduced in the previous sections but have added
a prefix T to denote that we are working with Toeplitz matrices. This means that
T AP can be identified with the partial positive semidefinite Toeplitz matrices with
pattern P , and T X ∗

P can be identified with those partial positive semidefinite matrices
which have a positive semidefinite Toeplitz completion.

We continue to use a suffix D to denote a restriction to the set of matrices with
the main diagonal equal to the identity. Now we define

qT (P ) = min{λ : T APD + λI ⊆ T X ∗
P },

pT (P ) =
qT (P )

1 + qT (P )
,

and recall that these numbers have the same interpretation, in terms of matrix com-
pletion problems, as q(P ) and p(P ) had in section 4.

It was proved in [24] that qT (P ) = 0 if and only if

P = { k, 2k, 3k, . . . ,mk }, (k ≥ 1).

The completion problem for the pattern P = {m,n} is studied in [31], and using
ideas from that paper it is possible to compute pC

T ({m,n}). We may assume that
gcd(m,n) = 1.

A partial positive semidefinite Toeplitz matrix with pattern P = {m,n} has a
positive semidefinite Toeplitz completion if and only if (am, bm, an, bn) is located in
the convex hull generated by the curve

wmn(t) = { (cos 2πmt, sin 2πmt, cos 2πnt, sin 2πnt), 0 ≤ t < 1 }.(36)

A description of the facial structure of the convex hull generated by the curve (36)
was obtained in [38].
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Theorem 6.1. Let gcd(m,n) = 1, m < n and n > 2. Then pC

T ({m,n}) =
1− cos( π

m+n ).
Proof. Let the specified diagonals of the partial Hermitian Toeplitz matrix be tm

and tn. Let us write (tm, tn) ∈ T X ∗
{m,n}D if the partial matrix has a positive semidef-

inite Toeplitz completion and 1’s on the diagonal. With the pattern under discussion,
all specified principal submatrices are 2×2 matrices, and therefore pT ({m,n}) = 1−r,
where

r = min
(tm,tn)∈T X∗

{m,n}D
max(|tm|, |tn|).

(tm, tn) must of course be located on the boundary of T X ∗
{m,n}D. From [38, Theo-

rem 1] we know that we may assume that

(tm, tn) = (λ + (1− λ)(cos(2pπt) + i sin(2pπt)),

λ + (1− λ)(cos(2nπt) + i sin(2nπt))).

Then it follows from the fact that

(λ + (1− λ)p)2 + (1− p2)(1− λ)2

is minimized by choosing λ = 1/2, that it is enough to find the φ which minimizes
max(|tm|, |tn|), where

|tm(φ)| = |
(

1

2
+ (1− 1

2

)
(cos(2mπφ) + i sin(2mπφ))|

= |cos (mπφ)| ,
|tn(φ)| = |

(
1

2
+ (1− 1

2

)
(cos(2nπφ) + i sin(2nπφ))|

= |cos (nπφ)| .
The point is on the boundary of T X ∗

{m,n}D only if

φ ∈
(
k1

m
,
l1
n

)
∪
(
n− l1
n

,
m− k1

p

)
,

where l1 and k1 is the unique pair of integers k1, l1, 0 ≤ k1 < m, 1 ≤ l1 < n, such
that l1m − k1n = 1. The two intervals are symmetric. Therefore we may make the
substitution φ = k1

m + θ
mn , where 0 ≤ θ ≤ 1. This gives

|tm(θ)| =
∣∣∣∣cos

(
πθ

n

)∣∣∣∣ ,
|tn(θ)| =

∣∣∣∣cos

(
(θ − 1)π

m

)∣∣∣∣ .
Since n ≥ 3, |tm(πθn )| is monotonically increasing, whereas |tn( (θ−1)π

m )| is monoton-
ically decreasing when m > 1. The desired minimum is therefore obtained when

|tm(πθn )| = |tn( (θ−1)π
m )|. This gives θ = n

m+n , and r = cos( π
m+n ). A slight modifica-

tion is needed when m = 1, and this is left to the reader.
Due to the connections of the positive semidefinite Toeplitz completion problem

with other fields it is possible to make different interpretations of pT (P ) in this case.
Here is an example.
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A real partial Hermitian Toeplitz matrix with pattern

P2n+1 = { 1, 3, 5, . . . , 2n + 1 }

has a positive semidefinite Toeplitz completion if (t1, t3, t5, . . . , t2n+1) is located in the
convex hull generated by the curve

(cos θ, cos 3θ, cos 5θ, . . . , cos(2n + 1)θ).

Let us denote this convex set as C2n+1. Since in this case all specified principal
submatrices are of size 2 × 2, the number 1 − pR

T (P2n+1) is equal to the minimal
distance in the l∞-norm from the origin to the boundary of C2n+1. An interesting
problem is to determine limn→∞ 1− pR

T (P2n+1).
Toeplitz matrices are also of interest in the contractive case. In [26] all patterns

are described for which a partial Toeplitz contraction always allows a contractive
Toeplitz completion, under the assumption that the specified entries occur in con-
secutive diagonals. As opposed to the non-Toeplitz case, there exist examples of
triangular patterns for which not every partial Toeplitz contraction has a contractive
Toeplitz completion, see, e.g., [40, Example 7.1]. A partial result in which the pattern
consists of nonconsecutive diagonals is presented in [26]. The patterns which allow
every partial Toeplitz contraction to have a triangular contractive Toeplitz completion
were obtained in [32].
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Abstract. The Schur–Fréchet method of evaluating matrix functions consists of putting the
matrix in upper triangular form, computing the scalar function values along the main diagonal, and
then using the Fréchet derivative of the function to evaluate the upper diagonals. This approach
requires a reliable method of computing the Fréchet derivative. For the logarithm this can be done by
using repeated square roots and a hyperbolic tangent form of the logarithmic Fréchet derivative. Padé
approximations of the hyperbolic tangent lead to a Schur–Fréchet algorithm for the logarithm that
avoids problems associated with the standard “inverse scaling and squaring” method. Inverting the
order of evaluation in the logarithmic Fréchet derivative gives a method of evaluating the derivative
of the exponential. The resulting Schur–Fréchet algorithm for the exponential gives superior results
compared to standard methods on a set of test problems from the literature.

Key words. matrix functions, matrix logarithm, matrix exponential
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1. Introduction.

1.1. Background. The discovery of logarithms by John Napier followed a 100-
year period in which mathematical notation progressed to the point that algebraic
manipulations could be performed with relative ease. Thus the cumbersome logarith-
mic function defined by Napier was quickly reworked by Henry Briggs into a form that
is familiar to us. In 1617, Briggs published a table of logarithms (base 10) followed
in 1624 by the more complete Arithmetica Logarithmica. The interested reader is
referred to Edwards [4] and Goldstine [9] for details. In contrast to his reputation as
Napier’s drudge, Briggs is viewed by Goldstine as one of the great figures of numerical
analysis.

The reason for this high regard is easily seen in the method Briggs used to compute
the logarithm of a positive real number. Starting with the fundamental relation
log(ab) = log a + log b, Briggs wrote log a = log

√
a
√
a = 2 log

√
a. Repeating this

argument gives log a = 2n log a1/2n

. Next Briggs noted two facts. First, the repeated
roots a1/2n

converge to 1. Second, the logarithm of a number that is very close to 1
can be approximated by using log(1 +x) ≈ cx, where c is a constant that depends on
the base of the logarithm. For Briggs, c = log10 e ≈ 0.4342945. Using x = a1/2n − 1,
we have Briggs’ scheme

log a = 2n log a1/2n

≈ 2nc(a1/2n − 1).
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So far Briggs is operating at about the level of a modern numerical analyst. Now
comes the astounding part. To obtain the accuracy he wanted (about 14 digits),
Briggs needed to take up to 54 successive square roots while carrying 32 digits in
each computation (i.e., quadruple accuracy on most current computers). To help in
this task he invented a finite difference scheme [9] that is equivalent to the binomial
expansion of (1+x)p for the fractional power p = 1/2. This was 50 years before Newton
stated the binomial theorem in its general form. This procedure was repeated for each
of the over 20,000 entries in his table of logarithms (not counting the reduction in
effort due to factoring composite numbers). With Goldstine, we can only stand in
awe of Briggs’ numerical skill and perseverance.

It is helpful to spend a moment looking at the problem of how to select the number
of square roots in Briggs’ method.

Suppose that a > 1. Then x > 0 where x ≡ a1/2n − 1. Let xc denote the value
of x that we carry in computation after truncation. That is, we assume xc = x − ε
where ε ≥ 0 is near the relative machine precision. Here we are ignoring errors in
calculating the square roots of a; these errors are generally small in comparison to
the error induced by the cancellation of nearly equal terms during the subtraction of
1 from a1/2n

.
Use the Taylor series for log(1 + x) to get

log a = 2n log a1/2n

= 2nc

(
x− x2

2
+

x3

3
+ · · ·

)

= 2nc

(
(xc + ε)− (xc + ε)2

2
+

(xc + ε)3

3
+ · · ·

)

= 2nc

(
xc − x2

c

2
+ ε(1− xc + x2

c + · · ·) + · · ·
)

= 2ncxc + 2nc

(
ε

1 + xc
− x2

c

2

)
+ · · ·

Thus the relative error in the approximation log a ≈ 2ncxc is given (to first order in
xc and ε) by ∣∣∣∣ log a− 2ncxc

2ncxc

∣∣∣∣ =
1

xc

∣∣∣∣ ε

1 + xc
− x2

c

2

∣∣∣∣
and is approximately minimized at xc ≈

√
2ε. To see this, note that the expression

inside the absolute values is approximately zero when
x2
c

2 ≈ ε. Combining this with

xc ≈ a1/2n − 1 tells us approximately how many square roots to take to minimize the
error in Briggs’ method

n ≈ log

(
log a√

2ε

)
/ log 2.

To illustrate, in carrying 32 digits we might expect an error on the order of
ε = 5× 10−33. If a = 2 then we want n ≈ 53 square roots. (For this problem Briggs
used 54 square roots.)

Aside from helping us understand Briggs’ method this analysis brings out an im-
portant point. The number of square roots must be sufficient to ensure the accuracy
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of the approximation but not so many as to encounter loss of accuracy in the sub-
traction of nearly equal terms in forming x = a1/2n − 1. This interpretation also aids
us in understanding a conclusion of Dieci, Morini, and Papini [6] concerning square
root methods of evaluating the logarithm of a matrix: If an upper triangular matrix
A has one subblock A11 near the identity while A as a whole is far from the identity,
then too many square roots need to be applied to A11 to bring A near the identity.

This type of problem can occur in evaluating other matrix functions. For exam-
ple, the scaling and squaring method [30] for the matrix exponential can result in
overscaling for subblocks that are near zero. This paper presents a method of evalu-
ating matrix functions that treats subblocks individually and thus avoids this type of
problem.

1.2. Computing functions of matrices by the Schur–Fréchet method.
Before considering the logarithmic and exponential functions, it is helpful to look at
general functions of matrices. For simplicity we restrict our attention to functions
F = F (A) that can be expressed in a convergent power series in a given matrix A or
as a power series in some simple transformation of A such as Y = I−A. For example,

eA = I + A +
1

2!
A2 +

1

3!
A3 + · · · ,

A1/2 = I − 1

2
Y − 1

8
Y 2 − 1

16
Y 3 + · · · ,

logA = −Y − 1

2
Y 2 − 1

3
Y 3 − · · · ,

where we assume that ‖Y ‖ < 1. Here and in what follows we assume log is the natural
logarithm.

In this subsection we discuss evaluating matrix functions by the “Schur–Fréchet”
method in which the matrix A is first put in upper triangular form. The main diagonal
entries of F (A) are then given by the scalars F (aii) and the rest of the upper diagonals
of F (A) can be computed using the Fréchet derivative of F . This approach was first
used by Parlett [28], who derived a general finite difference form for the Fréchet
derivative based on the fact that A and F (A) commute. Unfortunately, this finite
difference approach breaks down if A has multiple eigenvalues and may give inaccurate
results if the eigenvalues of A are nearly equal. One way of trying to deal with
this difficulty is to reduce A only to a “block triangular” form with the diagonal
blocks containing clusters of nearby or identical eigenvalues. Specialized methods for
the functions of the diagonal blocks are then used together with appropriate block
recurrence formulas. For details on this and related methods, see [15].

The breakdown of Parlett’s method, however, is due to the way in which the
Fréchet derivative is computed. For example, by using an alternative method of
evaluating the Fréchet derivative, Björck and Hammarling [2] developed a stable
Schur–Fréchet algorithm for the square root function. The difference between the
two methods can be seen in the equality

√
a22 −√a11

a22 − a11
=

1√
a22 +

√
a11

.

For a11 equal to or nearly equal to a22, we may not be able to evaluate the left-hand
side accurately but the right-hand side does not pose any problem. Thus the accuracy
of the Schur–Fréchet method depends on how the Fréchet derivative is evaluated.
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A major contribution of this paper is the derivation of a procedure for evaluating
the logarithmic Fréchet derivative that avoids the cancellation effects associated with
using the intermediate matrix A1/2n−I. Instead, a hyperbolic form of the logarithmic
Fréchet derivative is approximated efficiently and accurately via a rational function
in A1/2n

; this in turn gives a Schur–Fréchet method for computing the logarithm.
The same approximation procedure can be reversed to give the Fréchet derivative
of the exponential function; this in turn leads to a Schur–Fréchet algorithm for the
exponential of a matrix that avoids some of the “hump” problems encountered by the
standard “scaling and squaring” methods of evaluating the matrix exponential [26],
[30] (see Example 1).

The Fréchet derivative LF (Z,A) of F at A in the matrix direction Z is defined
by the limit of the Newton quotient for F

LF (Z,A) ≡ lim
δ→0

F (A + δZ)− F (A)

δ
.

The squaring function provides a useful illustration. For notational convenience, let
X replace A and set F (X) = X2. The Newton quotient for the squaring function is

(X + δZ)2 −X2

δ
= XZ + ZX + δZ2.

Letting δ → 0 gives the Fréchet derivative of the squaring function at X in the
direction Z

L2(Z,X) = XZ + ZX.

(Here the subscript “2” denotes the squaring function.) The Fréchet derivatives of
a function F and the inverse function F−1 are related via the maxim “the Fréchet
derivative of the inverse is the inverse of the Fréchet derivative.” Thus we find that
for the square root function F (A) = A1/2 ≡ X the Fréchet derivative at A in the
direction Z is given by L = L1/2(Z,A) where L satisfies the Sylvester equation

Z = XL + LX.

See [2], [16], [24] for more details. See also the related work in [23] and [25].
The following lemma is the basis of the Schur–Fréchet method.
Lemma 1.1 (Schur–Fréchet). Let A = D + Z, where D and Z have the same

block structure

D =

[
A11 0
0 A22

]
and Z =

[
0 A12

0 0

]
.

Then

F (A) = F (D) + LF (Z,D).(1)

Proof. The absence of second-order terms in Z on the right-hand side of (1) is
due to the fact that Z is nilpotent of order 2, i.e., Z2 = 0. Moreover, if M is (block)
upper triangular then MZ and ZM are also nilpotent of order 2. This means that
any second-order or higher terms in Z do not appear in the power series expansion of
F (D + Z). See [16] for details on the power series expansion of F (D + Z).
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This result can also be proved by the method of Parlett in [28]. The function
F (A) commutes with A; this yields

A11F12 − F12A22 = F11A12 −A12F22(2)

where Fij is the (i, j) block of F (A). If A has distinct eigenvalues this linear relation
can be solved for F12. Thus Parlett’s method can be interpreted as a way of computing
the Fréchet derivative of F for block strictly upper triangular matrix directions

LF

([
0 A12

0 0

]
,

[
A11 0
0 A22

])
=

[
0 F12

0 0

]
.

For the square root function F (A) = A1/2 = X, Parlett’s method yields

A11X12 −X12A22 = X11A12 −A12X22.(3)

In contrast to this, Björck and Hammarling [2] show directly that the relation X2 = A
gives

X11X12 + X12X22 = A12.(4)

1.3. Logarithms of matrices. The need to compute the logarithm of a matrix
occurs in many areas of engineering. As an illustration, suppose that we are studying
a system governed by a linear differential equation of the form dy/dt = Xy where the
coefficient matrix X is unknown.

Can we recover X from observations of the state vector y? That is, suppose
we know the state vector at times t = 0, h, 2h, . . . , nh, where n is the order of the
system and h is the sampling time. Let yk = y(kh). The transition between sampling
times is governed by yk+1 = ehXyk. This can be written as Y1 = ehXY0, where
Y0 ≡ [y0, y1, . . . , yn−1] and Y1 ≡ [y1, y2, . . . , yn]. From this we see that ehX = Y1Y

−1
0 .

If we can find the logarithm of ehX then we can recover X.
See also Sinha and Lastman [21], [29] for control theory applications involving

the transformation from a discrete-time system model to a continuous-time system
model. Unfortunately, the iterative procedures for finding the logarithm of a matrix
given in [21] and [29] do not always converge even when the logarithm is well defined.

The need to find logarithms of matrices also arises in linear systems with periodic
coefficients. Let dy/dt = A(t)y, where A(t + ω) = A(t) for some period ω. In this
case, a fundamental matrix solution Φ satisfies Φ(t+ω) = Φ(t)C for some nonsingular
matrix C. Let R = log(C)/ω. Then [3, p. 96, Theorem 2.12] there is a periodic
nonsingular matrix P = P (t) of period ω such that Φ(t) = P (t)etR. Thus, for
example, all solutions of dy/dt = A(t)y decay asymptotically as t → +∞ if the
logarithm of the matrix Φ−1(0)Φ(ω) has all of its eigenvalues in the left half-plane.

1.4. Defining the logarithm of a matrix. When is the logarithm of a matrix
well defined? In the scalar case, the logarithm x of a number a satisfies a = ex. On
the other hand, x + 2kπi is also a logarithm of a for any integer k since ex+2kπi =
exe2kπi = ex. This nonuniqueness problem can be avoided by using the principal
branch of the logarithm. That is, we require x to satisfy a = ex and restrict the
imaginary part of x to lie between −π and π. This restriction means that we must
exclude values of a on the negative real axis.

For the matrix case the same approach can be used. If A is a matrix with no
eigenvalues on the (closed) negative real axis R

−, then there is a unique matrix X
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satisfying A = eX subject to the restriction that the eigenvalues λ of X lie in the
infinite strip −π < Im(λ) < π; see [16] and also [5], [8], [12], [14], and [31]. Denoting
this matrix X by the symbol logA we see that out of all matrices M satisfying A = eM ,
the matrix X is the one with eigenvalues closest to the origin. This is the logarithm
that is computed by the algorithms given in this paper.

Additionally, this choice of the logarithm satisfies the equation X = 1
p log(Ap) for

0 < p < 1. Note, however, that this formula may not hold for p > 1 since this may
force the eigenvalues of A across the negative real axis. For example, in the scalar case
if a = i then x = iπ/2. If we take p = 4 then a4 = 1 so 1

4 log a4 = 1
4 log 1 = 0 6= iπ/2.

Example 1. Let us illustrate the above discussion with a simple example that has
the further advantage of shedding some light on the “hump” problem of the matrix
exponential. Consider

X =

[
α + βi x

0 α− βi

]
and etX =

[
e(α+βi)t xeαt sin(βt)/β

0 e(α−βi)t

]
.

If β 6= 0, then for t = π/β the matrix etX has a double eigenvalue at −eαt on the
negative real axis. At the same time sin(βt) = 0 and the (1,2) entry of etX is zero.
Thus at t = π/β all information about x is lost and we cannot hope to recover X.
This phenomenon is distinct from the loss of phase information in the scalar case and
shows up as a decrease in the norm of etX .

This hump problem is discussed by Moler and Van Loan [26] for the squaring
phase of the “scaling and squaring” method of evaluating the exponential. In this
method, the exponential of X/2k is approximated (usually by a rational function)
where k is taken large enough so that the error in the approximation is negligible.
The result is then squared k times to yield the exponential of X. A decrease in norm
resulting from the near cancellation of large terms during a squaring has the potential
of introducing a loss of accuracy even if the large terms are themselves relatively
accurate.

2. The exponential and logarithmic Fréchet derivatives. The difference
between the exponentials of X + L and X can be expressed by the standard integral
formula

eX+L − eX =

∫ 1

0

e(1−s)XLes(X+L) ds.

Dropping second-order terms in L gives the Fréchet relation

Z =

∫ 1

0

e(1−s)XLesX ds,(5)

where Z is the Fréchet derivative of the exponential map at X in the direction L.
Alternatively, because of the inverse relationship of the exponential and logarithm
functions, L is the Fréchet derivative of the logarithmic map at A in the direction Z
where A = eX . See [16] for more details.

The integral expression relating Z and L is difficult to work with numerically.
The goal of this section is to reduce this integral expression to a series of coupled
equations that are more tractable. The main tool in this reduction is the chain rule
for Fréchet derivatives: “the Fréchet derivative of the composition is the composition
of the Fréchet derivatives.” That is, if F (X) = G(H(X)) then LF = LG ◦LH and the
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Fréchet relation Z = LF (L,X) for F can be written as the coupled Fréchet relations
of G and H

Z = LG(L1, H(X)),

L1 = LH(L,X).

This can be applied to the exponential map by noting that eX =
(
eX/2

)2
. That is,

the exponential is the composition of a division X → X/2, followed by exponentiation
and then squaring. Thus, (5) can be replaced by

Z = eX/2L1 + L1e
X/2 squaring derivative,

L1 =

∫ 1

0

e(1−s)X/2L0e
sX/2 ds exponential derivative,

L0 = L/2 division derivative.

An extended version of this can be obtained by using eX = (eX/2k

)2
k

. This is
the composition of a division X → X/2k, followed by exponentiation and then k
squarings. This gives

Z = eX/2Lk + Lke
X/2 kth squaring derivative,

...

Lj+1 = eX/2k+1−j

Lj + Lje
X/2k+1−j

jth squaring derivative,

...

L2 = eX/2k

L1 + L1e
X/2k

first squaring derivative,

L1 =

∫ 1

0

e(1−s)X/2k

L0e
sX/2k

ds exponential derivative,

L0 = L/2k division derivative.

In the remainder of this section we concentrate on the logarithmic Fréchet deriva-
tive. The results obtained can then be easily converted to results for the exponential
Fréchet derivative by using the previously mentioned maxim concerning the relation-
ship between derivatives of inverse functions.

2.1. The hyperbolic tangent connection. The chain rule decomposition ex-
presses the Fréchet derivative of the logarithm at A as the composition of the Fréchet

derivative of the logarithm at A1/2k

with a sequence of square root derivatives. The
square root derivatives can be evaluated as a series of coupled Sylvester equations.
Thus the problem of how to evaluate Llog(Z,A) for a given matrix Z has been reduced

to evaluating Llog(W,A1/2k

), where W results from applying the Sylvester cascade to
Z.

Since we have replaced one logarithmic derivative with another, it might seem that
we are no closer to simplifying the Fréchet relation (5). This is not the case, however,

if k has been chosen so that A1/2k

is close to the identity: say, ‖I − A1/2k‖ < 0.22.
(See Remark 3 for the rationale behind this choice of the bounding constant.) This

means that Llog(W,A1/2k

) may be approximated with very low error (< 10−16) by
using rational functions associated with the hyperbolic tangent function.

This type of approximation is based on a Kronecker form of the logarithmic
Fréchet derivative. This form of the Fréchet derivative is derived in the next section in
a general setting that can then be applied to the problem of evaluating Llog(W,A1/2k

).
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2.2. Kronecker form of the Fréchet derivative. The Fréchet derivative L
of the logarithm and the Fréchet derivative Z of the exponential at X are related by
the integral expression

Z =

∫ 1

0

e(1−s)XLesX ds.(6)

(Note: for notational simplicity in this subsection we work with X rather than X/2k;
see the discussion after Lemma 2.2.) It is convenient to rewrite this expression as

e−XZ =

∫ 1

0

e−sXLesX ds.(7)

Our basic problem is how to solve for L if we know Z.
Converting this equation to Kronecker form reveals a close connection between

Z and L and the hyperbolic tangent function. The Kronecker form of a matrix M
is obtained by stacking the columns of M to form a vector v = vecM . We need the
following properties [11]:

A⊗B ≡ (aijB) (aij = ijth element of A),

vec(ABC) = (CT ⊗A) vecB,

(A⊗B)(C ⊗D) = (AC)⊗ (BD),

A⊕B ≡ A⊗ I + I ⊗B,

eA ⊗ eB = eA⊕B .

Remark 1. Our definition of Kronecker sum is consistent with that of Graham
[11] since that definition yields the exponential property as listed. Many authors
define the Kronecker sum A⊕B to be I ⊗ A + B ⊗ I, in which case the exponential
property becomes instead eA ⊗ eB = eB⊕A.

Since the vec operator is linear and since the integral expression on the right-hand
side of (7) can be written as the limit of Riemann sums, we may interchange the order
of these operators as follows:

vec

∫ 1

0

e−sXLesX ds =

∫ 1

0

vec
(
e−sXLesX

)
ds

=

∫ 1

0

(
esX

T ⊗ e−sX
)

vecLds

=

∫ 1

0

es(X
T⊕(−X )) vecLds

=

∫ 1

0

esY ds vecL

where Y ≡ XT ⊕ (−X ).
Although Y is singular, it is now helpful to work by analogy with the nonsingular

scalar case. For y 6= 0 ∫ 1

0

eys ds =
ey − 1

y

=
ey + 1

2

tanh(y/2)

y/2
,
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where

tanh(x) ≡ ex − e−x

ex + e−x
.

It is convenient to introduce the function τ(x) = tanh(x)/x. To avoid difficulties
with x = 0, we define τ(x) in terms of the associated Taylor series (see [10, p. 35,
section 1.411, number 6]),

τ(x) = 1− x2

3
+

2x4

15
− 17x6

315
+ · · · .(8)

This series is absolutely convergent for |x| < π/2.

We can combine the above results for Z =
∫ 1

0
e(1−s)XLesX ds by writing

vecZ =
(
I ⊗ eX

) (
I ⊗ e−X )

vecZ

=
(
I ⊗ eX

)
vec

(
e−XZ

)
=

(
I ⊗ eX

) eY + I

2
τ(Y/2) vecL

=
1

2

(
eX

T ⊗ I + I ⊗ eX
)
τ(Y/2) vecL,

where τ(Y/2) is defined by the obvious matrix analogue of the power series (8).
Noting that (

eX
T ⊗ I + I ⊗ eX

)
vecM = vec

(
eXM + MeX

)
,

we have the following result.

Theorem 2.1. Let Z =
∫ 1

0
e(1−s)XLesX ds and Y ≡ XT⊕ (−X ), where ‖X‖F <

π/2. Then Z and L are related by the coupled equations

2Z = eXL0 + L0e
X ,

vecL0 = τ(Y/2) vecL.

Proof. In view of the above development we need only show that ‖Y/2‖2 < π/2,
which ensures that the series for τ(Y/2) is well defined. For any vector v = vecV we
have

Y v = vec(V X − XV ).

Now use ‖M‖F = ‖ vecM‖2 to get ‖Y v‖2 ≤ 2‖X‖F ‖V ‖F = 2‖X‖F ‖v‖2. This
shows that ‖Y/2‖2 ≤ ‖X‖F < π/2.

2.3. Rational approximations of τ (x) = tanh(x)/x. Suppose for a moment
that we can replace τ(Y/2) in Theorem 2.1 by a factored rational function R of Y ,
say

vec(L0) = R(Y ) vec(L)

=
m∏
i=1

(I − Y/βi)
−1(I − Y/αi) vec(L),
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where α1, α2, . . . , αm are the zeros of R and β1, β2, . . . , βm are the poles of R.
Since Y = XT ⊕ (−X ) = XT ⊗ I − I ⊗ X , we have Y vecM = vec(MX − XM)

for any compatibly dimensioned matrix M . Then the preceding rational expression
can be written as

G0 = L,

(I/2 + X/β1)G1 + G1(I/2−X/β1) = (I/2 + X/α1)G0 + G0(I/2−X/α1),

...

(I/2 + X/βm)Gm + Gm(I/2−X/βm) = (I/2 + X/αm)Gm−1 + Gm−1(I/2−X/αm),

L0 = Gm.

This gives us the final connection between Z and L in the exponential Fréchet rela-
tion (5). First we had the Sylvester cascade corresponding to the repeated squaring
operations followed by the hyperbolic tangent equation. The above equations show
that if the hyperbolic tangent function is approximated by a rational function the
result is simply another Sylvester cascade. If the original matrix A = eX has been
put in upper triangular form, the solutions to these Sylvester equations can be found
efficiently by standard procedures. Thus the main difficulty remaining is to find ra-
tional approximations for the hyperbolic tangent and to bound the error incurred in
using these approximations.

The principal Padé approximants of the function tanh(x)/x can be recovered from
the continued fraction expansion [1]

tanh(x)

x
=

1

1 + x2/1·3
1+

x2/3·5
1+··· x

2/(2k−1)·(2k+1)
1+···

For example, the [8,8] Padé approximation to tanh(x)/x is given by

R8 =
34459425 + 4729725x2 + 135135x4 + 990x6 + x8

34459425 + 16216200x2 + 945945x4 + 13860x6 + 45x8
.

Using the theory of orthogonal polynomials and their connection with continued frac-
tions [1], [22] we can show that the zeros and poles of these approximants lie on the
imaginary axis.

For comparison we note the Eulerian expansion

tanh(x)

x
=

π2 + x2

π2 + 4x2

π2 + x2/4

π2 + 4x2/9
· · · π2 + x2/k2

π2 + 4x2/(2k − 1)2
· · · ,(9)

which shows clearly the zeros (±kπi) and poles (±((2k − 1)πi/2) of tanh(x)/x. See
Table 1 for a comparison with the poles and zeros of R8.

Remark 2. Set the rational expansion (9) equal to the Taylor series (8), multiply
both sides by the denominator of the rational expansion, and then equate the coef-
ficients of like powers of x. This is essentially the procedure Euler used [9] to find
power series expressions for the even powers of π. For example, the series for π2 is
given by the well-known formula

π2

6
=

+∞∑
n=1

1

n2
.
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Table 1
Eight-digit values for the poles and zeros of R8 and tanh(x)/x.

Zeros Poles
R8 ±3.1415927 i ±1.5707963 i

±6.2899752 i ±4.7124693 i
±10.281299 i ±7.9752405 i
±28.893970 i ±14.822981 i

tanh(x)/x ±3.1415927 i ±1.5707963 i
±6.2831853 i ±4.7123890 i
±9.4247780 i ±7.8539816 i
±12.566371 i ±10.999557 i

The distribution of the poles and zeros allows us to say something about the
conditioning of the Sylvester steps in the rational approximation of tanh(x)/x. In
the following lemma, γ plays the role of either a pole or a zero; we may assume that
|γ| ≥ π/2.

Lemma 2.2. Let Y = XT ⊗ I − I ⊗X . If 2‖X‖F /|γ| < 1; then

1− 2‖X‖F /|γ| ≤ ‖I + Y/γ‖2 ≤ 1 + 2‖X‖F /|γ|
and

(1 + 2‖X‖F /|γ|)−1 ≤ ‖(I + Y/γ)−1‖2 ≤ (1− 2‖X‖F /|γ|)−1.

Proof. Since Y vecV = vec(V X−XV ) we have ‖Y ‖2 ≤ 2‖X‖F . Thus ‖I + Y/γ‖2 ≤
1 + ‖Y ‖2/|γ| ≤ 1 + 2‖X‖F /|γ|. The other inequalities can be obtained in a similar
manner.

To illustrate, in the decomposition given in Theorem 2.1 we approximate τ(Y/2)
where Y = XT ⊗ I − I ⊗X and X = X/2k. This is the same as approximating τ(Y1)
where Y1 = XT

1 ⊗ I − I ⊗X1 and X1 = X/2k+1.
If we assume that k is large enough so that ‖X‖F /2k < 0.25 (which is usual for

the log problem; see [16]), then 2‖X1‖F /|γ| < 1
2π and I + Y1/γ is well conditioned

with respect to inversion since

‖I + Y1/γ‖2‖(I + Y1/γ)−1‖2 ≤
1 + 1

2π

1− 1
2π

< 1.38 .

A similar analysis shows that the product of the condition numbers of each Sylvester
step corresponding to R8 is bounded above by(

1 + 1
2π

1− 1
2π

)2 (
1 + 1

4π

1− 1
4π

)2

· · ·
(

1 + 1
16π

1− 1
16π

)2

< 5.68.

Thus this approximation does not introduce significant error due to ill conditioning
of the Sylvester operations.

We still need to ascertain the accuracy of the Padé approximations of tanh(x)/x.
Our main result along these lines is the following theorem.

Theorem 2.3. Let Rk(x) be the kth Padé approximant to τ(x) ≡ tanh(x)/x and
let R̃k(x) ≡ Rk(ix) be the kth Padé approximant to τ̃(x) ≡ τ(ix) = tan(x)/x. The
function

f(x) ≡ τ̃(x)− R̃k(x)
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is an increasing function of x for 0 ≤ x < π/2. For ‖X‖ < π/2 the error in the
matrix approximation Rk(X) ≈ τ(X) is bounded by the scalar error

‖τ(X)−Rk(X)‖ ≤ f(‖X‖),(10)

where ‖ · ‖ is any consistent matrix norm.
Proof. The proof uses standard methods like those in [17]. For details see

[20].
Using the above theorem we see that if k is large enough so that ‖X‖F /2k <

0.25, then the difference between τ(Y/2) and R8(Y/2) is less than 10−16 where Y ≡(
XT ⊗ I − I ⊗X

)
/2k.

3. Algorithms. In this section we synthesize the analysis of the preceding sec-
tions to develop algorithms for evaluating the logarithm and exponential of a matrix.

3.1. A Schur–Fréchet algorithm for the logarithm. Assume that A and X
have the block structure

A =

[
A11 A12

0 A22

]
and X =

[
X11 X12

0 X22

]
.

Suppose that we know A and have already calculated X11 = log(A11) and X22 =
log(A22) but we don’t know X12. Then by Lemma 1.1, if D and Z have the same
block structure as A with

D =

[
A11 0
0 A22

]
and Z =

[
0 A12

0 0

]
,

then X12 is just the (1, 2) block of the Fréchet derivative of the logarithm of D in the
matrix direction Z.

Before describing how to find X12, we must address a small detail: we need to
determine k such that ‖X/2k‖F < 0.25. However, we are assuming that we only know
the main diagonal blocks of X. The next lemma shows how we can get around this
difficulty.

Lemma 3.1. Let X = log(A) and Y = I −A1/2k

. Assume that k is large enough
so that ‖Y ‖F < 1. Then ‖X/2k‖F < | log(1− ‖Y ‖F )|.

Proof. Take norms in the expression X/2k = 1
2k log(A) = −(Y + Y 2/2 + Y 3/3 +

· · ·).
Remark 3. Since 0.22 < 1−e−0.25, Lemma 3.1 shows that if ‖I −A1/2k‖F < 0.22,

then ‖X/2k‖F < 0.25.
ALGORITHM (SCHUR–FRÉCHET LOGARITHM).

Let k be large enough so that ‖I −A1/2k‖F < 0.22.
Step 1 (square root Sylvester cascade)
a) If k = 0, set L0 = A12 and go to Step 2.
b) If k > 0, solve in sequence for Lk, Lk−1, . . . , L0 in the coupled Sylvester equations

A12 = A
1/2
11 Lk + LkA

1/2
22 ,

Lk = A
1/22

11 Lk−1 + Lk−1A
1/22

22 ,

...

L2 = A
1/2k

11 L1 + L1A
1/2k

22 ,

L0 = 2k L1.
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Step 2 (hyperbolic tangent Sylvester cascade)
a) Let α1, α2, . . . , α8 be the zeros of p(x) = 34459425+4729725x2+135135x4+990x6+
x8.
b) Let β1, β2, . . . , β8 be the zeros of q(x) = 34459425 + 16216200x2 + 945945x4 +
13860x6 + 45x8.
c) Set X11 = X11/2

k and X22 = X22/2
k. Solve in sequence for G8, G7, . . . , G0 and

X̃12 in the coupled Sylvester equations

L0 = A
1/2k

11 G8 + G8A
1/2k

22 ,

(I + X11/β8)G8 + G8(I −X22/β8) = (I + X11/α8)G7 + G7(I −X22/α8),

...

(I + X11/β1)G1 + G1(I −X22/β1) = (I + X11/α1)G0 + G0(I −X22/α1),

X̃12 = 2G0.

Matlab routines implementing the Schur–Fréchet method for the logarithm can
be found in [20]. The significance of the hyperbolic tangent approach to approximating
the Fréchet derivative of the matrix logarithm function is that the Padé approxima-
tion of the hyperbolic tangent function makes use of the matrix A1/2n

rather than
A1/2n − I. This avoids the cancellation of nearly equal terms and the concomitant
(but unnecessary) loss of accuracy.

3.2. Comparison with related methods for the logarithm. Other meth-
ods have been proposed for computing the logarithm of a matrix. Perhaps the most
competitive is an adaptation of Briggs’ square root method: take k square roots of A

so that A1/2k

is close to the identity. Then set Y = I − A1/2k

and use a [p/q] Padé
approximation of log(I − Y ), where [p/q] is the order of the Padé approximation.
(Briggs used a [1/0] approximation in preparing the scalar logarithm tables in Arith-
metica Logarithmica.) Details of the Briggs–Padé method can be found in [16] and
[17]. This method is implemented with [p/q] = [8/8] in the Matlab routine logBP

given in [20].
The Briggs–Padé method has been criticized by Dieci, Morini, and Papini [6] on

the grounds that if A is an upper triangular matrix with one subblock A11 near the
identity while the rest of A is far from the identity, then treating the matrix as a
whole results in too many square roots being applied to A11 to bring A near the

identity. Subsequently, when forming the difference matrix Y = I − A1/2k

, there is
an unneccesary loss of accuracy in the Y11 block because of the subtraction of nearly
equal terms. This effect is seen in the following example.

Example 2. Let

X =

[
α β

0 α

]
, A =

[
eα βeα

0 eα

]
.

If we take α = 1/10 and β = 106 then 23 square roots are needed to bring A close

to I; for k = 23, we have ‖I −A1/2k‖F < 0.22. The approximation Xbp computed
by the Matlab routine logBP has lost about seven digits of accuracy in its main
diagonal entries. The relative error matrix Ebp defined by Ebp(i, j) = |Xbp(i, j) −
X(i, j)|/(|X(i, j)|+ ε), where ε ≈ 2.2× 10−16, is given by

Ebp =

[
8.9× 10−9 5.8× 10−16

0 8.9× 10−9

]
.
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This problem inspired the development of the Schur–Fréchet method described
in this paper. By building up the logarithm via a recursion on the upper subblocks,
this method avoids the problem of treating the matrix as a whole in determining the
number of square roots. At the same time a rational approximation of a novel form of
the Fréchet derivative of the logarithm is used, which does not require the difference

matrix Y = I − A1/2k

. The Schur–Fréchet method is implemented in the Matlab
routine logSF given in [20]. For the above example, the matrix Xsf , computed by
logSF, has the relative error matrix Esf given by

Esf =

[
6.9× 10−16 0

0 6.9× 10−16

]
.

It is interesting to note that because of the evaluation by subblocks, the number of
square roots needed by the Schur–Fréchet method for this problem is much smaller
than for the Briggs–Padé method. Here we need take only four square roots to ensure
that the main diagonal entries are brought within 0.22 of 1.0.

The Briggs–Padé method and the Schur–Fréchet method require successive square
roots of A or its subblocks; to compute these efficiently it is convenient to first put A
in upper triangular form. Once this is done the work needed to compute the logarithm
is approximately the same for both methods; we omit the details of such a comparison
and refer the interested reader to [16].

The desire to avoid square roots and transformations to upper triangular form has
prompted some researchers to formulate other methods related to the Taylor series
for the logarithm. For example, Dieci, Morini, and Papini [6] note that if A has all
of its eigenvalues in the right half-plane, then C = (I − A)(I + A)−1 has all of its
eigenvalues inside the unit circle. This implies that the following series in C converges:
logA = log(I − C)− log(I + C) = −2(C + C3/3 + C5/5 + · · ·).

This series for the logarithm was given by Gregory in 1668 in Exercitationes
Geometricae (see Goldstine [9, pp. 60–61]. The Matlab routine logG given in [20]
implements a truncated version of Gregory’s series. The analysis of Luke in [22]
shows that if we switch from Gregory’s series to the principal Padé approximants of
log

(
(I − C)(I + C)−1

)
, then the requirement that the eigenvalues of A lie in the right

half-plane can be relaxed because the main diagonal Padé approximants converge as
long as A does not have eigenvalues on R

−.
However, the convergence may be very slow. For example, in Gregory’s series for

the scalar problem, if a = 1000 we find that the first 200 terms of the series give an
approximation of log(a) with a relative error of 0.0446 while 2000 terms are needed to
reduce the relative error to 5.4 × 10−6! This would certainly be unacceptable in the
matrix case since each additional term requires another matrix multiplication. More
serious for matrix problems is the cancellation of nearly equal terms in the series; this
is why the globally convergent Taylor series for the matrix exponential is unsuitable
for computational purposes (see [26]). In contrast to this, for a = 1000, the Briggs–

Padé method needs six square roots to ensure that a1/2k − 1 < 0.22 and then seven
multiplications and a division to approximate log(a) with a relative error of less than
10−16.

Somewhat suprisingly, the Gregory series method performs quite well on Exam-
ple 2. In part this can be attributed to the fact that the matrix C is nearly nilpotent
of order two.

3.3. The exponential of a matrix. Although there are many ways to approx-
imate the exponential of a matrix [26], the most commonly used methods rely on the
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“scaling-and-squaring” formula

eX =
(
eX/2k

)2k

,(11)

where k is some nonnegative integer. Typically, k is taken large enough so that eX/2k

is easily approximated, usually by a rational function [30], which is then squared k
times to give an approximation of eX .

In [27], Najfeld and Havel give an encyclopedic treatment of the Fréchet derivative
of the exponential and present a computational procedure for evaluating the matrix
exponential by exploiting the relationship e2B = (H(B)−B)−1(H(B) + B) where

H(x) ≡ xcoth(x) = x
e2x + 1

e2x − 1
.

The function H can be approximated using rational expressions that are the recipro-
cals of those we have given for tanh(x)/x. The algorithm given in [27] is similar to the
standard scaling and squaring procedure. To approximate eX , perform the following:

1) Set B = X/2d+1 where d is an integer large enough so that ‖B2‖ < γ where γ
is a prescribed constant (see Section 2.3 in [27] and Example 3 below) near 1.

2) Compute a rational Padé approximation R = R(B) of H(B).

3) Set E = (R−B)−1(R+B) and square the result d times. The matrix E2d

is
the computed approximation of eX .

The problem with this approach and the standard scaling and squaring method
is that treating the matrix as a whole can result in overscaling some components.
For example, if X is in block upper triangular form with the subblock X11 small in
norm compared to the rest of X, then with the scaling and squaring approach we
will see a relative loss of accuracy in the computed value of the (1,1) subblock of eX .
We emphasize that this overscaling problem may not be apparent if it is hidden by a
unitary similarity: X̃ = UXUH .

Example 3. To illustrate, radioactive decay problems often give rise to matrices
X and their exponentials of the form [7]

X =

[ −1 b
0 −b

]
, eX =

[
e−1 b(e−1 − e−b)/(b− 1)
0 e−b

]
,

where b 6= 1 determines the relative decay rate.
Table 2 gives the relative error in the (1,1) component of the computed result using

the Matlab scaling-and-squaring Padé routine expm (column 2) and the scaling-and-
squaring hyperbolic cotangent method of Najfeld and Havel (column 3; for this method
we used the 8th-order rational approximation H8 and γ = 1.151922, as recommended
in [27]). The reason for the loss of accuracy described in Table 2 for these scaling-and-
squaring methods can be seen in the approximation ex ≈ 1+x. If x is small compared
to 1 then finite wordlength representation causes a loss of approximately − log10(|x|)
decimal digits of x in forming 1 + x or ex. Repeated squaring does not restore these

lost digits, which may play a significant role in determining the value of e2kx. As an
extreme example, if x is less than the relative machine precision, then ex will be set
equal to 1 and repeated squaring leaves this value unchanged. See Kenney and Laub
[20] for a related discussion concerning unnecessary loss of accuracy in evaluating the
logarithm by the “inverse scaling-and-squaring” method. It is worth remarking that
in real decay rate problems the value of b can be as high as 1016.
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Table 2
Relative error in the (1, 1) component of eX for Example 3 using two scaling-and-squaring

methods.

b Relative error Relative error
expm Najfeld and Havel

101 10−14 10−15

103 10−12 10−14

105 10−10 10−12

107 10−8 10−11

As a specific example from [7], the decay chain Kr90
33 sec→ Rb90 2.7 min→ Sr90

28 yr→
Y90 65 hr→ Zr90 (stable) can be represented in matrix form (with the unit of time equal
to 28 years) as

X =




0 3.8× 103 0 0 0

0 −3.8× 103 1 0 0

0 0 −1 5.5× 106 0

0 0 0 −5.5× 106 2.7× 107

0 0 0 0 −2.7× 107


 .

If we use expm to compute eX then the relative error in the (3,3) entry is on the order
of 10−11, indicating that we have lost about five digits of accuracy. Similar problems
in evaluating the matrix exponential via the scaling-and-squaring method can occur
in control problems with fast and slow system modes.

The Schur–Fréchet method can avoid problems of this type. Suppose that X and
A = eX have the block structure

X =

[
X11 X12

0 X22

]
and A =

[
A11 A12

0 A22

]
.

Assume that we know X and have already calculated A11 = eX11 and A22 = eX22

but that we don’t know A12. The development of the preceding sections gives the
following algorithm for computing Ã12 where, in exact arithmetic, ‖A12 − Ã12‖F <
10−16.

ALGORITHM (SCHUR–FRÉCHET EXPONENTIAL).
Given X11, X12, X22, let k ≥ 0 be large enough so that ‖Xii‖F ≤ 2k−2 for i = 1, 2.
Step 1 (hyperbolic tangent Sylvester cascade)

(a) Let α1, α2, . . . , α8 be the zeros of p(x) = 34459425+4729725x2+135135x4+
990x6 + x8

(b) Let β1, β2, . . . , β8 be the zeros of q(x) = 34459425 + 16216200x2 +
945945x4 + 13860x6 + 45x8

(c) D12 ←− X12, M11 ←− X11/2
k, M22 ←− X22/2

k

(d) For i = 1 to 8
Q←− (I/2 + M11/αi)D12 + D12(I/2−M22/αi)
Solve for D12 in Q = (I/2 + M11/βi)D12 + D12(I/2−M22/βi)

End for

Step 2 (top down square root Sylvester cascade)
If k > 0, then Xii ←− Xii/2 and Aii ←− eXii for i = 1, 2
For j = 1 to k

D12 ←− A11D12 + D12A22
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If j < k, then Xii ←− Xii/2 and Aii ←− eXii for i = 1, 2
End for

Repeat the last Sylvester step D12 ←− A11D12 + D12A22

Step 3 Scale the final result: A12 ←− D12/2
k+1.

This algorithm might be called the completely recursive form of the Schur–Fréchet
approach in that it calls for separate calculation of the coefficient matrices eXii/2

j

in
the square root Sylvester cascade. While this appears to give the most accurate results
it becomes very expensive as the order of the matrix grows. As a compromise between
accuracy and efficiency we have modified the above algorithm to a “semirecursive”
form: if Xii is not too large in norm (in Step 2) replace the exponentiation Aii ←−
eXii/2 by the analytically equivalent square root operation Aii ←− A

1/2
ii . Since Aii is

in upper triangular form we can form A
1/2
ii efficiently by using the stable square root

algorithm of Björck and Hammarling [2]; for strictly real matrices see the method of
Higham in [13].

For the numerical results reported here, we replaced the exponentiation with the
square root if the condition ‖Xii‖F < tol with tol=100 was satisfied. A condition
of this type is needed to protect against destructive underflow. For example, in
calculating e−1000 the result underflows to zero; if we then start taking square roots
to approximate e−1000/2j

the resulting sequence remains stuck at 0 even though it
should be converging to 1.

The above algorithm can be used to build up the exponential of an upper tri-
angular matrix starting with the smallest 2 × 2 blocks on the main diagonal and
then doubling the block size at each step. (If the matrix order is not a power of
2, then the lower right-hand block size must be adjusted accordingly.) Using this

procedure, and evaluating the coefficient matrices Aii = eXii/2
j

by taking square
roots, the exponential of an upper triangular matrix can be computed using ap-
proximately (17 + 5k/3)n3/6 scalar multiplications where k is large enough so that
‖X‖F < 2k−2. This compares with approximately (8 + k)n3/6 scalar multiplications
for the scaling-and-squaring Padé approximation method for an upper triangular ma-
trix. Thus, the Schur–Fréchet method requires about twice the effort as the usual
scaling-and-squaring method. However, this does not include the cost of the initial
transformation to Schur form and the subsequent back transformation which together
add approximately 10n3 scalar multiplications. When this extra cost is accounted for,
the relative difference between the two methods is much smaller. For example, for a
nominal value of k = 6, the Schur–Fréchet method requires about 14.5n3 multiplica-
tions versus 12.3n3 for the scaling-and-squaring Padé method.

Table 3 shows that for Example 3 the semirecursive and the completely recursive
Schur–Fréchet methods give excellent accuracy compared to the standard scaling-and-
squaring method. In this table the relative error in each entry is calculated using

relerr(i, j) =
|e(i, j)− a(i, j)|

ε + |e(i, j)| ,

where e and a are, respectively, the exact and computed values of eX and ε ≈ 2.2 ×
10−16 is the relative machine epsilon for Matlab on a Sun SPARCstation. The
relative error reported in Table 3 is the Frobenius norm of the relative error matrix.

The Schur–Fréchet method also seems to perform well on the hump problem in
Example 1.

Table 4 gives the relative error for Example 1 for the parameters x = 102, α = −1,
and β = π − δ for different values of δ. As δ → 0 the scaling-and-squaring method



MATRIX LOGARITHMS AND EXPONENTIALS 657

Table 3
Relative error in the computed value of eX for Example 3.

b Relative error Relative error Relative error
expm (Matlab) Schur–Fréchet Schur–Fréchet

semirecursive recursive

101 10−14 10−15 10−15

103 10−12 10−15 10−15

105 10−10 10−15 10−15

107 10−8 10−15 10−15

Table 4
Relative error in the computed value of eX for Example 1.

δ Relative error Relative error Relative error
expm (Matlab) Schur–Fréchet Schur–Fréchet

semirecursive recursive

10−1 10−13 10−15 10−15

10−3 10−13 10−15 10−15

10−5 10−11 10−15 10−15

10−7 10−9 10−15 10−15

10−9 10−6 10−15 10−15

loses accuracy.

The semirecursive Schur–Fréchet method has also been applied to the set of prob-
lems in [15] and [16] and in all cases tested gave results that were at least as accurate
as the scaling-and-squaring method.

We end this section with a short discussion of how the preliminary Schur trans-
formation affects the accuracy of the subsequent evaluation of the exponential by the
Schur–Fréchet method. Specifically, can an ill-conditioned eigensystem for X unduly
compromise the accuracy of the Schur–Fréchet approximation of eX? The answer
appears to be no; if X has an ill-conditioned eigensystem, then the mapping X 7→ eX

is inherently sensitive. To see this suppose that X has an eigenvalue λ = λ(X) that
is sensitive in the sense that there exists a matrix E such that

∂λ(X + tE)

∂t

∣∣∣∣
t=0

� 1.

Then we have that the relative sensitivity of the corresponding eigenvalue of eX is
also large:

1

eλ
∂eλ(X+tE)

∂t

∣∣∣∣
t=0

=
∂λ(X + tE)

∂t

∣∣∣∣
t=0

� 1.

This is illustrated by Example 4 from [15].

Example 4. Let X = (H2SH1)J(H1S
−1H2) where J is all zeros except

diag(J) = [1, 1, 1, 1, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3]

and J12 = J23 = J34 = 1, S = diag(1, σ, σ2, . . . , σ9), H1 = I − 0.2eeT , and H2 =
I − 0.2ffT with e = [1, 1, . . . , 1]T and f = [1,−1, 1, . . . ,−1]T . The parameter σ is
used to control the ill conditioning of the eigensystem of X. Table 5 gives the relative
error in the computed value of eX for various values of σ.
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Table 5
Relative error in the computed value of eX for Example 4.

σ Relative error Relative error Relative error Cond(H2SH1)
expm (Matlab) Schur–Fréchet Schur–Fréchet

semirecursive recursive

0.20 10−5 10−7 10−7 2 × 106

0.18 10−4 10−5 10−5 5 × 106

0.16 10−1 10−4 10−4 1 × 107

0.14 100 10−4 10−4 5 × 107

0.12 102 10−3 10−3 2 × 108

0.10 108 10−1 10−1 2 × 109

4. A posteriori condition estimates. A new procedure has recently been
developed by the authors [18] for estimating the sensitivity of each entry in a matrix
function. To understand this approach suppose that we are interested in the sensitivity
of the (i, j) entry of a matrix function F = F (A). This sensitivity can be measured
by the norm of the gradient of the map A 7→ Fij(A). The basic idea in [18] is to
check for sensitivity by perturbing the argument (A) in a random fashion and looking
at the resulting effect on the function value. In general, a random perturbation is
not going to point in the direction of the gradient (i.e., in the matrix direction that
produces the maximal perturbation in Fij(A)). Because of this, a scaling factor ωm,
also called the “Wallis” factor, must be introduced. The Wallis factor depends only
on the number m of arguments being perturbed. In the case considered here, m = n2,
where n is the order of the matrix A. For computational purposes the approximation
ωm ≈

√
2/(π(m− 0.5)) is sufficiently accurate; see [18].

The condition estimation procedure introduced in [18] has a particularly simple
form when expressed in terms of the Fréchet derivative LF (·, A) of F :

1) Select Z ∈ Nn×n, i.e., select Z uniformly and randomly from the space of all
unit Frobenius norm matrices of size n by n. This can be done by setting
Z = Z̃/‖Z̃‖F , where the entries of the matrix Z̃ have been generated inde-
pendently with a N(0,1) distribution (i.e., normal with mean 0 and variance
1). Set m = n2.

2) Set D = 1
ωm

LF (Z,A). Then the expected value of |di,j | is equal to the norm
of the gradient of the mapping A 7→ Fij(A).

Note that we get a condition estimate for all the entries of F with the evaluation
of D. For the purposes of condition estimation, the evaluation of LF (Z,A) can be
performed via the approximation

LF (Z,A) ≈ F (A + hZ)− F (A)

h
,

where h is a small positive number, say, h = 10−8. (See [18] for more discussion of
this point.) Because of this, the above condition estimation procedure should not
require more than one extra function evaluation beyond that of F (A). Generally,
this computational cost can be reduced considerably by working directly with the
explicitly known Fréchet derivative for particular functions such as the square root
and logarithm.

The accuracy of this method of estimating the norm of the gradient has been
analyzed in terms of the beta distribution [18]. This analysis shows that the procedure
gives a first-order estimate of the norm of the gradient, i.e., the probability that the
estimate is off by a factor of 10 is about 1/10, the chance of being off by a factor
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of 100 is about 1/100, etc. Higher-order estimates are easily generated. A pth-order
estimate takes about p times the computational effort of a first-order estimate and
the chance of its being off by a factor γ is proportional to 1/γp [18].

Applying this to the square root problem with p = 1 gives the following procedure.
PROCEDURE 1 (square root condition estimation).
1) Select Z ∈ Nn×n.
2) Solve for L in Z = XL+LX and define D = |L|/ωm, where m = n2 and |L|

denotes the matrix with entries |`ij |.
Example 5. As an illustration, let

X =

[
1 x
0 1

]
.

Then the exact matrix of gradient norms is given by

G =




√
4+x2

4

√
4+2x2+x4

4

1
2

√
4+x2

4


 .

If we let x = 1000, then to four decimal places

G =

[
250 2.5× 105

0.50 250

]
.

Using the Matlab commands
Z=randn(2,2);

Z=Z/norm(Z,’fro’);

we generated

Z =

[
0.4688 0.3338
−0.2187 −0.7880

]
.

Solving for L in Z = XL + LX and setting D = |L|/ω4 gave

D =

[
1.294× 102 1.286× 105

2.576× 10−1 1.279× 102

]
,

which, considering that condition numbers need only be accurate to within an order
of magnitude, compares very well with the exact matrix G of condition numbers. Of
course, this is just one random sample, but the quality of the condition estimates
reflects the predictions of the work in [18]. For example, in a second random sample
we obtained

Z =

[
0.4725 −0.3331
−0.7415 0.3405

]

and

D =

[
4.373× 102 4.373× 105

8.736× 10−1 4.372× 102

]
,

which also compares well with G.
The small-sample statistical condition estimation method can also be applied to

the logarithmic map A 7→ X = logA. This is summarized in the following procedure.
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PROCEDURE 2 (logarithm condition estimation).
1) Select Z ∈ Nn×n.

2) Solve for L in Z =
∫ 1

0
e(1−s)XLesXds. This can be done by using the Schur–

Fréchet logarithm algorithm or by using the Newton quotient approximation
L ≈ (log(A + hZ)− log(A)) /h, where h is a small positive number (say,
h = 10−8). After solving for L, define D = |L|/ωm where m = n2 and |L|
denotes the matrix with entries |`ij |.

Example 6. Let T be a nonsingular matrix and define A = TÃT−1, where Ã is
given by

Ã =




eα 0 0 0
0 e−α 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ


 .

The parameters α and θ allow us to generate ill-conditioned matrix logarithm prob-
lems; these occur as α gets large or as θ → π. The logarithm of A is given by
X = TX̃T−1 where

X̃ =




α 0 0 0
0 −α 0 0
0 0 0 −θ
0 0 θ 0


 .

To illustrate, let T be

T =




1 2 3 4
5 6 7 8
0 0 9 10
0 0 11 12


 .

If we let α = 5 and θ = 3.14, then Procedure 2 yields the following matrix of condition
estimates for the logarithm of A:

D =




7.964× 103 1.593× 103 4.887× 106 4.035× 106

2.406× 104 4.810× 103 1.043× 107 8.619× 106

8.735× 102 1.739× 102 1.311× 107 1.083× 107

1.071× 103 2.133× 102 1.585× 107 1.311× 107


 .

We can compare this with the matrix of “true” condition estimates G as calculated by
using finite difference estimates on each entry of the matrix A (this approach entails
n2 extra function evaluations and hence is generally too expensive for even moderately
large values of n where n is the order of A):

G =




1.248× 104 2.497× 103 1.022× 107 8.434× 106

3.803× 104 7.606× 103 2.181× 107 1.802× 107

3.459× 103 6.887× 102 2.754× 107 2.276× 107

4.247× 103 8.458× 102 3.332× 107 2.754× 107


 .

The entries of D are all within a factor of four of the respective entries of G.
The random perturbation method of condition estimation is very flexible and

can easily be adapted to problems in which the perturbation must preserve some
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structure of the matrix such as symmetry. For brevity, we illustrate how to do this
for a particular example and refer the interested reader to a related discussion in [19]
for the matrix sign function.

Example 7. The matrix A in Example 6 is block upper triangular whenever
T is block upper triangular. For any algorithm that respects this upper triangular
structure we don’t expect to see perturbation effects arising from perturbations in the
lower part of A. To estimate the sensitivity of the logarithm of A with respect to
perturbations in the block upper entries we can first set up a random matrix Z̃

Z̃ =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗




where the starred entries are selected randomly and independently from an N(0,1)
distribution. Set Z = Z̃/‖Z̃‖F . Now go to step 2 in Procedure 2; use m = 12 rather
than m = n2 = 16 in calculating ωm. For the parameter values in Example 6 this
gives

D =




1.485× 103 2.969× 102 2.345× 107 1.936× 107

4.453× 103 8.905× 102 5.003× 107 4.134× 107

0 0 6.340× 107 5.240× 107

0 0 7.672× 107 6.340× 107


 .

This compares well with the matrix G of “true” restricted condition numbers

G =




2.989× 103 5.977× 102 8.908× 106 7.355× 106

8.966× 103 1.793× 103 1.901× 107 1.571× 107

0 0 2.408× 107 1.990× 107

0 0 2.914× 107 2.408× 107


 .

5. Conclusion. A Schur–Fréchet algorithm has been presented for the compu-
tation of the logarithms of matrices with no eigenvalues on the negative real axis. The
Schur–Fréchet method given in this paper applies to matrix functions in general and
provides a theoretical framework that includes the work of Parlett [28], Björck and
Hammarling [2], and others. The accuracy of the Schur–Fréchet method depends on
how accurately the Fréchet derivative can be evaluated.

By deriving a new expression for the Fréchet derivative of the logarithm in terms
of the function τ(x) = tanh(x)/x, together with a Padé approximation of τ , we
have developed a procedure for evaluating the Fréchet derivative that avoids the
cancellation problems encountered in other methods.

This evaluation process is completely reversible and hence provides a method of
evaluating the derivative of the matrix exponential. This leads to a Schur–Fréchet
method for evaluating the exponential that avoids some overscaling problems associ-
ated with the standard scaling and squaring method. In its completely recursive form
the Schur–Fréchet algorithm presented here is not computationally efficient; however,
this problem can be avoided by using a semirecursive algorithm based on a tolerance
parameter. Large values of this tolerance parameter lead to the square root approach
of generating the coefficient matrices in the Sylvester cascade and result in a compu-
tational cost that is nearly the same as the scaling-and-squaring Padé approximation
method. As the tolerance value is decreased, the accuracy of the result improves but
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the computational cost also increases. Theoretical aspects of the error propagation
in this semirecursive Schur–Fréchet method need further investigation but the gain
in computational efficiency does not appear to compromise accuracy compared with
the fully recursive Schur–Fréchet method for moderately large values of the tolerance
parameter.
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Abstract. We discuss the single-input pole placement problem (SIPP) and analyze how the
conditioning of the problem can be estimated and improved if the poles are allowed to vary in
specific regions in the complex plane. Under certain assumptions we give formulas as well as bounds
for the norm of the feedback gain and the condition number of the closed loop matrix. Via several
numerical examples we demonstrate how these results can be used to estimate the condition number
of a given SIPP problem and also demonstrate how to select the poles to improve the conditioning.
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1. Introduction. We consider linear single-input control systems

ẋ := dx/dt = Ax+ bu, x(0) = x0,(1)

whereA ∈ Cn×n, b ∈ Cn, x, u are functions defined on [0,+∞) → Cn and [0,+∞) → C,
respectively. For such systems, we consider the single-input pole placement problem.

Single-input pole placement (SIPP). For a given set of poles P = {λ1, . . . , λn},
find a feedback gain vector f ∈ Cn such that the set of eigenvalues of the closed-loop
matrix A− bfT is P.

(Note that we use fT , although f may be complex, since this simplifies the for-
mulas.)

It is well known that for an arbitrary pole set P, the feedback f always exists
and is unique if and only if (A, b) is controllable, see, e.g., ([20, page 48, Theorem
2.1]). This problem has been studied extensively. In the literature there are some
explicit formulas known for f and the Jordan canonical form of A − bfT as well as
many perturbation results; see [1, 11, 12, 2, 17]. Also, many numerical algorithms
have been proposed for this problem; see [2, 4, 10, 14, 15, 16, 18, 8]. In order to
analyze the validity of the computed results and the robustness of the solution, it is
very important to study the sensitivity of the solution with respect to perturbations
in the data. This question has lead to some confusion in the literature [10, 11, 8, 12].
This confusion arises mainly from the fact that there are essentially two different types
of results for the SIPP, namely, the feedback gain vector f and the eigenstructure of
the closed loop matrix A− bfT . It is possible and actually quite common that, even
though f is insensitive to perturbations in the data, the spectrum of A− bfT is very
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sensitive, and vice versa. Examples 1 and 4 below demonstrate this phenomenon. It
follows that there are also two condition numbers to study here, one for the mapping
from (A, b,P) to f and one for the mapping (A, b,P) to the eigenstructure of A−bfT .
This observation, and the fact that it is often not explicitely stated which solution
of the SIPP problem is considered, explains some of the confusion in the literature.
From the point of view of applications, in our opinion the more important problem
is to guarantee that the poles of the computed closed loop system A− bfT are close
to the desired ones; the accuracy of f is less important. In particular, in applications
such as stabilization it would be fatal if the closed loop poles were made unstable by
very small perturbations. To see that this may happen very easily and unexpectedly,
consider the following example.

Example 1 (see [12]). Consider the SIPP problem with data

A = diag(1, 2, . . . , 15), b =




1
...
1


 , P = {−1, . . . ,−15}.

In this case, both f and A−bfT can be computed analytically and hence no rounding
errors occur in these quantities; see [12] for details. But the eigenvalues of the closed
loop systems are so sensitive to perturbations that some of the computed eigenvalues
of A− bfT are in the right half plane.

Unfortunately, this example is not an exception, as was pointed out in [8] and
partially proved in [12]; the SIPP problem is usually ill-conditioned. This means that
in most cases, in particular if the system size is large (n > 10), small perturbations
in the data A, b,P will cause large perturbations in the eigenstructure of A − bfT .
In practice it can be expected that if such a feedback is implemented, then the real
behavior of the closed loop system is very different than the expected behavior.

Based on these results we have to reconsider the pole placement problem. Since
in applications one almost never needs the poles of the closed-loop system in fixed
positions but rather in specific regions in the complex plane, it is natural to ask the
question of whether we can optimize the conditioning of the problem by varying the
choice of poles in the prescribed regions. If we reconsider pole placement in this way,
then we have the following problem.

Optimal single-input pole placement (OSIPP). Given A ∈ Cn×n, b ∈ Cn
and a set D ⊂ C, find poles λ1, . . . , λn ∈ D, i.e., P ⊂ D, such that the SIPP problem
is optimally conditioned among all possible choices of P ⊂ D.

To study this problem we first have to discuss what the condition number of the
SIPP problem is and how it can be computed or estimated. In particular it would be
important for an optimization to have an easily computable quantity or estimate.

In general the condition number of a problem measures the sensitivity of the
solution with repect to perturbations in the input data. As we have mentioned above,
several quantities can be viewed as solutions of the pole placement problem and
different formulas and bounds have been given in recent years; see [2, 8, 11, 17, 12].

We will base our optimization on modifications of the formula for the condition
number given in [17]. This formula is very difficult to compute so that an optimization
for this condition number seems hopeless. In [12], therefore, based on explicit solution
formulas for f and the closed loop eigenvector matrix, slightly different bounds were
obtained. We will modify these bounds again to obtain quantities which we can
optimize.
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To do this we introduce the following notation. The scaled spectral condition
number of a diagonalizable matrix A is defined as

κ := ||G|| ||G−1||,

where G is the eigenvector matrix of A normalized such that all columns have unit
norm. The scaled spectral condition number is equivalent to the optimal spectral
condition number; see [5]. Here we use ||·|| to denote an arbitrary consistent norm and
use ||·||2, ||·||F to denote the Euclidean and Frobenius norm, respectively. We denote by
κ, κ2, and κF the associated scaled spectral condition numbers of A−bfT . By Λ(A) we
denote the set of eigenvalues of a square matrix A, and by σ1(B) ≥ · · · ≥ σp(B) ≥ 0,
p = min{m,n} we denote the singular values of an m × n matrix B; see [7]. By C+

0 ,
C−, and C−−ρ we denote closed right half plane, open left half plane, and the set of
complex numbers with real parts not larger than −ρ for ρ > 0, respectively. Finally
we set e to be the vector of all ones and ei to be the ith unit vector.

The following perturbation theorem is a combination of two perturbation results
given in [12], with slightly modified assumptions.

Theorem 1.1. Consider the SIPP problem with data A, b,P = {λ1, . . . , λn}.
Assume that (A, b) is controllable and that the n poles λi are distinct. Let λ =

[λ1, . . . , λn]T . Consider also the perturbed problem with data Â := A+δA, b̂ := b+δb,

and δλ = [δλ1, . . . , δλn]T . Assume that (Â, b̂) is also controllable and that also the
perturbed poles are distinct. Set ε := max{||[δA δb]||,maxi |δλi|} and suppose that

2ε < min
i
σn
[
A− λiI b

]
=: σλ.

Let f , f̂ := f + δf be the feedback gains of the original and perturbed problems,
respectively, then

||δf ||2 ≤ cf :=
2
√

2n

σλ
εκ̂2

√
1 + ||f ||22 max

i

√√√√( ||Â− λ̂iI||2
||b̂||2

)2

+ 1,(2)

where κ̂2 is the scaled spectral condition number of Â− b̂f̂T .
Furthermore, for each eigenvalue µi of the computed closed-loop matrix A− bf̂T ,

there exists a corresponding eigenvalue λi of the desired (unperturbed) closed-loop
system such that

|µi − λi| ≤ ce :=

(
1 + κ̂2

√
1 + ||f̂ ||22

)
ε.(3)

Proof. The proof is easily obtained from the proofs of Theorems 7 and 8 in [12],
using the slightly different assumptions on δA, δb, δλ. The estimates (2), (3) are
obtained analogously.

We see from Theorem 1.1 that several factors contribute to the perturbation
bounds and thus can be considered to create large perturbations in f and/or the
closed-loop eigenvalues. The main factors in the bound (2) are the quantity σλ and
the term κ̂

√
1 + ‖f‖22. In the following we restrict our optimization to the second

factor. This may lead to an overestimation of the bound in the optimal case but it
simplifies the optimization and can be justified as follows. The term σλ reflects the
distance to uncontrollability duc(A, b) = mins∈C σn[A − sI, b], which is independent
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Fig. 1. Error and bounds in Example 2: (a) feedback gain: log(||f − f̂ ||) : + + +, log(cf ) : —,
log(eps · S) : - - -; (b) closed-loop poles: log(eige) : ∗ ∗ ∗, log(ce) : —, log(eps · S) : - - -.

of the choice of poles. So, we can replace σλ in (2) to obtain an upper bound. But it
should be noted that duc(A, b) can be much smaller than σλ, see, e.g., [3]. If duc(A, b)
is reasonably large, then replacing σλ by duc(A, b) will have only a small effect on the
bound. If, however, duc(A,B) is very small, then this may lead to an overestimation of
the condition number. This effect is demonstrated in some of our numerical examples
below. But in this case we know that the problem is very close to a problem which is
not controllable. This is a critical situation in practice and it may be reasonable to
modify the model in such a case. Consider now the term κ̂

√
1 + ‖f‖22, which governs

the perturbations in the computed closed-loop eigenvalues. This term (if large) also
makes the bound (2) very large. If this term can be made small by the choice of poles
and if duc(A, b) is reasonably large, then both bounds (2) and (3) are small and we
can expect that f can be computed accurately and that the closed loop eigenvalues
are robust. We will therefore optimize the quantity

S := κ

√
1 + ||f ||2(4)

to improve the conditioning via the choice of poles. If necessary, we use the notation
S2 := κ2

√
1 + ‖f‖22 and SF := κF

√
1 + ‖f‖22. In order to illustrate that S catches

the qualitative behavior of the errors well, we will consider the following numerical
tests.

All computations in this paper were carried out in Matlab Version 4.2 on a
pentium-s PC with machine precision eps = 2.22 × 10−16. Random matrices are
created with the Matlab rand function and uniform distribution. In the figures below
we depict cf as in (2), ce as in (3) with ε = max{||[A b]||,maxi |λi|}eps, and by eige we
denote the maximal error between an eigenvalue of the computed closed-loop matrix
and the associated pole in P.

Example 2. In this example we constructed ten problems with A ∈ R30×30,
b ∈ R30 with elements chosen randomly in [−1, 1], and for each of these problems we
chose 50 different (exact) feedback gains f ∈ R30 with random elements in [−10, 10].
For each of these 500 problems the chosen poles are the computed eigenvalues of
A− bfT (via the Matlab eig function). Then we computed the feedback gain f̂ with
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Table 1
min and max of log(cf/||f − f̂ ||).

Problem 1 2 3 4 5 6 7 8 9 10
min 3.6 3.3 3.6 3.3 3.6 3.8 3.4 3.4 3.6 3.1
max 6.5 7.0 5.9 6.1 7.1 6.8 6.4 5.9 6.0 5.7

Table 2
min and max of log(ce/eige).

Problem 1 2 3 4 5 6 7 8 9 10
min -0.1 -0.1 1.6 1.2 1.3 0.9 1.0 1.1 0.9 0.8
max 3.2 3.1 3.2 2.9 2.1 3.1 2.8 3.3 2.8 2.6

these poles by using Miminis and Paige’s sevas Matlab code (cf. [14]). In Figure 1 for
each of the 10 pairs (A, b) we display the arithmetic means of logarithms of ce, eige,

cf and ||f − f̂ || taken over the 50 experiments and compare it with eps · S. We also

display the minimum and maximum distances between the orders of cf and ||f − f̂ ||,
ef , and eige in Tables 1 and 2, respectively, among the 50 experiments for each pair
(A, b).

1 2 3 4 5 6 7 8 9 10
-15
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-5
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Fig. 2. Error and bounds in Example 3: (a) feedback gain: log(||f − f̂ ||) : + + +, log(cf ) : —,
log(eps · S) : - - -; (b) closed-loop poles: log(eige) : ∗ ∗ ∗, log(ce) : —, log(eps · S) : - - -.

We see that the bounds and also the term S describe the qualitative behavior
of the errors quite well, although the bounds (2) and (3) sometimes tend to be too
pessimistic. In general we cannot expect to see more than the qualitative behavior,
since we have omitted terms in the bounds. In Example 2 we have that σλ contributes
a factor 102, which almost explains the difference of the bounds.

The estimate of the errors in the closed-loop eigenvalues is in general better than
that of the feedback gain, since the factors do not occur.

The reason for the negative numbers in Table 2 is an underestimation of ε.
Example 3. The conditioning becomes worse if we modify Example 2 by diagonal

scaling of A. Let A := DÃD−1, D = diag(1, 2
m+2

3 , . . . , 30
m+2

3 ) with Ã as in Example
2. Here we let m take the values 1 to 10, and the poles are formed as before. The
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Fig. 3. Error and bounds in Example 4: (a) feedback gain: log(||f − f̂ ||) : + + +, log(cf ) : —,
log(eps · S) : - - -; (b) closed-loop poles: log(eige) : ∗ ∗ ∗, log(ce) : —, log(eps · S) : - - -.

errors and bounds for this example are in given Figure 2.
Our next example demonstrates that it is not sufficient to consider the accuracy

of the feedback gain f alone. In this case the computed closed-loop eigenvalues are
much more accurate than the computed f .

Example 4. Let

A = QT



−1 −1 · · · −1

1 −1
. . .

...

O
. . .

. . .
...

1 −1


Q ∈ R30×30, b = QT e1 ∈ R30,

where Q is a random orthogonal matrix, f = 105QT f1, and f1 ∈ R30 has elements
randomly selected in [−1, 1]. We chose 50 random vectors f1 and produced the poles
as in Example 2.

Figure 3 shows that, even though on the average the computed f has no correct
digit, the closed loop eigenvalues still carry essentially eight correct digits.

2. Minimization of S. In view of the discussion in the previous section, we now
consider the minimization of S, as defined in (4), when the closed-loop eigenvalues
are allowed to vary in a given set D ⊂ C.

In the following we restrict our minimization to the case that all elements in
P are distinct so that A − bfT is diagonalizable. Although condition numbers are
also interesting in the degenerate case, they are more complicated and usually the
conditioning is much worse ([19, pages 87–90]).

If we consider the SIPP problem with data A, b, λ, where (A, b) is controllable
and the components of λ are distinct, then explicit formulas for the solution of the
SIPP problem are known; see [1, 4, 12]. For the case of distinct poles we have the
following formula from [12]. Let

G = [u1, . . . , un], ||ui||2 = 1, i = 1, . . . , n,(5)
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and α = [α1, . . . , αn] such that for each i, [uTi ,−αi]T is nonzero and satisfies

[A− λiI, b]

[
ui
−αi

]
= 0.(6)

Then G is nonsingular,

fT = αTG−1 = eTn [b, Ab, . . . , An−1b]−1
n∏
i=1

(A− λiI),(7)

A− bfT = G diag(λ1, . . . , λn)G−1,

and

κ = ||G|| ||G−1||.(8)

In principle we could employ nonlinear optimization methods to compute the
required minimum, but considering the explicit formulas (5), (6), and (7), this is a
very difficult problem, in particular when n is large.

We will now discuss some cases where we can give explicit formulas for ||f || and
κ and thus, also, the optimization problem becomes much simpler.

Theorem 2.1. Let A = Γ := diag(γ1, . . . , γn), b = e, and (Γ, e) be controllable,
let P = {λ1, . . . , λn} be a pole set with distinct elements and Λ(A) ∩ P = ∅. Then

||f ||22 =

n∑
i=1

∏n
k=1 |γi − λk|2∏n

k=1,k 6=i |γi − γk|2 ,(9)

κ2
F = n

n∑
i,j=1

∑n
l=1

∏n
k=1,k 6=l |λi − γk|2∏n

k=1,k 6=i |λi − λk|2
∏n

k=1,k 6=i |γj − λk|2∏n
k=1,k 6=j |γj − γk|2 .(10)

Proof. Define the Cauchy matrix C = [cij ]n×n with cij = 1
γi−λj . Then it follows

from the inversion formula for Cauchy matrices in [6] that C−1 = −W CT H, where
W := diag(w1, , . . . , wn), H := diag(h1, . . . , hn), and

wi :=

∏n
k=1(λi − γk)∏n

k=1,k 6=i(λi − λk)
, hi :=

∏n
k=1(γi − λk)∏n

k=1,k 6=i(γi − γk)
, i = 1, . . . , n.(11)

Applying formulas (5)–(8) to these special data A, b and P we get fT = eTC−1.
Using the formula for C−1 we get fi = hi, k = 1, . . . , n, where fi is the ith component
of f . With the formulas of hi in (11) we obtain (9).

Using the definition of κ in (8) and noticing that C is an eigenvector matrix
of A − bfT = Γ − efT , we only need to normalize the columns of C to one. Let
U := diag(µ1, . . . , µn), where

µi :=

√√√√ n∑
k=1

1

|γk − λi|2 =

√∑n
l=1

∏n
k=1,k 6=l |γk − λi|2∏n

k=1 |γk − λi|2 ,

and let C0 := CU−1; then we get κ2
F = ||C0||2F ||C0

−1||2F . Clearly ||C0||2F = n, and using
the formulas for C−1 and U we get (10).
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Remark 1. Let ψ(t) =
∏n

k=1(t− λk) be the characteristic polynomial of Γ− efT .
It is easy to check with fi = hi as in (11) that the components of f are just the
coefficients of the Lagrange interpolating polynomial for the n points {γk, ψ(γk)}nk=1,
i.e., the polynomial η(t) =

∑n
k=1 fk

∏n
l=1,l 6=k(t−γl) satisfies η(γk) = ψ(λk). Moreover

we have ψ(t)−η(t) =
∏n

k=1(t−γk) =: φ(t), which is just the characteristic polynomial
of Γ.

In Theorem 2.1 we have obtained κF and ||f ||2 in terms of the pole set and the

spectrum of Γ. The evaluation of the polynomial ||f ||22 and the rational function κ2
F in

an optimization code is relatively simple; however, there are still difficulties when n,
the size of the problem, is large. The second difficulty in employing an optimization
procedure is the selection of the initial value. A bad initial value will lead to an
extremely large S and for large n this may lead to overflow in the computations.
So even if P exists such that the given SIPP problem is well conditioned, it will be
difficult to start the optimization procedure. The third difficulty is that for some
systems (A, b) and sets D, even the OSIPP problems is ill conditioned, as we will
show in Example 5. In such a case there is no need to use an optimization procedure.
Theorem 2.1 also shows that the minimum of S approaches infinity if some |λi| → ∞,
since in this case ||f || → ∞ and κ ≥ 1, so S → ∞.

The following result shows that if A has all distinct and simple eigenvalues, then
it is usually sufficient to restrict our discussion to the special case (Γ, e,P).

Theorem 2.2. Let (A, b) be controllable, A = XΓX−1, Γ := diag(γ1, . . . , γn),
and let P = {λ1, . . . , λn} have distinct elements. Denote by fd, f the unique feedback
gains of (A, b,P) and (Γ, e,P), respectively, and by κdF , κF denote the associated
scaled spectral condition numbers of A − bfTd and Γ − efT in Frobenius norm. Let

b̃ =
[
b̃1 · · · b̃n

]T
:= X−1b and B := diag(b̃1, . . . , b̃n). Then

||f ||2
||XB||2

≤ ||fd||2 ≤ ||(XB)
−1||2||f ||2(12)

and

κF√
n ||XB||2 ||(XB)

−1||2
≤ κdF ≤

√
n ||XB||2 ||(XB)

−1||2κF .(13)

Proof. Let

A− bfTd = GΛG−1, Λ = diag(λ1, . . . , λn), κdF = ||G||F ||G−1||F ,
i.e., the columns of G have unit norm. With A = XΓX−1 and B defined as above,
we have

Γ−BefTd X = X−1GΛG−1X.

Since (A, b) is controllable if and only if (Γ, e) is, we obtain (see also [12]) b̃i 6= 0,
i = 1, . . . , n, so B is nonsingular. Performing a similarity transformation with B−1,
B, and using that B and Γ are diagonal, we have

Γ− efTd XB = (XB)
−1
GΛ((XB)

−1
G)

−1
.

By the uniqueness of the feedback gain, we then have fT = fTd XB, which implies

(12). Let C0 be defined as in the proof of Theorem 2.1; then C0 = (XB)
−1
GZ, for
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some diagonal matrix Z = diag(z1, . . . , zn) so that the columns of C0 have unit norm.
So we have

√
n = ||C0||F ≥

||GZ||F
||XB||2

=

√∑n
k=1 |zk|2

||XB||2
≥ maxk |zk|

||XB||2
=

||Z||2
||XB||2

,(14)

i.e., ||Z||2 ≤ √
n ||XB||2 . Similarly, by using G = XBC0Z

−1, we get ||Z−1||2 ≤√
n||(XB)

−1||2. Since G−1 = ZC0
−1(XB)

−1
, we obtain from (14) that

||C−1
0 ||F√

n||(XB)
−1||2 ||XB||2

≤ ||G−1||F ≤
√
n ||XB||2 ||(XB)

−1||2||C−1
0 ||F .

Using κdF =
√
n||G−1||F , κF =

√
n||C0

−1||F , we obtain (13).

We see from this result that since ||XB|| ||(XB)
−1|| is independent of the chosen

poles, we can restrict ourselves to the special case (Γ, e,P). It is obvious that (12)
and (13) and also all subsequent bounds can be extended to the case when (A, b) is
controllable and A is diagonalizable.

To analyze the problem further in this case, we will give several bounds for S, as
defined in (4).

Theorem 2.3. Let Γ := diag(γ1, . . . , γn), let (Γ, e) be controllable, and let
P = {λ1, . . . , λn} with distinct elements. Suppose that λ(Γ) ∩ P = ∅ and set du =

maxi,j |γi − λj |, dl = mini,j |γi − λj |. Furthermore, set w := [w1, . . . , wn]
T

with

wi =

∏n

k=1
(λi−γk)∏n

k=1,k 6=i(λi−λk)
. Then

n
||w||2 ||f ||2

√
1 + ||f ||22

d2
u

≤ SF ≤ n
||w||2 ||f ||2

√
1 + ||f ||22

d2
l

.(15)

Proof. Considering the formulas for κF and f in Theorem 2.1 and (11), we obtain

κ2
F = n

n∑
i,j=1

∑n
l=1

∏n
k=1,k 6=l |λi − γk|2∏n

k=1,k 6=i |λi − λk|2
∏n

k=1,k 6=i |γj − λk|2∏n
k=1,k 6=j |γj − γk|2

= n

n∑
i,j=1

∏n
k=1 |λi − γk|2∏n

k=1,k 6=i |λi − λk|2
(

n∑
l=1

1

|λi − γl|2
)

1

|γj − λi|2
∏n

k=1 |γj − λk|2∏n
k=1,k 6=j |γj − γk|2

= n
n∑

i,j=1

(
n∑
l=1

1

|λi − γl|2
)

1

|γj − λi|2 |wi|2|fj |2.

Since for all i, j we have dl ≤ |λi − γj | ≤ du, it follows that

n

d4
u

≤
(

n∑
l=1

1

|λi − γl|2
)

1

|γj − λi|2 ≤
n

d4
l

,

and hence

n2

d4
u

n∑
i,j=1

|wi|2|fj |2 ≤ κ2
F ≤

n2

d4
l

n∑
i,j=1

|wi|2|fj |2.
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Thus,

n

d2
u

||w||2 ||f ||2 ≤ κF ≤ n

d2
l

||w||2 ||f ||2 ,

and multiplying with
√

1 + ‖f‖22 yields the conclusion.
The quantities dl, du are the smallest and largest distances between the sets Λ(Γ)

and P. If dl << du, in particular when dl is very small, the upper bound in (15) will
usually be an overestimate. But if du/dl is not too large, (15) will be a good estimate
for S.

Note that w is the feedback gain for a SIPP problem with A = diag(λ1, . . . , λn),
b = e, and the pole set P = {γ1, . . . , γn}. So it has a similar interpretation as f
in Remark 1 but in general there is no explicit relationship between ||w|| and ||f ||.
However, if P is selected in a particular way, we can get ||w|| = ||f ||.

Corollary 2.4. Let Γ := diag(γ1, . . . , γn) and let (Γ, e) be controllable. If P =
{−γ1, . . . ,−γn}, {γ1, . . . , γn}, or {−γ1, . . . ,−γn}, then ||w||2 = ||f ||2 and

n

d2
u

||f ||22
√

1 + ||f ||22 ≤ SF ≤ n

d2
l

||f ||22
√

1 + ||f ||22.(16)

Proof. We consider just the case when P = {−γ1, . . . , γn}; the other two cases
are analogous.

Now λi = −γi, i = 1, . . . , n, so

wi =

∏n
k=1(λi − γk)∏n

k=1,k 6=i(λi − λk)
=

∏n
k=1(−γi − γk)∏n

k=1,k 6=i(−γi + γk)

= −
( ∏n

k=1(γi + γk)∏n
k=1,k 6=i(γi − γk)

)
= −

( ∏n
k=1(γi − λk)∏n

k=1,k 6=i(γi − γk)

)
= −f i.

Hence ||w||2 = ||f ||2, and then (16) follows from (15).
Since the solution of the SIPP problem consists of the computation of f , it is

natural that we try to estimate κ in terms of ||f ||.
Such a result is useless for an optimization procedure since the poles are fixed,

but it is valuable in some typical cases arising in applications, i.e., the cases when P
is chosen such that the eigenvalues of A are reflected at the real axis, imaginary axis,
or origin, as for example in the well-known Lyapunov method; see, e.g., [9]. A (lower)
bound for S in terms of ||f || is the following.

Theorem 2.5. Consider the SIPP problem with data A, b, P, where (A, b) is
controllable and the poles in P are distinct. Then

S2 ≥ ||b||2√∑n
i=1 ||A− λiI||22

||f ||2
√

1 + ||f ||22.(17)

Proof. In this case we can apply formulas (5)–(8). From fT = αTG−1 we get
||f ||2 ≤ ||α||2

∣∣∣∣G−1
∣∣∣∣
2
, i.e. ,

||G−1||2 ≥ ||f ||2
||α||2

.

Now αi, the ith component of α together with ui, the ith column of G, with ||ui||2 = 1,
satisfies

[A− λiI, b]

[
ui
−αi

]
= 0, ∀i = 1, . . . , n.
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Thus, it follows that

||b||22 |αi|2 = ||(A− λiI)ui||22 ≤ ||A− λiI||22 ||ui||22 = ||A− λiI||22 ,

which means that |αi| ≤ ||A−λiI||2
||b||2 . So

||α||2 ≤
√∑n

i=1 ||A− λiI||22
||b||2

,

and by using ||G||2 ≥ maxi ||ui||2 = 1, we finally get

κ2 ≥ ||G||2 ||G−1||2 ≥ ||G||2
||f ||2
||α||2

≥ ||b||2 ||f ||2√∑n
i=1 ||A− λiI||22

.

This lower bound may be very weak. For example, if all poles are selected in a
small neighborhood of a single point λi, then ||f ||2 is bounded but κ will be very large.

But nevertheless, Theorem 2.5 gives a cheap way to estimate S = κ
√

1 + ‖f‖2. If,
for example, the computed ||f || is large, say ||f || > 1/

√
eps, where eps is the machine

epsilon, then S > c/eps for some constant c. In this case, we can expect that the
computed results have lost all significant digits. Consider again special cases where
we have explicit solutions.

Theorem 2.6. Let Γ := diag(γ1, . . . , γn), with γj ∈ C+
0 , j = 1, . . . , n and assume

that (Γ, e) is controllable.
(a) If we require that P = {λ1, . . . , λn} ⊂ C−−ρ, i.e., Reλj ≤ −ρ, j = 1, . . . , n

for a given real number ρ > 0, then min ||f ||2 is obtained when Reλj = −ρ, for all
j = 1, . . . , n.

(b) If the γj are such that Re γj + ρ ≥ | Im γj |, for j = 1, . . . , n, and we require
that the set of poles is as in (a) and closed under conjugation, then

min ||f ||2 =

√√√√ n∑
j=1

|γj + ρ|2n∏n
k=1,k 6=j |γj − γk|2 ,(18)

and the corresponding optimal poles satisfy λj = −ρ, for all j = 1, . . . , n.
Proof. (a) Let γj = aj + ibj , λj = xj + iyj , where aj , bj , xj , yj are real. Then

||f ||22 =
n∑

j=1

∏n
k=1 |γj − λk|2∏n

k=1,k 6=j |γj − γk|2 =
n∑

j=1

∏n
k=1((aj − xk)

2 + (bj − yk)
2)∏n

k=1,k 6=j((aj − ak)2 + (bj − bk)2)
.

Since aj ≥ 0, xj ≤ −ρ for all j, a necessary condition for a minimum is that (aj−xk)2
is minimal for all k, which is clearly the case if xk = −ρ, for all k = 1, . . . , n.

(b) From (a) we obtain that at a minimum all poles have real part −ρ. Suppose
that, at the minimum, there exists a pole with nonzero imaginary part λs = −ρ+ iys.
Since the pole set is closed under conjugation, we obtain, for each γj ,

|γj − λs|2|γj − λ̄s|2 = ((aj + ρ)2 + (bj − ys)
2)((aj + ρ)2 + (bj + ys)

2)

= y4
s + 2((aj + ρ)2 − b2j )y

2
s + ((aj + ρ)2 + b2j )

2.

By assumption, aj + ρ ≥ |bj |, and thus we have

min
ys

|γj − λs|2|γj − λ̄s|2 = ((aj + ρ)2 + b2j )
2,
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Fig. 4. Conditioning in Example 5: (a) S; (b) ||f ||; (c) κ; optimal: —, P1 : - - -, P2 : − · −·

i.e., the minimum occurs for ys = 0.
Since each component |fk| must include a factor of the form |γk − λs||γk − λ̄s|,

to minimize ||f ||2 we must have ys = 0, which is a contradiction to our assumption.
Consequently we have λj = −ρ for all j and hence we obtain (18).

Part (b) of Theorem 2.6 shows that, in a particular situation, to get a minimal
||f || is equivalent to getting the worst conditioning for the closed-loop matrix (in the
sense of eigenvalue perturbation theory) since we have to place all poles in one point
and the controllability forces the closed-loop matrix to be similar to an n× n Jordan
block. This result also explains the extreme ill conditioning of Example 1.

We also see that, in the situation of Theorem 2.6 (a), at least half of the variables
can be removed and that the minimization problem for ||f || is restricted to a line rather
than a half plane. In this situation, suppose that P0 ⊂ C−−ρ is a pole set that minimizes
S and let f0 be the feedback gain obtained with P0. Then with Theorems 2.5 and 2.6
we obtain

min
P⊂C−−ρ

S ≥ c ||f0||2 ≥ c min
P⊂{−ρ+yi|y∈R}

||f ||2 ,(19)

for a constant c determined by A, b, P0. Thus, if min ||f || is large, then the OSIPP
problem is incurably ill conditioned and we cannot hope to improve the problem by
choosing the poles. Consider the following example.

Example 5. Let A = diag(1, . . . , n), b = e, P ⊂ C−−1, and let n vary from 1 to 15.
We used a heuristic “random search” algorithm to choose the set P0 that minimizes S
and determine a minimal value for S. The resulting condition numbers are shown in
Figure 4, as well as the related numbers κ and ||f ||. For comparison we also display the
three numbers ||f ||, κ, and S for the pole sets P1 = {−1− n−1

2 i,−1− n−3
2 i, . . . ,−1 +

n−3
2 i,−1 + n−1

2 i} and P2 = {−1,−2, . . . ,−n}, respectively.
We see that the magnitude of S can be reduced, but even so, when n = 11,

Sopt = 1016. For n = 15, Sopt = 7.5 × 1021 and 10 eigenvalues of A − bfT are in
C+
0 . So for n ≥ 15, it is impossible to place the poles to the left of the line −1 + yi

via a numerical procedure. We can also check the ill conditioning by the results in
Theorems 2.5 and 2.6. Actually, for n = 15, min ||f || = 3.45× 108.
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Table 3
Eigenvalue error and eps · S.

n 1 2 3 4 5 6 7
eps · S 5.0e-16 3.3e-14 1.6e-12 6.5e-11 2.3e-9 7.9e-8 2.5e-6
En 0 1.8e-15 6.7e-14 1.8e-12 6.7e-11 1.2e-10 3.7e-9

8 9 10 11 12 13 14 15
8.0e-5 0.0024 0.0741 2.2217 66.0347 2.0e+3 5.7e+4 1.7e+6
3.6e-8 1.1e-7 3.4e-5 3.5e-4 4.2e-3 6.0e-2 0.6371 7.132

To illustrate again the importance of S, in Table 3 we list eps·S and the eigenvalue
errors for the poles obtained from our heuristic search algorithm for different n. Here
En = maxj |µj − λj |, where Λ(A − bf̃T ) = {µ1, . . . , µn}, and f̃ is the computed
feedback with these poles. We see that the error in the eigenvalues grows roughly in
the same way as eps · S. Observe that ||f || is smaller in case P1 than in the optimal
case. As we discussed above, this shows that just minimizing ||f || is not sufficient to
minimize S.

Note that the choice of poles in Theorem 2.6 is quite common. In practice, we
often require P to be in the left half plane so that the closed-loop matrix A − bfT

is stable. Also, one often does the pole placement only on the eigenvalues of A with
nonnegative real parts, while keeping the rest of the eigenvalues fixed, since this can
save a lot of computational work; see [8].

We have seen under the assumptions of Theorem 2.6 that min ||f || is achieved with

poles on the line −ρ+ yi. From (15) of Theorem 2.3, SF ≈ ||w||2 ||f ||22. When the pole
set P moves away from the line −ρ+ yi, ||f || will increase. Clearly it is possible that
||w|| decreases, but ||f || enters quadratically in S, so an increasing magnitude of ||f ||
usually quickly compensates a decreasing magnitude of ||w||.

Although we are not able to minimize the condition number of the SIPP problem
directly, our analysis of the governing factors in this condition number leads us to the
following conjecture.

CONJECTURE. Suppose that (A, b) is controllable and that A has all eigenvalues
in the right half plane. If we require that P = {λ1, . . . , λn} ⊂ C−−ρ, then the pole
placement problem with minimal condition number is achieved when all elements of
P are on the line −ρ+ yi.

Such a selection of poles may help to check the conditioning of the SIPP problem
and may also be a good choice for the initial poles in an optimization of S.

3. Numerical experiments. In this section we will give some further numerical
examples which illustrate the theoretical results from the previous sections, and we
will also illustrate other factors that contribute to the conditioning and that may
be used to improve the bounds. A factors that contributes to the conditioning is the
width in the set of imaginary parts of Λ(A), but in the case of a stabilization problem,
the distance between the real parts of the unstable eigenvalues of A and the desired
new locations for these is also a contributing factor.

The observations made in this section are still based only on numerical experi-
ments, but they indicate directions of research.

In all examples, the spectral condition number of the closed loop matrices κ were
computed by first forming the matrix G in (5) and then applying the Matlab cond
function. The feedback gain f was generated either via the Miminis–Paige algorithm
[14] or via the formulas (5)–(7).
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Fig. 5. Conditioning in Example 6: poles reflected at the imaginary axis S:—, ||f ||: - - -,
κ: − · −·
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Fig. 6. Optimal conditioning in Example 6. S:—, Sref : · · ·, ||f ||: - - -, κ: − · −·

Our first example demonstrates that a certain geometric relationship between the
eigenvalues of A and the chosen poles can lead to a reasonable conditioning.

Example 6. Let A = In + idiag(−n−1
2 ,−n−3

2 , . . . , n−3
2 , n−1

2 ), b = e, and P ⊂ C−−1.
Let P be the set of poles obtained by reflecting the eigenvalues of A about the

imaginary axis, i.e., P = {λ1, . . . , λn} and λj = −1 + in+1−2j
2 . The values of ||f ||, κ,

and S with n = 1 : 150 are displayed in Figure 5. For comparison we again used a
“random search” method for n = 1 : 30 to determine a set of “optimal” poles P0. The
condition estimates for P0 and P are given in Figure 6. In both cases, S increases
monotonially with n, but as n > 10, it grows very slowly. In the first case, when
n = 150, S = 1.9362× 108.

The magnitude of S is reduced with the pole set P0, but just marginally. We also
depict eps · S, and the error for the closed-loop eigenvalues En, in Figures 7 and 8 for
both cases.
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Fig. 7. Eigenvalue error and eps · S in Example 6 with poles reflected at the imaginary axis.
eige : + + +, eps · S : —.
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Fig. 8. Eigenvalue error and eps · S in Example 6 with “optimal poles” eige : + + +, eps · S : —.

Unlike in Example 5, the conditioning of the SIPP problems in Example 6 seems to
be reasonable. This asks for an explanation. Let A = ρ1In+i·d·diag(−n−1

2 , . . . , n−1
2 ),

b = e, and P = {−ρ2 − dn−1
2 i, . . . ,−ρ2 + dn−1

2 i}. Suppose that d > 0, ρ1, ρ2 > 0.
Introducing ρ := ρ1 + ρ2 we obtain, for each component of f ,

|fj |2 =

∏n
k=1 |γj − λk|2∏n

k=1,k 6=j |γj − γk|2

=

∏n
k=1(ρ

2 + d2(j − n+1
2 − (k − n+1

2 ))2)

d2
∏n

k=1,k 6=j(j − n+1
2 − (k − n+1

2 ))2

= ρ2
n∏

k=1,k 6=j

(
1 +

(ρ/d)2

(j − k)2

)
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= ρ2

j−1∏
k=1

(
1 +

(ρ
d

)2 1

k2

) n−j∏
k=1

(
1 +

(ρ
d

)2 1

k2

)

≤ ρ2e(
ρ
d )2
∑n−j

k=1

1
k2 e(

ρ
d )2
∑j−1

k=1

1
k2 ≤ ρ2e4(

ρ
d )2 .

So, ||f ||2 ≤
√
nρe2(

ρ
d )2 . Similarly, we get ||w||2 ≤

√
nρe2(

ρ
d )2 and hence

SF ≈ ||f ||2 κF ≤
n

ρ
||w||2 ||f ||22 ≤ n

5
2 ρ2e6(

ρ
d )2 .(20)

In Example 6 we have ρ = 2, d = 1, so S ≤ 1.06n
5
2 × 1011. Clearly this is a large

overestimate, but the bound increases polynomially in n. Consider a generalized
problem as Example 5, with A = diag(ρ1 + d, . . . , ρ1 + (n − 1)d), b = e, and P =
{−ρ2 − d, . . . ,−ρ2 − (n − 1)d}. Suppose also that d, ρ1, ρ2 > 0 and let ρ := ρ1 + ρ2.
Then for the nth components of f and w, we have

|fn| = |wn| = (ρ+ 2(n− 1)d)

∏n−1
k=1(ρ/d+ (n− 2 + k))

(n− 1)!

> (ρ+ 2(n− 1)d)
(2n− 3)!

(n− 1)!(n− 2)!
.

Hence by (15),

SF ≥ n

(ρ+ 2(n− 1)d)2
|fn|2|wn| ∼ O(43n).

So SF increases exponentially in n regardless of the magnitude of ρ
d .

We also see the importance of the scalar ρ
d for the problems in Example 6. The

smaller it is, the better conditioned the related SIPP problem will be. Since ρ
d is

determined not only by d, which describes the width in the set of imaginary parts of
the eigenvalues of A, but also by the distance between the real parts of Λ(A) and those
in P, one should observe that S changes when the real parts of Λ(A) vary. Consider
the following example.

Example 7. Let

A =
1

2
I31 − i cos

(
(m− 1)π

180

)
diag(−15,−14, . . . , 14, 15)

+ sin

(
(m− 1)π

180

)
diag(15, 14, . . . , 14, 15),

m = 1 : 90, b = e. P is selected in the following two different ways.
Case I. P = −λ(Ā).

Case II. P = {−0.5− 15 cos( (m−1)π
180 )i, . . . ,−0.5 + 15 cos( (m−1)π

180 )i}.
The condition estimates are depicted in Figure 9. As m increases, ρ grows and d

decreases, so S grows, too. The test results support this observation.
We have so far mostly considered matrices A with regular eigenvalue patterns,

but the same behavior is observed in the general case.
From all examples that we have tested, we see that the wider the set of imaginary

parts of Λ(A) and the smaller the distance between the set of real parts of Λ(A) to
that of P, the better conditioning of the corresponding SIPP problem we can expect.
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Fig. 9. Conditioning in Example 7: (a) S; (b) ||f ||; (c) κ; Case I: - - -, Case II: —.

With these observations, the class of SIPP problems in Example 5 is probably the
worst class of problems, while the class of problems in Example 6 is probably the best
class.

In many control problems, for example in robust stabilization, the choice of the
imaginary parts of Λ(A) seems to be unimportant. But the above observations indi-
cate that the imaginary parts are of great importance since they participate heavily
in the conditioning of the SIPP problem.

We also tested many examples with multiple poles in P, but then, as could be
expected, the conditioning is much worse than in the case of distinct poles. If the
matrix A has eigenvalues with negative real parts, which can also be moved to improve
the conditioning, then it can be predicted that S can be reduced compared to the
case when just the eigenvalues with nonnegative real parts are assigned. Numerical
examples support this prediction. For more examples, see [13].

4. Conclusions. In this paper we have studied the problem of optimizing the
conditioning of the single input pole placement problem when the poles are allowed to
vary in specific regions of the complex plane. It is in general very difficult to minimize
the condition number or the bounds for the eigenvalue error (or the error in f) in the
SIPP problem, since these functions are very complicated and, in particular, for large
n a numerical minimization seems prohibitive. To get arround this difficulty, we have
studied two of the factors in the perturbation bounds, f and κ, the scaled spectral
condition number of the closed-loop matrix and, we have neglected the effects of the
condition number of the matrix A and the distance to uncontrollability of (A, b).

For problems where the optimization of f and κ can be carried out explicitly, we
have determined formulas for the minima. From these formulas we are motivated to
conjecture the location for the optimal pole selection in the important stabilization
problem, where Λ(A) ⊂ C+

0 , P ⊂ C−−ρ.
By several numerical tests we have indicated how the conditioning of the SIPP

problem is determined by the distribution of the eigenvalues of A and the geometric
relationship to the selected poles.

Also, we have pointed out that in order to study the accuracy of the results of
the SIPP problem, it is not enough to consider just the accuracy of the feedback gain.
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In Example 4, the computed gain vectors have no correct digits, while the associated
eigenvalues of the computed closed-loop matrix still have about eight correct digits.
But as shown by Example 1, the converse may also be the case, i.e., even though f
is very accurate, the poles of the computed closed-loop system are far away from the
desired poles.

Acknowledgment. We thank an anonymous referee for helpful comments which
improved the presentation and readability of the paper.
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Abstract. The minimum degree and minimum local fill algorithms are two bottom-up heuristics
for reordering a sparse matrix prior to factorization. Minimum degree chooses a node of least degree to
eliminate next; minimum local fill chooses a n ode whose elimination creates the least fill. Contrary to
popular belief, we find that minimum local fill produces significantly better orderings than minimum
degree, albeit at a greatly increased runtime. We describe two simple modifications to this strategy
that further improve ordering quality. We also describe a simple modification to minimum degree,
which we term approximate minimum mean local fill, that reduces factorization work by roughly
25% with only a small increase in runtime.

Key words. sparse matrices, ordering algorithms, minimum degree, minimum local fill, mini-
mum deficiency, graph algorithms
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1. Introduction. When solving a symmetric, positive definite system of equa-
tions Ax = b using a direct method, it is typically cheaper to factor a permuted matrix
PAPT than the original matrix A. The most commonly used heuristic for computing
a permutation P that reduces fill in the factor matrix is the minimum degree algo-
rithm [13], [17], [22]. Simply stated, minimum degree always chooses a node of least
degree to eliminate next, but in effect this choice also minimizes a coarse upper bound
on the amount of fill created when the node is eliminated. A less popular alternative
is the minimum local fill or minimum deficiency algorithm [17], [22], which always
chooses a node whose elimination creates the least amount of fill.

Here we investigate these and several other approaches to selecting nodes for
elimination. Contrary to popular belief, we find that minimum local fill produces
significantly better orderings than minimum degree, albeit at a greatly increased run-
time. We describe two simple modifications to this heuristic that produce even better
orderings, but unfortunately the runtimes are still prohibitive. Thus we also explore
simple approximations to these fill metrics with the goal of reducing the runtime. The
best of these approximations is no more difficult to compute than the degree, yet the
orderings produced require roughly 25% less factorization work than those produced
by minimum degree.

The organization of the paper is as follows. Section 2 describes the minimum
degree and minimum local fill ordering heuristics, including several enhancements
that have been made to the basic algorithms over the years. Section 3 describes some
modifications to these methods. Section 4 presents results for all of these heuristics,
and section 5 attempts to interpret them. Finally, section 6 presents conclusions.
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This paper is a significant revision of an earlier paper by one of the authors [21].
Recently, Ng and Raghavan [19] have also looked at approximate fill metrics.

2. Minimum degree and minimum local fill ordering. This section briefly
describes the minimum degree and minimum local fill ordering heuristics. We as-
sume that the reader has some familiarity with the relevant concepts and algorithms.
See [12], [13], [15] for more details.

Sparse matrix ordering methods are most easily described in terms of the elimi-
nation graph of A [20], the undirected graph G = (V,E) that contains a node j ∈ V
for every column in A and an edge eij ∈ E for every nonzero value Aij , i 6= j. The
edge eij ∈ E is incident to the nodes i and j. The degree of a node j is the number
of edges incident to j. Two nodes, i and j, are adjacent if eij ∈ E. The set Adj(j) is
the set of nodes that are adjacent to node j.

The factorization of a symmetric matrix A can be modeled by a sequence of
elimination graphs, Gk = (V k, Ek), where each Gk captures the nonzero structure of
the matrix that remains after k columns of A have been eliminated. Graph G0 is the
graph of A. In matrix terms, the elimination of a column causes the outer-product
matrix αzzT to be added into the remainder of A, where z is the off-diagonal part
of the eliminated column. Since this matrix is symmetric, only the lower (or upper)
triangle need be computed. In graph terms, the graph Gk is obtained from the graph
Gk−1 by removing from V k−1 the node xk corresponding to the kth eliminated column,
removing from Ek−1 all edges incident to xk, and adding to Ek−1 any edges needed
to make the neighbors of xk pairwise adjacent. The added edges correspond to fill in
the factor matrix.

As mentioned earlier, the minimum degree heuristic performs the ordering by
eliminating at each stage k a node xk that minimizes |AdjGk−1(xk)|, where AdjGk−1(i)
is the set of nodes adjacent to node i in the graph Gk−1. The elimination of xk makes
its neighbors pairwise adjacent, thereby introducing at most d(d − 1)/2 new edges
(where d = |AdjGk−1(xk)|). Since d(d−1)/2 is a strictly increasing function for d ≥ 1,
this choice of xk is equivalent to eliminating a node that minimizes a coarse upper
bound on the amount of fill.

The minimum local fill or minimum deficiency heuristic [22], [17] uses the exact
amount of fill rather than the bound above to select a node for elimination. This
approach is generally thought to provide limited quality advantages over minimum
degree while requiring significantly higher runtime. To quote Duff, Erisman, and
Reid [6, p. 135], “Our conclusion is that the strategies of Markowitz and minimum
degree are the best local algorithms . . . more complicated heuristics greatly add to
the algorithm time and have little impact on performance.” We should add, however,
that subsequent studies [4], [16], [18], especially in connection with interior point
methods for linear programming, have obtained somewhat better ordering quality
from minimum local fill.

2.1. Quotient graphs. The minimum degree heuristic, while simple to describe,
has proven quite difficult to implement efficiently [13]. The obvious approach, where
the elimination graphs Gk are maintained as sets of edges, is inefficient in both storage
and runtime. Efficient implementations require an alternative representation of Gk

based on the concept of a quotient graph [10], [12].
The most important data structure in the quotient graph representation of Gk is

the clique, a set of nodes that are pairwise adjacent. Recall that during the factoriza-
tion the nodes in AdjGk−1(xk) form a clique in Gk. We use Ck to refer to both the set
of nodes in this clique and the set of edges they induce; the specific meaning should
be apparent from the context.
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for k = 1 to n
Choose a node xk of minimum degree
Form clique Ck = Adj(xk)
Destroy all cliques C` where xk ∈ C`

for all nodes i ∈ Ck

Add Ck to the list of cliques to which i belongs
Update the degree of i

Fig. 2.1. Minimum degree ordering using quotient graphs.

The edges in the graph Gk can be concisely represented as the union of the
original edges E0 and the cliques C1 through Ck created by the elimination of nodes
x1 through xk. More precisely, Gk is the induced graph (on the set V k of uneliminated
nodes) that is formed by discarding all nodes not in V k and all edges incident to those
nodes. Thus when we refer to a clique Cj in the graph Gk we assume that it does not
contain any eliminated nodes (i.e., Cj ⊂ Vk). Note that Cj becomes redundant once
any node x` ∈ Cj is eliminated since the clique C` is a superset of Cj in the induced
graph.

The quotient graph representation of Gk can be shown to require no more storage
than the original graph G0 for all k [11]. Furthermore, the information required for
the minimum degree algorithm can be computed and updated efficiently by simply
keeping track of the set of cliques to which each uneliminated node belongs. Given
this representation, for example, one can compute the set AdjGk(i) of nodes adjacent
to a node i in the graph Gk by computing the union of all cliques to which node i
belongs and adding the original neighbors of i in G0. The minimum degree algorithm,
expressed in terms of quotient graphs, is shown in Figure 2.1. This implementation
is typically referred to as quotient minimum degree (QMD).

2.2. Enhancements to minimum degree ordering. As the minimum degree
algorithm has evolved, there have been several enhancements. This section briefly
describes those that are relevant to the methods presented here. See [13] for more
details.

Perhaps the most important enhancement is the notion of a supervariable [9] or
supernode [12] in Gk. A supernode Q is a set of nodes that satisfies Adj(i) ∪ {i} =
Adj(j)∪{j} for all pairs of nodes i, j ∈ Q. Supernodes possess two crucial properties.
The first is that all nodes in a supernode can be eliminated consecutively in a minimum
degree ordering. To understand why, note that the nodes in a supernode Q all have
the same degree and that eliminating one node in Q decreases the degree of every
other node in Q by one. Thus, if the degree of the original node were the minimum,
then the degrees of the remaining nodes become the new minimum. The second
important property is that a supernode in Gk remains a supernode (or is subsumed
by a larger supernode) in all subsequent graphs G` for ` > k. A consequence of these
two properties is that the minimum degree algorithm can treat a supernode as a single
logical node. This can dramatically reduce the number of distinct nodes in the graph,
resulting in significant reductions in ordering runtime.

We represent supernodes using capital letters. We define the set Adj(I) of nodes
adjacent to the supernode I to be Adj(i)\I for any i ∈ I.

A related enhancement is the use of external degree rather than true degree to
choose the node to eliminate next [15]. The true degree of a node i in supernode
I is |Adj(i)|; the external degree is |Adj(I)|. In other words, the external degree
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excludes nodes in the same supernode from the degree calculation. The motivation
is that if node j belongs to the same supernode as i, then j is already adjacent to
the other nodes in Adj(i)\{i}. Thus the only edges added by the elimination of node
i are between nodes in Adj(I). There are at most d(d − 1)/2 such edges (where
d = |Adj(I)|), and again this is minimized by minimizing |Adj(I)|. The use of this
tighter bound on the amount of fill leads to better orderings [13], [15]. All ordering
methods considered in this paper use external degrees rather than true degrees.

A third enhancement is the use of approximate degrees rather than exact de-
grees [1], [14]. Rather than computing |Adj(i)| when the degree of a node i is updated,
the approximate minimum degree (AMD) algorithm [1] approximates the degree us-
ing the sizes of the most recently created clique Ck and the intersections of Ck with
the other cliques to which i belongs:

|Ck|+
∑

j≤k,i∈Cj

|Cj\Ck|.

This quantity is then augmented by the number of nodes in G0 that are adjacent
to i but do not belong to any clique containing i. Note that nodes that belong to
more than one clique Cj are counted more than once in this expression so it provides
only an upper bound on the exact degree. Nonetheless, the orderings computed
using approximate degrees are of comparable quality to those obtained using exact
degrees [1]. Moreover, the approximate degree is much less expensive to compute—
the sizes of the sets Cj\Ck can be reused when updating the approximate degrees of
other nodes in Ck, but a similar set subtraction computation is required each time
the exact degree of a node in Cj ∩ Ck is updated.

A fourth enhancement is compression of the original graph G0 by identifying
supernodes [2], [5]. This greatly reduces the size of some initial graphs. But while it
reduces the cost of the multiple minimum degree (MMD) implementation of minimum
degree [15], our experience indicates that the reduction in runtime for AMD is roughly
equal to the cost of performing the compression. We use it nonetheless because several
of our scoring functions benefit from initial supernode information.

2.3. Minimum local fill ordering. The minimum local fill heuristic has re-
ceived much less attention in the literature than minimum degree, primarily because
its runtime is prohibitive. To compute the fill that would result from the elimination
of a node k, we must determine which pairs of nodes in Adj(k) are already adjacent,
and this is much more expensive than simply computing |Adj(k)|. To compound the
problem, while the elimination of a node k can only affect the degrees of nodes in
Adj(k), it can affect fill counts for both nodes in Adj(k) and their neighbors. While
many of the enhancements described above for minimum degree are applicable to
minimum local fill (particularly supernodes), runtimes are still prohibitive.

3. New node selection strategies. This section describes several simple mod-
ifications to the minimum local fill and minimum degree algorithms that improve the
quality of the computed orderings. We give an intuitive explanation of their effective-
ness in this section and attempt to provide a more formal explanation in section 5.

To more easily describe these new heuristics, we introduce the function score(K)
that captures the “cost” of eliminating an uneliminated supernode K. The ordering
algorithm always chooses a node with minimum score to eliminate next. In the case of
minimum degree, score(K) = |Adj(K)|; for minimum local fill, score(K) = |Fill(K)|,
where Fill(K) is the set of edges that would be added if K were eliminated.
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1 3 4 6 7 9 12
1 •
3 • •
4 • × •
6 • × × •
7 • × × × •
9 • × × × × •
12 • × × × × × •




Fig. 3.1. Potential consequences of eliminating a node adjacent to the set {3,4,6,7,9,12}. The
symbol × represents possible fill-in; other symbols represent known nonzero values.

3.1. Enhancements to minimum local fill. We consider two simple modifi-
cations to the minimum local fill node selection strategy.

The first is motivated by the observation that eliminating a supernode K corre-
sponds to |K| single-node eliminations, so the average fill associated with each elim-
ination is score(K) = |Fill(K)|/|K|. We call this scoring function minimum mean
local fill (MMF).

The second is based on the observation that when a supernode K is eliminated, the
elimination both adds and removes edges incident to the neighbors of K. The edges
added are the fill edges Fill(K); the edges removed are those between K and Adj(K).
The net change in the number of edges is score(K) = |Fill(K)| − |Adj(K)| × |K|.
We call this scoring function minimum increase in neighbor degree (MIND) since it
measures the aggregate change in degree of all neighbors of the eliminated node.

Note that both modifications favor the elimination of larger supernodes.

While we have given an intuitive explanation of their effectiveness, we caution the
reader that the results obtained with these and similar scoring functions are often far
from intuitive. Using score(K) = |Fill(K)|/√|K|, for example, actually produced
slightly better results than the scoring functions described above.

3.2. Enhancements to minimum degree. We now consider a modification
to the minimum degree node selection strategy. Our goal is to introduce some of the
flavor of minimum local fill without also introducing the prohibitive cost.

Recall that the motivation for using degree to choose nodes for elimination is
that it corresponds to a simple upper bound on fill. For example, Figure 3.1 shows
the lower triangle of the submatrix of A affected by the elimination of node 1, where
Adj(1) = {3, 4, 6, 7, 9, 12}. The degree of node 1 is d = 6, and eliminating that node
could create as many as (d2 − d)/2 = 15 new nonzero entries (we assume that the
diagonal entries are already nonzero).

Our enhancement to the minimum degree algorithm exploits the fact that we
can inexpensively identify some entries that are modified by the elimination but are
already nonzero and thus cannot suffer fill. In particular, if the graph Gk contains a
clique Cj , then all pairs of nodes in that clique are already adjacent. This information
can be used to improve the bound on the amount of fill generated by eliminating a
node. For example, Figure 3.2 shows the same submatrix as before, but with the
assumption that Gk contains two cliques, {1, 3, 4, 6} and {1, 4, 7, 9}. The bound on
fill derived using only the degree is 15; but if all entries known to be nonzero due to
the existence of these two cliques are excluded, the bound is reduced to 9.

In our approximation we define score(I) = (d2 − d)/2 − (c2 − c)/2, where d is
the external degree of the supernode I (either exact or approximate) and c = |C`\I|,
where C` is the most recently created clique containing I. Note that this score need
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1 3 4 6 7 9 12
1 •
3 • •
4 • ◦ •
6 • ◦ ◦ •
7 • × ? × •
9 • × ? × ? •
12 • × × × × × •




Fig. 3.2. Potential consequences of eliminating a node adjacent to the set {3,4,6,7,9,12}, as-
suming A contains two cliques, {1, 3, 4, 6} and {1, 4, 7, 9}. The symbol × represents possible fill-in;
other symbols represent known nonzero values.

only be updated when a neighbor xk of I is eliminated, in which case ` will be equal
to k. Moreover, it is trivial to compute since any implementation of minimum degree
already computes all of the relevant quantities. In the example of Figure 3.2, the
external degree of node 1 is d = 6, the size of the clique C` is c = 3 (using either
clique), and thus score(1) = 12. We call this approach approximate minimum local
fill (AMF).

This simple bound on fill can often be tightened by using the largest clique to
which supernode I belongs rather than the most recently created one [21]. It can
be further tightened by taking into account the effects of multiple cliques [19], [21].
Considering both cliques, the previous example gives a bound of 9 versus the bound
of 12 obtained by considering a single clique. However, we found that tightening the
fill bound beyond the information available from the most recently formed clique did
not improve ordering quality [21].

We also consider approximate minimum mean local fill (AMMF) and approx-
imate minimum increase in neighbor degree (AMIND). The scoring functions for
these variants are obtained by modifying the base score above in the same way
that the base score |Fill(K)| was modified for minimum local fill; i.e., score(K) =
scoreAMF (K)/|K| for AMMF and score(K) = scoreAMF (K) − |deg(K)| × |K| for
AMIND, where scoreAMF (K) is the AMF score for supernode K and deg(K) is the
external degree of K (either exact or approximate).

4. Results. To evaluate the effectiveness of these scoring functions, we look at
ordering quality over a set of 40 sparse symmetric matrices, including 21 matrices from
the Harwell–Boeing sparse matrix test set [7] and 19 structural analysis and compu-
tational fluid dynamics matrices, 11 from NASA and 8 extracted from commercial
applications. Each of these matrices require more than 100 million floating-point op-
erations to factor using Liu’s MMD ordering heuristic [15]. Floating-point operation
counts, our primary evaluation metric in this section, are an extremely poor predictor
of runtime for problems smaller than this.

To reduce the effect of tie-breaking strategies, all nonzero and operation counts
were obtained by ordering each matrix several times (randomly permuting the rows
and columns before each ordering) and taking the median. For the minimum fill
variants, we take the median over three permutations; for the less costly approximate
minimum fill variants, we take the median over eleven permutations.

Table 4.1 shows the number of rows in each matrix, the number of nonzero values
in the lower triangle of A and the number of nonzero values in the lower triangle of
L and the number of floating-point operations required to perform the factorization
after applying the MMD ordering.

All of our ordering results come from three codes: Liu’s implementation of MMD,
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Table 4.1
Statistics about test matrices.

NZ in NZ in Operations
Matrix Rows A (103) L (103) to factor (106)
BCSSTK15 3948 60 658 169
BCSSTK16 4884 147 737 144
BCSSTK17 10974 219 1117 191
BCSSTK18 11948 80 645 132
BCSSTK23 3134 24 452 140
BCSSTK25 15439 133 1506 328
BCSSTK29 13992 316 1757 434
BCSSTK30 28924 1036 3835 926
BCSSTK31 35588 608 5304 2523
BCSSTK32 44609 1029 5199 1075
BCSSTK33 8738 300 2635 1308
BCSSTK35 30237 740 2760 399
BCSSTK36 23052 583 2761 618
BCSSTK37 25503 583 2819 542
BCSSTK38 8032 181 747 121
BCSSTK39 46772 1068 7560 2147
MSC10848 10848 620 2022 562
MSC23052 23052 588 2759 612
CRYSTK01 4875 160 1055 317
CRYSTK02 13965 491 5858 3940
CRYSTK03 24696 887 13431 12229
FLAP 51537 531 5558 1875
FORD2 100196 322 2427 300
PWT 36519 181 1744 216
SPHERE6 16386 65 809 140
BIKKER2 173160 514 60899 153705
COPTER2 55476 407 14137 12560
TROLL 213453 6099 99316 189687
HSCT16K 16146 515 2913 929
SRB55K 54870 1362 12402 5040
HSCT88K 88404 2001 17874 8645
FORD263K 263096 6530 37248 21723
3DTUBE 45330 1629 30860 40119
GEARBOX 153746 4617 52798 57360
STRUCT1 46949 1164 5023 1253
STRUCT2 73752 1835 9922 3955
STRUCT3 53570 613 5297 1216
STRUCT4 4350 121 2264 1798
CFD1 70656 949 39647 47196
CFD2 123440 1605 87134 169861

our implementation of the exact minimum local fill variants, and our modification of
Amestoy, Davis, and Duff’s implementation1 of AMD to perform the AMF variants.
We used approximate degrees for all of the approximate minimum fill results but have
verified that exact degrees produce nearly identical results. We have also verified that
our codes produce orderings of comparable quality to MMD when we use the AMD
scoring function.

Table 4.2 shows the number of nonzero values in the factor matrix L and Table 4.3
shows the number of floating-point operations required to factor A after applying the
various ordering methods, all relative to the corresponding results for MMD. The
last two lines in each table give geometric means and medians over the entire set of
matrices.

1http://www.netlib.org/linalg/amd/amdbar.f
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Table 4.2
Nonzero values in factor matrix L (relative to MMD).

Exact fill Exact fill in Ck Approximate fill
Matrix MF MMF MIND MF MMF MIND AMF AMMF AMIND
BCSSTK15 .94 .87 .88 .93 .88 .88 .95 .89 .89
BCSSTK16 .86 .89 .84 .87 .93 .85 .93 .97 1.00
BCSSTK17 .82 .85 .79 .91 .90 .88 .96 .90 .97
BCSSTK18 .86 .81 .83 .90 .83 .86 .91 .88 .89
BCSSTK23 .87 .83 .81 .94 .88 .85 .89 .85 .86
BCSSTK25 .85 .79 .80 .87 .79 .82 .93 .83 .87
BCSSTK29 .89 .88 .84 .93 .92 .87 .92 .98 .93
BCSSTK30 .95 .84 .85 1.04 .86 .88 1.00 .90 .91
BCSSTK31 .89 .78 .81 .94 .79 .84 .95 .83 .88
BCSSTK32 .92 .89 .88 .95 .91 .91 .97 .93 .99
BCSSTK33 .85 .86 .81 .92 .88 .85 .93 .91 .93
BCSSTK35 .96 .93 .92 .97 .95 .94 .98 .97 1.02
BCSSTK36 .93 .90 .89 .97 .94 .94 .97 .96 1.03
BCSSTK37 .94 .93 .90 .97 .95 .93 .98 .97 1.01
BCSSTK38 .92 .88 .89 .91 .91 .91 .99 .94 .95
BCSSTK39 .86 .85 .84 .98 .93 .93 .98 .96 .96
MSC10848 .89 .85 .83 .93 .92 .87 .99 1.08 .95
MSC23052 .93 .91 .90 .97 .94 .92 .97 .97 1.02
CRYSTK01 .85 .90 .84 .90 .94 .89 .92 .95 .95
CRYSTK02 .77 .79 .73 .85 .85 .85 .89 .90 .92
CRYSTK03 .72 .77 .72 .84 .85 .85 .89 .90 .90
FLAP .73 .77 .70 .86 .87 .84 .89 .92 .93
FORD2 .88 .86 .85 .91 .90 .88 .94 .93 .95
PWT .80 .78 .80 .97 .92 .93 .98 .96 .98
SPHERE6 .96 .89 .91 .99 .92 .94 .98 .95 .90
BIKKER2 .81 .68 .77 .85 .71 .80 .88 .72 .78
COPTER2 .83 .69 .76 .83 .72 .78 .86 .74 .80
TROLL .76 .64 .71 .90 .67 .76 .88 .68 .79
HSCT16K .90 .98 .87 .91 1.01 .88 .84 1.00 .84
SRB55K .82 .80 .77 .89 .83 .84 .94 .84 .89
HSCT88K .97 .92 .92 .98 .93 .93 .98 .94 .94
FORD263K .95 .87 .88 .98 .89 .91 .96 .94 .96
3DTUBE .69 .76 .63 .83 .85 .81 .89 .90 .89
GEARBOX .79 .80 .72 .83 .84 .83 .90 .91 .92
STRUCT1 .96 .92 .92 .98 .95 .95 .99 .98 .99
STRUCT2 .90 .88 .88 .96 .95 .93 .97 .96 .98
STRUCT3 .84 .89 .81 .94 .91 .90 .96 .94 .96
STRUCT4 .75 .78 .73 .83 .78 .80 .82 .75 .79
CFD1 .60 .59 .58 .79 .69 .76 .85 .74 .78
CFD2 .54 .54 .51 .80 .73 .76 .84 .76 .81
G. Mean .84 .82 .80 .91 .87 .87 .93 .90 .91
Median .86 .85 .83 .92 .90 .88 .94 .93 .93

Note that the table shows results for the exact fill methods, the approximate fill
methods, and methods that compute exact fill only for the neighbors of the eliminated
node (i.e., the nodes in Ck). Recall that maintaining exact fill information requires
updating the scores of the neighbors of the nodes in Ck as well. Since the approximate
fill variants only update the scores for nodes in Ck, computing exact fill on these
nodes gives an upper bound on the improvement that can be obtained by refining our
approximations.

We note the following from the results:

1. Minimum local fill (MF) provides significantly better orderings than MMD.
On average, it reduces nonzero values in the factor by roughly 15% and floating-point
operations by roughly 30%.
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Table 4.3
Floating-point operations to factor A (relative to MMD).

Exact fill Exact fill in Ck Approximate fill
Matrix MF MMF MIND MF MMF MIND AMF AMMF AMIND
BCSSTK15 .91 .76 .77 .87 .74 .77 .91 .71 .79
BCSSTK16 .73 .74 .67 .75 .84 .70 .85 .91 .96
BCSSTK17 .62 .66 .57 .81 .76 .75 .90 .73 .90
BCSSTK18 .70 .58 .65 .78 .64 .69 .79 .73 .75
BCSSTK23 .73 .64 .65 .86 .73 .70 .77 .66 .71
BCSSTK25 .69 .57 .60 .74 .57 .63 .83 .63 .68
BCSSTK29 .75 .70 .63 .83 .80 .70 .82 .93 .77
BCSSTK30 .87 .64 .65 1.07 .69 .72 .99 .71 .77
BCSSTK31 .77 .55 .63 .85 .55 .66 .89 .64 .73
BCSSTK32 .82 .74 .73 .88 .78 .79 .93 .83 .90
BCSSTK33 .72 .67 .63 .86 .70 .69 .85 .73 .83
BCSSTK35 .89 .81 .81 .93 .87 .85 .96 .90 .99
BCSSTK36 .85 .74 .75 .95 .85 .86 .93 .88 .97
BCSSTK37 .90 .84 .79 .96 .86 .86 .98 .89 .97
BCSSTK38 .81 .71 .74 .79 .76 .78 .97 .83 .83
BCSSTK39 .72 .69 .66 .94 .82 .83 .96 .87 .87
MSC10848 .75 .68 .64 .84 .81 .72 .94 1.19 .87
MSC23052 .86 .79 .75 .93 .82 .80 .91 .89 .92
CRYSTK01 .72 .77 .69 .80 .84 .80 .84 .83 .88
CRYSTK02 .60 .60 .51 .70 .71 .73 .80 .77 .85
CRYSTK03 .50 .58 .50 .70 .68 .71 .79 .75 .79
FLAP .45 .50 .40 .69 .67 .65 .75 .78 .80
FORD2 .69 .66 .64 .73 .72 .67 .82 .78 .77
PWT .62 .57 .62 .92 .81 .85 .96 .89 .94
SPHERE6 .91 .75 .80 .96 .81 .85 .95 .86 .74
BIKKER2 .66 .46 .61 .72 .52 .64 .77 .50 .61
COPTER2 .70 .46 .56 .69 .51 .61 .75 .54 .64
TROLL .53 .37 .48 .72 .42 .52 .76 .43 .57
HSCT16K .80 .83 .73 .81 .87 .76 .68 .86 .65
SRB55K .65 .60 .56 .78 .63 .68 .88 .65 .75
HSCT88K .92 .78 .80 .93 .80 .80 .94 .83 .78
FORD263K .85 .64 .68 .97 .71 .77 .85 .81 .82
3DTUBE .48 .55 .40 .69 .75 .66 .78 .78 .81
GEARBOX .63 .59 .46 .65 .63 .65 .78 .77 .79
STRUCT1 .90 .80 .80 .96 .87 .86 .99 .91 .96
STRUCT2 .75 .69 .72 .90 .84 .80 .91 .87 .91
STRUCT3 .69 .77 .62 .89 .76 .78 .94 .82 .91
STRUCT4 .56 .61 .55 .69 .60 .66 .67 .54 .63
CFD1 .37 .34 .34 .62 .44 .56 .71 .50 .60
CFD2 .32 .32 .28 .68 .53 .59 .73 .58 .67
G. Mean .69 .63 .61 .81 .71 .72 .85 .75 .79
Median .72 .66 .64 .83 .75 .72 .85 .78 .80

2. MMF and MIND produce even better orderings than MF.
3. AMF also computes significantly better orderings than MMD, with roughly

7% fewer nonzero values in the factor and roughly 15% fewer floating-point operations.
4. AMMF and AMIND further improve on AMF, providing roughly 25% and

20% reductions in floating-point operation counts, respectively.
5. MMF is slightly less effective than MIND, while AMMF is slightly more

effective than AMIND.
6. Our approximate fill variants capture most of the benefit of computing exact

fill information on nodes in Ck.
7. The methods considered here provide better orderings than MMD for almost

every matrix in our test set.
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4.1. Runtimes. The benefit of a better ordering must, of course, be traded off
against any increase in the cost of computing that ordering. But before discussing
runtime, we must first discuss two implementation details.

Minimum degree codes typically maintain a set of buckets, where bucket i contains
a list of nodes of degree i. Since degrees are bounded by the number of nodes in the
graph, this bucket data structure is quite compact. However, this approach does not
work for minimum fill since, in the worst case, fill is proportional to the square of the
number of nodes in the graph. In our implementations we keep individual buckets for
nodes with scores less than the number of nodes and a single bucket for all nodes with
larger scores. In the unlikely event that the best score is greater than or equal to the
number of nodes in the graph, we perform a linear search through this last bucket to
find a node with the lowest score [8].

Recall that the MMF and AMMF scoring functions can compute noninteger
scores, which are incompatible with the use of integer buckets as above. However,
we have found that discarding the fractional portions gives roughly the same results,
and this is done in our implementations.

Using this bucket data structure, we found that AMF, AMMF, and AMIND
added roughly 10%, 23%, and 15% to the runtime of AMD, respectively. When we
looked at these runtimes in more detail, we found that the source of the increase was
not the cost of computing the scoring function—a code that computed any of these
other scores but then used the AMD score was always less than 2% slower. Instead,
the new scoring functions are slower because they consistently compute more scores
than AMD. This has to do with the way in which the new methods grow cliques, as
will be discussed in the next section.

5. Towards a better understanding of the results. This section looks at
the experimental results in more detail. We discuss our conjectures about why these
methods work and identify a number of aspects that we do not understand.

Before beginning, we note that understanding the behavior of a bottom-up order-
ing method is an extremely difficult task. Decisions made early in the ordering process
based on local information (e.g., degree) can lead to poor behavior much later on, and
it is virtually impossible to trace such behavior back to any one specific decision. We
are, therefore, limited to making general observations.

Recall that the clique Ck formed by the elimination of node xk subsumes all
cliques to which xk belongs. We say that a node xi is interior to Ck if the clique Ci

created by the elimination of xi is subsumed by Ck, or by some clique subsumed by
Ck, and so on. The set of nodes interior to a clique forms a subgraph; the nodes in
the clique form the boundary of that subgraph.

We believe that the main problem with minimum degree is that the cliques created
in the elimination process often have nonsmooth boundaries. Theoretical support is
provided by Berman and Schnitger [3], who have shown that nonsmooth boundaries
can lead to asymptotically suboptimal orderings. Empirical evidence is provided in
Figure 5.1, which contains two views of a scatter plot of the number of nodes in each
clique Ck versus the number of nodes interior to that clique for matrix BCSSTK15.
Note that AMMF generates significantly smaller cliques than AMD for a given number
of interior nodes, which means that its cliques have smoother boundaries.

We believe that the alternative scoring functions produce smoother clique bound-
aries because of the way they form large cliques. Recall that the approximate fill
scoring functions are more willing to select nodes that already belong to large cliques.
As a result these variants tend to grow large cliques into larger ones. In contrast AMD
forms large cliques by merging smaller ones. Empirical evidence for this conjecture is
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Fig. 5.1. Number of interior nodes versus clique size for matrix BCSSTK15.
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Fig. 5.2. Largest incident clique for BCSSTK15.

shown in Figure 5.2, which shows, for each elimination step k, the size of the largest
clique to which node xk belongs. (Lines are drawn between successive points if the
clique created is immediately subsumed.) The AMMF approach exhibits significant
local growth in clique sizes; in contrast clique sizes in AMD grow more smoothly.

Why should growing cliques create smoother boundaries than merging cliques?
We conjecture that one very important issue is clique alignment . We say that two
cliques are “well aligned” if they share many nodes. In general, merging poorly aligned
cliques places fewer nodes in the interior of the resulting clique than merging well-
aligned cliques. Intuitively, alignment is less of an issue when merging a small clique
into a larger one.

Why is AMMF more effective than AMF? We found that AMMF generally grows
a clique further than AMF. This is understandable since growing a clique often creates
supernodes within the current clique. Since these supernodes have reduced scores in
AMMF, the clique continues to grow. Apparently, growing larger cliques than those
grown by AMF is beneficial. We experimented with scoring functions that encouraged
cliques to continue growing beyond the point where they would stop with AMMF,
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Fig. 5.3. A portion of a 9-point toroidal grid.

but the resulting orderings were worse. Taken to the extreme, of course, encouraging
clique growth leads to a wavefront ordering. While growing cliques appears to be an
important issue, knowing when to stop appears to be an equally important one.

When we looked at clique growth patterns for the exact fill variants, we found
that they actually grew cliques less than did the approximate fill variants. Clearly,
they are using a different mechanism to compute good orderings. We believe one
important property that the exact fill scores capture is clique alignment. Consider
the example in Figure 5.3, which shows a portion of a 9-point toroidal grid. We
assume that nodes 7 and 9 have already been eliminated. The two cliques in the
graph are thus {1, 2, 3, 6, 8, 11, 12, 13} and {3, 4, 5, 8, 10, 13, 14, 15}. Minimum degree
can choose any node not adjacent to the eliminated nodes to eliminate next. The
method is free to choose node 18, for example. After several eliminations, this creates
a patchwork of cliques. By contrast minimum fill prefers nodes 17 and 19 (and their
symmetrical equivalents) whose fill count is one lower than that of node 18. Thus
the graph that remains once one-fourth of the nodes have been eliminated is still a
regular grid. While we cannot expect the same behavior for less regular problems, it
is clear that minimum fill prefers to eliminate nodes whose elimination creates cliques
that share sets of nodes with existing cliques (i.e., well-aligned cliques).

Returning briefly to the question of why runtimes for the approximate fill methods
are larger than those for AMD, we consider a simplified example. Imagine you wish
to build a set of n objects by merging subsets of these objects, starting with subsets
of size 1. Assume that when two sets are merged, each member of the resulting set
must be rescored. If you grow the set of size n by merging sets of size 1 in the first
stage, sets of size 2 in the second stage, sets of size 4 in the third stage, and so on,
then the total number of nodes rescored is O(n logn). If you grow the set by merging
a set of size 1 into a set of size i in stage i, then the cost is O(n2). Given the fact
that the approximate fill metrics favor merging small cliques into large cliques, the
observed increase in node rescoring is not surprising.

To summarize, we conjecture that AMF is more effective than AMD because the
process of growing cliques creates smoother clique boundaries than the process of
merging smaller cliques. AMMF is even more effective because it allows the clique-
growing process to continue longer. MF is still more effective because cliques must
eventually be merged and exact fill scores capture some notion of clique alignment,
which leads to smoother clique boundaries.

Our intent in this section has been to provide a partial explanation of some of the
observed results. While we believe we understand some of the relevant issues, we feel
that we have left more questions unanswered than answered. We are quite confident
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that better scoring functions can be found as understanding of the underlying behavior
of the methods improves.

Recently, Ng and Raghavan have also considered approximate fill metrics and
obtained similar results [19]. Their fill approximation, which is similar to our AMF
heuristic, uses clique information to identify edges already present in Gk. Major
differences between the results are: (i) their fill approximation requires a computation
similar to computing exact degrees for each node, so we would not expect runtime
reductions from using approximate degrees; and (ii) for the 24 matrices in both test
suites, the ordering quality for their approach lies between that of our AMF and
AMIND approaches and is significantly worse than that of our AMMF approach.

6. Conclusions. We have described several simple modifications to the mini-
mum local fill and minimum degree ordering heuristics that exploit readily available
information about node adjacencies to improve the fill bounds used to select a node for
elimination. Perhaps the most practical of these modifications, which we call AMMF,
reduces floating-point operation counts for the subsequent factorization by roughly
25% while increasing ordering runtimes by only 23%.

Acknowledgments. The authors would like to thank Cleve Ashcraft, Tim Davis,
Joseph Liu, and Farzin Shakib for their suggestions for improving the paper.
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Abstract. Some new results will be presented on the perturbation analysis for the orthogonal
projection of a point onto a linear manifold. The obtained perturbation upper bound is with respect
to the distance from the perturbed solution to the unperturbed manifold.
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1. Introduction. Let A ∈ Rm×n be an m× n matrix, and let b ∈ Rm be an m
dimensional vector. We consider the following perturbation problem of the orthogonal
projection of a point onto a linear manifold:

min ‖p− x‖, subject to ‖Ax− b‖ = min
z∈Rn

‖Az − b‖,(1)

where p ∈ Rn is a fixed point and the norm is the usual Euclidean 2-norm. The
collection of all vectors x satisfying the constraint in (1) will be called the feasible set
and its elements will be called feasible solutions of (1).

Solving the problem (1) is important in many applications, which include the
usual minimal norm least squares problem (p = 0) and interior point methods (b = 0)
in which the main work is the projection of the negative gradient of some so-called
potential function onto the null space of some scaled matrix (see, e.g., [8]).

The unique optimal solution to (1) is given by

x = x(A, b, p) = A†b + (I −A†A)p,

where A† is the Moore–Penrose generalized inverse of A; see, e.g., Theorem 3.6.2 of
[3]. Thus, we have a useful expression

p− x = A†(Ap− b)(2)

for the difference p− x of the point p and its projection x. Such a relation between a
point and its projection will be used several times in the remainder of this paper.

Since the above expression of the solution x to (1) involves the generalized inverse
A† of A, from the well-known discontinuity property of A → A†, it is obvious that
x is discontinuous at (A, b, p) with A rank-deficient. When the perturbation is rank-
preserving, error estimates have been given in [1], [2], and [7] in the special case that
b ∈ R(A), and in [4] in the general case.

When the perturbation is arbitrary, that is, when it may be rank-increasing, the
upper continuity property of the projection and a corresponding error estimate were
obtained in [4]. However, because of a special and tedious construction, this upper
bound contains an unusual “relative condition number” κ̃ = ‖A‖‖B†‖ of a full-ranked
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submatrix B of A with respect to A, where ‖A‖ is the induced Euclidean matrix
norm, and a general relation between κ̃ and the condition number κ = ‖A‖‖A†‖ of
A is unknown. In this paper, we shall get a better error bound without using the
relative condition number approach. It seems that this bound is optimal since it is
with regard to the minimal distance of the perturbed solution to the manifold of the
unperturbed problem, and it also looks beautiful in format since it will be reduced
to well-known results in special cases. The main result in the paper has two parts.
Part one covers consistent linear systems and part two covers the general systems,
and they will be presented in sections 2 and 3, respectively.

2. Error bound: b ∈ R(A). Suppose the problem (1) is perturbed to

min ‖(p + q)− y‖,
subject to‖(A + E)y − (b + e)‖ = min

z∈Rn
‖(A + E)z − (b + e)‖.(3)

In the following, the optimal solutions to (1) and (3) will be denoted by x∗ and
y∗, respectively. In this section, we assume that both linear systems Ax = b and
(A+E)y = b+ e are consistent. We always assume that x 6= 0 whenever ‖x‖ appears
in the denominator.

Theorem 2.1. Suppose b ∈ R(A) and b + e ∈ R(A + E). If ‖A†E‖ < 1, then
there is a feasible solution x to (1) such that

‖y∗ − x‖
‖x‖ ≤ κ

1− ‖A†E‖
(‖e‖
‖b‖ +

‖E‖
‖A‖

)
.(4)

If, in addition, Rank(A + E) = Rank(A) and ‖A†‖‖E‖ < 1, then

‖y∗ − x∗‖
‖x∗‖ ≤ ‖q‖‖x∗‖ + κ

[ 
‖p‖
‖b‖ +

1 +
√

5

2

‖A†‖
1− ‖A†‖‖E‖

)
‖E‖

+
‖e‖

(1− ‖A†‖‖E‖)‖b‖

]
.(5)

Proof. Let x be the orthogonal projection of y∗ onto the feasible set of (1). Then,
replacing p with y∗ in (2), we get

y∗ − x = A†(Ay∗ − b) = A†(e− Ey∗),

since (A + E)y∗ = b + e. Hence,

(I + A†E)(y∗ − x) = A†(e− Ex).

Now

0 < (1− ‖A†E‖)‖y∗ − x‖ ≤ ‖(I + A†E)(y∗ − x)‖
by the assumption. Therefore,

‖y∗ − x‖
‖x‖ ≤ 1

1− ‖A†E‖‖A
†‖‖e− Ex‖

‖x‖

≤ 1

1− ‖A†E‖‖A
†‖‖e‖+ ‖Ex‖

‖x‖
=

κ

1− ‖A†E‖
‖e‖+ ‖Ex‖
‖A‖‖x‖

≤ κ

1− ‖A†E‖
(‖e‖
‖b‖ +

‖E‖
‖A‖

)
.
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This proves (4). To prove (5), subtracting the equality

p + q − y∗ = (A + E)† [(A + E)(p + q)− (b + e)]

from the equality p− x∗ = A†(Ap− b), we have

y∗ − x∗ = q + A†Ap− (A + E)†(A + E)(p + q) + (A + E)†(b + e)−A†b

= [I − (A + E)†(A + E)]q + [A†A− (A + E)†(A + E)]p

+ [(A + E)† −A†]b + (A + E)†e.

Since I − (A + E)†(A + E) is an orthogonal projector,

‖y∗ − x∗‖ ≤ ‖q‖+ ‖(A + E)†(A + E)−A†A‖‖p‖
+ ‖(A + E)† −A†‖‖b‖+ ‖(A + E)†‖‖e‖.(6)

Now, since Rank(A + E) = Rank(A), from [6],

‖(A + E)†(A + E)−A†A‖ ≤ ‖A†‖‖E‖,

‖(A + E)† −A†‖ ≤ 1 +
√

5

2
‖(A + E)†‖‖A†‖‖E‖,

and

‖(A + E)†‖ ≤ ‖A†‖
1− ‖A†‖‖E‖ .

Thus, by (6), and noting that ‖A‖‖x∗‖ ≥ ‖Ax∗‖ = ‖b‖, we have

‖y∗ − x∗‖
‖x∗‖ ≤ ‖q‖‖x∗‖ +

‖A†‖‖E‖‖p‖
‖x∗‖ +

1 +
√

5

2

‖A†‖2‖E‖‖b‖
(1− ‖A†‖‖E‖)‖x∗‖

+
‖A†‖‖e‖

(1− ‖A†‖‖E‖)‖x∗‖

≤ ‖q‖‖x∗‖ +
κ‖p‖‖E‖
‖A‖‖x∗‖ +

1 +
√

5

2

κ‖A†‖‖E‖‖b‖
(1− ‖A†‖‖E‖)‖A‖‖x∗‖

+
κ‖e‖

(1− ‖A†‖‖E‖)‖A‖‖x∗‖

≤ ‖q‖‖x∗‖ + κ

[ 
‖p‖
‖b‖ +

1 +
√

5

2

‖A†‖
1− ‖A†‖‖E‖

)
‖E‖

+
‖e‖

‖b‖(1− ‖A†‖‖E‖)

]
.

Remark 2.1. In the special case that A−1 exists, the feasible set of (1) just consists
of {x∗}, and (4) is reduced to

‖y∗ − x∗‖
‖x∗‖ ≤ κ

1− ‖A−1E‖
(‖e‖
‖b‖ +

‖E‖
‖A‖

)
,

which is a classic result in numerical linear algebra.
Remark 2.2. It was not endeavored to get an optimal upper bound for (5). As

pointed out by one referee, using p−x∗ = A†(Ap− b), from (8) of [4] a bound slightly
different and a little better than (5) can be obtained.
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3. Error bound: b 6∈ R(A). Now we drop the assumption that b ∈ R(A) and
b + e ∈ R(A + E).

Theorem 3.1. Suppose ‖A†‖‖E‖ < 1. Then there is a feasible solution x to (1)
such that

‖y∗ − x‖
‖x‖ ≤ κ

1− ‖A†E‖
[‖A†‖‖Ax− b‖‖E‖+ 2‖e‖

‖A‖‖x‖ + 2
‖E‖
‖A‖

]
.(7)

If, in addition, Rank(A + E) = Rank(A) and ‖A†‖‖E‖ < 1, then

‖y∗ − x∗‖
‖x∗‖ ≤ ‖q‖‖x∗‖ + κ

[ 
‖p‖

‖A‖‖x∗‖ +
1 +
√

5

2

‖A†‖‖b‖
(1− ‖A†‖‖E‖)‖A‖‖x∗‖

)
‖E‖

+
‖e‖

(1− ‖A†‖‖E‖)‖A‖‖x∗‖

]
.(8)

Proof. Let x be the orthogonal projection of y∗ onto the feasible set of (1). Denote

r = (A + E)y∗ − (b + e).

Then

(A + E)†r = 0(9)

and

‖r‖ = ‖(A + E)y∗ − (b + e)‖ ≤ ‖(A + E)x− (b + e)‖
≤ ‖Ax− b‖+ ‖e− Ex‖,(10)

since y∗ is a least squares solution of the system (A + E)y = b + e. Thus,

A†r =
[
A† − (A + E)†

]
r,(11)

from which, together with

y∗ − x = A†(Ay∗ − b) = A†(r + e− Ey∗) = A† [r + e− E(y∗ − x)− Ex] ,

(I + A†E)(y∗ − x) = A†r + A†(e− Ex)

=
[
A† − (A + E)†

]
r + A†(e− Ex).(12)

On the other hand, from the decomposition (see Theorem 8.5 of [5])

A† − (A + E)† = A†E(A + E)† −A†(A†)TET [I − (A + E)(A + E)†]

− (I −A†A)ET [(A + E)†]T (A + E)†

and (9), we obtain [
A† − (A + E)†

]
r = −A†(A†)TET r,

from which it follows that

‖[A† − (A + E)†]r‖ ≤ ‖A†‖2‖E‖‖r‖.(13)
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Therefore, by (12), (13), and (10),

‖y∗ − x‖
‖x‖ ≤ ‖A†‖

1− ‖A†E‖
‖A†‖‖E‖‖r‖+ ‖e− Ex‖

‖x‖

≤ ‖A†‖
1− ‖A†E‖

‖A†‖‖E‖(‖Ax− b‖+ ‖e− Ex‖) + ‖e− Ex‖
‖x‖

≤ ‖A†‖
1− ‖A†E‖

‖A†‖‖E‖(‖Ax− b‖+ ‖e‖+ ‖Ex‖) + ‖e‖+ ‖Ex‖
‖x‖

≤ κ

1− ‖A†E‖
[‖A†‖‖E‖‖Ax− b‖+ ‖e‖(‖A†‖‖E‖+ 1)

‖A‖‖x‖

+
‖E‖(‖A†‖‖E‖+ 1)

‖A‖
]

≤ κ

1− ‖A†E‖
[‖A†‖‖Ax− b‖‖E‖+ 2‖e‖

‖A‖‖x‖ + 2
‖E‖
‖A‖

]
.

This proves (7), and (8) can be proved in the same way as for (5).
Remark 3.1. Actually we have proved that, for any feasible solution y of (3), there

is a feasible solution x of (1) such that

‖y∗ − x‖
‖x‖ ≤ κ

1− ‖A†E‖
[‖A†‖‖Ax− b‖‖E‖+ 2‖e‖

‖A‖‖x‖ + 2
‖E‖
‖A‖

]
.

Remark 3.2. Another upper bound for the rank-preserving perturbation was given
in [4] (see Theorem 3.1 in [4]).

Corollary 3.1. If, in addition, b ∈ R(A), then

‖y∗ − x‖
‖x‖ ≤ 2κ

1− ‖A†E‖
(‖e‖
‖b‖ +

‖E‖
‖A‖

)
.(14)

Remark 3.3. The difference between (14) and (4) is that here the perturbed system
of linear equations in the problem (3) may not be consistent, while the perturbation
in Theorem 2.1 keeps the system consistent.
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Abstract. Computing graph separators is an important step in many graph algorithms. A
popular technique for finding separators involves spectral methods. However, there has not been much
prior analysis of the quality of the separators produced by this technique; instead it is usually claimed
that spectral methods “work well in practice.” We present an initial attempt at such an analysis.
In particular, we consider two popular spectral separator algorithms and provide counterexamples
showing that these algorithms perform poorly on certain graphs. We also consider a generalized
definition of spectral methods that allows the use of some specified number of the eigenvectors
corresponding to the smallest eigenvalues of the Laplacian matrix of a graph, and we show that if such
algorithms use a constant number of eigenvectors, then there are graphs for which they do no better
than using only the second smallest eigenvector. Furthermore, using the second smallest eigenvector
of these graphs produces partitions that are poor with respect to bounds on the gap between the
isoperimetric number and the cut quotient of the spectral separator. Even if a generalized spectral
algorithm uses nε for 0 < ε < 1

4
eigenvectors, there exist graphs for which the algorithm fails to find a

separator with a cut quotient within n
1
4
−ε − 1 of the isoperimetric number. We also introduce some

facts about the structure of eigenvectors of certain types of Laplacian and symmetric matrices; these
facts provide the basis for the analysis of the counterexamples. Finally, we discuss some developments
in spectral partitioning that have occurred since these results first appeared.

Key words. graph partitioning, spectral partitioning, graph eigenvalues and eigenvectors

AMS subject classifications. 05C50, 05C85, 15A18, 68Q25, 68R10
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1. Introduction. Spectral methods (i.e., methods that use the eigenvalues and
eigenvectors of a matrix representation of a graph) are widely used to compute graph
separators. Typically, the Laplacian matrix is used; the Laplacian B of a graph G on
n vertices is the n × n matrix with the degrees of the vertices of G on the diagonal
and entry bij = −1 if G has the edge (vi, vj) and 0 otherwise. The eigenvector
u2 corresponding to λ2 (the second smallest eigenvalue of B) is computed, and the
vertices of the graph are partitioned according to the values of their corresponding
entries in u2 [24, 18]. The goal is to compute a small separator; that is, as few edges
or vertices as possible should be deleted from the graph to achieve the partition.
Additionally, the sizes of the resulting components should be roughly comparable.

Although spectral methods are popular, there has been little previous analysis
of the quality of the separators they produce. Instead, it is often claimed that such
methods “work well in practice” and tables of results for specific examples are often
included in papers (see, e.g., [24]). Thus someone wishing to compute separators has
little guidance in determining if this technique is appropriate. Ideally, practitioners
should have a characterization of classes of graphs for which spectral separator tech-
niques work well; this characterization might be in terms of how far the computed
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separators can be from optimal. This paper represents a first step in this direction. We
consider two spectral separation algorithms that partition the vertices on the basis of
the values of their corresponding entries in u2, and we provide counterexamples from
classes of practical interest for which each of the algorithms produces poor separators.
We further consider a generalized definition of spectral methods that allows the use of
more than one of the eigenvectors corresponding to the smallest nonzero eigenvalues,
and we show that there are graphs for which any such algorithm does poorly.

The first algorithm bisects a graph by partitioning the vertices into two equal-sized
sets based on each vertex’s entry in the eigenvector u2. The class of bounded-degree
planar counterexamples for this method consists of graphs that look like ladders with
the top half of their rungs removed; a straightforward spectral bisection algorithm
cuts the remaining rungs, whereas the optimal bisection is made by cutting across the
ladder above the remaining rungs. The counterexample graphs have Θ(1) bisectors;
the spectral bisection algorithm produces a Θ(n) bisection, which is as far from the
optimum as possible (to within a constant).

The spectral bisection algorithm can be modified to generate a better separator for
the bisection counterexample. Some modifications are presented in [18]; they still use
a partition based on u2. We consider a simple spectral separator algorithm, the “best
threshold cut” algorithm, based on the most general of these suggested modifications.
(In such an algorithm, “best” is measured in terms of the cut quotient, the ratio
between the number of edges cut and the size of the smaller set in the vertex partition;
the smallest cut quotient over all separators is called the isoperimetric number.)
We present a class of graphs that defeats this algorithm in that the ratio of the
spectral cut’s cut quotient to the isoperimetric number is as bad as possible (to within
a constant) with respect to bounds on these quantities.

We also consider a more general definition of purely spectral separator algorithms
that subsumes the two preceding algorithms. This definition allows the use of some
specified number of eigenvectors corresponding to the smallest eigenvalues of the
Laplacian. For any such algorithm that uses a fixed number of eigenvectors we show
there are graphs for which it does no better than using the “best threshold cut” algo-
rithm. Furthermore, the separator produced when the “best threshold cut” algorithm
is applied to these graphs is as bad as possible (to within a constant) with respect to
bounds on the size of the separators produced. We also show that if a purely spectral
algorithm uses up to nε eigenvectors for 0 < ε < 1

4 , there exist graphs for which the

algorithm fails to find a separator with a cut quotient within a factor of n
1
4−ε − 1

times the isoperimetric number.

Finally, we provide a summary of some important subsequent results by Spielman
and Teng [28] and relate our results to them.

This paper makes an additional contribution. While the counterexamples have
simple structures and intuitively might be expected to cause problems for spectral sep-
arator algorithms, the challenge is to provide good bounds on λ2 for these graphs. For
this purpose we have developed theorems about the spectra of graphs with particular
symmetries (i.e., automorphisms of order 2) that exist in the counterexamples.

Specifics are given in the text that follows. Section 2 gives a brief history of
spectral methods and the details of the algorithms discussed in this paper. Graph
and matrix terminology and notation are presented in section 3, which also presents
some useful facts about Laplacians. Results about the eigenvalues and eigenvectors of
Laplacians of graphs with automorphisms of order 2 are in section 4. Section 5 gives
the counterexample for the spectral bisection algorithm; section 6 gives the counterex-
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ample for the “best threshold cut” algorithm. Section 7 discusses the generalized def-
inition of spectral separator algorithms and shows that there are graphs for which any
such algorithm performs poorly. Section 8 discusses the results of Spielman and Teng.

2. Spectral methods for computing separators. The roots of spectral par-
titioning go back to Donath and Hoffman [9], who proved a lower bound on the size of
the minimum bisection of a graph, and Fiedler [11][12], who explored the properties of
λ2 and its associated eigenvector for the Laplacian. There has been much subsequent
work, including Barnes’s partitioning algorithm [5], Boppana’s work that included a
stronger lower bound on the minimum bisection size [6], work by Rendl, Wolkowicz,
and others using optimization approaches [25], [10], and the particular bisection and
graph partitioning methods considered in this paper [18], [24], [26]. Since our work
first appeared [17], Spielman and Teng [28] have extended the latter methods to in-
clude recursion. (It is worth noting that spectral methods have not been limited to
graph partitioning; work has been done using the spectrum of the adjacency matrix
in graph coloring [4] and using the Laplacian spectrum to prove theorems about ex-
pander graph and superconcentrator properties [3], [1], [2]. The work on expanders
has explored the relationship of λ2 to the isoperimetric number; Mohar has given
an upper bound on the isoperimetric number using a strong discrete version of the
Cheeger inequality [23]. Reference [8] is a book-length treatment of graph spectra,
and it predates many of the results cited above.)

A basic way of computing a graph bisection using spectral information is presented
in [24]. We refer to this algorithm as spectral bisection. Spectral bisection works
as follows:

• Represent G by its Laplacian B, and compute u2, the eigenvector correspond-
ing to λ2 of B.
• Assign each vertex the value of its corresponding entry in u2. This is the

characteristic valuation of G.
• Compute the median of the elements of u2. Partition the vertices of G as

follows: the vertices whose values are less than or equal to the median form
one part; the rest of the vertices form the other part. The set of edges between
the two parts forms an edge separator.
• If a vertex separator is desired, it is computed from the edge separator using

standard techniques described in the next section.

Since the graph bisection problem is NP-complete [13], spectral bisection may not
give an optimum result. That is, spectral bisection is a heuristic method. A number of
modifications have been proposed that may improve its performance. These modified
heuristics may give splits other than bisections. In such cases, one can use the cut
quotient to judge the quality of the split. Computing a separator with a cut quotient
equal to the isoperimetric number is NP-hard [14]. The following modifications, all
of which use the characteristic valuation, are presented in [18]:

• Partition the vertices based on the signs of their values;
• look for a large gap in the sorted list of eigenvector components, and partition

the vertices according to whether their values are above or below the gap; and
• sort the vertices according to value. For each index 1 ≤ i ≤ n − 1, consider

the ratio for the separator produced by splitting the vertices into those with
sorted index ≤ i and those with sorted index > i. Choose the split that
provides the best cut quotient.

Note that the last idea subsumes the first two. We consider a variant of this algorithm
below. Since this algorithm does not specify what to do when multiple vertices have
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the same value, we restrict it to consider only splits between vertices with different
values (such cuts are called threshold cuts). This restricted version is the “best
threshold cut” algorithm; the slight change from the definition above does not
alter its performance with respect to the counterexamples below (other than slightly
simplifying the analysis).

Also note that the idea of cutting at an arbitrary point along the sorted order can
be extended to choosing two split points, where the corresponding partitions are the
vertices with values between the split points, and those with values above the upper
or below the lower split point. Again, the pair yielding the best ratio is chosen.

The algorithms mentioned so far have used only the eigenvector u2. Another
possibility is to look at partitions generated by the set of eigenvectors for some number
of smallest eigenvalues: for each vertex, a value is assigned by computing a function
of that vertex’s eigenvector components. Partitions are then generated in the same
way as they are for u2 in the various algorithms given above.

Given the variety of heuristics cited above, it would be nice to know which ones
work well for which classes of graphs. It would be particularly useful if it were possible
to state reasonable bounds on the performance of these heuristics for classes of graphs
commonly used in practice (e.g., planar graphs, planar graphs of bounded degree,
three-dimensional finite element meshes, etc.). Unfortunately, this is not the case. We
start by proving in section 5 that spectral bisection may produce a bad separator for a
bounded-degree planar graph; first, however, we need to introduce some terminology
and background results.

3. Terminology, notation, and background results. We assume that the
reader is familiar with the basic definitions of graph theory (in particular, for undi-
rected graphs) and with the basic definitions and results of matrix theory. A graph
consists of a set of vertices V and a set of edges E; we denote the vertices (respectively,
edges) of a particular graph G as V (G) (respectively, E(G)) if there is any ambiguity
about which graph is being referred to. The notation |G| is sometimes used as a
shorthand for |V (G)|. When it is clear which graph is being referred to, we use n to
denote |V |.

Capital letters represent matrices and bold lowercase letters represent vectors.
For a matrix A, aij or [A]ij represents the element in row i and column j; for the
vector x, xi or [x]i represents the ith entry in the vector. The notation x = 0 indicates
that all entries of the vector x are zero; ~1 indicates the vector that has 1 for every
entry. For ease of reference, the eigenvalues of an n × n matrix are indexed in non-
decreasing order. λ1 represents the smallest eigenvalue, and λn represents the largest.
For 1 < i < n, λi−1 ≤ λi ≤ λi+1. The notation λi(A) (respectively, λi(G)) indicates
the ith eigenvalue of matrix A (respectively, of the Laplacian of graph G) if there
is any ambiguity about which matrix (respectively, graph) the eigenvalue belongs to.
We use ui to represent the eigenvector corresponding to λi.

A path graph is a tree with exactly two vertices of degree one.
The crossproduct of two graphs G and H (denoted G ×H) is a graph on the

vertex set {(u, v) | u ∈ V (G), v ∈ V (H)}, with ((u, v), (u′, v′)) in the edge set if and
only if either u = u′ and (v, v′) ∈ E(H) or v = v′ and (u, u′) ∈ E(G). It is easy to
see that G×H and H ×G are isomorphic. One way to think of a graph crossproduct
is as follows. Replace every vertex in G with a copy of H. Each edge e in G is then
replaced by |H| edges, one between each pair of corresponding vertices in the copies
of H that have replaced the endpoints of e. An example is shown in Figure 3.1.

For a connected graph G, an edge separator is a set S of edges that, if removed,
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G x H

G H

Fig. 3.1. A graph crossproduct example.

breaks the graph into two (not necessarily connected) components G1 and G2 that
have no edges between them. (An edge separator is by definition minimal with respect
to G1 and G2.) A vertex separator is a set S of vertices such that if these vertices
and all incident edges are removed, the graph is broken into two components G1 and
G2 that have no edges between them (again, a separator is a minimal such set). The
goal in computing separators is to find a small set S that breaks the graph into two
fairly large pieces; often this notion is expressed as a balance restriction that requires
the number of vertices in each of G1 and G2 to be at least some specified fraction of
the number of vertices in G. For edge separators, this goal is stated more generally in
terms of minimizing some measure relating the size of the separator to the size of the
resulting components. One such measure that we use is the isoperimetric number
i(G), defined as

min
S

( |S|
min (|G1|, |G2|)

)
.

We refer to the quantity |S|/min (|G1|, |G2|) as the cut quotient for the edge sep-
arator S. As noted in section 2, finding a cut with a cut quotient equal to the
isoperimetric number is NP-hard. It is well known that an edge separator S can be
converted into a vertex separator S′ by considering the bipartite graph induced by S
and setting S′ to be a minimum vertex cover for that graph.

Given a vertex numbering, graphs can be represented by matrices. For exam-
ple, the adjacency matrix A of a graph G is defined as aij = 1 if and only if
(vi, vj) ∈ E(G); aij = 0 otherwise. A common matrix representation of graphs is
the Laplacian. Let D be the matrix with dii = degree(vi) for vi ∈ V (G), and all
off-diagonal entries equal to zero. Let A be the adjacency matrix for G. Then the
Laplacian of G is the matrix B = D −A.

The following are useful facts about the Laplacian matrix:

• The Laplacian is symmetric positive semidefinite (see, e.g., [22]).
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• A graph G is connected if and only if 0 is a simple eigenvalue of its Laplacian
(see, e.g., [22]). The eigenvector for 0 is ~1.
• The following characterization of λ2 holds (see, e.g., [11]):

λ2 = min
x⊥~1

xTBx

xTx
.

• If G is a crossproduct of two graphs H1 and H2, then the eigenvalues of the
Laplacian of G are all pairwise sums of the eigenvalues of H1 and H2 (see,
e.g., [22]).
• For any vector x and Laplacian B of graph G, the following holds (see, e.g.,

[18]):

xTBx =
∑

(vi,vj)∈E(G)

(xi − xj)
2.(3.1)

• For a graph G that is not one of K1, K2, or K3 (the complete graphs on 1,
2, and 3 vertices, respectively), let λ2 be the smallest nonzero eigenvalue of
its Laplacian. G’s isoperimetric number can be bounded as follows [23]:

λ2

2
≤ i(G) ≤

√
λ2(2∆− λ2),(3.2)

where ∆ is the maximum degree of any vertex in G.

The proof of the upper bound in (3.2) has interesting implications about the
threshold cuts based on the second eigenvector. For any connected graph G, consider
the characteristic valuation. The vertices of G receive k ≤ n distinct values; let
t1 > t2 > · · · > tk be these values. For each threshold ti, i < k, divide the vertices
into those with values greater than ti and those with values less than or equal to ti.
Compute the cut quotient qi for each such cut, and let qmin be the minimum over
all qi’s. The following theorem can be derived from the proof of Theorem 4.2 in [23]
(a similar argument leading to similar result for the Laplace operator associated with
the transition matrix of a reversible Markov chain can be found in [27]).

Theorem 3.1. Let G be a connected graph with maximal vertex degree ∆ and
second smallest eigenvalue λ2. If G is not any of K1, K2, or K3, then

λ2

2
≤ qmin ≤

√
λ2(2∆− λ2).

A weighted graph is a graph for which a real value wi is associated with each
vertex vi, and a real, nonzero weight wij is associated with each edge (vi, vj) (a
zero edge weight indicates the lack of an edge). Fiedler extended the notion of the
Laplacian to graphs with positive edge weights [12]; he referred to this representation
as the generalized Laplacian. Our results require a representation for graphs with
vertex weights and negative edge weights. Hence we define the standard matrix
representation B of a weighted graph G as follows: B has bii = wi; for i 6= j and
(vi, vj) ∈ E(G), bij = −wij , and bij = 0 otherwise. Note that the standard matrix
representation of any weighted graph is a real symmetric matrix and that any such
matrix can be represented as a specific weighted graph. Note also that the Laplacian
matrix of a graph is also the standard matrix representation of the graph with vertex
weights equal to the vertex degrees and all edge weights set to 1.
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4. Automorphisms of order 2 and eigenvector structure. The theorems
and lemmas presented in this section are useful in proving results about the eigen-
vectors of the families of graphs presented in later sections. The details of the proofs
are not necessary to understand the rest of the paper; a reader interested only in
understanding the counterexamples and their implications can look at the theorem
statements and skip the proofs.

The first set of results concerns eigenvalues of Laplacians of graphs with automor-
phisms of order 2. A graph automorphism is a permutation φ on the vertices of
the graph G such that (vi, vj) ∈ E(G) if and only if (vφ(i), vφ(j)) ∈ E(G). The order
of a graph automorphism is the order of the permutation φ, the minimum number of
times φ must be applied to yield the identity mapping.

For weighted graphs, there are two additional conditions: the weights of vertices
vi and vφ(i) must be equal for all i, and the weights of edges (vi, vj) and (vφ(i), vφ(j))
must be equal.

The next two theorems concern the structure of eigenvectors with respect to au-
tomorphisms of order 2. They hold for both Laplacians of graphs under the standard
definition of automorphism and standard matrix representations of weighted graphs
under the definition of automorphisms for weighted graphs.

Let G be a graph with an automorphism φ of order 2 and Laplacian B. A vector
x that has xi = xφ(i) for all i in the range 1 ≤ i ≤ n is an even vector with respect
to the automorphism φ; an odd vector y has yi = −yφ(i) for all i. It is easy to show
that for any even vector x and odd vector y (both with respect to φ), x and y are
orthogonal.

Theorem 4.1. Let B be the Laplacian of a graph G that has an automorphism
φ of order 2. Then there exists a complete set U of orthogonal eigenvectors of B such
that any eigenvector u ∈ U is either even or odd with respect to φ. This also holds
if G is a weighted graph, B is the standard matrix representation of G, and φ is a
weighted graph automorphism of order 2.

Proof. Let P be the permutation matrix that corresponds to the automorphism
φ. Then PTBP = B. Let u be an eigenvector of B with eigenvalue λ. We have(

PTBP
)
u = Bu = λu.(4.1)

Since the automorphism is of order 2, PP = I and PT = P−1 = P . Therefore,
multiplying the left and right sides of (4.1) by P gives

B (Pu) = P (λu) = λ (Pu) .

Thus, Pu is also an eigenvector with eigenvalue λ.
Note that for an even vector x, Px = x; for an odd vector y, Py = −y.
P allows us to decompose any vector x uniquely into an odd component xodd and

an even component xeven as follows:

xodd =
x− Px

2
, and xeven =

x + Px

2
.

For any nonzero x, at least one of the even or odd parts must also be nonzero.
Let U ′ be any complete set of eigenvectors of B. For an eigenvector u ∈ U ′,

it is easy to see that a nonzero even or odd component is an eigenvector for the
same eigenvalue. Since uodd + ueven = u, the set of odd and even eigenvectors
resulting from decomposing all the eigenvectors in U ′ spans the same space as U ′.
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The subspaces spanned by all odd and by all even components, respectively, are
orthogonal. Since B is real and symmetric, we can subdivide these subspaces into
smaller orthogonal subspaces spanned by the odd (respectively, even) eigenvectors for
particular eigenvalues. We can form an orthogonal basis for each of these smaller
subspaces; the union of all these bases is the desired set U of orthogonal odd and even
eigenvectors. This implies the claimed result.

The proof clearly holds whether B is a Laplacian or a standard matrix represen-
tation.

Corollary 4.2. Let B be the standard matrix representation of a weighted
graph G that has one or more automorphisms of order 2. Then the eigenvector for
any simple eigenvalue is either even or odd with respect to every such automorphism.

Proof. Let u be the eigenvector for some simple eigenvalue λ. Consider the
decomposition of u into odd and even parts with respect to some automorphism φ
with order 2. If both parts were nonzero, they would be orthogonal and eigenvectors
for λ. Therefore either the odd part or the even part must be zero.

Since Laplacians can be considered standard matrix representations given the
right weight assignments, the preceding result also holds for Laplacians.

Let B be a standard matrix representation of a weighted graph with an automor-
phism φ of order 2. It is possible to decompose B into two smaller matrices Bodd and
Beven such that the eigenvalues of Bodd and Beven are the odd and even eigenvalues of
B, respectively, and furthermore that a full set of odd and even eigenvectors of B can
be constructed in a simple way from the eigenvectors of Bodd and Beven, respectively.
We demonstrate this through a similarity transform based on φ. First, however, we
need to introduce some notation.

The vertices of G can be divided into two disjoint sets on the basis of how φ
operates on them. Let Vf be the set of vertices vi such that φ(i) = i (i.e., the vertices
fixed by φ) and let Vm be the set of vertices vj such that φ(j) 6= j (i.e., the vertices
moved by φ). Vm consists of vertices in orbits of length 2. We call a subset of Vm

that consists of exactly one vertex from each such orbit a representative set and
denote it Vr. In the rest of this presentation we assume that a particular Vr has been
arbitrarily specified. We use nf , nm, and nr, respectively to denote the number of
vertices in each of these sets.

Without loss of generality, number the vertices in the following way: the vertices
in Vf are numbered 1 through nf ; the vertices in Vr are numbered from nf + 1 to
nf + nr. Renumber the vertices in Vm \ Vr such that if vi ∈ Vr, then φ(i) = i + nr;
that is, the vertices in Vm \Vr are numbered nf +nr +1 to n in the same order as the
vertices in Vr with which they share orbits. Using this ordering and the definition of
the automorphism, B can be written in the following block form:

B =


 F Efr Efr

ET
fr R Erφ(r)

ET
fr Erφ(r) R


 ,

where
• F is an nf × nf submatrix containing the diagonal entries for the vertices in

Vf and the entries for edges between pairs of vertices in Vf ;
• R is an nr × nr submatrix containing the diagonal entries for the vertices in

Vr and the entries for edges between pairs of vertices in Vr;
• Efr is made up of the entries of B for edges between vertices in Vf and Vr;

and
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• Erφ(r) is made up of the entries of B for edges between vertices in Vr and
Vf \ Vr (note that the conditions specified above imply Erφ(r) = ET

rφ(r)).
We now define the orthogonal matrix T used to transform B:

T =




Inf
0 0

0 1√
(2)

Inr

1√
(2)

Inr

0 1√
(2)

Inr

−1√
(2)

Inr


 ,

where the I’s are identity matrices with the dimension specified in the subscript. B
is transformed as follows:

B′ = TTBT =


 F

√
2Efr 0√

2ET
fr R + Erφ(r) 0

0 0 R− Erφ(r)


 .

Note that the resulting matrix is reducible. That is, when viewed as a weighted graph,
that graph has two components. We show that the blocks of this matrix correspond
to Beven and Bodd as follows:

Beven =

[
F

√
2Efr√

2ET
fr R + Erφ(r)

]
and Bodd = R− Erφ(r).

Let B, T , B′, Bodd, and Beven be as defined above.
Theorem 4.3. The eigenvalues of Bodd are odd eigenvalues of B, and a complete

set of odd eigenvectors of B can be constructed from the eigenvectors of Bodd in a
straightforward way. Likewise, the eigenvalues of Beven are even eigenvalues of B,
and a complete set of even eigenvectors of B can be constructed from the eigenvectors
of Beven in a straightforward way.

Proof. Because B′ is reducible, every eigenvalue of Bodd is an eigenvalue of B′;
likewise every eigenvalue of Beven is an eigenvalue of B′. By similarity, they are also
eigenvalues of B.

Now consider an eigenvector u of Beven. Define v as follows: for 1 ≤ i ≤ nf + nr

let vi = ui; let vi = 0 otherwise. v is obviously an eigenvector of B′. Multiplication
by the matrix T transforms v into an eigenvector w of B as follows:

w = Tv =




vf
1√
(2)

vr

1√
(2)

vr


 .

By the vertex numbering, it is easy to see that this is an even vector. Since u, v, and
w all have the same eigenvalue λ, the claim about eigenvalues of Beven correspond-
ing to even eigenvalues of B holds. It is easy to show that if two eigenvectors u1

and u2 of Beven are orthogonal, then the corresponding eigenvectors w1 and w2 are
also orthogonal. Since Beven has nf + nr orthogonal eigenvectors, we have nf + nr

orthogonal even eigenvectors of B.
Now consider an eigenvector u of Bodd. As before, one can construct an eigenvec-

tor v of B′: for nf + nr + 1 ≤ i ≤ n let vi = ui; let vi = 0 otherwise. Multiplication
by the matrix T again transforms v into an eigenvector w of B as follows:

w = Tv =




0
1√
(2)

vφ(r)

−1√
(2)

vφ(r)


 .
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This is clearly an odd vector. Since u, v, and w all have the same eigenvalue λ,
the claim about eigenvalues of Bodd corresponding to odd eigenvalues of B holds.
It is easy to show that if two eigenvectors u1 and u2 of Bodd are orthogonal, then
the corresponding eigenvectors w1 and w2 are also orthogonal. Since Bodd has nr

orthogonal eigenvectors, we have nr orthogonal odd eigenvectors of B.

Note that if all eigenvectors of Beven and Bodd are transformed in this way the
result is n orthogonal eigenvectors of B (i.e., a full set).

It is possible to express this decomposition in terms of graphs. The graph G is
decomposed into the components Godd and Geven. Rules for the graphical decompo-
sition can be derived from the structure of Bodd and Beven and are presented in the
technical report version of this paper [16].

The following technical lemmas about the eigenvalues and eigenvectors of weighted
path graphs are useful in subsequent results.

Lemma 4.4. Let B be the standard matrix representation of a weighted path graph
G on n vertices. For any vector x such that Bx = λx for some real λ, xn = 0 implies
x = 0. Likewise, x1 = 0 implies x = 0. If there are two consecutive elements xi and
xi+1 that are both zero, then x = 0.

Proof. The first result is proved by induction. The base case is for a 2× 2 matrix
with diagonal entries b11 and b22, and off-diagonal entries b12 = b21 = −c. Let x
and λ be as specified by the lemma statement, and assume that x2 = 0. The second
element of the vector resulting from multiplying Bx = λx is −c ·x1 = λx2 = 0. Since
c 6= 0 by definition (G is a weighted path graph), it must be the case x1 = 0, which
implies that x = 0.

For the induction step, assume that the result holds for all i ≤ k, and consider the
standard matrix representation of a weighted path graph on k + 1 vertices. Let the
weight of edge (vk, vk+1) be c. Let x and λ be as stated, and assume that xk+1 = 0.
Then [Bx]k+1 = −c · xk = λxk+1 = 0. Thus xk = 0. Let x′ be the subvector of
x consisting of the first k entries. Note that with xk+1 = 0 it is the case that x′

and λ meet the lemma conditions for the principal leading minor Bk of B, and that
x′
k = 0. However, Bk is the standard matrix representation for the weighted path

graph derived from G by deleting the last edge and vertex. Thus, by the induction
hypothesis x′ must be 0; because xk+1 = 0, this implies that x = 0.

A symmetric argument implies the result for x1 = 0.

Again, let B be the standard matrix representation of a weighted path graph
G. Let x be a vector meeting the lemma conditions for λ, and assume that x has
two consecutive zero elements xi and xi+1. If either i = 1 or i + 1 = n, x = 0 by the
previous argument. Otherwise, xi+1 = 0 implies that the first i elements of x and λ
meet the lemma conditions for the leading principal minor Bi of B. Note that Bi

is the standard matrix representation for some weighted path graph. Thus by the
previous result the first i entries of x are zero. By a symmetric argument for the
trailing principal minor, the last n− i entries must also be zero, which gives x = 0.

This lemma implies that for eigenvectors of the standard matrix representation
of any weighted path graph, neither the first nor the last entry is zero. Likewise, such
an eigenvector cannot have two consecutive zero entries. These facts can be used to
give a simple proof of the following lemma (for a different proof, see, e.g., pp. 910–911
of [29]).

Lemma 4.5. All eigenvalues of the standard matrix representation B of a weighted
path graph G on n vertices are simple (i.e., have multiplicity one).

Proof. Let u and u′ be any two eigenvectors of B for the eigenvalue λ. By
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Lemma 4.4, un 6= 0 and u′
n 6= 0. Let α be u′

n/un; α is non-zero and real. Then
B (αu− u′) = λ (αu− u′). But the nth element of (αu− u′) is 0, so by Lemma 4.4,
it must be the case that αu = u′, so u must be a scalar multiple of u′; it is not a
distinct eigenvector.

A path graph on n vertices has exactly one automorphism of order two: φ(i) =
n− i+1. Thus one can talk about odd and even eigenvectors of a path graph without
ambiguity; they are always defined with respect to this automorphism.

Lemma 4.6. Let G be an unweighted path graph on n vertices with Laplacian B.
The eigenvector u2 corresponding to λ2(B) is odd.

Proof. By Lemma 4.5, u2 is simple, so by Corollary 4.2, u2 must be either even
or odd. Assume that it is even. We show that this leads to a contradiction.

There are two cases to keep track of: n is odd, and n is even. If n is odd, there
is a single center vertex vdn

2 e (index the vertices along the path from 1 to n). If n is
even, there are two center vertices with indices n

2 and n
2 +1; since u2 is assumed to be

even, their entries in u2 are equal. Thus, by Lemma 4.4, if n is even the eigenvector
entries corresponding to the center vertices are nonzero. If n is odd, u2 is even, and
the eigenvector entry for the center vertex is 0, then it is easy to check that changing
the signs of all eigenvector entries with index less than the center index gives an odd
eigenvector with eigenvalue λ2, which contradicts the simplicity of λ2. Thus, the
assumption that u2 is even implies that the eigenvector entries corresponding to the
center vertex or vertices must be nonzero. Let this value be c.

Now consider the vector x = (−c) · ~1 + u2. Recall that u2 is orthogonal to ~1. It
is easy to see that x is even, and since c 6= 0,

xTBx

xTx
=

uT
2 Bu2

c2n + uT
2 u2

<
uT

2 Bu2

uT
2 u2

= λ2.

However, the entries of x corresponding to the center vertex or vertices are 0, so

as above, one can create an odd vector y such that yTBy
yTy

= xTBx
xTx

as follows: set

yi = xi, i <
n
2 , and yi = −xi; i >

n
2 . Recall the characterization λ2 = minx⊥~1

xTBx
xTx

;

y is orthogonal to ~1, so it meets the criteria for the characterization of λ2, so the
assumption that u2 is even gives λ2 < λ2, which is a contradiction.

The reader can easily verify that this theorem also holds for generalized Laplacians
(i.e., Fiedler’s matrix representation of graphs with positive edge weights [12]) where
the automorphism φ exists. However, extension to the standard matrix representation
case is not possible because of vertex weights and negative edge weights.

5. A bad family of bounded-degree planar graphs for spectral bisec-
tion. In this section we present a family of bounded-degree planar graphs that have
constant-size separators. However, the separators produced by spectral bisection have
size Θ(n) for both edge and vertex separators.

The family of graphs is parameterized on the positive integers. Gk consists of two
path graphs, each on 2k vertices, with a set of edges between the two paths as follows:
label the vertices of one path from 1 to 2k in order (the upper path), and label the
other path from 2k + 1 to 4k in order (the lower path). For 1 ≤ i ≤ k there is an edge
between vertices k + i and 3k + i. An example for k = 5 is shown in Figure 5.1. It is
obvious that Gk is planar for any k and that the maximum degree of any vertex is 3.

Note that the graph has the approximate shape of a cockroach, with the section
containing edges between the upper and lower paths being the body and the other
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vv vk v

v v v v

k+1 2k

2k+1 3k 3k+1 4k

1

Fig. 5.1. The roach graph for k = 5.

sections of the paths being antennae. This terminology allows easy references to parts
of the graph.

Gk has one automorphism of order 2 that maps the vertices of the upper path to
the vertices of the lower path and vice versa. For the rest of this section, the terms
“odd vector” and “even vector” are used with respect to this automorphism. Thus,
an even vector x has xi = x2k+i for all i in the range 1 ≤ i ≤ 2k; an odd vector y has
yi = −y2k+i for all i, 1 ≤ i ≤ 2k.

We can now discuss the structure of the eigenvectors of Bk, the Laplacian of Gk.

Lemma 5.1. Any eigenvector ui with eigenvalue λi of Bk can be expressed as a
linear combination of

• an even eigenvector of Bk in which the values associated with the upper path
are the same as for the eigenvector with eigenvalue λi (if it exists) of a path
graph on 2k vertices, and
• an odd eigenvector of Bk in which the values associated with the upper path are

the same as for the eigenvector with eigenvalue λi (if it exists) of a weighted
graph that consists of a path graph on 2k vertices for which the vertex weights
of vk+1 through v2k have been increased by 2.

Proof. The fact that we can express any eigenvector of Bk as a sum of odd and
even eigenvectors follows by Theorem 4.1, applied with respect to the automorphism
of order 2.

The claim about the specific structure of the odd and even eigenvectors of Bk

follows from an application of the even-odd decomposition proved in Theorem 4.3,
with the odd and even matrix components described in graph form.

It is obvious that Gk has a bisector of constant size: cut the edges connecting
the antennae to the body. The following theorem shows that spectral bisection gives
much larger bisectors for the family of graphs Gk.

Theorem 5.2. Spectral bisection produces Θ(n) edge and vertex separators for
Gk for any k.

Proof. The first step is to show that u2 is odd. Intuitively, this implies that the
spectral method splits the graph into the upper path and the lower path.

Recall that λ2 = minx⊥~1
xTBkx
xTx

. We construct an odd vector x such that the

quotient xTBkx
xTx

is less than yTBky
yTy

for any even eigenvector y orthogonal to ~1 (~1 is the

smallest even eigenvector). This requires a proof that xTBkx
xTx

is less than the second
smallest even eigenvalue. From Lemma 5.1 above, the second smallest even eigenvalue
of Bk is the same as the second smallest eigenvalue µ2 of the Laplacian B of a path
graph G on 2k vertices; it is well known that µ2 = 4 sin2( π

4k ) (see, for example, [22]).
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Let z be the eigenvector of B corresponding to µ2. Construct x as follows:

xi =




zi 1 ≤ i ≤ k,
z4k−i+1 2k + 1 ≤ i ≤ 3k, and
0 otherwise.

That is, assign the first k values from the path G to the upper antenna of the roach,
working in the direction toward the body and assign the last k entries from G to the
lower antenna, working from the body outward. Since z and x have the same set of
nonzero entries, xTx = zT z. Likewise, since z is orthogonal to the “all-ones” vector,
so is x.

To see that xTBkx < zTBz, recall (3.1) from section 3: for Laplacian B and
vector y,

yTBy =
∑

(vi,vj)∈E

(yi − yj)
2.

For every edge in G except one, there is an edge in Gk that contributes the same value
to this sum. The one exception is the edge (vk, vk+1) in G. Since z is an odd vector by
Lemma 4.6, and since z has an even number of entries, zk = −zk+1. By Lemma 4.4, it
is not possible for both zk and zk+1 to be zero, so zk is equal to some nonzero value c,
and this edge contributes 4c2 to the value of zTBz. On the other hand, there are two
edges in Gk that contribute nonzero values and that do not have corresponding edges
in G: (vk, vk+1) and (v3k, v3k+1). Each of these edges contributes c2 to xTBkx. Thus,

xTBkx = zTBz− 4c2 + 2c2 < zTBz.

Since xTx = zT z,

λ2(Gk) ≤ xTBkx

xTx
<

zTBz

zT z
= 4 sin2

( π

4k

)
.

That is, the second smallest eigenvalue of Bk is less than any nonzero even eigenvalue
and is thus odd by Theorem 4.1.

We still need to show that there are not too many zero entries in u2 (spectral
bisection as defined in this paper does not separate vertices with the same value). Since
u2 is an odd vector and since the odd component of Gk is a weighted path graph,
Lemmas 4.4 and 5.1 imply that u2 cannot have consecutive zeros, and the values
corresponding to vertices 2k and 4k are nonzero. Thus the edge separator generated
by spectral bisection must cut at least half the edges between the upper and lower
paths; since none of these edges share an endpoint, the cover used in generating the
vertex separator must include at least this number of vertices.

Recently Spielman and Teng [27] have presented an algorithm that recursively
applies a spectral separator method to give bisections of planar graphs guaranteed to
be O(

√
(n)); their technique applied to the roach graph gives a bisection of constant

size [27]. See section 8 for details.

6. A bad family of graphs for the “best threshold cut” algorithm. While
the roach graph defeats spectral bisection, the second smallest eigenvector can still be
used to find a small separator using the “best threshold cut” algorithm. In particular,
Theorem 3.1 implies that considering all threshold cuts induced by u2 produces a
constant-size cut: if qmin is the minimum cut quotient for these cuts, then

qmin ≤
√
λ2(2∆− λ2) ≤

√
6π

4k
,
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which implies that qmin is O( 1
n ). Since the denominator of qmin is less than or equal

to n
2 , the number of edges in this cut must be bounded by a constant.

In this section we show that there is a family of graphs for which the “best thresh-
old cut” algorithm does poorly. The graphs in this family consist of crossproducts of
path graphs and double trees. A double tree is two complete binary trees of k levels
for some k > 0 connected by an edge between their respective roots.

The following two bounds are proved in [16].

Lemma 6.1. For a complete balanced binary tree on k ≥ 3 levels and n = 2k − 1
vertices, 1

n < λ2 < 2
n .

For double trees where each of the component trees has k levels, n = 2k+1 − 2.
The following bound applies.

Lemma 6.2. For a double tree on n ≥ 14 vertices, 1
n < λ2 < 4

n .

The tree-cross-path graph consists of the crossproduct of a double tree on p1

vertices and a path graph on p2 vertices. We show that there are tree-cross-path
graphs that defeat the “best threshold cut” algorithm.

We formally state the result for this section as follows.

Theorem 6.3. There exists a graph G for which the “best threshold cut” algo-
rithm finds a separator S such that the cut quotient for S is bigger than i(G) by a
factor as large (to within a constant) as allowed by the bounds from Theorem 3.1.

Proof. Let G be the tree-cross-path graph that is the crossproduct of a double
tree of size p and a path of length cp

1
2 for some c in the range 3.5 ≤ c < 4. To ensure

that the double tree and the path have integer sizes, restrict p to integers of the form
2k− 2 for k ≥ 4. Then choose c in the range specified such that cp

1
2 is an integer (the

choice of p ensures there is an integer in this range).

Recall that the eigenvalues of a graph crossproduct are all pairwise sums of
the eigenvalues from the graphs used in the crossproduct operation. Let ν2 be the
second smallest eigenvalue of the double tree on p vertices, and let µ2 be the sec-
ond smallest eigenvalue for the path on cp

1
2 vertices. If µ2 < ν2, then λ2 for the

crossproduct is µ2 (i.e., µ2 added to the zero eigenvalue of the double tree). Since

µ2 = 4 sin2(π/2cp
1
2 ) and ν2 ≥ 1

p (by Lemma 6.2 and the choice of p), it is necessary to

show that 4 sin2(π/2cp
1
2 ) < 1

p . Reorganizing, simplifying, and noting that sin(θ) < θ
for 0 < θ ≤ π

2 , it is sufficient to show that π < c. Clearly by the choice of c, this
inequality holds.

Note that the tree-cross-path graph can be thought of as cp
1
2 copies of the double

tree, each corresponding to one vertex of the path graph. Each vertex in the ith copy
of the double tree is connected by an edge to the corresponding vertex in copies i− 1
and i + 1. This description allows one to construct the eigenvector for the second
smallest tree-cross-path eigenvalue as follows. Assign each vertex in double tree copy
i the value for vertex i in the path graph eigenvector for µ2. Note that this is the
only possible eigenvector, since path graph eigenvalues are simple by Lemma 4.5.

Now consider any copy of the double tree: every vertex in that copy gets the same
value in the characteristic valuation. Thus, the cut S made by the “best threshold
cut” algorithm must separate at least two copies of the double tree and thus must cut
at least p edges. There is a bisection S∗ of size cp

1
2 (cut the edge between the roots in

each double tree); because this cut is a bisection, the ratio between the cut quotient
q for S and i(G) is at least as large as the ratio between the sizes of these cuts:

q

i(G)
≥ |S||S∗| ≥

p

cp
1
2

= Ω
(
p

1
2

)
.
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From Theorem 3.1,

λ2

2
≤ i(G) ≤ q ≤

√
λ2(2∆− λ2).

This, plus the fact that the tree-cross-path graph has bounded degree (∆ = 5), implies
that

q

i(G)
≤ 2

√
λ2(2∆− λ2)

λ2
= O

(
1√
λ2

)
= O

(
p

1
2

)
.

These two bounds imply that, to within a constant factor, the ratio is as large as
possible, and the theorem holds.

7. A bad family of graphs for generalized spectral algorithms.

7.1. Purely spectral algorithms. In section 2 we noted that many variations
of spectral partitioning have been suggested. In this section we extend the results of
the previous section to cover those variations and many other possibilities, including
algorithms that use some number k (where k might depend on n) of the eigenvectors
corresponding to the k smallest nonzero eigenvalues. In particular, consider algorithms
that meet the following restrictions:

• The algorithm computes a value for each vertex using only the eigenvector
components for that vertex from k eigenvectors corresponding to the smallest
nonzero eigenvalues (for convenience, we refer to these as the k smallest
eigenvectors). The function computed can be arbitrary as long as its output
depends only on these inputs.
• The algorithm partitions the graph by choosing some threshold t, and then

putting all vertices with values greater than t on one side of the partition and
the rest of the vertices on the other side.
• The algorithm is free to compute the break point t in any way; e.g., checking

the cut quotient for all possible breaks and choosing the best one is allowed.
We call such an algorithm purely spectral.

7.2. Purely spectral algorithms that use a constant number of eigen-
vectors. The following theorem gives a bound on how well such algorithms do when
the number of eigenvectors used is a constant.

Theorem 7.1. Consider the purely spectral algorithms that use the k smallest
eigenvectors for k a fixed constant. Then there exists a family of graphs G such that
G ∈ G has a bisection S∗ with |S∗| ≥ (k2n)

1
3 and such that any purely spectral

algorithm using the k smallest eigenvectors produces a separator S for G such that

|S| ≥
(

|S∗|
πk+1

)2

.

Proof. We show that G is the set of tree-cross-path graphs that are the crossprod-
ucts of double trees of size p (where p is an integer of the form 2j − 2 for some j ≥ 4)

and paths of length cp
1
2 , where c is a constant chosen such that πk < c ≤ πk + 1 and

cp
1
2 is an integer.

Using slight modifications of arguments from Theorem 6.3, one can show the
following. For graphs in G, the k smallest positive path eigenvalues are less than
the smallest positive eigenvalue of the double tree. This implies that every vertex
in a particular copy of the double tree receives the same set of values from the k
eigenvectors. Thus the purely spectral algorithm assigns the same value to each
vertex in that copy. This implies that S, the separator produced, must separate at
least two copies of the double tree and thus must cut at least p edges.
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There is a bisection S∗ of size cp
1
2 (it cuts the edge between the roots in each

double tree); because n = cp
3
2 and c > k, it is the case that |S∗| > k

2
3n

1
3 . It is obvious

that

|S| ≥
( |S∗|

c

)2

;

since c ≤ πk + 1, the theorem holds.
Note that for the case in which k is constant, the following results apply for the

family of graphs described in the preceding theorem:
• The cut quotient qS is no better than the best cut quotient qmin produced

by considering all threshold cuts for u2, and
• the gap between i(G) and qmin is as large as possible (within a constant

factor) with respect to Theorem 3.1. The bound on |S∗| implies that the

spectral separator is bigger by a factor of at least a constant times n
1
3 .

These results can be shown using techniques from the previous section. Thus, for such
graphs, using k eigenvectors does not improve the performance of the “best threshold
cut” algorithm.

These results also hold for certain variants of the definition of “purely spectral.”
For example, Chan, Gilbert, and Teng have proposed using the entries of eigenvectors
2 through d+1 of the Laplacian as spatial coordinates for the corresponding vertices of
a graph [7]. The graph is then partitioned using a geometric separator algorithm [21],
[15]. If this technique is applied (using a fixed d) to the counterexample graph used
in the proof above, all vertices in a particular copy of the double tree end up with
the same coordinates; the geometric algorithm then cuts between copies of the double
tree, yielding the same bad cuts as in the proof.

7.3. Purely spectral algorithms that use more than a constant number
of eigenvectors. There are still a number of open questions about the performance
of purely spectral algorithms that use more than a constant number of eigenvectors
(in particular, how well can such algorithms do if they use all the eigenvectors?).
However, just using more than a constant number of eigenvectors is not sufficient to
guarantee good separators. In particular, the counterexamples and arguments in the
previous sections can be extended to prove the following theorem.

Theorem 7.2. For sufficiently large n and 0 < ε < 1
4 , there exists a bounded-

degree graph G on n vertices such that any purely spectral algorithm using the nε

smallest eigenvectors produces a separator S for G with a cut quotient greater than

i(G) by at least a factor of n( 1
4−ε) − 1.

Proof. Once again, let G be the tree-cross-path graph. As in the previous two
proofs, choose p1 (the double-tree size) and p2 (the path size) such that the smallest
nε eigenvalues of the crossproduct are the same as the smallest nε eigenvalues of the
path graph. Once again, a purely spectral algorithm separates two adjacent double
trees, while the edges between the roots of the double trees form a better separator.
It remains to choose p1 and p2 such that the claim about the smallest eigenvalues of
the crossproduct holds and to show that the resulting cut is bad.

Set p1 to some arbitrary positive integer p, subject to the conditions presented

below to ensure that p is sufficiently large. Then set p2 =
⌈
p(

1
2+2ε)

⌉
. Note that p can

be chosen sufficiently large such that

p > p(
1
2+2ε) + 1 > p2.



ON THE QUALITY OF SPECTRAL SEPARATORS 717

This implies that p > n
1
2 , where n = p1 p2. Note that this allows one to show easily

that nε < p2ε < p2 (i.e., since the algorithm uses nε eigenvectors, this argument
requires the path graph to have at least that many eigenvalues and thus be at least

that long). Also note that even for fairly small p, p2 < 2p(
1
2+2ε), which implies that

n < 2p(
3
2+2ε).(7.1)

Now consider the ratio of the size of the cut produced by cutting the double-
tree edges to the size of the cut produced by a purely spectral method under the
assumption that the nε smallest eigenvalues are the same as for the path graph. As
in previous proofs, this ratio is at least as large as the ratio between the number of
edges cut. Thus, for sufficiently large p, the ratio is at least

p⌈
p(

1
2+2ε)

⌉ > p(
1
2−2ε) − 1 > n( 1

4−ε) − 1.

All that is left to prove is the assumption about the smallest eigenvalues. If
α = 1

2 − 2ε, then α > 0 and inequality (7.1) above can be written as

n < 2p(2−α).(7.2)

Recall that the eigenvalues of a path graph on k vertices are 4 sin2( πi
2k ) for 0 ≤ i < k

and that λ2 for a double tree on p ≥ 14 vertices is greater than or equal to 1
p . It

remains to show that for p sufficiently large,

4 sin2


 πnε

2
⌈
p(

1
2+2ε)

⌉

 <

1

p
.

Reorganizing, simplifying, noting that sin(θ) < θ for 0 < θ ≤ π
2 , and applying in-

equality (7.2) above, it is sufficient to show that there is a sufficiently large p such
that

π
(
2p(2−α)

)ε
2p(

1
2+2ε)

<
1

2p
1
2

, or π2ε < pαε.

Clearly this inequality holds for sufficiently large p.

8. A note on more recent developments. Subsequent to the initial appear-
ance of these results [17], Spielman and Teng published a paper on the performance
of spectral partitioning algorithms [28]. Their work has several parts, including

• a proof that for any bounded-degree planar graph, λ2 = O(n−1), and that

for well-shaped meshes in d dimensions, λ2 = O(n− 2
d ).

• a new proof of a theorem credited to Mihail [20] that extends bounds on
quotient cuts to all vectors with small Rayleigh quotients.
• a recursive spectral bisection algorithm. The algorithm produces O(n

1
2 ) bisec-

tors for planar graphs and O(n1− 1
d ) bisectors for well-shaped d-dimensional

meshes.
• a new bounded-degree planar counterexample graph for which “best threshold

cut” gives a poorly balanced separator.
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It is interesting to consider how those results relate to the results in this paper.

We have shown that there are bounded-degree planar graphs for which spectral
bisection based on u2 alone gives a cut of size Θ(n). Spielman and Teng’s recur-
sive spectral bisection algorithm, however, produces constant-size bisections for our
counterexamples. Thus their algorithm gives a greatly improved, if somewhat more
expensive, result. Their bounded-degree counterexample graph is an interesting ad-
vance over the roach graph in that it gives a bounded-degree planar graph with both
a bad bisection and a poorly balanced “best threshold cut.”

As for the tree-cross-path examples, the two papers illustrate the difference be-
tween guarantees on the size of a balanced cut versus its optimality. If, on the first
cut, the recursive algorithm produces a bisection that is large relative to the best
bisection, the recursion will not improve the bisection. (This is the case for the tree-
cross-path graph.) Examples exist for well-shaped meshes. The following graph was
suggested by John Gilbert. Let a double grid be a pair of k × k square grids that
share a single common corner. As shown in [19], λ2 of the double grid is Θ( 1

k2 log k ).
The double-grid-cross-path graph is a crossproduct between a double grid graph and
a path graph. Note that for a suitable constant c, if the path has length ck

√
log k,

the path graph contributes the second smallest eigenvalue of the double grid cross
path. Following an analysis similar to that in Theorem 6.3, one can show that the
“best threshold cut” for such a double grid cross path is a bisection of size Θ(k2)
that splits the graph between two copies of the double grid. It is easy to check that
the recursive algorithm also returns this cut and thus does not improve the quality
of the single spectral cut. However, this example has a bisection of size Θ(k

√
log k)

(separate the grids at their common points). The larger bisection meets the guarantee
for three-dimensional grids (n here is ck3

√
log k), but is not optimum.

Acknowledgments. Special thanks are due to Dafna Talmor and Doug Tygar
who provided valuable comments on earlier versions of this paper.
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Abstract. The conjugate gradient method applied to the normal equations ATAx = AT b
(CGLS) is often used for solving large sparse linear least squares problems. The mathematically
equivalent algorithm LSQR based on the Lanczos bidiagonalization process is an often recommended
alternative. In this paper, the achievable accuracy of different conjugate gradient and Lanczos
methods in finite precision is studied. It is shown that an implementation of algorithm CGLS in
which the residual sk = AT (b−Axk) of the normal equations is recurred will not in general achieve
accurate solutions. The same conclusion holds for the method based on Lanczos bidiagonalization
with starting vector AT b. For the preferred implementation of CGLS we bound the error ‖r− rk‖ of
the computed residual rk. Numerical tests are given that confirm a conjecture of backward stability.
The achievable accuracy of LSQR is shown to be similar. The analysis essentially also covers the
preconditioned case.

Key words. conjugate gradient method, least squares, numerical stability
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1. Introduction. Iterative methods are useful alternatives to direct methods
for several classes of large sparse least squares problems, see [13, 3]. In this paper we
compare different implementations of Krylov subspace methods for solving the linear
least squares problem

min
x
‖b−Ax‖2,(1.1)

where A ∈ Rm×n, m ≥ n, is a given matrix. We will assume that rank (A) = n,
although some of the conclusions also hold for rank (A) < n.

It is well known that x is a least squares solution if and only if the residual vector
r = b − Ax ⊥ R(A), or equivalently when AT (b − Ax) = 0. The resulting system of
normal equations

ATAx = AT b(1.2)

is always consistent. The implementations include conjugate gradient methods and
methods based on two different versions of Lanczos bidiagonalization.

The conjugate gradient method (CG), developed in the early 1950s, has become
a basic tool for solving large sparse linear systems and linear least squares problems.
In the original paper by Hestenes and Stiefel [14], and in the subsequent paper [23],
a version of the conjugate gradient method for the solution of the normal equations
(1.2) was given. Läuchli [17] discussed a preconditioned conjugate gradient method
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for solving least squares geodetic network problems. The application of CG methods
to linear least squares problems has also been discussed by Lawson [18] and Chen [5].
Paige [19] derived a method LSCG based on the Lanczos bidiagonalization process of
Golub and Kahan in [9]. This method was later shown to be numerically unstable,
and a stable version called LSQR was given by Paige and Saunders in [20].

Reid [21] gave an excellent discussion of different computational variants of the
conjugate gradient method for solving symmetric positive definite systems. In theory,
applying the conjugate gradient method to the normal equations is a straightforward
extension of the standard conjugate gradient method. However, the actual imple-
mentation is critical and numerically unstable variants are still seen in the literature!
Although no comprehensive comparison of different implementations has been pub-
lished, several conclusions can be found in Elfving [7] and in Paige and Saunders
[20]. The aim of this paper is to compare the achievable accuracy in finite precision
of different implementations of Krylov subspace methods for solving (1.2). We will
make heavy use of recent important results on the behavior of Lanczos and conjugate
gradient methods in finite precision, see Greenbaum [10, 11], Greenbaum and Strakos̆
[12], and Strakos̆ [24]. The finite precision behavior of stationary iterative methods is
studied in [16].

In section 2 we give a survey of Krylov subspace methods for solving the normal
equations and their properties in exact arithmetic. In section 3 different implementa-
tions of conjugate gradient or Lanczos type methods are considered and their compu-
tational complexity compared. The performance of the algorithms in finite precision
is discussed in sections 4 and 5. In section 4 it is shown that some implementa-
tions of conjugate gradient and Lanczos type methods fail to give accurate solutions.
The recommended implementations of conjugate gradient and LSQR are analyzed in
section 5. An upper bound for the residual error is derived, which shows these imple-
mentations to be backward stable. This extends the analysis of Greenbaum [11] to
inconsistent least squares problems. Numerical test results are given in section 6 that
confirm the theoretical analysis.

2. Krylov space methods for least squares. When A has full rank the sys-
tem of normal equations (1.2) has a unique solution

x = A†b, A† = (ATA)−1AT .

We denote by r = b − Ax the corresponding residual. For a given starting vector x0

the conjugate gradient algorithm generates approximations xk in the affine subspace

xk ∈ x0 +Kk(A
TA, s0),(2.1)

s0 = AT (b−Ax0), where

Kk(A
TA, s0) = span

{
s0, (A

TA)s0, . . . , (A
TA)k−1s0

}
(2.2)

is a Krylov subspace. The iterates generated are optimal in the sense that for each k,
xk minimizes the error functional

Eµ(y) = (x− y)T (ATA)µ(x− y), y ∈ x0 +Kk(A
TA, s0).(2.3)

Only the values µ = 0, 1, 2 are of practical interest. By (2.3) and using

A(x− xk) = b− r −Axk = rk − r,
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where rk = b−Axk, we obtain

Eµ(xk) =



‖x− xk‖2, µ = 0;

‖r − rk‖2 = ‖rk‖2 − ‖r‖2, µ = 1;

‖AT (r − rk)‖2 = ‖AT rk‖2, µ = 2.

(2.4)

Here and in the following, ‖ ·‖ denotes the l2-norm. The second expression for E1(xk)
in (2.4) follows from the fact that r ⊥ r − rk.

Using the inner product and norm

(x, y)µ = xT (ATA)µy, ‖x‖2µ = (x, x)µ

the conjugate gradient method can be formulated as follows.
Algorithm 2.1 (CGLS (µ)).
Let x0 be an intial approximation, put

r0 = b−Ax0, s0 = p1 = AT r0, γ0 = ‖s0‖2µ−1,(2.5)

and for k = 1, 2, . . . compute

qk = Apk,

αk = γk−1/‖pk‖2µ,
xk = xk−1 + αkpk,

rk = rk−1 − αkqk,(2.6)

sk = AT rk,

γk = ‖sk‖2µ−1,

βk = γk/γk−1,

pk+1 = sk + βkpk.

For µ = 0 the method is equivalent to Craig’s method [6], which is called CGNE
in [8]. Note that µ = 0 is feasible only when b ∈ R(A), since we need to be able
to evaluate sTk (ATA)−1sk, where sk = AT rk is the current residual of the normal
equations. If b ∈ R(A), then we have

sTk (ATA)−1sk = (b−Axk)
TA(ATA)−1AT (b−Axk) = rTk rk,

where A(ATA)−1AT is the orthogonal projection onto R(A), see also [19].
For µ > 0 we use ‖pk‖2µ = ‖qk‖2µ−1. For µ = 1 the method is called CGLS in [20]

and CGNR in [8].
The variational property of the conjugate gradient method implies that in exact

arithmetic the error functional Eµ(xk) decreases monotonically as a function of k. By
(2.4), ‖rk‖ will also decrease monotonically for µ = 1. Further, we have the following
result.

Lemma 2.1. Let {xk} be the sequence of conjugate gradient approximations,
which minimize Eµ(y) subject to y ∈ x0 + Kk(A

TA, s0). Then for µ = 1, 2 the
sequences Eν(xk), 0 ≤ ν ≤ µ all decrease monotonically as functions of k.

Proof. For µ = 1 see [14, p. 416]. For µ = 2 see [14, Section 7].
It follows that for µ = 1 both ‖r − rk‖ and ‖x − xk‖ decrease monotonically.

However, ‖AT rk‖ will often exhibit large oscillations when κ(A) is large. We stress
that this behavior is not a result of rounding errors. For µ = 2 ‖AT rk‖ will also
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decrease monotonically, but this choice gives slower convergence in ‖r − rk‖ and
‖x − xk‖. It also gives lower final accuracy in these quantities, see [1], and requires
more operations or storage. Therefore we consider here only the case µ = 1, which is
of most practical interest.

From the optimality property follows the upper bound on the rate of convergence

Eµ(xk) ≤ 2

(
κ− 1

κ + 1

)k

Eµ(x0),(2.7)

where κ = κ(A) =
√

κ(ATA), see [3, Chapter 7.4]. However, the convergence of the
conjugate gradient method also depends on the distribution of the singular values of
A. In particular, if A has only t ≤ n distinct singular values, then in exact arithmetic
the solution is obtained in at most t steps.

Often a right preconditioner S is used, which corresponds to the transformation

min
y
‖(AS−1)y − b‖2, Sx = y.(2.8)

Typically S is chosen as an approximation of the Cholesky factor R of ATA. If S = R,
the matrix AS−1 is orthogonal and the conjugate gradient method converges in one
iteration.

Although (2.7) essentially continues to also hold in finite precision, this is not true
of the finite termination property, and conjugate gradient methods should be regarded
as iterative methods. In many practical applications, however, one is satisfied with
approximations that are obtained in far less than n iterations.

3. Implementation. There are many ways, all mathematically equivalent, in
which to implement the conjugate gradient method. In exact arithmetic they will all
generate the same sequence of approximations, but in finite precision the achieved
accuracy may differ substantially. It is important to notice that an implementation of
the conjugate gradient method for symmetric positive definite systems should not be
applied directly to the normal equations. In particular the explicit formation of the
matrix ATA should be avoided. All the algorithms below require two matrix vector
multiplications of the form Ap and AT q per iteration step.

3.1. The conjugate gradient method CGLS. The algorithm originally given
by Hestenes and Stiefel [14, p. 424] and Stiefel [23] is as follows.

Algorithm 3.1 (CGLS1).
Set

r0 = b−Ax0, s0 = p1 = AT r0, γ0 = ‖s0‖2,(3.1)

and for k = 1, 2, . . . compute

qk = Apk,

αk = γk−1/‖qk‖2,
xk = xk−1 + αkpk,

rk = rk−1 − αkqk,(3.2)

sk = AT rk,

γk = ‖sk‖2,
βk = γk/γk−1,

pk+1 = sk + βkpk.
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Elfving [7] compared CGLS1 with several other implementations of the conjugate
gradient method and found this to be the most accurate. CGLS1 requires storage of
two n-vectors x, p and two m vectors r, q. (Note that s can share storage with q.)
Each iteration requires about 2nz(A) + 2m + 3n multiplications, where nz(A) is the
number of nonzero elements in A.

A small variation of Algorithm CGLS1 is obtained if instead of rk the residual of
the normal equations s = AT (b−Ax) is recurred.

Algorithm 3.2 (CGLS2).
Let x0 be an initial approximation, set

s0 = p1 = AT (b−Ax0), γ0 = ‖s0‖2,(3.3)

and for k = 1, 2, . . . compute

qk = Apk,

αk = γk−1/‖qk‖2,
xk = xk−1 + αkpk,

sk = sk−1 − αk(A
T qk),(3.4)

γk = ‖sk‖2,
βk = γk/γk−1,

pk+1 = sk + βkpk.

CGLS2 requires the storage of three n-vectors x, p, s and one m vector q and
2nz(A) + 4n + m multiplications.

3.2. Methods based on Lanczos bidiagonalization. Paige and Saunders
[20] developed algorithms based on the Lanczos bidiagonalization process of Golub
and Kahan [9]. There are two forms of this bidiagonalization procedure, Bidiag1 and
Bidiag2, that produce two algorithms that differ in their numerical properties.

In Bidiag1 we start the recursion with β1u1 = b−Ax0, β1 = ‖b−Ax0‖. After k
steps we have computed

Vk = (v1, . . . , vk), Uk+1 = (u1, . . . , uk+1),

Bk =




α1

β2 α2

β3
. . .
. . . αk

βk+1


 ∈ R(k+1)×k.(3.5)

In exact arithmetic it holds that AVk = Uk+1Bk, V
T
k Vk = Ik, U

T
k+1Uk+1 = Ik+1. The

columns of Vk form an orthonormal basis for the Krylov subspace Kk(A
TA, s0). If

we set xk − x0 = Vkyk, then ‖b − Axk‖ is minimized when yk solves the linear least
squares problem

min
yk

‖Bkyk − β1e1‖.

This problem can easily be solved by reducing Bk to upper bidiagonal form by a
sequence of Givens rotations. This leads to the LSQR algorithm in [20].
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Algorithm 3.3 (LSQR (Bidiag1)).

Initialize

β1u1 = b−Ax0, α1v1 = ATu1, w1 = v1,

φ̄1 = β1, ρ̄1 = α1,

and for k = 1, 2, . . . repeat

βk+1uk+1 = Avk − αkuk,

αk+1vk+1 = ATuk+1 − βk+1vk,

[ck, sk, ρk] = givrot(ρ̄k, βk+1),

θk+1 = skαk+1, ρ̄k+1 = ckαk+1,

φk = ckφ̄k, φ̄k+1 = −skφ̄k,

xk = xk−1 + (φk/ρk)wk,

wk+1 = vk+1 − (θk+1/ρk)wk.

Here the scalars αi ≥ 0 and βi ≥ 0 are chosen to normalize the vectors vi and
ui, respectively, and [c, s, σ] = givrot(α, β) is a subroutine that computes c, s, σ in a
Givens rotations such that −sα + cβ = 0 and σ = (α2 + β2)1/2.

In addition to the 2nz(A) multiplications required by all versions, LSQR requires
3m+5n multiplications and storage of two m-vectors u,Av and three n-vectors x, v, w.
A basic relation between LSQR and CGLS1 is that vi and wi are proportional to si−1

and pi. Paige and Saunders showed in [20] by numerical examples that LSQR tends
to converge slightly faster than CGLS1 when A is ill-conditioned.

Paige derived in [19] an analytically equivalent algorithm LSCG using a variant
of the Lanczos bidiagonalization called Bidiag2. In Bidiag2 the Lanczos recursion
is started with θ1v1 = AT (b − Ax0), θ1 = ‖AT (b − Ax0)‖. After k steps we have
computed

Vk = (v1, . . . , vk), Pk = (p1, . . . , pk),

Rk =




ρ1 θ2

ρ2 θ3

. . .
. . .

ρk−1 θk
ρk


 ∈ Rk×k,(3.6)

and in exact arithmetic it holds that AVk = PkRk, V
T
k Vk = PT

k Pk = Ik. Here Rk is
already in upper triangular form. Hence xk − x0 = Vkyk, where yk is obtained from
RT

k Rkyk = θ1e1, and the method is implemented in the form

RT
k fk = θ1e1, xk = (VkR

−1
k )fk.

Algorithm 3.4 (LSCG (Bidiag2)).

θ1v1 = AT (b−Ax0), ρ1p1 = Av1, w1 = v1/ρ1, ζ0 = −1,
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Table 3.1
Comparison of storage and operations.

µ Storage mults/step

CGLS1: 1 2n + 2m 3n + 2m

CGLS2: 1 3n + m 4n + m

LSQR: 1 3n + 2m 5n + 3m

LSCG: 1 3n + m 5n + 3m

and for k = 1, 2 . . . compute

ζk = −(θk/ρk)ζk−1,

xk = xk−1 + ζkwk,

θk+1vk+1 = AT pk − ρkvk,

ρk+1pk+1 = Avk+1 − θk+1pk,

wk+1 = (vk+1 − θk+1wk)/ρk+1.

Here the matrix Vk = (v1, . . . , vk) is the same as in LSQR. LSCG requires 3m + 5n
multiplications and storage of one m-vector p and three n-vectors x, v, w.

3.3. Storage and operations. All the Krylov methods described above require
two matrix vector multiplications costing 2nz(A) multiplications at each iteration step.
In the preconditioned case two linear systems of the form St = p and ST s = r must
also be solved at each step. Storage may be needed for A and S. These costs often
dominate the total storage and work.

A comparison of additional storage and operations needed for the methods con-
sidered is given in Table 3.1. Here CGLS1 shows an advantage over LSQR. Note
however that this may be partly offset by the fact that viable rules for stopping the
iterations are more costly for CGLS1 than for LSQR.

For LSQR Paige and Saunders [20] consider several stopping rules which require
(estimates of) ‖rk‖, ‖xk‖, ‖sk‖, ‖A‖, and ‖A†‖. They show that all these quantities
can be obtained at minimal cost in LSQR. For CGLS1 ‖sk‖ is available but ‖rk‖ has
to be separately computed, if needed, at an extra cost of m multiplications.

4. CGLS2 and LSCG in finite precision.

4.1. Floating point arithmetic. In the following analysis we assume that the
standard model for floating point computation holds; i.e., if x and y are floating point
numbers, then

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u,

where u is the unit roundoff. This leads to a bound for the roundoff error in the
product of two matrices A ∈ Rm×n and B ∈ Rn×p,

|fl(AB)−AB| ≤ γn|A| |B|, γn = nu/(1− nu),(4.1)

where the inequalities are to be interpreted componentwise, see Higham [15]. It is
always assumed when this result is used that nu� 1.

It is well known, see [3, Section, 1.4.3], that an approximate solution x̃ to (1.2)
computed by a normwise backward stable method for solving (1.1) will satisfy an
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error bound of the form (x 6= 0)

‖x− x̃‖ ≤ γmκLS(A, b)‖x‖,(4.2)

κLS(A, b) = κ(A)

(
1 +
‖A†‖ ‖r‖
‖x‖

)
.(4.3)

Here κ(A) = σ1(A)/σn(A) is the spectral condition number of A, and κLS is the
condition number for computing x. Note that if ‖r‖ < ‖x‖/‖A†‖, then κLS < 2κ(A),
although in general a term proportional to κ2(A) is present.

A first-order perturbation bound corresponding to componentwise relative errors
satisfying |δA| ≤ ω|A|, |δb| ≤ ω|b| is given by (see [2])

|x− x̃| ≤ ω|A†|(|A| |x|+ |b|) + ω|(ATA)−1| |AT | |r|+ O(ω2).(4.4)

4.2. Failure of CGLS2 and LSCG. It was pointed out by Paige and Saunders
in [20, Section, 7.1] that the explicit use of vectors of the form AT (Ap) as in CGLS2
can lead to poor performance on ill-conditioned systems. Below we give a new simple
explanation for the failure of both CGLS2 and LSCG to obtain good accuracy.

The two algorithms CGLS2 and LSCG share the following feature. Assuming
that x0 = 0, the only information about the right-hand side b is in the initialization of
p0 = s0 = AT b and θ1v1 = AT b, respectively. Note that no reference to b is made in
the iterative phase. It follows that roundoff errors that occur in computing the vector
AT b cannot be compensated for later. By (4.1) we have

|fl(AT b)−AT b| ≤ γm|AT | |b|, γm = mu/(1−mu),(4.5)

and this is almost sharp. The perturbed solution x+δx corresponding to c = fl(AT b)
satisfies

ATA(x + δx) = AT b + δc, |δc| ≤ γm|AT | |b|.
Subtracting ATAx = AT b and solving for δx we obtain δx = (ATA)−1δc, and from
this we get the componentwise bound

|δx| ≤ γm|(ATA)−1| |AT | |b|.(4.6)

Hence if |b| � |r|, which is the case for a nearly consistent system, this error bound
is much larger than the second term in the perturbation bound (4.4).

Using norms we obtain

‖δx‖ ≤ γm‖(ATA)−1‖ ‖AT ‖ ‖b‖ = γmκ(A)‖A†‖ ‖b‖.(4.7)

Since b is not used by CGLS2/LSCG it follows that this initial error cannot be can-
celed, and the best error bound we can hope for will include the term given above.

Comparing with the error bound (4.2)–(4.3) we conclude that if

max
{‖x‖/‖A†‖, ‖r‖}� ‖b‖,

CGLS2/LSCG can be expected to produce much less than optimal accuracy. Note
that since x = A†b we could theoretically have ‖x‖ = ‖A†‖ ‖b‖. However, this
situation very seldomly reflects the properties of least squares solutions. In par-
ticular, ill-conditioned problems usually have solutions with much smaller norms:
‖x‖ � ‖A†‖ ‖b‖.
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Similarly the residual of the perturbed solution may differ from the true residual
by as much as

‖b−A(x + δx)− (b−Ax)‖ = ‖Aδx‖ ≤ γmκ(A)‖b‖.
Again, this cannot be canceled in the iterations, and the iterated residual will (in the
best case) converge to the perturbed residual. The numerical experiments in section
6 demonstrate this nicely.

The loss of accuracy will occur even if a preconditioner is used. In CGLS2 we
then initialize s0 = p1 = S−T (AT (b−Ax0)), where S−TAT is never explicitly formed.
Therefore the same roundoff errors will occur in computing AT (b−Ax0), and by the
same reasoning as above these error will never be canceled.

We remark that avoiding the loss of information from explicitly multiplying b by
AT is also important when solving discrete ill-posed linear systems. Using a Krylov
subspace method, regularization can be achieved by working with the Krylov sub-
spaces span {(AAT )pb, (AAT )p+1b, . . . , (AAT )p+kb}, where p is some positive integer.
In [4] an implicit shift restarted Lanczos method (see [22]) is used to implement such
a method in a numerically stable way.

5. Error analysis of CGLS1 and LSQR. Greenbaum [11] studies the finite
precision implementation of the class of iterative methods in which each step updates
the approximate solution xk and residual rk using the formulas

xk+1 = xk + αkpk,(5.1)

rk+1 = rk − αkApk.

Though in LSQR the residual is not recursively updated, we can formally add the
update

rk = rk−1 − (φk/ρk)Awk(5.2)

to Algorithm 3.3 without making any other changes in it. It follows then that the
analysis based on (5.1) can be applied also to the LSQR method. In our experiments
we have used LSQR with this additional recursion.

In [11], the matrix A is assumed square nonsingular. It is easy to see that the
analysis will also apply, with a simple modification, to the least squares problem with
A rectangular and r = b−Ax different from zero. Let xk, rk, αk, and pk denote from
now on the computed values. Then, following [11], we may easily derive the following
result (here and in the rest of the paper we assume for simplicity that x0 = 0).

Theorem 5.1. The difference between the true residual b − Axk and the recur-
sively computed vector rk satisfies

‖b−Axk − rk‖
‖A‖‖x‖ ≤ u [k + 1 + (1 + c + k(10 + 2c))Θk] + u(k + 1)

‖r‖
‖A‖‖x‖

+ O(u2),(5.3)

where

Θk = max
j≤k
‖xj‖/‖x‖,

u is the machine precision, and c depends on the accuracy of the matrix vector multiply
(4.5). If the matrix-vector product is computed in the standard way, then c = γm.
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By using the relation

b−Axk − rk = A(x− xk) + (r − rk)

we obtain the following slight modification of (5.3):

‖A(x− xk)‖
‖A‖‖x‖ ≤ u [k + 1 + (1 + c + k(10 + 2c))Θk] + u(k + 1)

‖r‖
‖A‖‖x‖ +

+
‖r − rk‖
‖A‖‖x‖ + O(u2).(5.4)

If it can be shown that there is a constant c1 such that the computed recursive residual
rk satisfies

‖r − rk‖
‖A‖ ‖x‖ ≤ c1u + O(u2), k ≥ S,(5.5)

then (5.4) gives an upper bound for the accuracy of the ultimately attainable true
residual of the computed approximation. Here S denotes the number of iterations
needed to reach a steady-state.

Though we offer no formal proof of (5.5) (to our knowledge, no rigorous formal
proofs exist even for the practically used variants of conjugate gradient-type methods
for solving linear systems), there is overwhelming experimental evidence that justifies
our further considerations. In the following we assume that (5.5) holds for both
CGLS1 and LSQR. From (5.4) and (5.5) we then get

‖A(x− xS)‖
‖A‖‖x‖ ≤ u [S + 1 + c1 + (1 + c + S(10 + 2c))Θ] + u(S + 1)

‖r‖
‖A‖‖x‖

+ O(u2),(5.6)

where Θ = ΘS .
We wish to bound the value Θ. If ‖A†(rk−1 − rk)‖ reaches the level O(u)‖xk−1‖,

then by (5.1) the approximate solution xk remains essentially unchanged (we as-
sume this situation will take place on or before the step S). In exact arithmetic,
both CGLS1 and LSQR are equivalent to the conjugate gradient method applied to
the normal equations. By Lemma 2.1, the l2-norm of the error will therefore de-
crease monotonically in both cases. Using the analogy developed in [10, 12], and
arguing similarly as in [11, Section 3.3], one may therefore expect that the relation
‖x− xk‖ ≤ ‖x− x0‖, and thus

‖xk‖ ≤ 2‖x‖+ ‖x0‖
will hold to a close approximation for the computed quantities. Consequently, we
obtain the estimate Θ ≈ 2 + Θ0. Hence, considering x0 = 0,

‖A(x− xS)‖
‖A‖‖x‖ ≤ u (3 + c1 + 21S + 2c + 4Sc) + u(S + 1)

‖r‖
‖A‖‖x‖ + O(u2).(5.7)

It follows that the ultimately attainable error of the computed approximation xS for
both CGLS1 and LSQR is bounded by

‖x−xS‖ ≤ uκ(A)

[
3 + c1 + 21S + 2c + 4Sc + (S + 1)

‖r‖
‖A‖‖x‖

]
‖x‖+O(u2).(5.8)
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In the consistent case, (5.7) shows that the residuals corresponding to the computed
approximate solution is of the order of the unit roundoff u, and in this sense CGLS1
and LSQR are normwise backward stable. In the inconsistent case, (5.8) shows that
CGLS1 and LSQR may compute more accurate solutions than a backward stable
method. Note, however, that the bound S for the number of iterations needed depends
on κ(A).

We note that essentially the same formulas hold for the preconditioned case. Then
a vector tk is computed by solving Stk = pk, but this does not alter the form of the
recursion formulas (5.1), which become

xk+1 = xk + αktk,(5.9)

rk+1 = rk − αkAtk.

In general, the preconditioner will accelerate convergence, and hence the steady-state
will be reached for a smaller number of steps S.

It should be mentioned that though both CGLS1 and LSQR were shown here to
behave in essentially the same way, some differences may occur for very ill-conditioned
problems. In fact in our analysis, we use some implicit restrictions on κ(A) allowing
us to apply the results [10, 11, 12]. Therefore our results do not apply to highly
ill-conditioned problems.

6. Numerical results. Numerical tests were performed in Matlab on a SUN
SPARC station 10 using double precision with unit roundoff u = 2.2 · 10−16. The
tests are similar to tests run on an IBM 370 using double precision by the first author
during a visit to Stanford University in 1979 [1].

The test problems denoted P (m,n, d, p) were taken from Paige and Saunders [20].
The matrix A was constructed by

A = Y

(
D
0

)
ZT ∈ Rm×n, Y = I − 2yyT , Z = I − 2zzT .

Here y and z are Householder vectors of appropriate dimension, with elements

yi = sin(4πi/m), i = 1, . . . ,m,

zi = cos(4πi/n), i = 1, . . . , n,

followed by normalization so that ‖y‖ = ‖z‖ = 1. For n = q (d = 1) the singular
values are chosen to be

D = q−pdiag (qp, . . . , 3p, 2p, 1);

i.e., p is a power factor. Taking n = qd leads to d copies of each singular value. The
solution is taken to be x = (n−1, . . . , 2, 1, 0)T , and the right-hand side is constructed
as

b = Ax + r, r = ρY

(
0
c

)
,

c = m−1(1,−2, 3, . . . ,±(m− n))T .

Thus if m > n and ρ > 0 the system is incompatible and ‖r‖ ≈ ρ. (In [20] ρ = 1 was
used throughout.)
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Fig. 6.1. ‖x− xk‖ for problem PS(10, 10, 1, 8), κ = 108.
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Fig. 6.2. ‖rk‖/(‖A‖‖x‖) for problem PS(10, 10, 1, 8), κ = 108.

The first tests were run on the consistent problem PS(10, 10, 1, 8), with κ(A) =
108. Results are shown for CGLS1, CGLS2, and the two Lanczos methods LSQR
and LSCG in Figures 6.1–6.3. Here x and r denote the exact solution and the exact
residual. Hence r = 0 in the consistent case.

Figure 6.1 shows that CGLS1 and LSQR both achieve a relative accuracy of about
10−9, whereas the error in the unstable versions CGLS2 and LSCG are about a factor
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Fig. 6.3. ‖b−Axk‖/(‖A‖‖x‖) for problem PS(10, 10, 1, 8), κ = 108.
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Fig. 6.4. ‖x− xk‖ for problem PS(20, 10, 1, 4), κ = 104, κLS = 6.81 · 104.

of κ(A) worse. In Figure 6.2 the norm of the recursive residual is plotted. For CGLS1
this norm still decreased after 200 iterations, when it had reached 10−35. Figure 6.3
shows the relative norm of the true residual, which for both stable versions reaches
the level of machine precision after 50–70 iterations.

The second test problem was the inconsistent problem PS(20, 10, 1, 4) with ρ =
0.01, for which κ(A) = 104, and κLS = 6.81 · 104 (see (4.2)–(4.3)). Figure 6.4 shows
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Fig. 6.5. ‖x− xk‖ for problem PS(20, 10, 1, 6), ρ = 0.001, κ = 106, κLS = 5.91 · 107.
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Fig. 6.6. ‖r − rk‖/(‖A‖‖x‖) for problem PS(20, 10, 1, 6), ρ = 0.001, κ = 106, κLS = 5.91 · 107.

that the limiting relative accuracy in the solution is better than 10−11 for the stable
versions. Again the accuracy for the unstable versions is worse by a factor of κ(A).

In Figures 6.5–6.6 we show the results for the more ill-conditioned inconsistent
problem PS(20, 10, 1, 6) with ρ = 0.001, κ(A) = 106, and κLS = 5.91 · 107. The
relative accuracy in the computed solution, shown in Figure 6.5, is here around 10−9
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for both stable versions. Figure 6.6 shows that in the limit ‖r− rk‖/(‖A‖ ‖x‖) is less
than 10−15. In Figure 6.7 ρ = 0.1, κLS = 5.81 · 109, and the limit is about 10−14.
Considering the ill-conditioning of the problem these results are much better than can
be expected from a normwise backward stable method and support the assumption
in (5.5).

Finally, in Figure 6.8 the norm of the recursive residual sk = AT rk of the normal



STABILITY OF CONJUGATE GRADIENT AND LANCZOS METHODS 735

equations is plotted for the case ρ = 0.001. For CGLS1 this decreases to about
machine precision, whereas for the unstable version CGLS2 it decreases to zero in the
limit. Hence it is important not to base the comparison of the two algorithms on this
quantity!

The results suggests some cheap stopping rules for compatible systems. As shown
by Figures 6.2 and 6.3, in this case ‖rk‖ becomes excessively small and so will cause
termination at a sensible point, even though ‖b − Axk‖ will not be as small as pre-
dicted. For incompatible systems, as Figure 6.8 shows, ‖sk‖ levels off at O(u). On
the other hand, for the unstable version CGLS2, ‖sk‖ does eventually become very
small. However, this does not mean that ‖r− (b−Axk)‖ will be small and should not
be used as a reason for using CGLS2.

7. Conclusions. We have studied two different implementations, CGLS1 and
CGLS2, of the conjugate gradient method applied to the normal equations and two
algorithms, LSQR and LSCG, based on Lanczos bidiagonalization. Although these
four algorithms for solving the linear least squares problem minx ‖Ax− b‖ are math-
ematically equivalent, their performance in finite precision differs significantly. The
achievable accuracy in finite precision of CGLS2 and LSCG can be lower by a factor
of

‖b‖
max {‖r‖, ‖x‖/‖A†‖}

than that of a backward stable method. For the preferred implementation CGLS1 as
well as for LSQR a bound is derived for the error ‖r − rk‖ of the computed residual
rk. This bound shows that for the consistent case (r = 0) these two methods achieve
an accuracy similar to a normwise backward stable method. For the inconsistent case
CGLS1 and LSQR achieve even better accuracy than a normwise backward stable
method. Numerical tests confirming this behavior have been given.
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Abstract. Let A be an m × m complex skew-symmetric matrix with singular values s1 ≥
s1 ≥ s2 ≥ s2 ≥ · · · ≥ sn ≥ sn ≥ 0, where n = [m/2]. We consider the sets

∼
Dp(A) =

{diag (UTAU [1, . . . , p|n + 1, . . . , n + p]) : U ∈ U(m)}, p = 1, . . . , n, where U(m) denotes the unitary

group. We prove that when m = 2n and p = n, d = (d1, . . . , dn) ∈
∼
Dn(A) if and only if

k∑
i=1

|di| ≤
k∑

i=1

si, k = 1, . . . , n,

n−1∑
i=1

|di| − |dn| ≤
n−1∑
i=1

si − sn,

after rearranging the entries of d in descending order with respect to absolute value. The set is
not convex in general. The inequalities are identical to those of Thompson–Sing’s theorem on the
diagonal elements and the singular values of an n× n complex matrix.

All other cases, i.e., (1) m = 2n+1 and 1 ≤ p ≤ n and (2) m = 2n and 1 ≤ p < n, are completely

described by the inequailities
∑k

i=1 |di| ≤
∑k

i=1 si, k = 1, . . . , p. The sets are all convex. Various
applications and related results are obtained.

Key words. singular values, superdiagonal elements

AMS subject classifications. 15A18, 15A45
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1. Introduction. The well-known Schur–Horn’s result [3, 6] asserts that the
diagonal elements of a Hermitian matrix with prescribed eigenvalues are completely
described by majorization. The result is also true for the real symmetric matrices. It
can be stated as

{diag (UTΛU) : U ∈ SO(n)} = {diag (UTΛU) : U ∈ U(n)} = {d ∈ R
n : d ≺ λ},

where Λ = diag (λ1, . . . , λn). Here d ≺ λ means that d, a diagonal element, is ma-
jorized by λ, the eigenvalue element. We remark that SO(n) can be replaced by O(n),
the orthogonal group and U(n) can be replaced by SU(n), the special unitary group,
in the above expressions.

Thompson [14] and Sing [8] independently described the set of diagonal elements
of matrices with prescribed singular value s1, . . . , sn ({diag (USV ) : U, V ∈ U(n)}) in
terms of inequalities. Thompson [14] also handled the cases when U(n) is replaced by
SO(n) and O(n), respectively. He [15] then obtained the characterization of the set
of diagonal elements of complex symmetric matrices with prescribed singular values
{diag (UTSU) : U ∈ U(n)}.

The real skew-symmetric case has very recently been examined (Theorem 1, [10]),
i.e., the description of the set Dn(A) = {(d1, . . . , dn) : di = (OTAO)2i−1,2i, O ∈
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SO(m)} where A is a real skew-symmetric m ×m matrix and n = [m/2]. One can
easily obtain a similar result when SO(m) is replaced by O(m).

The set Dn(A) is the collection of the superdiagonal elements (a12, a34, . . . , a2n−1,2n)
of the real skew-symmetric matrices A with prescribed singular values s1 ≥ s1 ≥ s2 ≥
s2 ≥ · · · ≥ sn ≥ sn ≥ 0 under the conjugate action of the special orthogonal group.

The proofs of the following results are not difficult (see the proof of Theorem 6
in [14] for the second part of Corollary 1.1). The first part is indeed a corollary to
Schur–Horn’s result and the second part is a corollary to Theorem 1 of [10].

Corollary 1.1. 1. Let 1 ≤ p < n. Then d ∈ R
p is a partial diagonal element

of length p of a real symmetric matrix (Hermitian matrix) with prescribed eigenvalues

λ1 ≥ · · · ≥ λn if and only if
∑k

i=1 dk ≤
∑k

i=1 λk, k = 1, . . . , p, after rearranging the
entries of d in descending order.

2. Let A be an m×m real skew-symmetric matrix with singular values s1 ≥ s1 ≥
s2 ≥ s2 ≥ · · · ≥ sn ≥ sn ≥ 0, where n = [m/2]. If 1 ≤ p < n, then d ∈ Dp(A) if

and only if
∑k

i=1 |di| ≤
∑k

i=1 si, k = 1, . . . , p, after rearranging the entries of d in
descending order with respect to absolute value.

Let A[1, . . . , p|n + 1, . . . , n + p] denote the submatrix of A lying on the rows
indexed by 1, . . . , p and on the columns indexed by n + 1, . . . , n + p. We denote
the complementary submatrix by A(1, . . . , p|n + 1, . . . , n+ p). We have the following
reformulation.

Proposition 1.2. Let A be an m×m real skew-symmetric matrix. Let 1 ≤ p ≤ n
where n = [m/2]. 1. If (1) m = 2n+1, or (2) m = 2n and 1 ≤ p < n, or (3) m = 2n,
p = n and [n/2] is even, then Dp(A) = {diag (UTAU)[1, . . . , p|n + 1, . . . , n + p] : U ∈
SO(m)}.

2. If m = 2n, and [n/2] is odd, then Dn(A) = {diag (UT (DTAD)U)[1, . . . , n|n +
1, . . . , 2n] : U ∈ SO(2n)}, where D = diag (1, . . . , 1,−1).

Proof. Let P ≡ Pn be the 2n × 2n permutation matrix such that p2k−1,k =
p2k,n+k = 1, k = 1, . . . , n and zero otherwise. The determinant of P is detP =
(−1)n(n−1)/2 = (−1)[n/2]. By Laplace expansion and some column exchanges, we
have detPn = (−1)n−1detPn−1. Hence, detP = (−1)n(n−1)/2. Suppose that [n/2] is
even. (1) When n is even, n = 4k and, hence, n(n− 1)/2 is even. (2) When n is odd,
(n− 1)/2 = [n/2] is even and, hence, n(n− 1)/2 is even. Similarly, odd [n/2] implies
that n(n− 1)/2 is odd. So detP = (−1)[n/2]. Moreover, for any 2n× 2n matrix B,

diagPTBP [1, 3, . . . , 2n− 1|2, 4, . . . , 2n] = diagB[1, 2, . . . , n|n + 1, n + 2, . . . 2n].

When m = 2n+1, we set O = P ⊕ (−1)[n/2] ∈ SO(2n+1). If 1 ≤ p ≤ n, we have

Dp(A) = {(d1, . . . , dp) : di = (UTAU)2i−1,2i, i = 1, . . . , p, U ∈ SO(2n + 1)}
= {diag (UTAU)[1, 3, . . . , 2p− 1|2, 4, . . . , 2p] : U ∈ SO(2n + 1)}
= {diag (OTUTAUO)[1, 3, . . . , 2p− 1|2, 4, . . . , 2p] : U ∈ SO(2n + 1)}
= {diag (UTAU)[1, . . . , p|n + 1, . . . , n + p] : U ∈ SO(2n + 1)}.

When m = 2n we have to deal with it slightly differently, since P may be in
O(2n)\SO(2n). Let D = diag (1, . . . , 1,−1). Hence,

1. If [n/2] is even, i.e., P ∈ SO(2n),

Dp(A) = {diag (PTUTAUP )[1, 3, . . . , 2p− 1|2, 4, . . . , 2p] : U ∈ SO(2n)}
= {diag (UTAU)[1, . . . , p|n + 1, . . . , n + p] : U ∈ SO(2n)}.
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2. If [n/2] is odd, i.e., P 6∈ SO(2n),

Dp(A) = {diag (PTUTDTADUP )[1, 3, . . . , 2p− 1|2, 4, . . . , 2p] : U ∈ SO(2n)}
= {diag (UT (DTAD)U)[1, . . . , p|n + 1, . . . , n + p] : U ∈ SO(2n)}.

The above expression becomes {diag (UTAU)[1, . . . , p|n+1, . . . , n+p] : U ∈ SO(2n)}
if 1 ≤ p < n since

{diag (UTDTADU)[1, . . . , p|n + 1, . . . , n + p] : U ∈ SO(2n)}
= {diag (DTUTAUD)[1, . . . , p|n + 1, . . . , n + p] : U ∈ SO(2n)}
= {diag (UTAU)[1, . . . , p|n + 1, . . . , n + p] : U ∈ SO(2n)}.

When m = 2n and if the canonical form of the real skew-symmetric matrix A is(
0 s1

−s1 0

)
⊕ · · · ⊕

(
0 sn−1

−sn−1 0

)
⊕
(

0 s′n
−s′n 0

)
,

then (
0 s1

−s1 0

)
⊕ · · · ⊕

(
0 sn−1

−sn−1 0

)
⊕
(

0 −s′n
s′n 0

)

is the canonical form of DTAD. Here s′n = ±sn.
It is then natural to ask the complex skew-symmetric case. If A is an m × m

complex skew-symmetric matrices, there exists U ∈ U(m) such that

UTAU =




(
0 s1

−s1 0

)
⊕ · · · ⊕

(
0 sn
−sn 0

)
⊕ 0 if m = 2n + 1,(

0 s1

−s1 0

)
⊕ · · · ⊕

(
0 sn
−sn 0

)
if m = 2n.

Clearly, the numbers s1 ≥ s1 ≥ s2 ≥ s2 ≥ · · · ≥ sn ≥ sn ≥ 0 are the singular values
of A. Since the underlying group is U(m), the decomposition is simpler than that of
the real skew-symmetric case under the conjugation of SO(m) in which we have two
possibilities with respect to the case m = 2n.

Our first objective is to study the set
∼
Dp(A) = {diag (UTAU)[1, 3, . . . , 2p −

1|2, 4, . . . , 2p] : U ∈ U(m)}, where 1 ≤ p ≤ n, n = [m/2], and A is an m × m
complex skew-symmetric matrix. According to the discussion of the real analogy (see
the proof of Proposition 1.2),

∼
Dp(A) = {diag (UTAU)[1, . . . , p|n + 1, . . . , n + p] : U ∈ U(m)}

= {diag (UTSn,nU)[1, . . . , p|n + 1, . . . , n + p] : U ∈ U(m)},
where S = diag (s1, . . . , sn) and

Sn,n =

(
0 S
−S 0

)
.

While comparing Schur–Horn’s result (real symmetric case) and Thompson’s re-
sult (Theorem 1, [15], complex symmetric case), it seems that the real skew-symmetric
case (Theorem 1 in [10]) and the complex skew-symmetric case behave quite differ-
ently. Surprisingly, this is not so as we see Theorem 2.1 and Theorem 2.2 in the
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next section. In section 3, we have some applications of Theorem 1 of [10], Theo-
rem 2.1, and Theorem 2.2, mainly concerning the singular values inequalities of some
submatrix of a real or complex skew-symmetric matrix. In section 4, we have some
discussion and make further applications. In the final section, we provide a list of
related results.

2. Partial superdiagonal elements and singular values. The following two
theorems are the main results in this section. Theorem 2.1 is for the even case and
Theorem 2.2 is for the odd case.

Theorem 2.1. Let A be a 2n× 2n complex skew-symmetric matrix with singular
values s1 ≥ s1 ≥ s2 ≥ s2 ≥ · · · ≥ sn ≥ sn.

1. Then d ∈
∼
Dn(A) if and only if

k∑
i=1

|di| ≤
k∑

i=1

si, k = 1, . . . , n,(1)

n−1∑
i=1

|di| − |dn| ≤
n−1∑
i=1

si − sn,(2)

after rearranging the entries of d in descending order with respect to modulus. Hence
∼
Dn(A) ⊂ C

n is not convex in general.

2. When 1 ≤ p < n, d ∈
∼
Dp(A) if and only if

k∑
i=1

|di| ≤
k∑

i=1

si, k = 1, . . . , p,(3)

after rearranging the entries of d in descending order with respect to modulus. Hence
∼
Dp(A) ⊂ C

p is a convex set.

While sn = 0, the set
∼
Dn(A) has been studied [9]. When sn = 0, 2 becomes

superficial and the set
∼
Dn(A) is then convex.

The inequalities 1 and 2 are identical to those of Thompson [14] and Sing [8]. See
[11] for the Lie explanation of the result of Thompson and Sing.

Theorem 2.2. Let A be a (2n + 1) × (2n + 1) complex skew-symmetric matrix
with singular values s1 ≥ s1 ≥ s2 ≥ s2 ≥ · · · ≥ sn ≥ sn ≥ 0. For 1 ≤ p ≤ n, the

vector d ∈ C
p is an element of

∼
Dp(A) if and only if 3 is satisfied. Hence,

∼
Dp(A) ⊂ C

p

is a convex set.
The cases 1 ≤ p < n and the special case p = n and sn = 0 of Theorem 2.2 were

obtained in [9].
We first observe that if A is an m × m complex skew-symmetric matrix, then

T (
∼
Dp(A)) =

∼
Dp(A). Here T (K) is the torus generated by K ⊂ C

p, i.e.,

T (K) = {(eiθ1d1, . . . , e
iθpdp) : (d1, . . . , dp) ∈ K, θ1, . . . , θp ∈ R}.

Of course, this is also true for the complex symmetric case. It is because if d ∈
∼
Dp(A),

i.e., d = diag (UTAU)[1, . . . , p|n + 1, . . . , n + p] for some U ∈ U(m) where n = [m/2],
then (eiθ1d1, . . . , e

iθpdp) = diag (V TUTAUV )[1, . . . , p|n + 1, . . . , n + p] where

V = diag (eiθ1/2, . . . , eiθp/2)⊕ In−p ⊕ diag (eiθ1/2, . . . , eiθp/2)⊕ In−p(⊕1) ∈ U(m).



ON COMPLEX SKEW-SYMMETRIC MATRICES 741

Moreover, d ∈
∼
Dp(A) implies that dσ ≡ (dσ(1), . . . , dσ(p)) ∈

∼
Dp(A) for any σ ∈ Σp

(the symmetric group). It is because that if d ∈
∼
Dp(A), i.e., d = diag (UTAU)[1, . . . , p|n+

1, . . . , n+p] for some U ∈ U(m), then (dσ(1), . . . , dσ(p)) = diag (QTUTAUQ)[1, . . . , p|n+
1, . . . , n+p] where Q = Pσ⊕ In−p⊕Pσ⊕ In−p(⊕1) and Pσ is the permutation matrix
corresponding to σ.

We will make use of these two observations freely. We also use |d| ≺w s to denote
the relation 1.

Lemma 2.3. Let

A =




0 f a 0
−f 0 0 d
−a 0 0 g
0 −d −g 0


 ∈ C4×4

be a complex skew-symmetric matrix having singular values s1 ≥ s2 ≥ s2 ≥ s2 such
that a ≥ 0 ≥ d, a ≥ |d|. Then s1 − s2 ≥ a − |d| with equality holds if and only if (1)
when ad 6= 0, f = g, (2) when ad = 0, |f | = |g|.

Proof. We consider the square of Frobenius norm of A, i.e., trA∗A which is also
the sum of the square of the singular values of A. So we have s2

1 + s2
2 = |a|2 + |d|2 +

|f |2 + |g|2. Subtracting 2s1s2 from both sides, we have (s1−s2)
2 = |a|2 + |d|2 + |f |2 +

|g|2 − 2s1s2. But s2
1s

2
2 = |detA|. By direct computation, detA = (ad− fg)2. Hence,

s1s2 = |ad− fg|. As a result, we have

(s1 − s2)
2 = |a|2 + |d|2 + |f |2 + |g|2 − 2|ad− fg|
≥ |a|2 + |d|2 + |f |2 + |g|2 − 2|ad| − 2|fg|
= (|a| − |d|)2 + (|f | − |g|)2
≥ (a− |d|)2.

Taking square root yields s1 − s2 ≥ a − |d|. Equality holds if and only if ad and
−fg are on the same ray through the origin and |f | = |g|. So (1) if ad 6= 0, i.e.,
ad < 0(∈ R), then g = f ; (2) if ad = 0, then |f | = |g|.

Lemma 2.4. Let

A =




0 f a 0
−f 0 0 d
−a 0 0 g
0 −d −g 0


 ∈ C4×4

be a complex skew-symmetric matrix having singular values s1 ≥ s2 ≥ s2 ≥ s2 such
that a, d ≥ 0. Then s1 + s2 ≥ a+ d with equality holds if and only if ad− fg ≥ 0 and
f = g.

Proof. Similar to the proof of Lemma 2.3, we have (s1 + s2)
2 = |a|2 + |d|2 + |f |2 +

|g|2 + 2s1s2. As a result, we have

(s1 + s2)
2 = |a|2 + |d|2 + |f |2 + |g|2 + 2|ad− fg|
≥ |a|2 + +|d|2 + |f |2 + |g|2 + 2|ad| − 2|fg|
= (|a|+ |d|)2 + (|f | − |g|)2
≥ (|a|+ |d|)2.

Taking square root yields s1 + s2 ≥ a + d as a, d ≥ 0. Equality holds if and only if
|f | = |g| and equality occurs in the above triangle inequality, i.e., ad and fg are on
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the same half-line through the origin and ad − fg ≥ 0. In other words, f = g and
ad− fg ≥ 0.

Let WC ⊂ Cn×n (WR ⊂ Rn×n) be the set of n × n absolutely complex (real)
doubly substochastic matrices, i.e., W ∈ WC (WR) if

∑n
i=1 |wij | =

∑n
j=1 |wij | ≤ 1 for

all i, j = 1, . . . , n.
The set WCs can be interpreted as the torus {(eiθ1d1, . . . , e

iθndn) : d ∈ R
n,

|d| ≺w s} generated by the set {d ∈ R
n : |d| ≺w s} =

∧
G(n)s which is identical to WRs

[11].
Lemma 2.5. Let Z ∈ U(m) and n = [m/2] such that

Z[1, . . . , 2n|1, . . . , 2n] =

(
U V
W X

)
.

Then the matrix (U ◦X − V ◦W ) belongs to WC where A ◦B denotes the Hadamard
product of A and B.

Proof. Notice that

n∑
i=1

|uijxij − vijwij | ≤
n∑

i=1

|uijxij |+
n∑

i=1

|vijwij |

≤
 

n∑
i=1

|uij |2
n∑

i=1

|xij |2
)1/2

+

 
n∑

i=1

|vij |2
n∑

i=1

|wij |2
)1/2

≤
 

n∑
i=1

|uij |2
n∑

i=1

|xij |2
)1/2

+

[ 
1−

n∑
i=1

|xij |2
) 

1−
n∑

i=1

|uij |2
)]1/2

≤ 1

2

 
n∑

i=1

|uij |2 +
n∑

i=1

|xij |2
)

+
1

2

[ 
1−

n∑
i=1

|xij |2
)

+

 
1−

n∑
i=1

|uij |2
)]

≤ 1.

The first inequality is simply triangle inequality. The second is Cauchy–Schwarz
inequality. The second last inequality is due to arithmetic-geometric mean inequal-
ity. The third inequality is due to the fact that Z is a unitary matrix. Similarly,∑n

j=1 |uijxij − vijwij | ≤ 1. In other words, the matrix U ◦ X − V ◦W is an n × n
absolutely doubly substochastic matrix.

The following result is due to Thompson (Theorem 5 in [14]).
Lemma 2.6. [14]. Let s = (s1, . . . , sn) ∈ R

n
+. Then WCs = {d ∈ C

n : |d| ≺w s}
and WRs = {d ∈ R

n : |d| ≺w s}.
Lemma 2.7. Let A be an m×m complex skew-symmetric matrix. If d ∈

∼
Dn(A),

then |d| ≺w s.
Proof. Let Z ∈ U(m) and n = [m/2] such that d = diag (ZSn,nZ

T )[1, . . . , n|n +
1, . . . , 2n]. Let

Z[1, . . . , 2n|1, . . . , 2n] =

(
U V
W X

)
.
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Then d = diag (USXT−V SWT ) by direct computation and hence d = (U◦X−V ◦W )s
where A ◦ B denotes the Hadamard product of A and B. Hence, by Lemma 2.5 and
2.6, the result follows.

Remark. One can apply the necessity part of Thompson–Sing’s result. Our ap-
proach here reveals more than the statement of Lemma 2.7, e.g., Lemma 2.5 shows
that the matrix U ◦X − V ◦W is absolutely substochastic. It is a more fundamental
reason why Lemma 2.7 is true.

Lemma 2.8. Let A be a 2n × 2n complex skew-symmetric matrix with singular

values s1 ≥ s1 ≥ s2 ≥ s2 ≥ · · · ≥ sn ≥ sn. If d ∈
∼
Dn(A), then (2) is satisfied.

Proof. Like the approach of Thompson [14] and Sing [8], we consider the follow-
ing function ϕ. Indeed the idea can be traced back to Horn’s paper [3], which was
originated from von Neumann ([3], p. 628).

Define a map ϕ : {UTSn,nU : U ∈ U(2n)} → R by ϕ(UTSn,nU) = |a11| +
· · · + |an−1,n−1| − |ann|, where A = UTSn,nU [1, . . . , n|n + 1, . . . , 2n]. It is clearly
continuous on the compact set {UTSn,nU : U ∈ U(2n)}. So M , the maximum value
of ϕ, exists. Obviously, M = ϕ(Sn,n) ≥ s1 + · · · + sn−1 − sn. We wish to show
that M = s1 + · · · + sn−1 − sn. Matrices UTSn,nU are called maximal matrices if
M = ϕ(UTSn,nU).

If n = 1, it is trivial because UTS1,1U is always(
0 s1

−s1 0

)
, or

(
0 −s1

s1 0

)
,

for any U ∈ U(2), i.e., ϕ is a constant function.

Suppose n ≥ 2. Let UTSn,nU =

(
F A
−AT G

)
be a maximal matrix and let

UTAV = Σ ≡ diag (σ1, . . . , σn−1,−σn), σ1 ≥ · · · ≥ σn ≥ 0, where U and V are n× n
unitary matrices. Then consider

(
UTFU UTAV
−V TATU V TGV

)
=

(
U 0
0 V

)T (
F A
−AT G

)(
U 0
0 V

)
.

By Thompson–Sing’s result, |a11| + · · · + |an−1,n−1| − |ann| ≤ σ1 + · · · + σn−1 − σn.
So we have a maximal matrix of the form

B =

(
F Σ
−Σ G

)
,

where Σ = diag (σ1, . . . , σn−1,−σn), FT = −F , and GT = −G. We can assume
that σn−1 > 0 for if σn−1 = 0, then σ1 + · · · + σn−1 − σn = σ1 + · · · + σn−2 ≤
s1 + . . . + sn−2 + sn−1 − sn. Furthermore, we assume that sn > 0. Otherwise,
s1 + · · ·+ sn−1 − sn = s1 + · · ·+ sn−1 ≥ σ1 + · · ·+ σn−1 ≥ σ1 + · · ·+ σn−1 − σn.

We consider two cases: (a) σn > 0; (b) σn = 0.
Suppose that (a) happens. Then we claim that fpn = gpn for all 1 ≤ p < n. For

if fpn 6= gpn, then we apply Lemma 2.3 on the submatrix

B[p, n, n + p, 2n|p, n, n + p, 2n] =




0 fpn σp 0
−fpn 0 0 −σn

−σp 0 0 gpn
0 σn −gpn 0


 .
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There exists a 4× 4 unitary matrix

Z =

(
U V
W X

)
,

such that

ZTB[p, n, n + p, 2n|p, n, n + p, 2n]Z

=

(
UT WT

V T XT

)
B[p, n, n + p, 2n|p, n, n + p, 2n]

(
U V
W X

)

=




0 0 σ′
p 0

0 0 0 −σ′
n

−σ′
p 0 0 0

0 σ′
n 0 0


 ,

where σ′
p−σ′

n > σp−σn. Let Z ′ be the 2n× 2n unitary matrix such that Z ′[p, n, n+
p, 2n|p, n, n + p, 2n] = Z and Z ′(p, n, n + p, 2n|p, n, n + p, 2n) = I2n−4. Then B′ ≡
Z ′TBZ ′ =

(
F ′ Σ′

−Σ′ G′

)
where Σ′ = diag (σ1, . . . , σp−1, σ

′
p, σp+1, . . . , σn−1,−σ′

n), σ′
n >

0. So σ1+ · · ·+σn−1−σn < σ1+ · · ·+σp−1+σ′
p+σp+1+ · · ·+σn−1−σ′

n, contradicting
the maximal property of σ.

Suppose that (b) happens. If fpn = gpn = 0 for all 1 ≤ p < n, then the nth and
the last rows and columns of B are zero vectors. In this case, sn = 0. So it is sufficient
to consider the case that fpn or gpn is not zero for some 1 ≤ p < n. We consider the
submatrix

B[p, n, n + p, 2n|p, n, n + p, 2n] =




0 fpn σp 0
−fpn 0 0 0
−σp 0 0 gpn
0 0 −gpn 0


 ,

when 1 ≤ p < n. There exists a 4× 4 unitary matrix

Z =

(
U V
W X

)
,

such that

ZTB[p, n, n + p, 2n|p, n, n + p, 2n]Z

=

(
UT WT

V T XT

)
B[p, n, n + p, 2n|p, n, n + p, 2n]

(
U V
W X

)

=




0 0 σ′
p 0

0 0 0 −σ′
n

−σ′
p 0 0 0

0 σ′
n 0 0


 ,

where σ′
p ≥ σ′

p ≥ σ′
n ≥ σ′

n are the singular values of B[p, n, n + p, 2n|p, n, n + p, 2n].
By considering the first and third row of the matrix B[p, n, n + p, 2n|p, n, n + p, 2n],
interlacing inequalities for singular values of submatrices imply that

|fpn|2 + σ2
p = σ′2

p , |gpn|2 + σ2
p = σ′2

p .
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So if either |fpn| or |gpn| is not zero, then σ′
p > σp. Since B is a maximal ma-

trix by Lemma 2.3, σ′
p − σ′

n = σp. Hence, σ′
n = σ′

p − σp > 0. Let Z ′ be the
2n×2n unitary matrix such that Z ′[p, n, n+p, 2n|p, n, n+p, 2n] = Z and Z′(p, n, n+

p, 2n|p, n, n + p, 2n) = I2n−4. Then B′ ≡ Z ′TBZ ′ =

(
F ′ Σ′

−Σ′ G′

)
where Σ′ =

diag (σ1, . . . , σp−1, σ
′
p, σp+1, . . . , σn−1,−σ′

n), σ′
n > 0 and σn−1 > 0. So by case (a),

we conclude that f
′
pn = g′pn where 1 ≤ p < n. Notice that σn−1 ≥ σ′

n; other-
wise, σ1 + · · · + σn−1 − σn = σ1 + · · · + σp−1 + σ′

p + σp+1 + · · · + σn−1 − σ′
n <

σ1 + · · ·+ σp−1 + σ′
p + σp+1 + · · ·+ σn−2 + σ′

n − σn−1 contradicting the fact that B is
maximal.

In both cases, we have a maximal matrix B of the form

B =

(
F Σ
−Σ G

)
,

with fpn = gpn, 1 ≤ p < n, and Σ = diag (σ1, . . . , σn−1,−σn) with σn > 0.
Let us consider the submatrix B[p, q, n + p, n + q|p, q, n + p, n + q], for 1 ≤ p <

q ≤ n− 1. By Lemma 2.4, we can deduce that fpq = gpq. Hence, we have a maximal
matrix of the form

B =

(
F Σ
−Σ F

)
,

with Σ = diag (σ1, . . . , σn−1,−σn), σ1 ≥ · · · ≥ σn > 0. The Hermitian matrix

B̂ =

(
Σ F
−F Σ

)
=

(
I 0
0 −I

)
B

(
0 I
I 0

)

also has singular values s1, s1, s2, s2, . . . , sn, sn which are the absolute values of the
eigenvalues of B̂. Moreover, the eigenvalues of B̂ have even algebraic multiplicities,
i.e., the eigenvalues of B̂ are λ1, λ1, λ2, λ2, . . . , λn, λn. (One way to see it is by consid-
ering gln(H) where H denotes the skew field of quaternions. A translation is needed;
see p. 310 in [7].) Hence λ1, . . . , λn are among ±s1, . . . ,±sn. The matrix B̂ is indefi-
nite since −σn < 0 is one of the diagonal elements of B̂. Hence, the trace of B̂ is at
most 2(s1 + . . . + sn−1 − sn). Now 2(σ1 + . . . + σn−1 − σn) is the trace of B̂ and the
proof is complete.

Remark. One may try to apply Thompson–Sing’s result to show the necessity of
2 in Theorems 2.1 and 2.2. But it only implies that |d1|+ · · ·+ |dn−1| ≤ s1 + · · ·+sn−1

instead.
Proof of Theorem 3. In view of Lemmas 2.7 and 2.8, it is adequate to show the

sufficiency part.
Case 1. k = n. Suppose that d and s satisfy 1 and 2, then there exist unitary U

and V such that diag (UTSV ) = d, by Thompson–Sing’s result. Then consider

(
0 UTSV

−V TSU 0

)
=

(
U 0
0 V

)T (
0 S
−S 0

)(
U 0
0 V

)
.

An alternative is to employ Theorem 1 of [10]. For if d and s satisfy 1 and 2, the

vector |d| is an element of Dn(Sn,n). Then a suitable rotation makes d ∈
∼
Dn(Sn,n).

Such an approach discloses that SO(2n) and the rotations (eiθ1 , . . . , eiθn) generate

the whole
∼
Dn(A).
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Case 2. 1 ≤ p < n. The set
∼
Dp(A) is just the projection of

∼
Dn(A) through the

projection d = (d1, . . . , dn) 7→ (d1, . . . , dp). See Theorem 6 in [14].
Proof of Theorem 4. Similarly, it is adequate to prove the sufficiency part.
Case 1. k = n. Suppose that |d| ≺w s, then by Theorem 1 of [10], there exist

Z ∈ SO(2n + 1) such that |d| = diag (ZTSn,nZ). The result follows as we are free to
rotate the entries of d.

Case 2. Like the even case.
Corollary 2.9. Let S = diag (s1, . . . , sn) where s1 ≥ · · · ≥ sn ≥ 0.
1. The vector d = (d1, . . . , dn) ∈ C

n is an element of the set {diag (USXT −
V SWT ) :

(
U V
W X

)
∈ U(2n)} if and only if (1) and (2) hold.

2. The vector d = (d1, . . . , dn) ∈ C
n is an element of the set {diag (USXT −

V SWT ) : Z[1, . . . , 2n|1, . . . , 2n] =

(
U V
W X

)
, Z ∈ U(2n+1)} if and only if |d| ≺w s.

Proof. Direct computation shows that

∼
Dn (Sn,n) =



{diag (USXT − V SWT ) :

(
U V
W X

)
∈ U(2n)} if m = 2n,

{diag (USXT − V SWT ) : Z[1, . . . , 2n|1, . . . , 2n]

=

(
U V
W X

)
, Z ∈ U(2n + 1)} if m = 2n + 1.

Corollary 2.10. Let s = (s1, . . . , sn)T where s1 ≥ · · · ≥ sn ≥ 0. Let A ◦ B
denote the Hadamard product of A and B.

1. The vector d = (d1, . . . , dn)T ∈ C
n is an element of the set {(U ◦X−V ◦W )s :(

U V
W X

)
∈ U(2n)} if and only if (1) and (2) hold.

2. The vector d = (d1, . . . , dn)T ∈ C
n is an element of the set {(U ◦X−V ◦W )s :

Z[1, . . . , 2n|1, . . . , 2n] =

(
U V
W X

)
, Z ∈ U(2n + 1)} if and only if |d| ≺w s.

Proof. Direct computation shows that

∼
Dn (Sn,n) =



{(U ◦X − V ◦W )s :

(
U V
W X

)
∈ U(2n)} if m = 2n,

{(U ◦X − V ◦W )s : Z[1, . . . , 2n|1, . . . , 2n]

=

(
U V
W X

)
, Z ∈ U(2n + 1)} if m = 2n + 1.

Though convexity may fail as we see the complex symmetric case (Theorem 1 in
[16]), Thompson–Sing’s result, and the complex skew-symmetric case (Theorem 2.1),
if we consider the real parts of those sets, we have convexity. (Imaginary parts work,
too. Indeed, one can consider the projection of the sets onto eiθRn where θ ∈ R is
fixed and the results are valid.) See [11] and the proof of the following is omitted.

Theorem 2.11. Let A be an m×m complex skew-symmetric matrix with singular

values s1 ≥ s1 ≥ s2 ≥ s2 ≥ · · · ≥ sn ≥ sn ≥ 0. The set Re
∼
Dn(A) = {Re d : d ∈

∼
Dn(A)} is a convex set in R

n and x ∈ Re
∼
Dn(A) if and only if |x| ≺w s. Similar

characterization is also valid for the real part of the set
∼
Dp(A), 1 ≤ p < n.

Corollary 2.12. The projections of the sets in Corollaries 2.9 and 2.10 onto
R

n are completely characterized by |x| ≺w s.
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3. Inequalities for singular values of certain submatrices. In this sec-
tion, we establish some inequalities for the singular values of a real or complex skew-
symmetric matrices and its right-top submatrix. The following is an application of
Theorem 1 of [10].

Theorem 3.1. 1. Let

A =

(
F B
−BT G

)

be a 2n × 2n real skew-symmetric matrix, where F,G ∈ Rn×n. Let α1 ≥ α1 ≥ α2 ≥
α2 ≥ · · · ≥ αn ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn be the singular values of A and B,
respectively.

(a) Suppose that OTAO =

(
0 A1

−A1 0

)
where A1 = diag (α1, . . . , αn), for some

O ∈ SO(2n), or equivalently, the canonical form of A is


(
0 α1

−α1 0

)
⊕ · · · ⊕

(
0 αn

−αn 0

)
if [n/2] is even,(

0 α1

−α1 0

)
⊕ · · · ⊕

(
0 αn−1

−αn−1 0

)
⊕
(

0 −αn

−αn 0

)
if [n/2] is odd.

Then

k∑
i=1

βi ≤
k∑

i=1

αi, k = 1, . . . , n,

n−1∑
i=1

βi − βn ≤
n−1∑
i=1

αi − αn,

and, in addition, if detB < 0,

n∑
i=1

βi ≤
n−1∑
i=1

αi − αn.

(b) Suppose that OTAO =

(
0 A2

−A2 0

)
where A2 = diag (α1, . . . , αn−1,−αn),

for some O ∈ SO(2n), or equivalently, the canonical form of A is


(
0 α1

−α1 0

)
⊕ · · · ⊕

(
0 αn

−αn 0

)
if [n/2] is odd(

0 α1

−α1 0

)
⊕ · · · ⊕

(
0 αn−1

−αn−1 0

)
⊕
(

0 −αn

αn 0

)
if [n/2] is even.

Then

k∑
i=1

βi ≤
k∑

i=1

αi, k = 1, . . . , n,

n−1∑
i=1

βi − βn ≤
n−1∑
i=1

αi − αn,
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and, in addition, if detB > 0,

n∑
i=1

βi ≤
n−1∑
i=1

αi − αn.

2. Let

A =

(
F B
−BT G

)

be an (2n + 1) × (2n + 1) real skew-symmetric matrix, where F ∈ Rn×n and G ∈
R(n+1)×(n+1). Let α1 ≥ α1 ≥ α2 ≥ α2 ≥ · · · ≥ αn ≥ αn ≥ 0 and β1 ≥ β2 ≥ · · · ≥
βn ≥ 0 be the singular values of A and B, respectively. Then

∑k
i=1 βi ≤

∑k
i=1 αi,

k = 1, . . . , n.
Proof.
1. Suppose that m = 2n. (a) By Corollary 2 in [10], the set

{diag

(
U W
V X

)T (
0 A1

−A1 0

)(
U W
V X

)
[1, . . . , n|n + 1, . . . , 2n] :

(
U W
V X

)
∈ SO(2n)}

is the convex hull of the elements
∧

SG(n)α (see the notation in [10]) where α =

(α1, . . . , αn). Now under the hypothesis, A can be assumed to be

(
0 A1

−A1 0

)
.

Moreover, there exist U, V ∈ SO(n) such that UTBV = diag (β1, . . . , βn) is the
singular value decomposition of B if detB > 0. But if detB < 0, we have UTBV =
diag (β1, . . . , βn−1,−βn). Consider(

UTFU UTBV
−V TBTU V TGV

)
=

(
U 0
0 V

)T (
F B
−BT G

)(
U 0
0 V

)
.

Now (β1, . . . , βn) ∈
∧

SG(n)α if detB > 0 and (β1, . . . , βn−1,−βn) ∈
∧

SG(n)α if detB <
0. Then the result follows by using Theorem 4 in [10]. (b) Similar to the first case.

2. Use Corollary 1 and Theorem 4 in [10].
Theorem 3.2. 1. Let

A =

(
F B
−BT G

)

be a 2n × 2n complex skew-symmetric matrix, where F,G ∈ Cn×n. Let α1 ≥ α1 ≥
α2 ≥ α2 ≥ · · · ≥ αn ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn be the singular values of A and B,
respectively. Then

k∑
i=1

βi ≤
k∑

i=1

αi, k = 1, . . . , n,

n−1∑
i=1

βi − βn ≤
n−1∑
i=1

αi − αn.

2. Let

A =

(
F B
−BT G

)
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be an (2n + 1) × (2n + 1) complex skew-symmetric matrix, where F ∈ Cn×n and
G ∈ C(n+1)×(n+1). Let α1 ≥ α1 ≥ α2 ≥ α2 ≥ · · · ≥ αn ≥ αn ≥ 0 and β1 ≥ β2 ≥ · · · ≥
βn ≥ 0 be the singular values of A and B, respectively. Then

∑k
i=1 βi ≤

∑k
i=1 αi,

k = 1, . . . , n.
Proof. We only prove the first part of Theorem 3.2 and the proof of the second

part is similar. Suppose that the singular values of

A =

(
F B
−BT G

)

are s1, s1, s2, s2, . . . , sn, sn and the singular values of B are β1, β2, . . . , βn. Let UTBV =
diag (β1, . . . , βn) be the singular value decomposition of B. Then consider

(
UTFU UTBV
−V TBTU V TGV

)
=

(
U 0
0 V

)T (
F B
−BT G

)(
U 0
0 V

)
.

So by Theorem 2.1, (β1, β2, . . . , βn) ≺w (s1, s2, . . . , sn) and
∑n−1

i=1 βi−βn ≤
∑n−1

i=1 si−
sn.

Remark. Regarding Theorem 3.1 and 3.2, the inequalities
∑k

i=1 βi ≤
∑k

i=1 αi,
k = 1, . . . , n are well known. See [17] for related results. However, the inequalities∑n−1

i=1 βi − βn ≤
∑n−1

i=1 αi − αn and
∑n

i=1 βi ≤
∑n−1

i=1 αi − αn, are new.

4. Some discussions. The following corollary consists of some consequences of
Schur–Horn’s result, Theorem 1 of [10], Theorems 2.1 and 2.2, respectively.

Corollary 4.1. 1. Let A and C be n × n real symmetric matrices (Hermi-
tian matrices) with eigenvalues α1 ≥ · · · ≥ αn and γ1 ≥ · · · ≥ γn, respectively.
Then the set {trAU∗CU : U ∈ G}, where G = SO(n) (U(n)), is the interval
[
∑n

i=1 αiγn−i+1,
∑n

i=1 αiγi].
2. [12] Let A and C be m×m real skew-symmetric matrices with singular values

α1 ≥ α1 ≥ α2 ≥ α2 ≥ · · · ≥ αn ≥ αn and γ1 ≥ γ1 ≥ γ2 ≥ γ2 ≥ · · · ≥ γn ≥ γn,
respectively. (i) When m = 2n, let the canonical forms of A and C be(

0 α1

−α1 0

)
⊕ · · · ⊕

(
0 αn−1

−αn−1 0

)
⊕
(

0 α′
n

−α′
n 0

)

and (
0 γ1

−γ1 0

)
⊕ · · · ⊕

(
0 γn−1

−γn−1 0

)
⊕
(

0 γ′
n

−γ′
n 0

)
,

respectively. Here α′
n = ±αn and γ′

n = ±γn. Then the set {trAUTCU : U ∈ SO(m)}
is the interval [a, b] where a = −2(

∑n−1
i=1 αiγi + α′

nγ
′
n) and

b =

{
2(
∑n−1

i=1 αiγi + α′
nγ

′
n) if n is even,

2(
∑n−1

i=1 αiγi − α′
nγ

′
n) if n is odd.

(ii) When m = 2n + 1, the set {trAUTCU : U ∈ SO(m)} is the interval[
−2

n∑
i=1

αiγi, 2
n∑

i=1

αiγi

]
.
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3. [9] Let A and C be an m×m complex skew-symmetric matrices with singular
values α1 ≥ α1 ≥ α2 ≥ α2 ≥ · · · ≥ αn ≥ αn and γ1 ≥ γ1 ≥ γ2 ≥ γ2 ≥ · · · ≥ γn ≥
γn, respectively, where n = [m/2]. Then the congruence numerical range WA(C) =
{trAUTCU : U ∈ U(n)} is a circular disk of radius 2

∑
i=1 αiγi and centered at the

origin.
Proof. We only deal with the last part. The set WA(C) has circular symmetry and

the radius is obtained by Theorem 2.1 and 2.2. The set WA(C) can be reformulated
as

WA(C) =




{
tr

(
0 A
−A 0

)
UT

(
0 Γ
−Γ 0

)
U : U ∈ U(2n)

}
if m = 2n,

{
tr

[(
0 A
−A 0

)
⊕ 0

]
UT

[(
0 Γ
−Γ 0

)
⊕ 0

]
U : U ∈ U(2n + 1)

}

if m = 2n+1.

Here A = diag (α1, . . . , αn) and Γ = diag (γ1, . . . , γn). In other words, WA(C) =

{−2α · d : d ∈
∼
Dn (Γn,n)} where n = [m/2], α = (α1, . . . , αn), and

Γn,n =

(
0 Γ
−Γ 0

)
.

The origin is contained in WA(C). It is because the zero vector is an element of
∼
Dn (Γn,n) by Theorem 2.1 and 2.2.

Remark. 1. The upper bound
∑n

i=1 αiγi in the first part was obtained by Fan
[2]. Also see [13, 4].

2. The intervals given in the first and second part of Corollary 4.1 are useful for
plotting generalized numerical ranges [12, 5]

3. Regarding the last part of the above result, Choi et al. [1] used the simply-
connectedness of SU(n) with a homotopic argument to prove that the origin is con-
tained in WA(C) even if A and C are complex matrices.

Now if K ⊂ R
p, we define T (K) to be the torus generated by K, i.e.,

T (K) = {(eiθ1d1, . . . , e
iθndn) : (d1, . . . , dn) ∈ K, θ1, . . . , θn ∈ R}.

Let A be an m×m complex skew-symmetric matrix. Then
∼
Dp(A) =

∼
Dp(Sn,n) =

T (Dp(Sn,n)) in view of Theorem 1 of [10], Theorems 2.1 and 2.2. In other words, if
we denote by D(n) ⊂ U(n) the subgroup of diagonal matrices, then

∼
Dp(Sn,n) ≡ {diag (UTSU)[1, . . . , p|n + 1, . . . , n + p] : U ∈ U(m)}

= {diag ((UD)TS(UD))[1, . . . , p|n + 1, . . . , n + p] : U ∈ SO(m),

D = D1 ⊕D1(⊕1), D1 ∈ D(n)}.
Regarding Thompson–Sing’s result, we have the same phenomenon [14, 11] (see

the description of the set {diag (USV ) : U, V ∈ SO(n)} [14] and Theorem 1 of [10]).
So we conclude that

{diag (USV ) : U, V ∈ U(n)} = T ({diag (USV ) : U, V ∈ SO(n)})
= {diag (DUSV ) : U, V ∈ SO(n), D ∈ D(n)}
= {diag (DUSV ) : U, V ∈ SO(n), D ∈ D(n)}
= {diag (D1USD2V ) : U, V ∈ SO(n), D1, D2 ∈ D(n)}.
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Hence, the subset [D(n) ⊕ D(n)(⊕1)]SO(m) ⊂ U(m) generates
∼
Dn (Sn,n), n =

[m/2] and D(n)SO(n) ⊂ U(n) generates {diag (USV ) : U, V ∈ U(n)}.
On the other hand, no torus relationship exists for the real and complex symmetric

cases, i.e., {diag (UTSU) : U ∈ U(n)} 6= T ({diag (UTSU) : U ∈ SO(n)}) in view of
Theorem 1 of [16] and Schur–Horn’s result. See the corollary in [16] for unitary
symmetric matrices.

The following results can be viewed as corollaries of Schur–Horn’s result. The
first part is for the diagonal elements and singular values of Hermitian (real symmet-
ric) matrices. The second part is particularly for the symmetric special orthogonal

matrices. We denote by
∧
B the convex hull of the set B and Σn, the symmetric group

on {1, . . . , n}.
Corollary 4.2. 1. There exists a Hermitian (real symmetric) matrix with

prescribed diagonal element d = (d1, . . . , dn) ∈ R
n and singular values s1 ≥ · · · ≥ sn

if and only if d ≺ (±s1, . . . ,±sn) for some choice of signs. So the set of diagonal
elements of a Hermitan (real symmetric) matrix with prescribed singular values s’s is

∪0≤k≤n

∧
Σns(k) where s(k) = (−s1, . . . ,−sk, sk+1, . . . , sn).

2. There exists a symmetric special orthogonal matrix with prescribed diagonal
element d = (d1, . . . , dn) if and only if d ≺ (±1, . . . ,±1) for some choice of signs
such that the number of negative terms is even. So the set of diagonal elements of

a symmetric special orthogonal matrix is ∪0≤i≤[n/2]

∧
Σne(2k) where e(2k) is a vector

whose first 2k entries are −1 and the remaining entries are 1, 0 ≤ k ≤ [n/2].

Proof. (1) A Hermitan (real symmetric) matrix A has the spectral decomposition
U∗AU = diag (λ1, . . . , λn) where λ’s are real. Evidently, λ’s are ±s’s so by Schur–
Horn’s result, d ≺ λ = (±s1, . . . ,±sn), for some choice of signs and vice versa. (2) The
singular values of a symmetric special orthogonal matrix are 1’s and the eigenvalues
are ±1 where number of −1 terms is even.

Remark. The set ∪0≤k≤n

∧
Σns(k) where s(k) = (−s1, . . . ,−sk, sk+1, . . . , sn) is

different fromWRs. The former one is not convex in general but the later one is always

convex. When n = 2, ∪0≤k≤n

∧
Σns(k) is the union of the line segments determined by

the order pairs (s1, s2), (s2, s1); (−s1, s2), (s2,−s1); (s1,−s2), (−s2, s1); (−s1,−s2),
(−s2,−s1). But the set WRs is the convex hull of all the points. When n = 3,

∪0≤k≤n

∧
Σns(k) is the union of eight hexagons and WRs is the convex hull of all those

hexagons. In general, ∪0≤k≤n

∧
Σns(k)⊂ WRs and the convex hull of ∪0≤k≤nΣns(k) is

WRs since WRs is
∧

G(n)s.

Finally, we state the result for skew-symmetric unitary matrices and skew-symmetric
special orthogonal matrices. I hope that physicists can find applications of the results
as they did for symmetric unitary matrices regarding S-matrix (symmetric unitary),
which describes a system of two-body reactions Ai +Bi → Aj +Bj , i, j = 1, . . . , n for
fixed energy and angular momentum [18].

Corollary 4.3. The partial diagonal elements a = (a12, a34, . . . , a2n−1,2n) of
an m×m (n = [m/2]) skew-symmetric unitary matrix A are completely described by,
after rearranging the entries of a in descending order with respect to modulus,

1. when m = 2n, max1≤i≤n |a2i−1,2i| ≤ 1, and
∑n−1

i=1 |a2i−1,2i|−|a2n−1,n| ≤ n−2.

2. when m = 2n + 1, max1≤i≤n |a2i−1,2i| ≤ 1.

Proof. The singular values of a unitary matrix are 1’s. Then apply Theorems 2.1
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and 2.2. The inequalities
∑k

i=1 |a2i−1,2i| ≤ k, k = 1, . . . , n, amount to |a12| ≤ 1, after
rearranging the entries of a in descending order with respect to modulus.

Corollary 4.4. The partial diagonal elements a = (a12, a34, . . . , a2n−1,2n) of
an m × m (n = [m/2]) skew-symmetric special orthogonal matrix A are completely
described by, after rearranging the entries of a in descending order with respect to
absolute value,

1. when m = 2n, and

(a) if the canonical form of A is

(
0 1
−1 0

)
⊕ · · · ⊕

(
0 1
−1 0

)
,

max
1≤i≤n

|a2i−1,2i| ≤ 1,

n−1∑
i=1

|a2i−1,2i| − |a2n−1,2n| ≤ n− 2,

and, in addition, if the number of negative terms among a is odd,

n∑
i=1

|a2i−1,2i| ≤ n− 2.

(b) if the canonical form of A is

(
0 1
−1 0

)
⊕ · · · ⊕

(
0 1
−1 0

)
⊕
(

0 −1
1 0

)
,

max
1≤i≤n

|a2i−1,2i| ≤ 1,

n−1∑
i=1

|a2i−1,2i| − |a2n−1,2n| ≤ n− 2,

and, in addition, if the number of negative terms among a is even,

n∑
i=1

|a2i−1,2i| ≤ n− 2.

2. when m = 2n + 1, max1≤i≤n |a2i−1,2i| ≤ 1.

Proof. The singular values of an orthogonal matrix are 1’s. Then apply Theorem
1 of [10]. The inequalities

∑k
i=1 |a2i−1,2i| ≤ k, k = 1, . . . , n, amount to |a12| ≤ 1, after

rearranging the entries of a in descending order.

Corollary 4.5. The partial diagonal elements a = (a12, a34, . . . , a2n−1,2n) of an
m×m (n = [m/2]) skew-symmetric orthogonal matrix A are completely described by,
after rearranging the entries of a in descending order with respect to absolute value,

1. when m = 2n,

max
1≤i≤n

|a2i−1,2i| ≤ 1,

n−1∑
i=1

|a2i−1,2i| − |a2n−1,2n| ≤ n− 2.

2. when m = 2n + 1, max1≤i≤n |a2i−1,2i| ≤ 1.
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5. A list. In [15] Thompson listed some current results, in terms of Hadamard
product, on the diagonal elements, eigenvalues, and singular values of various matrices.
We want to enlarge the list so that readers can browse the results. We will use the
notation |d| a s to denote the relationship given by 1 and 2, |d| / s for (1), (2), and
(3) in [16] and d� s for (15), (16), and (17) in [10]. Whenever the real part is seen,
imaginary parts work, too. One can consider the projection of the underlying set onto
eiθRn where θ ∈ R is fixed and the corresponding result is also valid.

1. When is x = Sy (x, y ∈ R
n) with S doubly stochastic? (x ≺ y, Hardy–

Littlewood–Polya).
2. When is x = Sy (x, y ∈ R

n) S unistochastic (S = U ◦ U , U unitary) or
orthostochastic (S = O ◦O, O orthogonal)? (x ≺ y, Schur–Horn).1

3. When is x = Sy with S ∈ WC, (S ∈ WR and x, y ∈ R
n) absolutely sub-

stochastic? (|x| ≺w |y|, Thompson, 1977)
4. When is x = Sy with S = U ◦ V where U, V are unitary? (|x| a |y|,

Thompson–Sing, 1977)
5. When is x = ReSy (x, y ∈ R

n) with S = U ◦ V where U, V are unitary?
(|x| ≺w |y|, Tam)

6. When is x = Sy (x, y ∈ R
n) with S = U◦V where U, V are special orthogonal?

(x � y, i.e., we have inequality (17) in [10] if the total number of negative
terms among x and y is odd, Thompson 1977 when y ∈ R

n
+, [10] for arbitrary

y ∈ R
n)

7. When is x = Sy (x, y ∈ R
n) ith S = U ◦ V where U, V are orthogonal?

(|x| a |y|, Thompson 1977 when y ∈ R
n
+, [10] for arbitrary y ∈ R

n)
8. When is x = Sy with S = U ◦ U where U is unitary? (|x| / |y|, Thompson

1979)
9. When is x = ReSy with S = U ◦ U where U is unitary? (|x| ≺w |y|, [11])

10. When is x = Sy with S = U ◦ X − V ◦ W where

(
U V
W X

)
is unitary?

(|x| a |y|)
11. When is x = ReSy (x, y ∈ R

n) with S = U ◦X − V ◦W where

(
U V
W X

)
is unitary? (|x| ≺w |y|)

12. When is x = Sy (x, y ∈ R
n) with S = U ◦ X − V ◦W where

(
U V
W X

)
is

special orthogonal? (x� y [10])

13. When is x = Sy (x, y ∈ R
n) with S = U ◦ X − V ◦W where

(
U V
W X

)
is

orthogonal? (|x| a |y| [10])
14. When is x = Sy or x = ReSy (x, y ∈ R

n) with S = U ◦ X − V ◦W where
Z is unitary (special unitary, and x, y ∈ R

n while Z is orthogonal or special

orthogonal) with Z[1, . . . , 2n|1, . . . , 2n] =

(
U V
W X

)
? (|x| ≺w |y|)
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Abstract. We introduce an economical Gram–Schmidt orthogonalization on the extended
Krylov subspace originated by actions of a symmetric matrix and its inverse. An error bound for
a family of problems arising from the elliptic method of lines is derived. The bound shows that,
for the same approximation quality, the diagonal variant of the extended subspaces requires about
the square root of the dimension of the standard Krylov subspaces using only positive or negative
matrix powers. An example of an application to the solution of a 2.5-D elliptic problem attests to
the computational efficiency of the method for large-scale problems.
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1. Introduction. Let us consider computation of the vector

u = f(A)ϕ,(1.1)

where A is a real symmetric n × n matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, ϕ
is a nonzero vector from Rn, and f is a function analytic on [λ1, λn]. There exists a
method to approximate u by an element of a Krylov subspace

Km(A,ϕ) = span
{
ϕ,Aϕ, . . . , Am−1ϕ

ª
,

which is called the Spectral Lanczos Decomposition Method (SLDM). This method
involves execution of the m steps of the Lanczos algorithm [20, ch. 13] with A and
ϕ, providing the Lanczos vectors q1, . . . , qm and tridiagonal symmetric m×m matrix
H, and takes as an approximant to u the vector

um = ‖ϕ‖(q1, . . . , qm)f(H)e
(m)
1 ,

with e
(m)
1 the first unit m-vector. This technique appeared in the literature from the

mid-eighties [15, 17, 19, 28, 3, 8, 10], and it can now be viewed as standard. It is
sometimes possible to calculate Krylov subspaces, originated by A−1. The simplest
example is the case of a 1-D elliptic operator A (see [17]). Further, if A is a finite
difference approximation of a 2-D elliptic operator (e.g., from the 2.5-D direct cur-
rent problem), LU decomposition of A requires O

¡
n1.5

)
arithmetical operations (that

should be done only once), while the computation of each action of A−1 on a vector
takes only O(n logn) operations by the nested dissection method [7]; it is not much
larger than O(n) operations required for the computation of action of A. For some
important problems (Maxwell’s system, acoustic equations) A can be expressed as
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the product of diagonal and Laplace operators, so A−1 can be applied by fast Fourier
transform (FFT) for O(n logn) operations even without explicit inversion.

This observation has led us to use of “extended” Krylov subspaces

Kk,m = Kk,m(A,ϕ) = span
{
A−k+1ϕ, . . . , A−1ϕ,ϕ, . . . , Am−1ϕ

ª
,

m ≥ 1, k ≥ 1, dimKk,m ≤ k + m− 1.

Evidently, Kk,m(A,ϕ) = Kk+m−1(A,A−k+1ϕ) can be treated as a usual Krylov sub-
space, but with another starting vector — A−k+1ϕ. The term “extended Krylov
subspace” re°ects the fact that we do not wish to calculate A−k+1ϕ (it would be
numerically unstable), but instead are interested in developing a special procedure to
obtain an orthonormal basis of Kk,m and to solve the corresponding Ritz problem.
This procedure can be interpreted as “extending” Km with negative powers of A and
will be called the Extended Krylov Subspace Method (EKSM).

The Extended Krylov Subspaces can be considered a special case of the Rational
Krylov Subspaces with multiple shifts, suggested by [23, 24, 25] for the nonsymmet-
ric eigenproblems. However, Kk,m will allow us to construct a short orthogonaliza-
tion recursion with up to four terms, compared with the full Gram–Schmidt ortho-
gonalization considered by Ruhe. An interesting scheme suggested by [9] for applica-
tion to control theory reduces the number of computed inner products compared to
[25], but it uses bi-orthogonalization even for the symmetric problems, i.e., it looses
the optimality of the Galerkin method and does not allow one to make a priori error
estimates.

We consider problems arising from a solution of elliptic equations by the method
of lines. This method results in boundary value problems for the equation

Aw − d2w

dθ2
= g(θ)ϕ.(1.2)

The solution of (1.2) can be presented as w(θ) = f(A)ϕ, with f(x) =
√
x, or f(x) =

e−θ
√
x, or a rational function of these two functions. Starting from [27], SLDM was

used for solving (1.2) by many applied researchers [13, 22, 14, 1, 29]. The error bound
given in [4] shows that SLDM applied to (1.2) has the same logarithmical rate of
convergence as conjugate gradients (CG) for linear systems with the matrix A.

In section 2 we introduce functional classes to handle and establish some sufficient
conditions for a function to belong to the classes. We also present a few examples.

In section 3 we investigate approximating properties of Km,m.
In section 4 we prove that for functions f from the family being considered the Ex-

tended Krylov Subspace Method using Km,m takes the number of steps approximately
equal to the square root of SLDM’s one to converge.

We derive in section 5 an economical Gram–Schmidt orthogonalization on Kk,m.
Its arithmetical and storage requirements (of course, not including the additional cost
of matrix factorization and action of A−1) do not exceed the ones of m + k steps of
the standard CG [12, section 10.2].

In section 6 we describe the EKSM matrix-functional formula and ways of its
realization.

Finally, we present in section 7 an example of an application to a 2.5-dimensional
elliptical problem arising in the context of geophysical electrical tomography. A re-
duction of one order in computational time and two orders in number of iterations
compared to the SLDM is observed. Our experiments also indicate that the EKSM
clearly benefits from the short orthogonalization recurrence, which is the main new
feature compared to the Rational Krylov Subspace algorithm.
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2. Classes of functions and examples. In this paper we shall apply EKSM
to functions of two classes, one of which contains the other.

We say that a function f , defined on ]0,+∞[, belongs to class A, if it is presentable
in the form

f(x) =

0∫
−∞

(x− λ)−1 dγ(λ), x > 0,(2.1)

where γ is a positive measure on ] −∞, 0] such that −λ−1 · γ is a bounded measure
on ]−∞,−1],1 i.e.,

−1∫
−∞

¡−λ−1
)
dγ(λ) < +∞.(2.2)

We define class B as the closure of class A with respect to taking linear combi-
nations and multiplying by monomials xl with l ∈ Z.

In accordance with (2.1), we shall assume that λ1 > 0, i.e., the matrix A is
positive definite.

A trivial example of a function from class A is x−1, taking form (2.1) with γ the
unit measure concentrated at 0 (δ-function). As a consequence, all the monomials xl

(l ∈ Z) belong to class B.
We shall see further (in the proof of Theorem 1) that any function from class A

(and, therefore, class B) is analytic in the set C\]−∞, 0]. Now we shall establish two
sufficient conditions for belonging to class B.

Proposition 1. Let a function f , real-valued for positive real arguments, be
analytic in C\]−∞, 0] and continuous at the upper and lower edges of the cut ]−∞, 0]
with a possible exception of the point 0. Let f also satisfy the conditions

sup
|ζ|=R, ζ 6=−R

|f(ζ)| = o
¡
R−1

)
as R→ +0,(2.3)

sup
|ζ|=R, ζ 6=−R

|f(ζ)| = o(1) as R→ +∞,(2.4)

0∫
−1

|=f(λ + 0i)|dλ < +∞,(2.5)

−1∫
−∞

¡−λ−1
) |=f(λ + 0i)|dλ < +∞.(2.6)

Then f belongs to class B.
Proof. Denote by ΓR the circumference of radius R, centered at 0 and oriented

in the positive direction. For 0 < r < |z| < R we obtain, owing to Cauchy’s formula

f(z) =
1

2πi

∫
ΓR

∗ f(ζ)

ζ − z
dζ − 1

2πi

∫
Γr

∗ f(ζ)

ζ − z
dζ +

1

π

−r∫
−R

(λ− z)−1=f(λ + 0i) dλ(2.7)

1We could have used any negative number instead of ¡1 here.
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(an asterisk means here that the point −ρ at a contour Γρ is taken twice, allowing the
function to attain different values at the two edges of the cut). Conditions (2.3) and
(2.4) imply that the integrals on Γr and ΓR in (2.7) vanish as r → +0 and R→ +∞,
respectively. So, we get an improper integral representation

f(z) =
1

π

0∫
−∞

(λ− z)−1=f(λ + 0i) dλ.

Due to (2.5), the function π−1=f(λ+0i) induces a continuous measure γ on ]−∞, 0].
Set γ = γ+ − γ− with γ+ = max(γ, 0) and γ− = max(−γ, 0). By virtue of (2.6), the
restriction of γ+ and γ− on ]−∞,−1] are bounded measures. It remains to note that

f(z) =

0∫
−∞

(λ− z)−1dγ+(λ)−
0∫

−∞
(λ− z)−1dγ−(λ)

and the measures γ+ and γ− are positive.
Proposition 2. If

f(z) =

∞∑
k=1

rk(z − zk)
−1,

with rk, zk ∈ R, zk < 0, zk → −∞ as k → +∞ and

∞∑
k=1

∣∣rkz−1
k

∣∣ < +∞,(2.8)

then the function f belongs to class B.
Proof. Evidently, the measure

γ(λ) =

∞∑
k=1

rkδ(λ− zk)

is correctly defined and satisfies (2.1). Condition (2.8) guarantees that γ’s positive
and negative components γ+ and γ− obey (2.2).

List a few nontrivial examples of functions from class B.
If w(θ) = f(A)ϕ is the solution of (1.2) for a Fourier-transformable function g

and homogeneous boundary conditions, then function f belongs to class B. Here
we demonstrate specific examples arising from a solution of elliptic equations by the
method of lines.

Example 1. Let us consider

w(θ) = exp
(
−θ
√
A
)
ϕ,(2.9)

which is the solution of the boundary value problem w(0) = ϕ, w(+∞) = 0 for
equation (1.2) with g = 0. Then, the corresponding function can be presented as

f(x) = e−θ
√
x = xf̂(x) + 1, f̂(x) =

e−θ
√
x − 1

x
=

0∫
−∞

(x− λ)−1 sin (θ
√−λ)dλ

πλ
.
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Example 2. A more familiar case is the matrix square root (see [2, section 2.2])

f(x) =
√
x = xf̂(x), f̂(x) = x−1/2 =

0∫
−∞

(x− λ)−1 dλ

π
√−λ.

This function arises from the Dirichlet to Neumann mapping problem for (2.9) at
θ = 0.

In Examples 1 and 2 the functions f̂ and, therefore, f belong to class B by virtue
of Proposition 1. The generating measures are continuous.

Example 3.

f(x) = 0.5
[
e−θ

√
x + e−(2π−θ)

√
x
] [√

x
(
1− e−2π

√
x
)]−1

(2.10)

=
1

2π
x−1 +

1

π

∞∑
k=1

¡
x + k2

)−1
cos kθ.

This function produces the periodical solution of (1.2) with

g =
∞∑

k=−∞
δ(θ − 2πk)ϕ;

it is introduced for the 2.5-D direct current problem in the cylindrical coordinate
system. Proposition 2 is applicable to the series in (2.10), and the generating measure
is discrete.

3. Approximating properties of diagonal extended Krylov subspaces.
To estimate the error of any method based on Kk,m, we have first to examine its
approximating properties. The following two theorems display superior approximating
properties of Km,m over the standard Krylov subspace Kj for matrix functions from
classes A and B.

We shall denote by Φ the inverse Zhukovski function Φ(z) = z +
√
z2 − 1.

Theorem 3. The error estimate2

min
p(X)∈R[X], deg p≤2m

°°f(X)−X−mp(X)
°°
C[λ1,λn]

<∼ m2Φ

(√
λn +

√
λ1√

λn −
√
λ1

)−m

(3.1)

is valid for approximation of any function f from class A.
Proof. Formula (2.1) defines a function f(z) analytic for z ∈ C\]−∞, 0]. Really,

Markov’s function [16, ch. 2, section 6]

0∫
−1

(z − λ)−1 dγ(λ)

is analytic in C\] − 1, 0]. On the other hand, for z, belonging to any compactum in
C\]−∞, 0], ∣∣∣∣∣∣

b∫
a

(z − λ)−1 dγ(λ)

∣∣∣∣∣∣ ≤
b∫

a

∣∣∣ z
λ
− 1

∣∣∣ ¡−λ−1
)
dγ(λ)

2R[X] denotes the set of polynomials with real coefficients, deg denotes the degree of a polyno-
mial, and ‖f‖C[λ1,λn] denotes max[λ1,λn] |f | for a continuous function f .
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<∼
b∫

a

¡−λ−1
)
dγ(λ)→ 0 as a, b→ −∞, a < b < −1,

due to condition (2.2) (the symbol <∼ denotes the same as O). This implies that

the improper integral

−1∫
−∞

(z − λ)−1 dγ(λ)

uniformly converges on a compactum and, therefore, is analytic in C\]−∞, 0].
Put

a =
√
λ1λn, t =

√
λn +

√
λ1√

λn −
√
λ1

,

f1(z) =

−a∫
−∞

(z − λ)−1 dγ(λ), f2(z) =

0∫
−a

(z − λ)−1 dγ(λ).

Evidently, f = f1 +f2. We shall separately estimate the error of approximating f1(x)
with an mth degree polynomial in x and f2(x) with an mth degree polynomial in x−1.
Let us denote by ck(g) the kth Fourier–Chebyshev coefficient of a function g on the
interval [λ1, λn].

Begin with f1. As z → −a, <z > −a, we have, by virtue of (2.2),

|f1(z)| ≤
−a∫

−a−1

|z − λ|−1 dγ(λ) +

−a−1∫
−∞

(
1 +

|z|
|z − λ|

) ∣∣λ−1
∣∣ dγ(λ)(3.2)

≤ |z + a|−1γ[−a− 1,−a] + (1 + |z|)
−a−1∫
−∞

∣∣λ−1
∣∣ dγ(λ) <∼ |z + a|−1.

Hence, the function (z+a)2f1(z) is continuous on the ellipse in the complex plane with
foci λ1, λn, containing the point −a, and analytic inside the ellipse. Theorem 8.13 in
[21]3 yields the estimate

ck
[
(z + a)2f1(z)

]
<∼ Φ(t)−k.(3.3)

Theorem 10.6 (formula (39)) in [21] gives the inequality

ck
[
(z + a)−2

]
<∼ kΦ(t)−k.(3.4)

3Let ER be an ellipse with foci ±1 and the sum of semi-axes R. If a function f is analytical in
the open set, enclosed by the ellipse ER, and is bounded on the ellipse so that

|f(z)| ≤ MR,

then the Chebyshev coefficients ak(f) satisfy the inequality

|ak(f)| ≤ 2MRR−k, k = 0, 1, . . . .
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Now, using Theorem 9.4 (formula (33)) in [21], devoted to the Chebyshev series of
the product of two functions, we derive, from (3.3) and (3.4),

ck(f1) = ck
{
(z + a)−2

[
(z + a)2f1

]ª
<∼ k2Φ(t)−k,

whence

min
p(X)∈R[X], deg p≤m

‖f1 − p‖C[λ1,λn]
<∼ m2Φ(t)−m.(3.5)

Turn to f2. Make the change of variables y = a2x−1, ψ = a2λ−1, and define the
measure µ on [−∞,−a] by

µ(S) = γ
¡
a2S−1

)
, S ⊆ [−∞,−a] is an interval.

We have

f2(x) = f2

¡
a2y−1

)
= a−2y

−a∫
−∞

(−ψ)(y − ψ)−1 dµ(ψ),

and the fact that µ[−∞,−a] = γ[−a, 0] < +∞ implies that the function f2

¡
a2z−1

)
is analytical in C\]−∞,−a].

Note that [a2λ−1
n , a2λ−1

1 ] = [λ1, λn]. As z → −a, <z > −a, we get

∣∣f2

¡
a2z−1

)∣∣ <∼
−a∫

−∞
|ψ(z − ψ)−1| dµ(ψ)

<∼
−a∫

−a−1

|z − ψ|−1 dµ(ψ) +

−a−1∫
−∞

dµ(ψ) <∼ |z + a|−1.

Analogously to the derivation of (3.5) from (3.2), this gives, for f2,

min
q(Y )∈R[Y ], deg q≤m

°°f2

¡
a2Y −1

)− q(Y )
°°
C[λ1,λn]

<∼ m2Φ(t)−m.(3.6)

Combining (3.5) and (3.6), we obtain (3.1).

Theorem 4. Estimate (3.1) is also valid for any function from class B.
Proof. We use the induction by the minimal length of constructing a function f ,

belonging to class B, according to the definition of class B.

If f belongs to class A, then f satisfies (3.1) due to Theorem 1.

If f is a linear combination of functions f1 and f2, both satisfying (3.1), then the
linear combination of rational functions, providing the good estimate for f1 and f2,
gives the desirable estimate for f .

Finally, suppose that l ∈ Z and

°°f(X)−X−mpm(X)
°°
C[λ1,λn]

<∼ m2Φ (t)
−m

,(3.7)
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with t the same as in the proof of Theorem 1, pm ∈ R[X], and deg pm ≤ 2m. If l ≥ 0,
we have, for m > 2l,

min
q(X)∈R[X], deg q≤2m

°°X lf(X)−X−mq(X)
°°
C[λ1,λn]

≤ °°X lf(X)−X−m[X3lpm−2l(X)]
°°
C[λ1,λn]

≤ λl
n

°°°f(X)−X−(m−2l)pm−2l(X)
°°°
C[λ1,λn]

<∼ (m− 2l)2Φ (t)
−m+2l <∼ m2Φ (t)

−m

owing to (3.7) and the inequality deg[X3lpm−2l(X)] ≤ 3l + 2(m − 2l) ≤ 2m. Analo-
gously, in the case l < 0 we obtain, for m > −l,

min
q(X)∈R[X], deg q≤2m

°°X lf(X)−X−mq(X)
°°
C[λ1,λn]

≤ °°X lf(X)−X−m[pm+l(X)]
°°
C[λ1,λn]

≤ λl
1

°°f(X)−X−m−l[pm+l(X)]
°°
C[λ1,λn]

<∼ (m + l)2Φ (t)
−m−l <∼ m2Φ (t)

−m
.

Anyway, estimate (3.1) holds.

4. EKSM solution and an EKSM error estimate. Let W be the n× (k +
m − 1) matrix whose columns form an orthonormal basis of Kk,m, and let ϕ = Ws
with s ∈ Rk+m−1. Introduce the (k +m− 1)× (k +m− 1) Ritz matrix R for A and
W : R = W ∗AW . We shall define the EKSM’s approximant for (1.1) from Kk,m as

uk,m = Wf(R)s.(4.1)

It is easily seen that, in exact arithmetic, vector (4.1) is independent of a particular
choice of the basis W .

Now, we shall investigate the quality of approximate solution (4.1).

Lemma 5. If g(X) = X−k+1p(X), where p(X) ∈ R[X], deg p ≤ k + m− 2, then

g(A)ϕ = Wg(R)s,

i.e., EKSM is exact for such a rational function g.

Proof. We can reckon that the columns of W are the k + m− 1 Lanczos vectors
w1, w2, . . . of the Lanczos process with the matrix A and the vector A−k+1ϕ. With
this interpretation, we have

ϕ =
°°A−k+1ϕ

°°Ak−1w1.(4.2)

We shall twice use the exactness of the k +m− 1 steps of SLDM with respect to
a polynomial of degree ≤ k + m− 2 (see [26]).

It follows from the definition of s and (4.2) that

s = W ∗ϕ =
°°A−k+1ϕ

°°W ∗Ak−1w1(4.3)

=
°°A−k+1ϕ

°°W ∗WRk−1e
(k+m−1)
1 =

°°A−k+1ϕ
°°Rk−1e

(k+m−1)
1 .
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Finally, obtain, with use of (4.3),

g(A)ϕ = p(A)
¡
A−k+1ϕ

)
=

°°A−k+1ϕ
°°Wp(R)e

(k+m−1)
1

=
°°A−k+1ϕ

°°Wg(R)Rk−1e
(k+m−1)
1 = Wg(R)s.

Theorem 6. Let a function f belong to class B, and let k = m. Then the error
estimate

‖f(A)ϕ−Wf(R)s‖ <∼ m2Φ


1 +

√
λ1

λn

1−
√

λ1

λn




−m

holds for “diagonal” approximants in EKSM.
Proof. Put g(X) = X−m+1p(X) with p(X) ∈ R[X], deg p ≤ 2m − 2. Using

Lemma 1 and the fact that the Ritz values lie on [λ1, λn], we deduce

‖f(A)ϕ−Wf(R)s‖ ≤ ‖(f − g)(A)ϕ‖+ ‖W (f − g)(R)s‖ <∼ ‖f − g‖C[λ1,λn].

Owing to Theorem 2, it only remains to use (3.1).
For small positive x we can use the estimate Φ (1 + x)

−m ≈ exp
¡−m√2x

)
, so for

large values of the condition number λn/λ1, Theorem 3 yields

‖f(A)ϕ−Wf(R)s‖ ∼= O

[
exp

(
−2m 4

√
λ1

λn

)]
.(4.4)

For comparison, for a large condition number approximation on KJ(A,ϕ) (SLDM)
[4, Theorem 3] converges as

∼= O


Φ

(
1 + λ1

λn

1− λ1

λn

)−J

 ∼= O

[
exp

(
−2J

√
λ1

λn

)]
.(4.5)

This estimate can be easily extended to approximations on KJ(A−1, ϕ). Comparing
(4.4) and (4.5), we conclude that, to get a fixed approximation quality in EKSM and
SLDM, one has to take m � √J .

5. The extended Lanczos recurrence. First, we shall derive an economical
procedure for computing an orthonormal basis of Kk,m.

1◦. Let us perform the first k steps of the Lanczos recurrence with B = A−1

and ϕ [20]. We shall denote by Q the obtained n × k matrix of Lanczos vectors
Q = (q1, . . . , qk) and by H the k × k tridiagonal symmetric Ritz matrix

H =




α1 β1 0
β1 α2 β2

. . .

0 βk−1 αk


 .

They are related by the standard matrix formulae [20, section 13.1]

BQ−QH = re
(k)∗
k , Q∗Q = I, r = βkqk+1.(5.1)
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2◦. Let us obtain the vector v1 from the formula

b
(1)
0 v1 = Aq1 −

k∑
i=1

ciqi,(5.2)

where the coefficients ci are selected to make v1 orthogonal to qi, i = 1, . . . , k, and

b
(1)
0 > 0 is determined by the condition ‖v1‖ = 1. Analogously, obtain the vector v2

from

b1v2 = Av1 − a1v1 −
k∑

i=1

b
(i)
0 qi,(5.3)

where the coefficients b
(i)
0 and a1 are selected to make v2 orthogonal to qi, i = 1, . . . , k,

and v1, respectively. Formulae (5.2) and (5.3) are special cases of the rational Krylov
subspaces (RKS) recurrence ([25, p. 286]), which relates all of the previously computed
orthonormal vectors. However, we will show how to realize (5.2) and (5.3) without
keeping the whole matrix Q in memory.

3◦. Suppose that we have constructed an orthonormal basis (q1, . . . , qk, v1, . . . , vi)
for Kk,i+1, i ≥ 2. If w ∈ Kk,i−1, then 〈Avi, w〉 = 〈vi, Aw〉 = 0, because Aw ∈
Kk−1,i ⊆ Kk,i and vi⊥Kk,i. So, we have arrived at a three-term Gram–Schmidt
recurrence similar to the standard Lanczos algorithm

bivi+1 = Avi − aivi − bi−1vi−1, 2 ≤ i ≤ m− 1.(5.4)

The desired orthonormal basis of Kk,m has been constructed.
Define the n × (k + m − 1) matrix W = (q1 . . . qk v1 . . . vm−1). By construction,

W ∗W = I. Let R = W ∗AW be the Ritz matrix. In block form,

R =

(
G D
D∗ T

)
,

where G is, generally speaking, a full k×k matrix, and it can be seen from (5.3)–(5.4)
that T is an (m− 1)× (m− 1) tridiagonal symmetric matrix

T =




a1 b1 0
b1 a2 b2

. . .

0 bm−2 am−1


 ,

and D is an (m− 1)× k matrix of rank 1 with only the first nonzero column

D =
(
b
(1)
0 . . . b

(k)
0

)∗
e
(m−1)∗
1 .

Now we shall deduce an expression for the submatrix G = Q∗AQ. In a term ei,
the superscript (k) will be assumed on default.

From (5.1) we have

AQ = QH−1 −Are∗kH
−1(5.5)

and

G = Q∗AQ = H−1 −Q∗Are∗kH
−1 = H−1 − (AQ)∗re∗kH

−1.(5.6)



EXTENDED KRYLOV APPROXIMATION OF MATRIX FUNCTIONS 765

Further, substituting (5.5) in (5.6) and using orthogonality of r and qi, i = 1, . . . ,m,
we get

G = H−1 − ¡
QH−1

)∗
re∗kH

−1 +
¡
Are∗kH

−1
)∗

re∗kH
−1(5.7)

= H−1 +
¡
Are∗kH

−1
)∗

re∗kH
−1 = H−1 + (r∗Ar)

¡
H−1ek

) ¡
H−1ek

)∗
.

So, we have arrived at a formula for G that requires computing only one inner
product r∗Ar.

We promised to rewrite (5.2)–(5.3) in a form more convenient for computation.
With use of (5.5) and (5.7), deduce

b
(1)
0 v1 = AQe1 −QGe1 = QH−1e1 −Are∗kH

−1e1 −QGe1(5.8)

= QH−1e1 −Are∗kH
−1e1 −Q

[
H−1 + (r∗Ar)

¡
H−1ek

) ¡
H−1ek

)∗]
e1

= −e∗kH−1e1

[
Ar + (r∗Ar)QH−1ek

]
.

Now, derive an efficient formula for b
(i)
0 . By definition, and by means of (5.5),

b
(i)
0 = v∗1Aqi = v∗1AQei = v∗1QH−1ei − v∗1Are∗kH

−1ei = −v∗1Are∗kH
−1ei.

Since (5.2) and (5.8) give

b
(1)
0 =

〈
b
(1)
0 v1, v1

〉
= − ¡

e∗kH
−1e1

)
v∗1

[
Ar + (r∗Ar)QH−1ek

]
= − ¡

e∗kH
−1e1

)
(v∗1Ar),

we get

b
(i)
0 =

b
(1)
0

e∗kH−1e1
e∗kH

−1ei, i = 2, . . . , k.(5.9)

Expression (5.9) allows us to rewrite (5.3) in the fashion of (5.8),

b1v2 = Av1 − a1v1 − b
(1)
0

e∗kH−1e1
QH−1ek.(5.10)

It is very convenient that the same vector QH−1ek is used in both formula (5.8) and
(5.10).

4◦. Computing QH−1ek for (5.8) and (5.10) can be done recursively in the CG
fashion, without keeping the whole matrix Q in the memory. Indeed, denote by Hi the

left upper i× i submatrix of H, Xi = (x1i, x2i, . . . , xii)
∗ = H−1

i e
(i)
i , Qi = (q1 . . . qi),

pi = x−1
ii QiXi, and finally QH−1ek = xkkpk.

Using the well known connection [12, subsect. 9.3.1] between the Lanczos and
CG methods, we can state that pi is the ith B-orthogonal vector used in the CG
recurrence. We derive a simple CG-like recurrence for pi.

It can be checked by direct substitution that, for i > 1,

Hi+1

[
−σis

(i+1) + e
(i+1)
i+1

]
= x−1

i+1,i+1e
(i+1)
i+1 ,(5.11)

where s(i+1) = x−1
ii (x1i, x2i, . . . , xii, 0)∗, σi = −x−1

i+1,i+1xi,i+1. Equality (5.11) evi-

dently yields −σis
(i+1) + e

(i+1)
i+1 = x−1

i+1,i+1Xi+1. Then, using the formulae p1 = q1,

pi = Qi+1s
(i+1), and qi+1 = Qi+1e

(i+1)
i+1 , we obtain the recurrence

pi+1 = −σipi + qi+1.
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We can define σi recursively as well. Rewriting the ith equation of the system

Hi+1Xi+1 = e
(i+1)
i+1 componentwise, we obtain

βi−1xi−1,i+1 + αixi,i+1 + βixi+1,i+1 = 0.(5.12)

By definition, xi,i+1 = −σixi+1,i+1, and (5.11) yields xi−1,i+1 = −σi−1xi,i+1, so we
can rewrite (5.12) as

βi−1σi−1σi − αiσi + βi = 0.(5.13)

Finally, we can write the recurrence starting from the vector p1 = q1 and the scalar
σ0 = 0 as

σi =
βi

αi − βi−1σi−1
, pi+1 = −σipi + qi+1, 1 ≤ i ≤ k − 1.(5.14)

Performing (5.14) simultaneously with the first Lanczos recurrence, we do not need
to keep the additional vectors pi in memory.

Given k and m, the algorithm just described can be summarized as follows.
1. Perform the k steps of the Lanczos method with A−1 and ϕ. Obtain Q, H,

and r. At the same time, perform recurrence (5.14), producing pk.
2. Compute r∗Ar.
3. Invert H.
4. Compute QH−1ek =

¡
e∗kH

−1ek
)
pk.

5. Compute b
(1)
0 and v1 by means of (5.8) and further normalization.

6. Compute b
(2)
0 , . . . , b

(k)
0 by means of (5.9).

7. Compute v2, a1, and b1 by means of (5.10) and further normalization.
8. Perform recurrence (5.4). Obtain T .
9. Complete the computation of R, calculating G by means of (5.7).

6. The EKSM matrix-functional formula. Let W and R be defined as in
section 5. Since ϕ = ‖ϕ‖We

(k+m−1)
1 , we can rewrite formula (4.1) in the SLDM

fashion as

uk,m = ‖ϕ‖Wf(R)e
(k+m−1)
1 .(6.1)

The clearest way to compute

ḟ (k,m) = f(R)e
(k+m−1)
1 ,

exploiting general symmetric eigensolvers, is to use the eigendecomposition of R.
However, the structure of R allows one to factorize it cheaply and to use rational
approximations.

Straightforward application of EKSM requires storing the whole matrix W ; that
may be quite costly. However, for some applications it is not necessary to compute
all the n components of the vector uk,m, but only a few of them. Then only W ’s rows
corresponding to these components have to be stored. Another option would be a two
stage algorithm: first to perform the Extended Lanczos Recurrence to compute only
ḟ (k,m) storing the recurrence coefficients and only vectors q and v currently necessary
for the recurrence, then to recompute q and v using the recurrence coefficients obtained
before calculating synchronously with Wḟ (k,m).
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Let uk,m be the EKSM approximation to (2.9). Evidently, uk,m satisfies the
boundary conditions, so the residual of uk,m in (1.2) can be theoretically used as an a
posteriori estimate for ‖uk,m − w‖. The extended Lanczos recurrence can be written
in the matrix form, similar to the standard Lanczos recurrence (5.1), as

AW −WR = bm−1vme
(k+m−1)∗
k+m−1 , W ∗W = I, m ≥ 2,(6.2)

which can be derived from the definitions of W and R and from (5.4) with i = m− 1.
Combining (6.2) and (6.1), we obtain a standard expression for the residual, similar
to the well-known formula for CG,

Auk,m − d2uk,m

dθ2
= ‖ϕ‖bm−1

(
e
(k+m−1)∗
k+m−1 ḟ (k,m)

)
vm,(6.3)

that is valid for the problem outlined in Example 3 as well.

7. Solution of an elliptic problem by the method of lines. We consider
the 2.5-D direct current problem in the cylindrical coordinate system (r, z, θ). Let
σ(r, z) be axially symmetric conductivity and let U(r, z, θ) be the potential of a source
δ(θ)r−1g(r, z). This problem arises from geophysical computed tomography, when
axially symmetric conductivity perturbation is mapped due to direct current (DC)
injections and measurements from asymmetrically placed wells. It is crucial to have
a fast forward solver for the inversion.

We state the PDE

r−1 ∂

∂r

(
rσ

∂U

∂r

)
+

∂

∂z

(
σ
∂U

∂z

)
+ r−2σ

∂2U

∂θ2
= −

∞∑
k=−∞

δ(θ − 2πk)δ(r − r0)(7.1)

in a bounded rotational domain  ⊂ R3; the trivial Dirichlet boundary condition at
∂ is assumed. Substituting in (7.1) u = U

√
r−1σ, obtain

Au− ∂2u

∂θ2
=

∞∑
k=−∞

δ(θ − 2πk)ϕ,(7.2)

where A is a symmetric positive definite operator

Au = −
√

r

σ

∂

∂r

[
rσ

∂

∂r

(√
r

σ
u

)]
− r2

√
σ

∂

∂z

[
σ
∂

∂z

(
1√
σ
u

)]
(7.3)

and

ϕ =

√
r3

σ
δ(r − r0).

We approximate (7.1) on a set of axial circular lines, introducing a second order
finite differences (FD) discretization of operator (7.3) on a 2-D five-point grid with n
nodes. Then equation (7.2) becomes an ODE system with respect to the n-dimensional
vector-function u(θ).

Using (1.2), we get a matrix functional representation of u

u(θ) = 0.5
[
e−θ

√
A + e−(2π−θ)

√
A
] [√

A
(
I − e−2π

√
A
)]−1

ϕ, 0 ≤ θ ≤ π.(7.4)
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We applied EKSM to matrix function (7.4). For computing the LU decomposition
of A−1 and its action, we used the subroutine MA27D from HARWELL package.
LAPACK’s spectral solver DSBEV was adopted for the full eigenproblem of R.

For example, we took a resistive disk in a homogeneous medium (piston-like
invasion of fresh water from the well): the point source at (1000, 0, 0) and the point
receiver at (1000,−250, 0). The grid contained n = 4400 nodes, λ1 = .3, λn = 9 · 106.

In Fig. 1, we plotted the relative errors produced by the standard SLDM versus
m at the receiver location together4 with a priori estimate (4.5). Actually, due to
computer roundoff, m may exceed n. However, our analysis [5, 6] of SLDM’s stability,
based on Paige’s results on the simple Lanczos recurrence without reorthogonalization,
[18] proves that the exact arithmetic estimate (4.5) is still valid in the computer. This
phenomenon is clearly seen in the figure.

Fig. 1. Actual SLDM convergence and a priori estimate.

To converge in five decimal digits, SLDM took 9300 Lanczos steps and 29 seconds
on IBM Risk-6000. Approximation on Km(A−1, ϕ) exhibits similar behavior but
requires larger CPU time.

Basically, we observed the same behavior in the extended Lanczos recurrence as
in the simple Lanczos recursion in the computer [11]: loss of orthogonality of W
and arriving spurious Ritz values, clustered in tiny vicinities of the well separated
eigenvalues of A, mainly at the bounds of the spectral interval. We did not make any
computer arithmetic analysis of EKSM similar to [5] because there are not extensions
of [18] in the literature. However, our experiments showed that, similar to SLDM, the
observed instability of the extended Lanczos recurrence does not affect the quality
of the converged EKSM results: the process is unstable itself, but the bound of
Theorem 3 is valid in the computer up to roundoff.

In Fig. 2 we plotted the EKSM’s relative error versus m at the receiver location for
the diagonal subspaces Km,m, together with the corresponding estimate of Theorem 3.
To compute the relative error, we consider the solution of the given finite-difference
problem, obtained for 500 steps of EKSM, as exact. Though the actual EKSM error
exhibits some irregularities, it converges much faster than the estimate. A similar

4Drawing the graphs of estimates, we threw away indefinite coefficients hidden in O symbols.
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Fig. 2. Actual EKSM convergence for k = m and estimate of Theorem 3.

phenomenon is normally observed in the behavior of actual CG errors compared to
their Chebyshev bounds [11].

Normally we implement EKSM, first executing a prescribed number k of the
negative steps, then performing the positive iterations until the results reach a suitable
level of convergence. An example of such iterations with k = 50 is shown in Fig. 3. The
standard EKSM without reorthogonalization (presented by the circles) converged to
level 10−5 with m = 130, and it took 3.3 seconds, so we observed one order reduction
in CPU time compared to SLDM.

In this example the solution is highly singular; that is typical for geophysical ap-
plications, i.e., the residual is useless for an a posteriori estimate of the relative error
at the receivers because the required components of the solution can be extremely
small compared to ‖u‖. Instead, practitioners normally use empirical pointwise con-
vergence criteria. Here, in qualitative (not quantitative) accordance with the formula
from Theorem 3, we assume that the error at the selected receiver decreases as a
geometrical series with an indefinite coefficient and multiplier. The result of three
steps enables us to predict the error by solving a simple system of algebraic equa-
tions. This procedure is performed not too often in order to avoid false apparent
“convergence,” i.e., typically we select a subsequence of control steps l, 2l, 3l, . . . with
a constant increment l; here we selected l = 15. The asterisks in Fig. 3 present our
sample convergence criterion; it produces reasonable estimates of the order of the
relative error.

The Rational Krylov Subspaces algorithm, using zero and infinite shifts, is equiv-
alent to the EKSM with complete reorthogonalization. In exact arithmetic the short
EKSM recursion is certainly better than full Gram–Schmidt orthogonalization. How-
ever, in the computer the EKSM behaves similar to the Lanczos method, i.e., loss of
orthogonality sometimes slows down the convergence.

The third graph in Fig. 3 presents the results of an experiment performed with
full reorthogonalization on K50,m. The reorthogonalization showed error reduction up
to one order at the expense of a significant increase in computational cost. The re-
orthogonalized algorithm converged to five digits with m = 80 and it took 11 seconds
(compared to 3.3 seconds for the short recursion producing the same accuracy), so
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Fig. 3. Convergence of the EKSM using the short recurrence and full reorthogonalization.

additional expenses on reorthogonalization by far overwhelmed the observed decrease
of m. These expenses grow as O[n(k +m)2], so they would affect computational per-
formance even more strongly if one wants to achieve a higher accuracy! In addition,
the whole matrix W has to be stored in order to perform the reorthogonalization;
in our example with reorthogonalization, the capability of RAM (128 MB) was ex-
ceeded when m reached 150, afterwards the computational performance was affected
enormously due to use of the virtual memory.

8. Additional remarks. It looks attractive to apply EKSM to indefinite ellip-
tic problems (waveguides) and stable parabolic problems (exponential propagation).
Another feasible application of EKSM can be a linear system with a matrix, which
can be expressed as the sum of two easily invertible matrices.
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Abstract. The weighted generalized inverses have several important applications in researching
the singular matrices, regularization methods for ill-posed problems, optimization problems, and
statistics problems. In this paper we establish some sufficient and necessary conditions for inverse
order rule of weighted generalized inverse.
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1. Introduction. The generalized inverse is an important tool for researching
the singular matrix problems, ill-posed problems, optimization problems, and statis-
tics problems. The inverse order rule for generalized inverse plays an important role
in the theoretic research and numerical computations in the above areas (see [2], [4],
[5], [6], [8], [11], [12], [13], [14], [15]). The purpose of this paper is to establish the
inverse order rule of the weighted generalized inverse, which is met in our research
of the weighted trust region approach for optimization problems [3], [7], [9], [10]. In
addition, the inverse order rule for weighted generalized inverse is also applied to
the generalized least squares problem and the weighted perturbation theory of the
singular matrix.

In general, the inverse order rule does not always hold. If A ∈ Cm×n, B ∈ Cn×l,
the sufficient and necessary condition for inverse order rule is as follows.

Lemma 1.1. The following conditions are equivalent:
1. (AB)+ = B+A+;
2. R(A∗AB) ⊂ R(B) and R(BB∗A∗) ⊂ R(A∗);
3. R(A∗ABB∗) = R(BB∗A∗A).

(See [1], [2], [5], [6].)
In this paper we generalize the above results to the case of the weighted generalized

inverse.

2. Main results.
Notation. For convenience, we list some notation as follows:

Cm×n, Cm×n
r : m×n matrix set and m×n matrix set with rank r, respectively;

R(·),N (·): range and null space, respectively;
A∗: conjugate transpose matrix of A;
A#: weighted conjugate transpose matrix of A;
A+: Moore–Penrose inverse of A;
A+

M,N : weighted Moore–Penrose inverse of A;

∗ Received by the editors June 19, 1996; accepted for publication (in revised form) by G. P. Styan
August 29, 1997; published electronically April 2, 1998. This work was supported by CNPq of Brazil
and the National Natural Science Foundation of China.
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† Department of Mathematics, Nanjing Normal University, Nanjing 210097, People’s Republic of

China (sun@mat.ufpr.br).
‡ Department of Mathematics, Fudan University, Shanghai 200433, People’s Republic of China

(ymwei@fudan.edu.cn).
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PL,M: a projector with range L and null spaceM.
Definition 2.1. Let A ∈ Cm×n. Also, let M and N be m×m and n×n positive

definite Hermite matrices, respectively. Then there is a unique matrix G ∈ Cn×m

such that

AGA = A,GAG = G, (MAG)∗ = MAG, (NGA)∗ = NGA,(1)

where G is called weighted Moore–Penrose generalized inverse and written as G =
A+

MN .
Definition 2.2. Let M and N be m ×m and n × n positive definite matrices,

respectively. Given A ∈ Cm×n, the weighted conjugate transpose matrix A# of A is
defined as

A# = N−1A∗M.(2)

Obviously, A# satisfies the following properties: if A,A1 ∈ Cm×n, B ∈ Cn×l,
then

(A + A1)
# = A# + A#

1 , (AB)# = B#A#, (A#)# = A, (A#)∗ = (A∗)#.(3)

Before giving the properties of weighted generalized inverse, we state one lemma
which is proved in [2] and [5].

Lemma 2.3. A+
MN satisfies the following properties:

1. AA+
MN = PR(A),M¡1N (A∗) = PR(A),N(A#), A+

MNA = PN¡1R(A∗),N (A) =
PR(A#),N(A);

2. A+
MN = N− 1

2 (M
1
2AN− 1

2 )+M
1
2 .

In the following, we establish some sufficient and necessary conditions for the
inverse order rule of the weighted generalized inverse. Here we employ a brief proof
instead of the original proof due to a referee’s suggestion.

Theorem 2.4. Let A ∈ Cm×n, B ∈ Cn×l. Also, let M,N,L be m ×m,n × n,
and l × l positive definite Hermite matrices, respectively. Then

(AB)+ML = B+
NLA

+
MN(4)

if and only if

R(A#AB) ⊂ R(B) and R(BB#A#) ⊂ R(A#).(5)

Proof. In view of Lemma 2.3, we have

B+
NLA

+
MN = (AB)+ML(6)

if and only if

L− 1
2 (N

1
2BL− 1

2 )+N
1
2N− 1

2 (M
1
2AN− 1

2 )+M
1
2 = L− 1

2 (M
1
2ABL− 1

2 )+M
1
2 ,

or, equivalently, if and only if

B̃+Ã+ = (ÃB̃)+,(7)

where

Ã := M
1
2AN− 1

2 and B̃ := N
1
2BL− 1

2 .
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Lemma 1.1 tells us that (7) holds if and only if

R(Ã∗ÃB̃) ⊂ R(B̃) and R(B̃B̃∗Ã∗) ⊂ R(Ã∗).(8)

That (8) is equivalent to

R(A#AB) ⊂ R(B) and R(BB#A#) ⊂ R(A#)(9)

follows easily from the definition of (·)# and the fact that M,N, and L are positive
definite matrices. This completes the proof.

Corollary 2.5. Let A ∈ Cm×n, B ∈ Cn×l. Also, let M,N,L be m×m,n× n,
and l × l positive definite Hermite matrices, respectively. Then

(AB)+ML = B+
NLA

+
MN

if and only if

A+
MNABB#A# = BB#A# and BB+

NLA
#AB = A#AB.(10)

Proof. It is directly obtained from (5) and Lemma 2.3.
Theorem 2.6. Let A ∈ Cm×n, B ∈ Cn×l. Also, let M,N,L be m ×m,n × n,

and l × l positive definite Hermite matrices. Then

(AB)+ML = B+
NLA

+
MN(11)

if and only if

R(A#ABB#) = R(BB#A#A).(12)

Proof. Similar to the proof of Theorem 2.4, we can also directly obtain this result
from Lemmas 1.1 and 2.3.

Acknowledgments. The authors would like to thank the referees and the as-
sociate editor George P. H. Styan for their helpful suggestions. The authors would
especially like to express their gratitude to Dr. Hans Joachim Werner for providing
a brief proof for their main result instead of the original version of the proof and two
important references [13], [14] which improved the paper greatly.
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Abstract. We present one more algorithm to compute the condition number (for inversion)
of an n × n tridiagonal matrix J in O(n) time. Previous O(n) algorithms for this task given by
Higham [SIAM J. Sci. Statist. Comput., 7 (1986), pp. 150–165] are based on the tempting compact
representation of the upper (lower) triangle of J−1 as the upper (lower) triangle of a rank-one matrix.
However they suffer from severe overflow and underflow problems, especially on diagonally dominant
matrices. Our new algorithm avoids these problems and is as efficient as the earlier algorithms.
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1. Introduction. When solving a linear system Bx = r we are interested in
knowing how accurate the solution is. This question is often answered by showing
that the solution computed in finite precision is exact for a matrix “close” to B and
then measuring how sensitive the solution is to a small perturbation. The condition
number of B,

κ(B) = ‖B‖ · ‖B−1‖,

where ‖.‖ is a matrix norm, is one such measure. It has been conjectured that the cost
of computing the condition number with guaranteed accuracy is nearly the same as
solving the linear system itself [10, 9]. For a dense n×n matrix B the cost of solving
Bx = r is O(n3), and the extra cost of computing the condition number accurately
may be unacceptable. In such cases, an estimate of the condition number may be
obtained at a reduced cost [15, 18].

When the coefficient matrix J is tridiagonal, the linear system Jx = r may be
solved in O(n) time. The matrix J−1 is dense in general, and computation of κ(J) by
explicitly forming it would require O(n2) time. However J is completely determined
by 3n−2 parameters, and one may suspect that its inverse can be explicitly expressed
in terms of an equal number of parameters. This is indeed true and J−1 does admit
a more compact representation, namely that the upper (lower) triangle of J−1 is also
the upper (lower) triangle of a rank-one matrix, which in turn is simply represented
by the outer product of two vectors (see [3, 4, 6, 17, 21] and Theorem 2.1 below).
This property of the inverse may be exploited to compute ‖J−1‖1 and hence κ1(J),
in O(n) time; see the beginning of section 3 for details. Note that the 1-norm of a

∗Received by the editors January 2, 1997; accepted for publication (in revised form) by N. J.
Higham September 19, 1997; published electronically April 2, 1998. This research was supported
in part, while the author was at the University of California, Berkeley, CA, by DARPA contract
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94ER25219, NSF grants ASC-9313958 and CDA-9401156, and DOE contract DE-AC06-76RLO 1830
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policy of the U.S. Government and no official endorsement should be inferred.
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matrix B = (βij) is given by

‖B‖1 = max
j

∑
i

|βij |

and that ‖B‖∞ = ‖BT ‖1.
In [17], Higham gives three algorithms to compute ‖J−1‖∞ in O(n) time for a

general tridiagonal matrix J . However all these algorithms suffer from severe over°ow
and under°ow problems, especially on diagonally dominant matrices. The reason for
these seemingly unavoidable problems is that the intermediate quantities computed by
these algorithms can vary widely in scale [20]. In this paper, we give a new algorithm
that does not suffer from the above mentioned over/under°ow problems. The new
algorithm avoids such problems by computing sums of magnitudes of elements of the
inverse itself.

For positive definite J , Higham gives another algorithm in [17] that does not
suffer from over/under°ow problems and is shown to be backward stable. However
this algorithm is entirely different from the algorithms for a general tridiagonal. Our
new algorithm works for any tridiagonal and includes positive definite J as a special
case.

The paper is organized as follows. In section 2, we review the structure of the
inverse of a tridiagonal matrix that enables computation of its norm in O(n) time.
In section 3, we present an outline of the algorithms given in [17] and show why
they are unsuitable for general purpose use. We present the basic structure of our
new algorithm in section 4. This algorithm works under the assumption that all
principal leading and trailing submatrices are nonsingular. Section 5 sheds more light
on the structure of the inverse when this assumption fails to hold. This leads to the
improved algorithm of section 6, and in section 7 we give a roundoff error analysis
that suggests its accuracy. This algorithm can over°ow and under°ow in rare cases,
which is corrected by the algorithms of section 8. Accuracy of our new algorithms
is confirmed by numerical results in section 10. Section 9 is a slight digression and
presents an application of these algorithms for computing eigenvectors.

2. The inverse of a tridiagonal matrix. The results of this section are quite
well known and are repeated here as we will frequently invoke them in later sections.
A square matrix B = (βik) is called a lower(upper) Hessenberg matrix if βik = 0 for
all pairs (i, k) such that i + 1 < k (k + 1 < i). Thus a lower Hessenberg matrix is
nearly a lower triangular matrix but with a nonzero superdiagonal. The following
theorem states that the upper half of the inverse of such a matrix admits a compact
representation.

Theorem 2.1. Let B = (βik) be a nonsingular lower Hessenberg matrix of order
n, and let βi,i+1 6= 0, i = 1, . . . , n−1. Then two column vectors x and y exist such that
the upper half of B−1 equals the upper half of xyT , i.e., (B−1)ik = xiyk for i ≤ k.

Proof. See [21].
Let

J =




a1 c1 0
b1 a2 c2

b2 a3 .
. . .

. . cn−1

0 bn−1 an



.(2.1)
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The tridiagonal matrix given above is said to be unreduced or irreducible if bi 6= 0 and
ci 6= 0 for all i = 1, . . . , n−1. Since a tridiagonal matrix is both a lower and an upper
Hessenberg matrix, we obtain the following theorem on the structure of the inverse
of a tridiagonal matrix.

Theorem 2.2. Let J be a nonsingular unreduced tridiagonal matrix of order n.
Then there exist vectors x, y, p, and q such that

(J−1)ik =

{
xiyk, i ≤ k,
piqk, i ≥ k.

The vectors x and y (similarly p and q) are unique up to scaling by a nonzero
factor. Note that x1 6= 0 and yn 6= 0 since otherwise the entire first row or last column
of J−1 would respectively be zero, contradicting our assumption that J is nonsingular.
The above theorem seems to state that J−1 is determined by 4n− 2 parameters, but
note that there is some redundancy in the representation of the diagonal elements
since xiyi = piqi for 1 ≤ i ≤ n. The following theorem makes it explicit that 3n − 2
parameters are sufficient to determine J−1 uniquely.

Theorem 2.3. Let J be a nonsingular unreduced tridiagonal matrix of order n.
Then there exist vectors x and y such that

(J−1)ik =

{
xiykdk, i ≤ k,
yixkdk, i ≥ k,

where

d1 = 1 and dk =
k−1∏
j=1

cj
bj
, 2 ≤ k ≤ n.

Proof. The key observation is that the nonsymmetric matrix J may be written
as J = DT , where D = diag(di) is as given above and T is symmetric. The result is
then obtained by applying Theorem 2.2 to T−1. See [17] for more details.

When an off-diagonal entry is zero, it is easy to see that the “corresponding”
block of the inverse is zero. For example, if bi = 0 so that

J =

[
J1 C1

0 J2

]
,

then

J−1 =

[
J−1

1 X
0 J−1

2

]
,

where X is a rank-one matrix if ci 6= 0 and zero otherwise. Note that the structure
of X is consistent with Theorem 2.1.

3. Unreliability of earlier algorithms. In this section, we reproduce the three
algorithms given in [17] and explain why they are unsatisfactory when implemented
in finite precision. For more details on the algorithms see [16, 17].

From Theorem 2.2, the ith row sum of J−1 is

|piq1|+ |piq2|+ · · ·+ |piqi−1|+ |xiyi|+ |xiyi+1|+ · · ·+ |xiyn|,
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Algorithm Higham 1
(1)x1 = 1; x2 = −a1/c1;

for i = 3 to n
xi = −(ai¡1 ∗ xi¡1 + bi¡2 ∗ xi¡2)/ci¡1;

yn = 1/(bn¡1 ∗ xn¡1 + an ∗ xn);
yn¡1 = −an ∗ yn/cn¡1;
for i = n − 2 to 1 step −1

yi = −(ai+1 ∗ yi+1 + bi+1 ∗ yi+2)/ci;
(2)Repeat step (1) with xi, yi, bi, and ci replaced

by qi, pi, ci, and bi, respectively.
(3)sn = |yn|;

for i = n − 1 to 1 step −1
si = si+1 + |yi|;

t1 = 1;
for i = 2 to n

ti = ti¡1 + |qi|;
γ = max(s1, |pn| ∗ tn);
for i = 2 to n − 1

γ = max(γ, |pi| ∗ ti¡1 + |xi| ∗ si);
‖J¡1‖∞ = γ;

Algorithm Higham 2
(1) x1 = 1; x2 = −a1/c1;

for i = 3 to n
xi = −(ai¡1 ∗ xi¡1 + bi¡2 ∗ xi¡2)/ci¡1;

(2) zn = 1; zn¡1 = −an/bn¡1;
for i = n − 2 to 1 step −1

zi = −(ai+1 ∗ zi+1 + ci+1 ∗ zi+2)/bi;
θ = a1 ∗ z1 + c1 ∗ z2;

(3) sn = |zn|;
for i = n − 1 to 1 step −1

si = si+1 + |zi|;
t1 = 1;
for i = 2 to n − 1

ti = ti¡1 + |xi|;
d1 = 1; γ = s1;
for i = 2 to n

di = di¡1 ∗ ci¡1/bi¡1;
γ = max(γ, (|zi| ∗ ti¡1 + |xi| ∗ si) ∗ |di|);

γ = γ/|θ|;
‖J¡1‖1 = γ;

Fig. 1. Algorithms Higham 1 and Higham 2 compute ‖J−1‖∞ and ‖J−1‖1, respectively.

which can be simplified to

|pi|(|q1|+ |q2|+ · · ·+ |qi−1|) + |xi|(|yi|+ |yi+1|+ · · ·+ |yn|).(3.1)

By forming the running sums

ti = |q1|+ |q2|+ · · ·+ |qi|, si = |yi|+ |yi+1|+ · · ·+ |yn|,
all the row sums of J−1 may be computed in O(n) time given the vectors x, y, p, and
q. The vectors x and y (similarly p and q) may be computed by equating the last
columns of JJ−1 = I and the first rows of J−1J = I after setting x1 to 1.

Algorithm Higham 1 (see Figure 1) sets x1 to 1 and solves Jx = y−1
n en for x and

yn. The last n− 1 equations of JT y = x−1
1 e1 are then used to solve for y1, . . . , yn−1.

‖J−1‖∞ is then found by forming the running sums si, ti and computing all the row
sums using (3.1).

Algorithm Higham 2 (see Figure 1) exploits Theorem 2.3 to compute ‖J−1‖1.
The vector x is computed as in the previous algorithm, and the last n− 1 equations
of Jz = θe1 are then used to solve for z = θy. Finally the 1-norm of each column of
J−1, scaled by θ, is computed.

Algorithm Higham 3 (see Figure 2) makes use of the LU factorization of J to
solve for the first row and column of J−1, which give the vectors y and p, respectively
(x1 and q1 are set to 1). Similarly the last row and column of J−1 are also computed
and then scaled by p−1

n and y−1
n to get the vectors q and x, respectively. These four

vectors are then used to compute ‖J−1‖∞ as in Algorithm Higham 1.
All of the above algorithms attempt to compute elements of the vectors x and

y at some point. We show that these vectors are badly scaled especially when the
matrix is diagonally dominant and, hence, well conditioned. Consider the n × n
tridiagonal matrix with all diagonal elements equal to 4 and all off-diagonals equal
to 1. The determinant of this matrix is asymptotical to θn with increasing n, where
θ = 2 +

√
3. By the Cauchy–Binet theorem that gives formulae for the elements

of the inverse (see (4.6) below), x1y1 = xnyn ≈ θ−1 while |x1yn| ≈ θ−n. If we
choose x1 = 1, then |yn| ≈ θ−n and |xn| ≈ θn−1. The over°ow threshold in double
precision IEEE arithmetic is 21023 ≈ 10308 [2]. When n = 540, θn−1 > 10308 and due
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Algorithm Higham 3
(1) Compute the LU factorization of J ;
(2) Use the LU factorization to solve for the vectors y and z,

where JT y = e1 and Jz = en.
Similarly, solve for p and r, where Jp = e1 and JT r = en.

(3) Execute step (3) of Algorithm Higham 1 with q = p−1
n r and x = y−1

n z.

Fig. 2. Algorithm Higham 3 computes ‖J−1‖∞.

to over°ow all the above algorithms fail in double precision arithmetic. Note that
since |xn/x1| ≈ θn−1 and |yn/y1| ≈ θ−n+1, there is no choice of x1 that can prevent
over°ow and under°ow for all n. For the strongly diagonally dominant tridiagonal
with ai = 1000, bi = ci = 1, all three algorithms outlined above fail when n is only 105.

These over/under°ow problems were recognized by Higham [17], [20, section 14.5],
and consequently the existing LAPACK version 2.0 [1] has software only to estimate
the condition number of a general tridiagonal matrix using Hager’s condition esti-
mator [15, 19]. For positive definite tridiagonals, LAPACK does contain software to
accurately compute the condition number. This is based on an alternate algorithm
given by Higham in [17] that is special to the positive definite case.

4. The new algorithm. As we illustrated above, the vectors x, y, p, and q
that determine the inverse of a diagonally dominant matrix can be badly scaled. In
this section, we present a new algorithm to compute ‖J−1‖1 that computes sums of
magnitudes of elements of J−1 without explicitly forming these vectors. Consequently
our new algorithm does not suffer from over/under°ow problems that are inevitable
when x, y, p, and q are used.

Before giving all the details of our new algorithm, we illustrate the ideas on a
5× 5 case. The structure of the inverse is

J−1 =




∆1 x1y2 x1y3 x1y4 x1y5

p2q1 ∆2 x2y3 x2y4 x2y5

p3q1 p3q2 ∆3 x3y4 x3y5

p4q1 p4q2 p4q3 ∆4 x4y5

p5q1 p5q2 p5q3 p5q4 ∆5


 , ∆i ≡ xiyi = piqi.

Let su(i) denote the 1-norm of column i of the strict upper triangle of J−1. Clearly

su(5) =

(
4∑

i=1

|xi|
)
|y5|

= (su(4) + |∆4|) |y5|
|y4| ,

and so there is a simple recurrence to build up su(i) if ∆i is known. Note that in
the above we assumed that y4 6= 0, and, for now, we will assume that all xi, yi are
nonzero. We can also build the following recurrence for ∆i:

∆i+1 = xi+1yi+1 = ∆i
xi+1

xi

yi+1

yi
.(4.1)
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D+(1) = a1;
for i = 1 to n¡ 1

L+(i) = bi/D+(i); U+(i) = ci/D+(i);
D+(i + 1) = ai+1 ¡ ci ∗ L+(i);

D−(n) = an;
for i = n¡ 1 to 1 step ¡1

U−(i) = ci/D−(i + 1); L−(i) = bi/D−(i + 1);
D−(i) = ai ¡ bi ∗ U−(i);

Fig. 3. Algorithms to compute the triangular decompositions of J.

Having found ∆i, su(i + 1) may be expressed as

su(i + 1) = (su(i) + |∆i|) |yi+1|
|yi| .(4.2)

We will see later that the ratios xi+1/xi and yi+1/yi are easily evaluated. Similarly,

sl(i− 1) = (sl(i) + |∆i|) |qi−1|
|qi| ,(4.3)

where sl(i) denotes the 1-norm of the ith column of the strict lower triangle of J−1.
It turns out that it is possible to express the above recurrences in terms of trian-

gular factorizations of J ; two of them, as it happens. For the moment assume that
the following factorizations exist:

J = L+D+U+,(4.4)

J = U−D−L−,(4.5)

where L+, L− are unit lower bidiagonal, U+ and U− are unit upper bidiagonal, while
D+ and D− are diagonal matrices. Note that in the above, we use “+” to indicate
a process that takes rows in increasing order while “−” indicates a process that
takes rows in decreasing order. Figure 3 details the algorithms for computing these
factorizations. We denote the (i + 1, i) element of L+ by L+(i) and the (i, i + 1)
element of U− by U−(i).

In our upcoming treatment we will extensively use the famous Cauchy–Binet
formula

B · adj(B) = det(B) · I,(4.6)

where adj(B) is the classical adjugate of B and is the transpose of the matrix of
cofactors [24, p. 402], to get expressions for elements of B−1.

Since J is tridiagonal, (4.6) implies that

∆i = xiyi =
det(J1:i−1) · det(J i+1:n)

det(J)
,

where Jr:s denotes the principal submatrix of J in rows and columns r through s.
Hence the assumption that all xi, yi be nonzero is identical to the assumption that
the triangular factorizations (4.4) and (4.5) exist. We will remove this assumption
later.

Since L+en = en and eT1 L− = eT1 , the first row and last column of the inverse
may be expressed as

wT
1 ≡ eT1 J

−1 = eT1 L
−1
− D−1

− U−1
− =

1

D−(1)
eT1 U

−1
− ,

vn ≡ J−1en = U−1
+ D−1

+ L−1
+ en =

1

D+(n)
U−1

+ en.
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Algorithm Nrminv
Compute J = L+D+U+ and J = U−D−L− (see Figure 3).
∆1 = 1/D−(1);
for i = 1 to n− 1

∆i+1 = ∆i ∗ D+(i)
D¡(i+1) ;

su(1) = 0;
for i = 1 to n− 1

su(i + 1) = (su(i) + |∆i|) ∗ |U−(i)|;
sl(n) = 0;
for i = n to 2 step −1

sl(i− 1) = (sl(i) + |∆i|) ∗ |L+(i− 1)|;
γ = 0;
for i = 1 to n

γ = max(γ, su(i) + sl(i) + |∆i|);
‖J−1‖1 = γ;

Fig. 4. Algorithm Nrminv computes ‖J−1‖1.

The crucial observation is that the ratios of successive entries in w1 and vn are
given by entries in the triangular factorizations. More precisely, the above equations
may be written as

UT
−w1 =

1

D−(1)
e1,(4.7)

U+vn =
1

D+(n)
en.(4.8)

By examining the (i+1)st equation of (4.7) and the ith equation of (4.8), 1 ≤ i ≤ n−1,
we get

−U−(i) =
w1(i + 1)

w1(i)
=

x1yi+1

x1yi
,(4.9)

−U+(i) =
vn(i)

vn(i + 1)
=

ynxi

ynxi+1
.(4.10)

Equations (4.9) and (4.10) may now be substituted in (4.1) and (4.2) to get

∆i+1 = ∆i
U−(i)

U+(i)
= ∆i

D+(i)

D−(i + 1)
, ∆1 =

1

D−(1)
,(4.11)

su(i + 1) = (su(i) + |∆i|) · |U−(i)|, su(1) = 0.(4.12)

Note that the first equation of (4.7) gives w1(1) = ∆1 = 1/D−(1) while the last
equation of (4.8) implies that vn(n) = ∆n = 1/D+(n). Similarly, we get

sl(i− 1) = (sl(i) + |∆i|) · |L+(i− 1)|, sl(n) = 0.(4.13)

Equations (4.11), (4.12), and (4.13) lead to Algorithm Nrminv outlined in Fig-
ure 4. This new algorithm, when implemented in finite precision, delivers correct
answers on the examples of the previous section. It is also more efficient than the
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Table 1
Comparison of arithmetic operations.

Operations × n Divisions Multiplications Additions

Algorithm Higham 1 4 10 7
Algorithm Higham 2 3 8 5
Algorithm Higham 3 7 16 16
Algorithm Nrminv 3 5 6

algorithms of [17]. In Table 1, we list the approximate operation counts in Algo-
rithm Nrminv and compare them to Higham’s algorithms. Note that neither U+ nor
L− is used in Algorithm Nrminv and hence the corresponding division operations
to compute them (see Figure 3) are not counted in Table 1. For more details on
the operation counts for Higham’s algorithms, the reader is referred to discussions of
Algorithms 2, 3, and 5 in his M.Sc. thesis [16].

Recall that for our new algorithm we assumed that the factorizations in (4.4)
and (4.5) exist. In the next section, we shed more light on the structure of the inverse
when triangular factorization breaks down, and in section 6, we present an algorithm
that handles such a breakdown.

Formula (4.11) to compute the diagonal elements of the inverse is not new and has
been known for some time to researchers, especially in boundary value problems. See
Meurant’s survey article [22] for such formulae and more on the behavior of the inverse
of a tridiagonal matrix. More recently, the diagonal of the inverse has been used to
compute eigenvectors of a symmetric tridiagonal matrix [12, 23, 13, 14]. Section 9
brie°y explains the connection to eigenvectors.

5. More properties of the inverse. Consider the tridiagonal matrix J of even
order with ai = 0 and bi = ci = 1 for all i. The factorizations (4.4) and (4.5) do not
exist and all the diagonal entries of its inverse equal zero; i.e., xiyi = 0. We now
present a theory that enables us to handle such a case.

Theorem 5.1. Let J be a nonsingular tridiagonal matrix of order n. Then
∆i ≡ (J−1)ii = 0 if and only if either J1:i−1 or J i+1:n is singular.

Proof. This follows from (4.6) which, due to J ’s tridiagonal structure, implies
that

∆i ≡ (J−1)ii =
det(J1:i−1) · det(J i+1:n)

det(J)
.(5.1)

Since ∆i = xiyi, either xi = 0 or yi = 0 when ∆i = 0 (note that xi and yi cannot
both be zero if J is nonsingular because otherwise by Theorem 2.3 J−1 would have
a zero row and column). The following theorem states that yi = 0 when J i+1:n is
singular while xi = 0 when the leading submatrix J1:i−1 is singular.

Theorem 5.2. Let J be a nonsingular unreduced tridiagonal matrix of order n.
Then

su(i) ≡
i−1∑
k=1

|(J−1)k,i| = 0 if and only if J i+1:n is singular.(5.2)

Similarly,

sl(i) ≡
n∑

k=i+1

|(J−1)k,i| = 0 if and only if J1:i−1 is singular.
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Proof. By the Cauchy–Binet formula in (4.6), for k < i,

det(J) · (J−1)k,i = (−1)k+i(ckck+1 · · · ci−1) det(J1:k−1) det(J i+1:n).(5.3)

Letting k = 1 (take det(J1:0) = 1), we see that for an unreduced J , (J−1)1,i = 0 if
and only if J i+1:n is singular. The result (5.2) now follows from (5.3).

Note that if J1:i−1 and J i+1:n are both singular, the above theorems imply that
∆i, su(i) and sl(i) are zero, i.e., J−1 has a zero column! This leads to the following
corollary.

Corollary 5.3. Let J be a tridiagonal matrix of order n. If J is nonsingular,
then J1:i−1 and J i+1:n cannot both be singular for any i = 2, 3, . . . , n− 1.

The tridiagonal structure of J is essential to the above result. To emphasize this,
consider

A =


 0 0 1

0 1 0
1 0 0


 ,

where A1:1 and A3:3 are singular but A is not.
Now we show that for a nonsingular J no two consecutive entries in x or y can

be zero. In particular this implies that both su(i) and su(i + 1) cannot be zero.
Theorem 5.4. Let J be a nonsingular unreduced tridiagonal matrix of order n.

Then the last (first) column or row of J−1 cannot have two consecutive zero entries.
Proof. Suppose that vi−1 = vi = 0, where Jv = en. Then the ith equation

bi−1vi−1 +aivi +civi+1 = 0, where i < n implies that vi+1 = 0. The (i+1)st equation
further implies that vi+2 = 0 and so on. Thus vn−1 = vn = 0 but then the last
equation bn−1vn−1 + anvn = 1 cannot be satisfied.

The following lemma is similarly proved using the three-term recurrence for tridi-
agonal matrices.

Lemma 5.5. Let J be an unreduced (or nonsingular) tridiagonal matrix of order n.
Then no two consecutive leading (or trailing) principal submatrices of J are singular.

Proof. Suppose that J1:i−1 and J1:i are singular. Then, since

det(J1:i+1) = ai+1 det(J1:i)− bici det(J1:i−1)

and

−det(J1:i) + ai det(J1:i−1) = bi−1ci−1 det(J1:i−2),

J1:k is singular for all k = 1, 2, . . . , n. But if J1:1 is zero, then det(J1:2) = −b1c1 6= 0
which leads to a contradiction.

We make extensive use of the following theorem in the next section.
Theorem 5.6. Let J be an unreduced (or nonsingular) tridiagonal matrix of

order n.

If J1:i is singular, then det(J) = det(J1:i+1) det(J i+2:n).(5.4)

Similarly,

if J i:n is singular, then det(J) = det(J1:i−2) det(J i−1:n).(5.5)
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Proof. Suppose that J1:i is singular. Then by Lemma 5.5, J1:i+1 is nonsingular.
The Schur complement of J1:i+1 in J is

S(J1:i+1) = J i+2:n − bi+1ci+1e1e
T
i+1(J

1:i+1)−1ei+1e
T
1 .

By Theorem 5.1, the (i + 1, i + 1) entry of (J1:i+1)−1 must be 0. Hence S(J1:i+1) =
J i+2:n and

det(J) = det(J1:i+1) det(S(J1:i+1)) = det(J1:i+1) det(J i+2:n).

Next we see how to detect the singularity of a leading or trailing principal sub-
matrix. When such a submatrix is singular, triangular factorization is said to break
down. However even in such a case, we can allow the computation in Figure 3 to
proceed by including ±∞ in the arithmetic. We elaborate on this in the next section.

Theorem 5.7. Let J be an unreduced (or nonsingular) tridiagonal matrix of
order n, and let D+ and D− be the diagonal matrices as computed by the algorithms
of Figure 3. Then J1:i is singular if and only if D+(i) = 0 while J i:n is singular if
and only if D−(i) = 0.

Proof. This follows from Lemma 5.5 and the fact that

det(J1:i−1) ·D+(i) = det(J1:i) and det(J i+1:n) ·D−(i) = det(J i:n).

Note that due to Theorem 5.6, the above formulae hold even when triangular factor-
ization “breaks down” before the computation of D+(i) or D−(i).

Finally we give an alternate formula for computing the diagonal elements of J−1.
Other formulae that are computationally better than (5.6) may be found in Corollary 4
of [23].

Theorem 5.8. Let J be a nonsingular tridiagonal matrix of order n that permits
the factorizations in (4.4) and (4.5). Then ∆i ≡ (J−1)ii may be computed as

1

∆i
= D+(i) + D−(i)− Jii.(5.6)

Proof. See Theorem 2 and Corollary 3 of [23].

6. Eliminating the assumptions. In this section, we extend the algorithm
outlined in section 4 to handle breakdown of triangular factorization. The theory
developed in the previous section leads to these extensions.

Triangular factorizations are said to fail, or not exist, if a zero “pivot,” D+(i) or
D−(i), is encountered prematurely. However one of the attractions of an unreduced
tridiagonal matrix is that the damage done by a zero pivot is localized. Indeed if
±∞ is added to the number system, triangular factorization cannot break down and
the algorithms in Figure 3 always map J into unique L+, D+, U+ and U−, D−, L−.
There is no need to spoil the inner loop with tests. It may no longer be true that
J = L+D+U+ or J = U−D−L−, but equality does hold for all entries except for
those at or adjacent to any infinite pivot. The IEEE arithmetic standard [2] allows
such computation to proceed without breakdown, and thus we do not have to worry
about zero pivots. Expressions with ±∞ are not expensive to handle if done by the
hardware; see [11] for a discussion.

If ∆i = 0, i.e., xi = 0 or yi = 0, then equation (4.1) or (4.11) cannot be used
to compute ∆i+1 even in exact arithmetic. Similarly su(i + 1) cannot be computed
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by (4.2) or (4.12) if su(i) = 0. We now derive alternate formulae to compute ∆i+1

and su(i + 1) in such cases.
If J1:i−1 is singular, i.e., D+(i− 1) = 0, then by (5.1) and (5.4),

∆i+1 =
det(J1:i) det(J i+2:n)

det(J)
=

det(J1:i) det(J i+2:n)

det(J1:i) det(J i+1:n)
=

1

D−(i + 1)
,(6.1)

and this gives a formula to compute ∆i+1 when the leading submatrix J1:i−1 is sin-
gular.

Similarly if J i+1:n is singular, i.e., D−(i + 1) = 0, then by (5.1) and (5.5),

∆i+1 =
det(J1:i) det(J i+2:n)

det(J1:i−1) det(J i:n)
=
−D+(i)

bici
.(6.2)

If J i+1:n is singular, then yi and su(i) equal zero. In this case, since yi and yi−1

cannot both be zero by Theorem 5.4, su(i + 1) may be computed from su(i − 1) as
follows:

su(i + 1) = (su(i− 1) + |∆i−1|) |yi+1|
|yi−1| + |(J

−1)i,i+1|.

We now simplify the above recurrence. Consider the ith equation of JT (x1y) = e1

when yi = 0, i 6= 1,

ci−1yi−1 + aiyi + biyi+1 = 0

⇒ yi+1

yi−1
=
−ci−1

bi
.

Since we are considering the case when J i+1:n is singular, (5.3) and (5.5) imply that

(J−1)i,i+1 =
−ci det(J1:i−1) det(J i+2:n)

det(J)
=
−ci det(J1:i−1) det(J i+2:n)

det(J1:i−1) det(J i:n)
=

1

bi
.

Thus when J i+1:n is singular, su(i + 1) may be computed as

su(i + 1) = (su(i− 1) + |∆i−1|) |ci−1|
|bi| +

1

|bi| .(6.3)

sl(i− 1) may similarly be computed as follows from sl(i+ 1) when J1:i−1 is singular:

sl(i− 1) = (sl(i + 1) + |∆i+1|) |bi||ci−1| +
1

|ci−1| .(6.4)

Equations (6.1), (6.2), (6.3), and (6.4) give formulae for computing ∆i, su(i), and
sl(i) when leading or trailing principal submatrices are exactly singular. By com-
bining these formulae with Algorithm Nrminv of Figure 4, we get Algorithm Nr-
minv Noassump that is given in Figure 5. In exact arithmetic, this algorithm cor-
rectly computes the condition number of the matrix mentioned at the beginning of
section 5 with ai = 0, bi = 1, and n even. In finite precision arithmetic, we might
suspect that this algorithm breaks down when a pivot, D+(i) or D−(i), is tiny but
not exactly zero. We address such issues in section 8. We now do a roundoff error
analysis of our new algorithms assuming no over/under°ow and indicate why they are
accurate.
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Algorithm Nrminv Noassump
Compute J = L+D+U+ and J = U−D−L− (see Figure 3).
Set D+(0) = D−(n + 1) = 1.
if (D+(n) = 0 or D−(1) = 0) then ‖J−1‖1 =∞; return;
for i = 2 to n− 1

if (D+(i− 1) = 0 and D−(i + 1) = 0) then ‖J−1‖1 =∞; return;
∆1 = 1/D−(1);
for i = 1 to n− 1

if (D+(i) = 0 or D−(i + 2) = 0) then ∆i+1 = 0;
elseif (D−(i + 1) = 0) then ∆i+1 = −D+(i)/bici;
elseif (D+(i− 1) = 0) then ∆i+1 = 1/D−(i + 1);

else ∆i+1 = ∆i ∗ D+(i)
D¡(i+1) ;

su(1) = 0;
for i = 1 to n− 1

if (D−(i + 2) = 0) then su(i + 1) = 0;
elseif (D−(i + 1) = 0) then su(i + 1) = (su(i− 1) + |∆i−1|) ∗ | ci¡1

bi
|+ | 1bi |;

else su(i + 1) = (su(i) + |∆i|) ∗ |U−(i)|;
sl(n) = 0;
for i = n to 2 step −1

if (D+(i− 2) = 0) then sl(i− 1) = 0;

elseif (D+(i− 1) = 0) then sl(i− 1) = (sl(i + 1) + |∆i+1|) ∗ | bi
ci¡1
|+ | 1

ci¡1
|;

else sl(i− 1) = (sl(i) + |∆i|) ∗ |L+(i− 1)|;
γ = 0;
for i = 1 to n

γ = max(γ, su(i) + sl(i) + |∆i|);
‖J−1‖1 = γ;

Fig. 5. Algorithm Nrminv Noassump computes ‖J−1‖1.

7. Roundoff error analysis. We consider Algorithm Nrminv under the as-
sumption that triangular factorization does not break down. Our model of arithmetic
is that the °oating point result of a basic arithmetic operation ◦ satisfies

fl(x ◦ y) = (x ◦ y)(1 + η) = (x ◦ y)/(1 + δ),

where η and δ depend on x, y, ◦, and the arithmetic unit but satisfy

|η| ≤ ε, |δ| ≤ ε

for a given ε, the latter depending only on the arithmetic unit. We shall choose freely
the form (η or δ) that suits the analysis. We also adopt the convention of denoting
the computed value of x by x̂.

We now show that the computed triangular factorizations (4.4) and (4.5) are al-
most exact for a slightly perturbed matrix J+δJ . In particular, we show that the piv-
ots computed by the algorithms in Figure 3, D̂+(i), are small relative perturbations of

quantities
_

D+ (i) that are exact pivots for J+δJ+, where δJ+ represents a small com-
ponentwise perturbation in the off-diagonal elements of J . Since U+(i) = ci/D+(i)

and L+(i) = bi/D+(i), Û+(i) and L̂+(i) can similarly be related to quantities
_

U+ (i)
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-

6

-

?
~J = (

→
bk, ak,

→
ck) (

_

L+,
_

D+,
_

U+)

J = (bk, ak, ck) (L̂+, D̂+, Û+)

LDU decomposition

exact

LDU decomposition

computed

change each

bk,ck by 1 1
2 ulps.

change each
_

D+ (k) by 1 ulp,
_

L+ (k) by 1 1
2 ulps,

_

U+ (k) by 2 1
2 ulps.

Fig. 6. Effects of roundoff.

and
_

L+ (i) that are exact for J + δJ+. An analogous result holds for the factoriza-
tion J = U−D−L−. The exact result we prove is summarized in Figure 6, where the
acronym ulp stands for units in the l ast place held. It is the natural way to refer to
relative differences between numbers. When a result is correctly rounded the error is
not more than half an ulp.

Theorem 7.1. Let J = (bk, ak, ck) denote the tridiagonal matrix in (2.1). Let
its LDU and UDL decompositions be computed as in Figure 3. In the absence of
overflow and underflow, the diagram in Figure 6 commutes, and, for each k, D̂+(k)

differs from
_

D+ (k) by 1 ulp, L̂+(k), Û+(k) differ from
_

L+ (k),
_

U+ (k) by 1 1
2 and 2 1

2

ulps, respectively, while
→
bk,

→
ck differ from bk, ck by 1 1

2 ulps each. A similar result
holds for the UDL factorization.

Proof. We write down the exact equations satisfied by the computed quantities:

L̂+(k − 1) =
bk−1

D̂+(k − 1)
(1 + ε/),

Û+(k − 1) =
ck−1

D̂+(k − 1)
(1 + ε//),

D̂+(k) =
(
ak − ck−1L̂+(k − 1) · (1 + ε∗)

)
/(1 + εk),

⇒ (1 + εk)D̂+(k) = ak − bk−1ck−1

D̂+(k − 1)
(1 + ε∗)(1 + ε/).(7.1)

In the above, all the ε depend on k but we have chosen to single out the one that
accounts for the subtraction as it is the only one where the dependence on k must be
made explicit. We now introduce the quantities

_

D+ (k) = D̂+(k)(1 + εk),(7.2)
→
bk−1 = bk−1

√
(1 + ε∗)(1 + ε/)(1 + εk−1),(7.3)

→
ck−1 = ck−1

√
(1 + ε∗)(1 + ε/)(1 + εk−1).(7.4)
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Substituting (7.2), (7.3), and (7.4) in (7.1), we see that
_

D+ (k) is exact for ~J =

[
→
bk, ak,

→
ck], i.e.,

_

D+ (k) = ak −
→
bk−1

→
ck−1

_

D+ (k − 1)
.

To satisfy the exact mathematical relations

_

L+ (k) =

→
bk

_

D+ (k)
,

_

U+ (k) =

→
ck

_

D+ (k)
,

we set

_

L+ (k) = L̂+(k)

√
1 + ε∗

(1 + εk)(1 + ε/)
,

_

U+ (k) = Û+(k)
1

1 + ε//

√
(1 + ε∗)(1 + ε/)

1 + εk
,

and the result holds. The result for the factorization J = U−D−L− is similarly
proved.

The observant reader would have noted that the above is not a pure backward
error analysis. We have put small perturbations not only on the input but also on the
output. This property is called mixed stability in [7], but note that our perturbations
are relative ones.

It is important to note that the backward perturbations for the LDU factorization
differ from the ones for the UDL factorization. By (4.11), ∆i is formed by a ratio
of D+(i) and D−(i + 1). Since this mixes the LDU and UDL decompositions, the
roundoff error analysis given above does not enable us to relate the computed value
of all the ∆i to a single perturbed tridiagonal matrix. However if small relative
changes to the off-diagonal entries of J lead to “small” changes in its LDU and
UDL factorizations, then Theorem 7.1 implies that Algorithm Nrminv “accurately”
computes the condition number of J . The latter implication is easily seen to be
true by observing that the quantities ∆i, su(i), sl(i) are computed from the LDU
and UDL factorizations by multiplications, divisions, and additions of nonnegative
numbers. The case of Algorithm Nrminv Noassump is similar.

Often the triangular factorizations (4.4) and (4.5) can be very sensitive to small
changes in the entries of the tridiagonal matrix. These are precisely the situations
when a submatrix of J is close to being singular and there is element growth in the
factorizations. Thus we may suspect that our algorithm delivers inaccurate answers
in such cases. However numerical experience, given in section 10, indicates that
the condition number is computed accurately despite element growth. It is an open
problem to explain this phenomenon. We feel the situation is somewhat similar to
Algorithms Higham 1 and Higham 2 that were outlined in section 3. In [17], Higham
observes that when the latter algorithms do not over/under°ow their answers are very
accurate, but no error analysis has been able to explain this accuracy. One approach
to proving accuracy of our algorithm may be to relate both sets of pivots, D+ and
D−, to a single perturbed matrix.
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8. Handling overflow and underflow. Algorithm Nrminv Noassump also
suffers from the limited range of numbers that can be represented in a digital com-
puter. Consider the matrix

J =

[
1000 100
100 10−306

]
.

In its UDL decomposition, D−(2) = 10−306 while D−(1) is computed as

D−(1) = 1000− 104

10−306
= 1000− 10310.

In IEEE double precision arithmetic, the above value over°ows and D−(1) is set to
−∞ [2]. Since ∆1 = 1/D−(1), it is computed to be 0 by Algorithm Nrminv Noassump.
∆2 is then computed as

∆2 = ∆1 ·
(
D+(1)

D−(2)

)
= 0 ·

(
1000

10−306

)
.

Again the value 1000/10−306 over°ows and ∆2 is set to 0 ·∞ = Not a Number (NaN).
Note that J is perfectly well conditioned with ∆2 = −0.1, and

J−1 ≈
[ −10−310 0.01

0.01 −0.1

]
.

Thus Algorithm Nrminv Noassump malfunctions due to over°ow problems. Under-
°ow in computing ∆i by (4.11) can cause similar problems.

We now show how to overcome such over°ow and under°ow. Before doing so we
emphasize that the above over/under°ow problems are not as severe as those in the
algorithms of [17]. The discerning reader would have noticed that problems in the
earlier algorithms are inevitable due to the explicit computation of the vectors x, y,
p, and q; see section 3 for more details.

There are two problems that we must address. The first is to avoid NaNs in
the computation. A NaN results when evaluating expressions such as 0 · ∞, 0

0 , and
∞
∞ . Algorithm Nrminv Final1 given in Figure 7 prevents the formation of NaNs by
explicitly avoiding such expressions and handling separately the special cases when
D+(i) or D−(i) equals 0 or ∞.

The second difficulty occurs if ∆i over°ows or under°ows to 0 when computed as

∆i = ∆i−1
D+(i− 1)

D−(i)
.

It is incorrect to use such a ∆i to compute ∆i+1 by the above recurrence. We solve
this problem by computing ∆i+1 as

∆i+1 = 1/

(
D−(i + 1)− bici

D+(i)

)
(8.1)

in such a case. The above formula is a consequence of Theorem 5.8. Note that (8.1)
leads to the correct value of ∆i+1 when D+(i − 1) = 0 or D−(i + 1) = 0; see (6.1)
and (6.2).

Thus Algorithm Nrminv Final1 tries to cure the over/under°ow problems, and
we have found its computer implementation to be accurate on all tridiagonal matrices
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Algorithm Nrminv Final1
Compute J = L+D+U+ and J = U−D−L− as follows:
D+(1) = a1;
for i = 1 to n− 1

if (D+(i) = 0 and bici = 0) then ‖J−1‖1 =∞; return;
else L+(i) = bi/D+(i); D+(i + 1) = ai+1 − ci ∗ L+(i);

D−(n) = an;
for i = n− 1 to 1 step −1

if (D−(i + 1) = 0 and bici = 0) then ‖J−1‖1 =∞; return;
else U−(i) = ci/D−(i + 1); D−(i) = ai − bi ∗ U−(i);

if (D+(n) = 0 or D−(1) = 0) then ‖J−1‖1 =∞; return;
for i = 2 to n− 1

if (D+(i− 1) = 0 and D−(i + 1) = 0) then ‖J−1‖1 =∞; return;
∆1 = 1/D−(1);
for i = 1 to n− 1

if (D+(i) = 0 or 1/D−(i + 1) = 0) then ∆i+1 = 0;
elseif (D−(i + 1) = 0) then ∆i+1 = −D+(i)/bici;
elseif (1/D+(i) = 0) then ∆i+1 = 1/D−(i + 1);

elseif (∆i = 0) then ∆i+1 = 1/
(
D−(i + 1)− bici

D+(i)

)
;

else ∆i+1 = ∆i

D¡(i+1) ∗D+(i);

if (1/∆i+1 = 0) then ‖J−1‖1 =∞; return;
su(1) = 0;
for i = 1 to n− 1

if (su(i) + |∆i| = 0) then
su(i + 1) = (su(i− 1) + |∆i−1|) ∗ | ci¡1

bi
|+ | 1bi |;

else su(i + 1) = (su(i) + |∆i|) ∗ |U−(i)|;
if (1/su(i + 1) = 0) then ‖J−1‖1 =∞; return;

sl(n) = 0;
for i = n to 2 step −1

if (sl(i + 1) + |∆i+1| = 0) then
sl(i− 1) = (sl(i + 1) + |∆i+1|) ∗ | bi

ci¡1
|+ | 1

ci¡1
|;

else sl(i− 1) = (sl(i) + |∆i|) ∗ |L+(i− 1)|;
if (1/sl(i− 1) = 0) then ‖J−1‖1 =∞; return;

γ = 0;
for i = 1 to n

if (su(i) + sl(i) + |∆i| > γ) then
γ = su(i) + sl(i) + |∆i|;

‖J−1‖1 = γ;

Fig. 7. Algorithm Nrminv Final1 computes ‖J−1‖1.

in our test-bed. Numerical results to show this are presented in the next section. In
addition, this algorithm also works for tridiagonal matrices that are not unreduced,
i.e., where some of the off-diagonal entries may be zero. None of the elaborate tech-
niques used in [16, 17] are needed to handle this special case. As written, the algorithm
requires IEEE arithmetic but it is easily modified to prevent over°ow.

In spite of the above precautions, Algorithm Nrminv Final1 can march danger-
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ously close to the over°ow and under°ow thresholds. When a pivot element D+(i) or
D−(i) is tiny, intermediate quantities can vary widely in magnitude while computing
su(i) and sl(i) by (4.12) and (4.13). We now present an alternate algorithm that tries
to avoid large intermediate numbers. To avoid division by the tiny pivot D−(i + 1)
in (4.12), we may write su(i + 1) in terms of su(i− 1) as follows:

su(i + 1) = (su(i) + |∆i|)
∣∣∣∣ ci
D−(i + 1)

∣∣∣∣
= (su(i− 1) + |∆i−1|)

∣∣∣∣ ci−1ci
D−(i)D−(i + 1)

∣∣∣∣ +

∣∣∣∣ ∆ici
D−(i + 1)

∣∣∣∣ .(8.2)

Now, the formula for computing D−(i) (see Figure 3) implies that

D−(i + 1)D−(i) = D−(i + 1)(ai − bici/D−(i + 1)) = D−(i + 1)ai − bici,(8.3)

and using (5.6),

∆ici
D−(i + 1)

=
ci

D−(i + 1)D+(i)− bici
.(8.4)

Substitution of (8.3) and (8.4) in (8.2) leads to the desired formula

(8.5)

su(i + 1) = (su(i− 1) + |∆i−1|)
∣∣∣∣ ci−1ci
D−(i + 1)ai − bici

∣∣∣∣ +

∣∣∣∣ ci
D−(i + 1)D+(i)− bici

∣∣∣∣ .
Unlike (4.12), the above formula does not involve division by the tiny pivot ele-

ment D−(i+1). Thus no large intermediate quantities are formed. Similarly, sl(i−1)
may be expressed in terms of sl(i + 1) to avoid division by a small D+(i − 1). Note
that in the extreme case when D−(i+1) = 0, (8.5) simplifies to (6.3). Equation (8.5)
can alternatively be obtained by taking the 2× 2 matrix[

ai ci
bi D−(i + 1)

]

as a pivot in block Gaussian Elimination (instead of D−(i + 1)) and using the corre-
sponding block U−D−L− factorization to compute su(i+1). When D−(i+1) is tiny,
it can be shown that using this 2×2 pivot prevents element growth unless J is nearly
singular. Algorithm Nrminv Final2 given in Figure 8 uses such a pivot strategy to
compute su(i) and sl(i). Also note that in Algorithm Nrminv Final2 we use (5.6)
instead of (4.11) to compute ∆i.

Although Algorithm Nrminv Final2 tends to have less element growth in its
computation, it is not clear whether it is more accurate than Algorithm Nrminv Final1.
Numerical experience, given in section 10, indicates that both these algorithms are
accurate. Our personal preference is for Algorithm Nrminv Final2 since the inter-
mediate quantities computed by it do not vary widely in scale.

9. Another application. In computing ‖J−1‖, we need to find the column of
J−1 with the largest 1-norm. We now brie°y mention another application where we
may need to identify such a column.

Given a real, symmetric tridiagonal matrix T and an accurate approximation to
an eigenvalue λ̂, we can attempt to find the corresponding eigenvector by solving

(T − λ̂I)zk = ek,

where ek is the kth column of the identity matrix (the above may also be thought
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Algorithm Nrminv Final2
Compute J = L+D+U+ and J = U−D−L− as follows:
D+(1) = a1;
for i = 1 to n− 1

if (D+(i) = 0 and bici = 0) then ‖J−1‖1 =∞; return;
else L+(i) = bi/D+(i); D+(i + 1) = ai+1 − ci ∗ L+(i);

D−(n) = an;
for i = n− 1 to 1 step −1

if (D−(i + 1) = 0 and bici = 0) then ‖J−1‖1 =∞; return;
else U−(i) = ci/D−(i + 1); D−(i) = ai − bi ∗ U−(i);

if (D+(n) = 0 or D−(1) = 0) then ‖J−1‖1 =∞; return;
for i = 2 to n− 1

if (D+(i− 1) = 0 and D−(i + 1) = 0) then ‖J−1‖1 =∞; return;
∆1 = 1/D−(1);
for i = 1 to n− 1

∆i+1 = 1/(D−(i + 1)− bici
D+(i) );

if (1/∆i+1 = 0) then ‖J−1‖1 =∞; return;
su(1) = 0;
for i = 1 to n− 1

DET = D−(i + 1)ai − bici;
if (1/D−(i + 1) = 0 or |D−(i + 1) · ai| ≥ |DET|) then

su(i + 1) = (su(i) + |∆i|) ∗ |U−(i)|;
else

su(i + 1) = (su(i− 1) + |∆i−1|) ∗ | ci¡1ci
DET |+ | ci

|D¡(i+1)D+(i)−bici
|;

if (1/su(i + 1) = 0) then ‖J−1‖1 =∞; return;
sl(n) = 0;
for i = n to 2 step −1

DET = D+(i− 1)ai − bi−1ci−1;
if (1/D+(i− 1) = 0 or |D+(i− 1) · ai| ≥ |DET|) then

sl(i− 1) = (sl(i) + |∆i|) ∗ |L+(i− 1)|;
else

sl(i− 1) = (sl(i + 1) + |∆i+1|) ∗ | bi¡1bi
DET |+ | bi¡1

D+(i−1)D¡(i)−bi¡1ci¡1
|;

if (1/sl(i− 1) = 0) then ‖J−1‖1 =∞; return;
γ = 0;
for i = 1 to n

if (su(i) + sl(i) + |∆i| > γ) then
γ = su(i) + sl(i) + |∆i|;

‖J−1‖1 = γ;

Fig. 8. Algorithm Nrminv Final2 computes ‖J−1‖1.

of as the first step of inverse iteration with ek as the starting vector). However an
arbitrary choice of k does not always work, as observed by Wilkinson in [25, 26]. Note

that the pair (λ̂, zk) has the residual norm

‖(T − λ̂I)zk‖
‖zk‖ =

1

‖(T − λ̂I)−1ek‖
,(9.1)
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Table 2
Test matrices.

Matrix
Type Description

1 Nonsymmetric random tridiagonal — each element is uniformly distributed in the
interval [¡1, 1].

2 Symmetric tridiagonal J = QTDQ with Q random orthogonal and D diagonal with
one element equal to 1 and all others equal to ε.

3 Symmetric tridiagonal J = QTDQ with Q random orthogonal and D diagonal with
one element equal to ε and all others equal to 1.

4 Symmetric tridiagonal J = QTDQ with Q random orthogonal and D diagonal with
elements geometrically distributed from ε to 1.

5 Symmetric tridiagonal J = QTDQ with Q random orthogonal and D diagonal with
elements uniformly distributed from ε to 1.

6 Symmetric Toeplitz tridiagonal with ai = 64, bi = ci = 1.
7 Symmetric Toeplitz tridiagonal with ai = 108, bi = ci = 1.
8 Symmetric Toeplitz tridiagonal with ai = 0, bi = ci = 1.
9 Nonsymmetric random tridiagonal as in Type 1 but with some off-diagonals set to zero.

Table 3
Computation of κ(J) = ‖J‖1 · ‖J−1‖1 on matrices of order 41.

κ(J) computed by
Matrix Algorithm Algorithm Algorithm Algorithm LAPACK’s condition
Type Nrminv Final1 Nrminv Final2 Higham1 Higham2 estimator (Dgtcon)

1 111.9 111.9 111.9 111.9 109.7
2 7.5 · 1015 7.6 · 1015 NaN NaN 7.6 · 1015

3 5.4 · 1015 5.4 · 1015 NaN NaN 5.4 · 1015

4 6.3 · 1015 6.3 · 1015 6.3 · 1015 6.3 · 1015 6.3 · 1015

5 7.6 · 1015 7.7 · 1015 7.7 · 1015 7.6 · 1015 7.7 · 1015

6 1.06 1.06 1.06 1.06 1.06
7 1.0 1.0 NaN NaN 1.0
8 ∞ ∞ NaN ∞ ∞
9 1.3 · 103 1.3 · 103 NaN NaN 1.3 · 103

where we assume that λ̂ is not an exact eigenvalue of T . The goal is to obtain a
small residual norm, but an arbitrary choice of k fails because not every column
of (T − λ̂I)−1 is large in magnitude. However when λ̂ is close to an eigenvalue, there

must exist a column k of (T − λ̂I)−1 that has a large norm. The corresponding pair

(λ̂, zk) has a small residual norm, and it can be shown that zk is close to an eigenvector.
The optimal choice of k minimizes the residual norm (9.1), i.e., it maximizes ‖(T −
λ̂I)−1ek‖. Thus the algorithms discussed earlier in the paper provide a solution to
this problem in O(n) time. Algorithms Nrminv Final1 and Nrminv Final2 are
easily modified to give the solution when the 2-norm is considered.

Often when the corresponding eigenvalue is sufficiently isolated, it suffices to
choose k such that the (k, k) entry of (T − λ̂I)−1 has the largest absolute value among
all diagonal elements of the inverse. For more on this problem, the interested reader
is referred to [14, 23] and [12, Chapter 3]. As a way to find an optimal k, Jesse Barlow
[5] also independently discovered recurrences similar to (4.11), (4.12), and (4.13).

10. Numerical results. In this section, we present numerical results of our
new algorithms and compare them with existing algorithms. A variety of tridiagonal
matrices listed in Table 2 forms our test-bed. The matrices of type 2–5 were obtained
by Householder reduction of a random dense symmetric matrix that had the desired
spectrum. See [8] for more on the generation of such matrices.
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Table 4
Computation of κ(J) = ‖J‖1 · ‖J−1‖1 on matrices of order 200.

κ(J) computed by
Matrix Algorithm Algorithm Algorithm Algorithm LAPACK’s condition
Type Nrminv Final1 Nrminv Final2 Higham1 Higham2 estimator (Dgtcon)

1 1.9 · 103 1.9 · 103 1.9 · 103 1.9 · 103 1.2 · 103

2 7.4 · 1015 7.5 · 1015 NaN NaN 7.4 · 1015

3 4.5 · 1015 4.5 · 1015 NaN NaN 4.5 · 1015

4 9.9 · 1015 9.9 · 1015 9.9 · 1015 9.9 · 1015 9.9 · 1015

5 1.2 · 1016 1.2 · 1016 1.2 · 1016 1.2 · 1016 1.2 · 1016

6 1.06 1.06 1.06 1.06 1.06
7 1.0 1.0 NaN NaN 1.0
8 200.0 200.0 200.0 200.0 2.0
9 2.0 · 103 2.0 · 103 NaN NaN 2.0 · 103

Table 5
Timing results.

Time taken by LAPACK’s Time(Dgtcon) / Time(Dgtcon) /
Matrix Dgtcon (in ms.) Time(Nrminv Final1) Time(Nrminv Final2)
Type n = 41 n = 200 n = 1000 n = 41 n = 200 n = 1000 n = 41 n = 200 n = 1000

1 0.2 1.1 5.4 2.0 1.6 1.6 1.0 1.6 1.6
2 0.3 1.1 5.4 3.0 1.6 1.7 3.0 1.6 1.6
3 0.2 1.1 5.4 2.0 1.8 1.6 1.0 1.6 1.5
4 0.2 1.1 5.5 2.0 1.8 1.7 1.0 1.6 1.6
5 0.3 1.1 5.5 3.0 1.6 1.7 1.5 1.6 1.6
6 0.3 1.6 7.2 3.0 2.3 2.2 1.5 2.0 1.8
7 0.3 1.5 6.8 3.0 2.5 2.1 3.0 1.9 1.7
8 0.0 0.9 4.6 1.0 1.5 1.5 1.0 1.5 1.5
9 0.3 1.1 5.3 1.5 1.6 1.6 3.0 2.2 1.9

The results given in Tables 3 and 4 support our claim that the algorithms in [17]
are susceptible to severe over°ow and under°ow problems. However they produce ac-
curate answers when they do not suffer from such problems. The new algorithms
outlined in the previous section, Algorithm Nrminv Final1 and Algorithm Nr-
minv Final2, give accurate answers on all our test matrices. Both the algorithms
appear to be comparable in accuracy. In our numerical results, we have also included
the current algorithm in LAPACK that estimates the condition number of a tridiago-
nal matrix [19]. This algorithm is guaranteed to give a lower bound on the condition
number, and extensive testing done in [19] indicates that its estimates are good ap-
proximations to the exact condition number in most cases. For all our test matrices,
except one, the condition numbers are estimated accurately. The only exception is
the Toeplitz matrix with 0 on the diagonals and 1 on the off-diagonals; see Table 4.
This example is similar to the one given in [19, p. 386], and LAPACK’s condition
estimator underestimates its condition number by a factor of n/2 for n = 200.

In Table 5, we compare the times taken by our new algorithms with LAPACK’s
condition estimator. The latter also appears to take O(n) time but our new algorithms
are up to three times faster. These timing experiments were conducted on an IBM
RS/6000 processor.

11. Conclusions. In this paper, we have given stable algorithms to compute the
condition number of a tridiagonal matrix in O(n) time. Algorithm Nrminv (see Fig-
ure 4) contains the main new ideas and forms the basis of Algorithms Nrminv Final1
and Nrminv Final2 (see Figures 7 and 8). The latter algorithms may be directly
implemented to give reliable numerical software and do not suffer from the inherent
over/under°ow problems of the earlier algorithms presented in [17].
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Abstract. The present paper describes a new fast algorithm for inversion of confluent
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[27] for fast inversion of Vandermonde-like matrices.
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1. Introduction. Let α1, α2, . . . , αp be a set of distinct nodes, let n1, n2, . . . , np

be p positive integers, and let n =
∑p

i=1 ni. Let {pk(x)}nk=0 be a family of polynomials
that satisfy a three-term recurrence relation

p0(x) = 1, p1(x) = θ1(x− β1)p0(x),

pk(x) = θk(x− βk)pk−1(x)− γkpk−2(x), (k ≥ 2),
(1.1)

where θk 6= 0 for all k. The n × n con°uent Vandermonde-like matrix is given by

Vc = (v(α1),v
′(α1), . . . ,v

(n1−1)(α1), . . . ,v(αp),v
′(αp), . . . ,v

(np−1)(αp)),(1.2)

where v(x) = (p0(x), p1(x), . . . , pn−1(x))T . If pk(x) = xk, then the matrix Vc reduces
to a con°uent Vandermonde matrix [2, 9, 28]. When the positive integers nj satisfy
n1 = n2 = · · · = np = 1, the matrix Vc is the Vandermonde-like matrix [20, 27]. In
the case of n1 = n2 = · · · = np = 1 and pk(x) = xk, the matrix Vc yields the well-
known Vandermonde matrix. The associated con°uent Vandermonde-like systems
Vca = f and V T

c a = f , where f is a given right-hand side vector, arise in a variety of
applications such as polynomial interpolation and approximation of linear functionals
[5, 6].

If Gaussian elimination for solving dense systems of linear equations is applied
to the con°uent Vandermonde-like systems, it requires O(n3) operations. However,
the structure of the matrix Vc makes it possible to solve Vca = f and V T

c a = f with
fewer arithmetic operations. A number of O(n2) fast algorithms for Vandermonde
systems, Vandermonde-like systems, con°uent Vandermonde systems, and con°uent
Vandermonde-like systems are presented in [5, 6, 7, 8, 9, 13, 15, 17, 20, 22, 23, 24, 25,
28, 30]. Some fast algorithms for inversion are available (see, for example, Traub [5]
for Vandermonde matrices, Gohberg and Olshevsky [29] for Chebyshev–Vandermonde
matrices, and Calvetti and Reichel [27] for Vandermonde-like matrices). The present
paper describes a new fast algorithm for computing the elements of the inverse of

∗Received by the editors July 26, 1996; accepted for publication (in revised form) by D. Calvetti
September 8, 1997; published electronically April 2, 1998.

http://www.siam.org/journals/simax/19-3/30749.html
†Department of Mathematics, Northwestern Polytechnical University, Xian, People’s Republic of

China (shanlu@nwpu.edu.cn).
‡ Department of Mathematics, Xi’an Jiaotong University, Shaanxi Province, People’s Republic of

China.

797



798 XU ZHONG AND YOU ZHAOYONG

an n × n con°uent Vandermonde-like matrix Vc in O(n2) arithmetic operations if
n� maxi ni. Our algorithm generalizes a scheme presented by Calvetti and Reichel
[27] for fast inversion of Vandermonde-like matrices. It may be convenient to apply
our scheme when many con°uent Vandermonde-like systems have to be solved with
the same matrix and different right-hand side vectors.

The paper is organized as follows. Section 2 describes our computational scheme.
Computed examples in section 3 illustrate that our fast algorithm generally yields a
more accurate approximation of the inverse than Gaussian elimination with partial
pivoting when the nodes are ordered suitably.

2. Algorithm.
Set

m1 = 0, mi =
i−1∑
k=1

nk, i = 1, 2, . . . , p(2.1)

and

π(x) =

p∏
k=1

(x−αk)
nk , Li(x) =

p∏
k=1
k 6=i

(x−αk)
nk =

π(x)

(x− αi)ni
, i = 1, 2, . . . , p.(2.2)

Let each of the polynomials Pi,k(x) be of degree ni − 1 and satisfy

ds

dxs
(Pi,k(x)Li(x))

∣∣∣∣
x=αi

= δks, k, s = 0, 1, . . . , ni − 1; i = 1, 2, . . . , p,(2.3)

where δks denotes the Kronecker δ-function.
If we obtain the representations of the polynomials Pi,k(x)Li(x) in terms of the

basis {pk(x)}n−1
k=0 ,

Pi,k(x)Li(x) =
n∑

t=1

u
(k)
it pt−1(x), k = 0, 1, . . . , ni − 1; i = 1, 2, . . . , p,(2.4)

and note that

ds

dxs
(Pi,k(x)Li(x))

∣∣∣∣
x=αj

= 0, s = 0, 1, . . . , nj − 1; j 6= i;(2.5)

the inverse of Vc is, from (2.3), (2.5), and (2.4),

V −1
c =




U1

...
Up


 ,(2.6)

where

Ui =




u
(0)
i1 · · · u

(0)
in

· · · · · · · · ·
u

(ni−1)
i1 · · · u

(ni−1)
in


 , i = 1, 2, . . . , p.

We describe a five-stage algorithm for computing the elements of V −1
c as follows.
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Stage 1. Express the polynomial π(x) defined by (2.2) in terms of the polynomials
pk(x), i.e.,

π(x) =

n+1∑
k=1

bkpk−1(x).(2.7)

Let

π0(x) = 1, πj(x) = (x− αi)
s+1

i−1∏
k=1

(x− αk)
nk =

j+1∑
k=1

b
(j)
k pk−1(x),(2.8)

where j = mi + s + 1; s = 0, 1, . . . , ni − 1; i = 1, 2, . . . , p. Substituting (2.8) into the
recursion formula πj(x) = (x− αi)πj−1(x) and applying (1.1),

(x−β1)p0(x) =
1

θ1
p1(x), (x−βk)pk−1(x) =

1

θk
pk(x)+

γk
θk

pk−2(x), (k ≥ 2)(2.9)

yields

j+1∑
k=1

b
(j)
k pk−1(x) =

j∑
k=1

b
(j−1)
k (x− βk)pk−1(x) +

j∑
k=1

b
(j−1)
k (βk − αi)pk−1(x)

=

[
(β1 − αi)b

(j−1)
1 +

γ2

θ2
b
(j−1)
2

]
p0(x)

+

j−1∑
k=2

[
1

θk
b
(j−1)
k−1 + (βk − αi)b

(j−1)
k +

γk+1

θk+1
b
(j−1)
k+1

]
pk−1(x)

+

[
1

θj−1
b
(j−1)
j−1 + (βi − αi)b

(j−1)
j

]
pj−1(x) +

1

θj
b
(j−1)
j pj(x),

which gives the recurrence relations.

ALGORITHM A.

b
(0)
1 = 1

for i = 1 to p

for j = mi + 1 to mi + ni

for k = 1 to j + 1

b
(j)
k =

1

θk−1
b
(j−1)
k−1 + (βk − αi)b

(j−1)
k +

γk+1

θk+1
b
(j−1)
k+1

endfor k

endfor j

endfor i,

where θ0 = 1, b
(j−1)
0 = 0, and b

(j−1)
k = 0 for k ≥ j + 1. Therefore

bk = b
(n+1)
k , k = 0, 1, . . . , n + 1.

Stage 2. Express the polynomial Li(x) defined by (2.2) in terms of the polynomials
pk(x), i.e.,

Li(x) =

n−ni+1∑
k=1

cikpk−1(x), i = 1, 2, . . . , p.(2.10)
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Let

π(x)

(x− αi)j
=

n−j+1∑
k=1

c
(j)
ik pk−1(x), j = 0, 1, . . . , ni; i = 1, 2, . . . , p.(2.11)

Substituting (2.11) into the recursion formula

π(x)

(x− αi)j−1
= (x− αi)

π(x)

(x− αi)j
,

and applying (2.9) yields

n−j+2∑
k=1

c
(j−1)
ik pk−1(x) = (x− αi)

n−j+1∑
k=1

c
(j)
ik pk−1(x) =

[
(β1 − αi)c

(j)
i1 +

γ2

θ2
c
(j)
i2

]
p0(x)

+

n−j∑
k=2

[
1

θk
c
(j)
i,k−1 + (βk − αi)c

(j)
ik +

γk+1

θk+1
c
(j)
i,k+1

]
pk−1(x)

+

[
1

θn−j
c
(j)
i,n−j + (βn−j+1 − αi)c

(j)
i,n−j+1

]
pn−j(x) +

1

θn−j+1
c
(j)
i,n−j+1pn−j+1(x),

which gives the recurrence relations.
ALGORITHM B.
For i = 1 to p

for k = 1 to n + 1
c
(0)
ik = bk

endfor k
for j = 1 to ni

for k = n− j + 2 to 2 step − 1

c
(j)
i,k−1 = θk−1

[
c
(j−1)
i,k − (βk − αi)c

(j)
i,k −

γk+1

θk+1
c
(j)
i,k+1

]

endfor k
endfor j

endfor i,

where c
(j)
ik = 0 for k > n− j + 1. Thus, from (2.2),

cik = c
(ni)
ik , k = 1, 2, . . . , n− ni + 1; i = 1, 2, . . . , p.

Stage 3. Expand Li(x) in Taylor series at αi, i.e.,

Li(x) = di1 + di2(x− αi) + · · ·+ di,ni
(x− αi)

ni−1 + O((x− αi)
ni).(2.12)

We define

L
(1)
i (x) = Li(x), L

(j)
i (x) = dij + (x− αi)L

(j+1)
i (x), j = 1, . . . , ni.(2.13)

Let

L
(j)
i (x) =

n−ni+1∑
k=j

d
(j)
ik pk−j(x).(2.14)
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Substituting (2.14) into (2.13), and applying (2.9), yields the following.
ALGORITHM C.
For i = 1 to p

for k = 1 to n− ni + 1
d
(1)
ik = cik

endfor k
for j = 1 to ni

for k = n− ni + 1 to j + 1 step − 1

d
(j+1)
i,k = θk−j

[
d
(j)
i,k − (βk−j+1 − αi)d

(j+1)
i,k+1 −

γk−j+2

θk−j+2
d
(j+1)
i,k+2

]

endfor k

dij = d
(j)
ij − (β1 − αi)d

(j+1)
i,j+1 −

γ2

θ2
d
(j+1)
i,j+2

endfor j
endfor i,

where d
(j+1)
ik = 0 for k > n− ni + 1.

Stage 4. Compute the polynomial Pi,k(x) which is of degree ni − 1 and satisfies
(2.3).

Let

(2.15)

Pi,k(x) = p
(k)
i1 +p

(k)
i2 (x−αi)+· · ·+p

(k)
i,ni

(x−αi)
ni−1, k = 0, 1, . . . , ni−1; i = 1, . . . , p.

Substituting x = αi into the formula

ds

dxs
(Pi,k(x)Li(x)) =

ds

dxs
(Pi,k(x))Li(x) + s

ds−1

dxs−1
(Pi,k(x))

d

dx
(Li(x))

+
s(s− 1)

2

ds−2

dxs−2
(Pi,k(x))

d2

dx2
(Li(x)) + · · ·+ Pi,k(x)

ds

dxs
(Li(x)),

we have, from (2.15), (2.12), and (2.5),




di1

di2 di1

...
. . .

. . .

di,ni
· · · di2 di1







p
(0)
i1 p

(1)
i1 · · · p

(ni−1)
i1

p
(0)
i2 p

(1)
i2 · · · p

(ni−1)
i2

· · · · · · · · · · · ·
p
(0)
i,ni

p
(1)
i,ni

· · · p
(ni−1)
i,ni




=




1
1

1!
. . .

1

(ni − 1)!



,

where the coefficient matrix is a triangular Toeplitz matrix. Hence, we get the fol-
lowing.

ALGORITHM D.
For i = 1 to p

p
(0)
i1 =

1

di1
for k = 2 to ni

p
(0)
ik = − 1

di1

(
k−1∑
t=1

di,k−t+1p
(0)
it

)
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endfor k
for j = 1 to ni − 1

for k = 1 to ni

p
(j)
ik =




1

j
p
(j−1)
i,k−1 , k > j

0, k ≤ j

endfor k
endfor j

endfor i.
Stage 5. Compute the representations (2.4) of the polynomials Pi,k(x)Li(x) in

terms of the basis {pk(x)}n−1
k=0 .

We define

W
(k)
i,ni

(x) = p
(k)
i,ni

, W
(k)
ij (x) = p

(k)
ij + (x− αi)W

(k)
i,j+1(x), j = ni − 1, . . . , 1,

from which W
(k)
i,1 (x) = Pi,k(x). Let

W
(k)
ij (x)Li(x) =

n−j+1∑
t=1

w
(k,j)
i,t pt−1(x), j = 1, . . . , ni; i = 1, 2, . . . , p.(2.16)

Substituting (2.16) into the recursion formula


W
(k)
i,ni

(x)Li(x) = p
(k)
i,ni

Li(x),

W
(k)
ij (x)Li(x) = p

(k)
ij Li(x) + (x− αi)W

(k)
i,j+1(x)Li(x), j = ni − 1, . . . , 1,

and applying (2.10) and (2.9) yields the following.
ALGORITHM E.
For i = 1 to p

for k = 0 to ni − 1
for j = ni to 1 step − 1

for t = 1 to n− j + 1

w
(k,j)
it = p

(k)
ij cit+

1

θt−1
w

(k,j+1)
i,t−1 +(βt−αi)w

(k,j+1)
it +

γt+1

θt+1
w

(k,j+1)
i,t+1

endfor t
endfor j

endfor k
endfor i,

where w
(k,j)
i0 = 0, w

(k,j)
it = 0(j ≤ ni, t > n−j+1 or j > ni), and cit = 0(t > n−ni+1).

Finally, the elements of the inverse (2.6) of Vc are

u
(k)
it = w

(k,1)
it , t = 1, 2, . . . , n; k = 0, 1, . . . , ni − 1; i = 1, 2, . . . , p.

Assuming that the values γj/θj are given, then the operation count of the algo-
rithm A ∼ E can be bounded by

8n

p∑
i=1

n2
i − 4

p∑
i=1

n3
i + 13n2 − 1

2

p∑
i=1

n2
i +

27

2
n + p,

which shows that the algorithm requires O(n2) arithmetic operations if n� maxi ni.
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Of course, for n1 = · · · = np = 1, the five-stage algorithm reduces to the algorithm
in [27].

If maxi ni is large, then the arithmetic operations of the algorithm jumps to
O(n3). For inversion of con°uent Vandermonde-like matrices, an O(n2) algorithm
was already specified in [31].

3. Computed examples. We present some experiments that illustrate the nu-
merical behavior of the five-stage algorithm when the nodes are ordered in increasing,
decreasing, and Leja orderings, which satisfy

|α1| = max
1≤s≤p

|αs|,
k−1∏
j=1

|αk − αj | = max
k≤s≤p

k−1∏
j=1

|αs − αj |, 2 ≤ k ≤ p.

In order to compare the accuracy of the inverse V −1
c computed by our algorithm

with the three orderings of the nodes mentioned and computed by the Gaussian
elimination with partial pivoting, we compute the Frobenius norm of the left residuals
‖V −1

c Vc − I‖F . The computations were performed using FORTRAN 77 on a PC–AT
compatible machine with double precision arithmetic.

Example 1. We use clustered nodes on [−1, 1],

αj = −1 + 2

(
j − 1

p− 1

)2

, j = 1, 2, . . . , p(2.17)

and the positive integers

nj =

{
5− j, j = 1, 2, 3, 4,

nj−4, j > 4.
(2.18)

The polynomials pk(x) are monomials, i.e., pk(x) = xk, k = 0, 1, . . . , n − 1. The
results are given in Table 1.

Example 2. We use the clustered nodes (2.17) and the positive integers nj (2.18).
The orthogonal polynomials pk(x) are Chebyshev polynomials

pk(x) = Tk(x) = cos(k arccosx), k = 0, 1, . . . , n− 1.

The results are given in Table 2.
Example 3. We use extrema nodes of the Chebyshev polynomial Tp−1(x),

αj = cos

(
j − 1

p− 1
π

)
, j = 1, 2, . . . , p(2.19)

and the positive integers

nj = 2, j = 1, 2, . . . , p.(2.20)

The polynomials pk(x) are the monomials. The results are given in Table 3.
Example 4. The nodes and the positive integers are given in (2.19) and (2.20),

respectively. The orthogonal polynomials pk(x) are the Chebyshev polynomials. The
results are given in Table 4.

Example 5. We use equidistant nodes on [−1, 1],

αj = −1 + 2
j − 1

p− 1
, j = 1, 2, . . . , p,

and the positive integers nj (see (2.20)). The orthogonal polynomials pk(x) are the
Chebyshev polynomials. The results are given in Table 5.
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Table 1

Fast algorithm

p n increasing decreasing Leja ordering Gauss

4 10 0.288E¡12 0.403E¡12 0.615E¡12 0.167E¡11

8 20 0.574E¡04 0.254E¡02 0.736E¡04 0.108E¡01

12 30 0.340E+06 0.725E+06 0.929E+04 0.299E+09

Table 2

Fast algorithm

p n increasing decreasing Leja ordering Gauss

4 10 0.236E¡12 0.180E¡11 0.234E¡12 0.133E¡11

8 20 0.776E¡03 0.113E¡02 0.609E¡07 0.813E¡06

12 30 0.181E+04 0.262E+06 0.282E+03 0.312E+01

Table 3

Fast algorithm

p n increasing decreasing Leja ordering Gauss

5 10 0.579E¡12 0.136E¡11 0.191E¡12 0.674E¡12

10 20 0.593E¡06 0.134E¡05 0.326E¡08 0.666E¡04

15 30 0.322E+00 0.177E+00 0.773E¡04 0.957E+03

20 40 0.331E+04 0.210E+04 0.498E+00

Table 4

Fast algorithm

p n increasing decreasing Leja ordering Gauss

5 10 0.116E¡11 0.833E¡12 0.291E¡13 0.472E¡14

10 20 0.679E¡06 0.496E¡06 0.139E¡11 0.127E¡12

15 30 0.995E¡01 0.944E¡01 0.138E¡10 0.161E¡12

20 40 0.910E+03 0.171E+04 0.816E¡10 0.474E¡12

25 50 0.103E¡09 0.102E¡11

30 60 0.273E¡09 0.231E¡11

35 70 0.182E¡08 0.296E¡11

40 80 0.184E¡08 0.518E¡11

45 90 0.994E¡08 0.595E¡11

Table 5

Fast algorithm

p n increasing decreasing Leja ordering Gauss

5 10 0.422E¡14 0.422E¡14 0.422E¡14 0.638E¡14

10 20 0.190E¡06 0.190E¡06 0.163E¡10 0.225E¡11

15 30 0.116E+01 0.116E+01 0.572E¡07 0.320E¡08

20 40 0.382E¡04 0.175E¡04

25 50 0.475E¡01 0.232E+00

30 60 0.168E+02 0.373E+03
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Our numerical experiments suggest that, in general, our fast algorithm with Leja
ordering of the nodes is at least as highly accurate in the computed inverse of a
con°uent Vandermonde-like matrix as Gaussian elimination with partial pivoting.

Acknowledgments. We thank the referees for their valuable comments.
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1. Introduction. Consider Gaussian elimination with partial pivoting (GEPP)
applied to a matrix A ∈ <n×n. The algorithm produces a decomposition of the form

A = PLU,(1.1)

where L ∈ <n×n is unit lower triangular, U ∈ <n×n is upper triangular, and P ∈ <n×n
is a permutation matrix.

For simplicity, assume that the permutation matrix P is already known. GEPP

generates a sequence of matrices Ak = (a
(k)
ij ), k = 0, . . . , n− 1, defined inductively by

A0 = PTA,(1.2)

Ak = (I −mke
T
k )Ak−1, k = 1, . . . , n− 1,(1.3)

where

mk =
1

a
(k−1)
kk

(

k︷ ︸︸ ︷
0, . . . , 0, a

(k−1)
k+1,k, . . . , a

(k−1)
nk )T .(1.4)

It is easily shown that

LkAk = A0, k = 1, . . . , n− 1,(1.5)

where

Lk = I +

k∑
i=1

mie
T
i , k = 1, . . . , n− 1.(1.6)

The permutation P is chosen so that

|a(k−1)
kk | = max

k≤i≤n
|a(k−1)
ik |.(1.7)

∗Received by the editors September 24, 1996; accepted for publication (in revised form) by N.J.
Higham July 11, 1997; published electronically April 14, 1998. The research of the first author
was supported by National Science Foundation grants CCR-9201612 and CCR-9424435. Part of
this work was done while the first author was visiting the University of Manchester, Department of
Mathematics, Manchester M13 9PL, United Kingdom.
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If we let

L = Ln−1, U = An−1,

we obtain the decomposition of A given by (1.1).
Equation (1.7) ensures that L = (`ij), where |`ij | ≤ 1 for all i and j, and that the

same holds for each Lk.
Wilkinson [7] showed that the stability of GEPP depends upon the growth factor

ζ
(k)
A =

max(i,j) |a(k)
ij |

max(i,j) |aij | .

He also showed that

max
A∈<n×n

ζ
(k)
A = 2k

and

ζn = max
A∈<n×n

ζA = 2n−1.

The decomposition (1.1) is stable for a particular A if

ζA = max
1≤k≤n−1

ζ
(k)
A

is a modest value.
For our discussion, we define the growth factor in the 2-norm as

ρ
(k)
A =

‖Ak‖2
‖A‖2 .(1.8)

Standard norm inequalities lead to the bounds

1

n
ρ
(k)
A ≤ ζ

(k)
A ≤ nρ

(k)
A .

We also define the bounds

ρA = max
1≤k≤n−1

ρ
(k)
A , ρ(k)

n = max
A∈<n×n

ρ
(k)
A , ρn = max

1≤k≤n−1
ρ(k)
n .(1.9)

We prove the following two results about ρ
(k)
A .

Proposition 1.1. Let A ∈ <n×n be nonsingular and have the P-L-U factoriza-
tion (1.1) by GEPP. Let A have the factorization

A = QR,(1.10)

where Q ∈ <n×n is orthogonal and R ∈ <n×n is upper triangular. Then GEPP on Q
produces the P-L-U factorization

Q = PLUQ,(1.11)

where

UQ = UR−1.(1.12)
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If we let ρ
(k)
A and ρ

(k)
Q be as defined by (1.8), then

ρ
(k)
Q ≥ ρ

(k)
A , k = 1, . . . , n− 1.(1.13)

Thus ρQ ≥ ρA.
Proposition 1.1 states that orthogonal matrices are the worst case for growth in

GEPP. The second proposition establishes a sharp bound for that growth.

Proposition 1.2. Let ρ
(k)
n and ρn be defined by (1.9). Then

ρ(k)
n +O(

√
n) =

1√
3

((n− k + 1/3))
1/2

2k,(1.14)

and therefore

ρn +O(
√
n) =

2n

3
.(1.15)

Proposition 1.1 arose from work by the first author [1] on the error analysis of
bidiagonal reduction. In that work, it was necessary to understand GEPP applied to
orthogonal matrices. The two authors then proved Proposition 1.2 to give a precise
value for worst-case growth.

In the next section, we prove Propositions 1.1 and 1.2. In section 3, we revisit
Wilkinson’s famous example of growth in GEPP and state our conclusions.

2. Proofs of the propositions. We now prove Propositions 1.1 and 1.2. The
proof of Proposition 1.1 is quite short, and we give it first.

Proof of Proposition 1.1. Combining (1.1) and (1.10) and using the nonsingularity
of A obtain

Q = AR−1 = PLUR−1.(2.1)

Since U and R−1 are upper triangular, so is UQ = UR−1; thus we have (1.11).
By a similar argument,

Q = PLkQk,(2.2)

where

Qk = AkR
−1

and Lk and Ak are given in (1.5) and (1.6). Since the first k columns of Qk are zero
below the diagonal, the uniqueness of the L-U decomposition [6, p. 121, Theorem 2.6]
assures us that (2.2) is the kth stage of GEPP applied to Q. No row interchanges
are needed since all entries of Lk below the diagonal will have an absolute value less
than 1.

A straightforward use of norm inequalities yields

ρ
(k)
A =

‖Ak‖2
‖A‖2 =

‖L−1
k A0‖2
‖A0‖2 ≤ ‖L−1

k ‖2.(2.3)

However,

ρQ =
‖Qk‖2
‖Q‖2 = ‖L−1

k PTQ‖2 = ‖L−1
k ‖2,(2.4)

where equality holds since PTQ is orthogonal. Combining (2.3) and (2.4) yields
(1.13).
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Remark 2.1. The above result does not extend to complete pivoting. The follow-
ing example, generated using the MATLAB function randn, illustrates this fact. It is
given to six fixed point digits. Let

A =


 1.164954 0.351607 0.059060

0.626839 −0.696513 1.797072
0.075080 1.696142 0.264069


 .

Its orthogonal factor is

Q =


 −0.879196 0.152789 −0.451298

−0.473079 −0.392581 0.788719
−0.056663 0.906938 0.417437


 .

Gaussian elimination with complete pivoting applied to A obtains the row permutation
pr = (2, 3, 1)T and the column permutation pc = (3, 2, 1)T . The L and U factors are

L =


 1 0 0

0.146944 1 0
0.032864 0.208229 1


 , U =


 1.797072 −0.696513 0.626839

0 1.798491 −0.017030
0 0 1.147899


 .

On the other hand, Gaussian elimination with complete pivoting applied to Q obtains
the row permutation pr = (3, 2, 1)T and the column permutation pc = (2, 3, 1)T . The
L and U factors are

L =


 1 0 0

−0.432864 1 0
0.168467 −0.538081 1


 , U =


 0.906938 0.417437 −0.056663

0 0.969412 −0.497606
0 0 −1.137403


 .

Three lemmas are necessary to prove Proposition 1.2. They concern the matrix

L̃k = (˜̀
(k)
ij ), defined by

˜̀(k)
ij =




1 if i = j,
−1 if 1 ≤ j ≤ k and j < i,

0 otherwise.
(2.5)

The first lemma is a slightly different version of a bound for the norm of the
inverse of a triangular matrix given in Higham [3, pp. 159–161, Theorems 8.11 and
8.13]. The proof is nearly identical to what is given there, so we omit it.

Lemma 2.1. Let Lk = (`
(k)
ij ) ∈ <n×n be a lower triangular matrix such that

`
(k)
ii = 1, |`(k)ij | ≤ 1 for j ≤ min{i− 1, k}, and `ij = 0 if i > j > k. Let L̃k be defined

by (2.5). Then

‖L−1
k ‖2 ≤ ‖L̃−1

k ‖2.(2.6)

The second lemma bounds ‖L̃−1
k ‖2. It is similar to a bound given by Faddeev,

Kublanovskaya, and Faddeeva [2], whose proof is given by Lawson and Hanson [4,
pp. 28–35].

Lemma 2.2. Let L̃k ∈ <n×n be defined by (2.5) and let ρ
(k)
n be defined by (1.9).

Then

ρ(k)
n = ‖L̃−1

k ‖2 ≤ ‖L̃−1
k ‖F =

(
(n− k + 1/3)

4k − 1

3
+ n− 1

3
k

)1/2

.
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Proof. From Lemma 2.1, it follows that

ρ(k)
n = ‖L̃k‖2 ≤ ‖L̃k‖F .(2.7)

Define wj , cj ∈ <j , j = 1, . . . , n, by

wj = (1, 1, 2, . . . , 2j−2)T , cj = (1, 1, . . . , 1)T .(2.8)

Note that if j ≤ k, then

L̃−1
k ej =


j−1 0

k−j+1 wk−j+1
n−k 2k−jcn−k


.

If j > k, then

L̃−1
k ej = ej .

Using the summing formula for a geometric series yields

‖L̃−1
k ej‖22 =

{
4k−j+2

3 + (n− k)4k−j if j ≤ k,
1 if j > k.

If we then use the summing formula for a geometric series again and take square roots,
we obtain the bound claim.

The following corollary gives a class of matrices that always achieve the optimal
growth in GEPP. Its proof is obvious.

Corollary 2.3. Let A ∈ <n×n and let L̃n−1 be given by (2.5). Let

A = PL̃n−1U

be the factorization of A by GEPP. If Q is the orthogonal factor of A, as defined in
Proposition 1.1, then

ρ
(k)
Q = ρ(k)

n , k = 1, . . . , n− 1.

In the next lemma, for a matrix B ∈ <m×n we define σi(B) to be the ith singular
value of B (in decreasing order) for i = 1, . . . , n.

The upper bound from Lemma 2.2 is very tight. The matrix L̃k always has exactly
one small singular value.

Lemma 2.4. Let L̃k be as in Lemma 2.1. Assume that n ≥ 2. If k < n − 1,
σn−1(L̃k) = 1; otherwise σn−1(L̃k) ≥

√
2.

Proof. First consider the case k = n− 1. Let

L̃n−1 = ( Fn−1 en ).(2.9)

The Cauchy interlace theorem [5, p. 186, Theorem 10-1-2], when applied to L̃Tn−1 L̃n−1,
states that

σn−1(L̃n−1) ≥ σn−1(Fn−1).

We now show that σn−1(Fn−1) =
√

2.
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Note that

FT
n−1 Fn−1 =

( n−2 1

n−2 Bn−2 0
1 0 2

)
,

where Bn−2 is empty if n = 2 and

Bn−2 =




n n− 3 n− 4 . . . 1
n− 3 n− 1 n− 4 . . . 1
n− 4 n− 5 n− 2 . . . 1

...
...

...
...

...
1 1 1 . . . 3


 .

It is obvious that
√

2 is a singular value of Fn−1. If n = 2, it is clearly the smallest
positive one, and we are done.

For n ≥ 3, we now show that Bn−2 − 2In−2 is positive definite. We have

B̂n−2 = Bn−2 − 2In−2 =




n− 2 n− 3 n− 4 . . . 1
n− 3 n− 3 n− 4 . . . 1
n− 4 n− 4 n− 4 . . . 1

...
...

...
...

...
1 1 1 . . . 1


 .

The matrix B̂n−2 can be factored into

B̂n−2 = GT
n−2 Gn−2,

where

Gn−2 =




1 0 . . . 0
1 1 . . . 0
...

...
...

...
1 1 . . . 1


 .

Thus B̂n−2 is positive definite,
√

2 must be the smallest singular value of Fn−1, and
σn−1(L̃n−1) ≥

√
2.

To consider k < n − 1, we need some helpful notation. For any fixed n and
1 ≤ k ≤ n− 1, define

Fk,n = L̃k

for k = 1, . . . , n− 1.
We have that

Fk,n =

( k n−k

k Fk−1,k 0
n−k Jn−k In−k

)
,

where Jn−k is an (n − k) × k matrix with each entry −1. Clearly, Jn−k is a rank-1
matrix. Thus

dim(null(JTn−k)) = n− k − 1.
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If z ∈ null(JTn−k), then ẑ = (

k︷ ︸︸ ︷
0, . . . , 0, z)T satisfies

Fk,nF
T
k,nẑ = ẑ.

Thus n−k−1 singular values of Fk,n are equal to 1. From our previous argument,
σk−1(Fk,k−1) ≥

√
2, so again, applying the Cauchy interlace theorem to FT

k,n Fk,n
yields

σk−1(Fk,n) ≥ σk−1(Fk,k−1) ≥
√

2.

Therefore we have

σk(Fk,n) = · · · = σn−1(Fk,n) = 1.

We can now prove Proposition 1.2. Proof of Proposition 1.2. We have that

ρ(k)
n = ‖L̃−1

k ‖2 = σn(L̃k)
−1.

For simplicity, let σi = σi(L̃k).
We also have that

σ−2
n = ‖L̃−1

k ‖2F −
n−1∑
i=1

σ−2
i .

From Lemma 2.4, we have that σn−1 ≥ 1, thus σ−2
n−1 ≤ 1, so

σ−2
n ≥ ‖L̃−1

k ‖2F − (n− 1)

= (n− k + 1/3)
4k

3
− n− 2

3
.

Taking square roots and using the reverse triangle inequality yield

σ−1
n ≥ 1√

3
((n− k + 1/3)

1/2
2k − (n− 2)

1/2
) =

1√
3

(n− k + 1/3)
1/2

2k −O(
√
n).

This establishes (1.14). Equation (1.15) follows from maximizing (1.14) over all k =
1, . . . , n− 1.

Remark 2.2. An approximate largest right singular vector of L̃−1
k is

x = (2k−1, 2k−2, . . . , 2, 1, 1, . . . , 1)T .

For this vector ‖L̃−1
k x‖2/‖x‖2 ≈ ρ

(k)
n + o(2k).

Remark 2.3. If we were to use the measure

γ
(k)
A =

‖Ak‖F
‖A‖2 ,

the results of Lemma 2.2 could be used to show that

γ(k)
n = max

A∈<n×n
γ

(k)
A =

(
(n− k + 1/3)

4k − 1

3
+ n− 1

3
k

)1/2

.
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Moreover, in the proof of Proposition 1.1, orthogonal invariance yields

‖Qk‖F = ‖L−1
k ‖F ‖Q‖2.

Thus orthogonal matrices would also maximize this measure.
However, orthogonal matrices do not maximize the measure

γ̃
(k)
A =

‖Ak‖F
‖A‖F .

We note that

γ̃
(k)
A ≤ ‖L−1

k ‖2 ≤ ρ(k)
n .

Therefore, from Remark 2.2, if we let Fn be the matrix defined by (2.9) and let

xn = (1, 2−1, . . . , 2−(n−1), 2−(n−1))T , then the upper bound for γ̃
(n)
A can be achieved

asymptotically by the sequence of matrices

A(n) =
(
n−2Fn xn

)
as n→∞.

3. Wilkinson’s example revisited and the conclusion. Let A = (aij) ∈
<25×25 be the matrix

aij =




0 if i < j < n,
1 if i = j or j = n,

−1 if i > j.

This is a famous example due to Wilkinson [8, section 4.26]. We then let the P -L-U
factorization by GEPP be given by (1.1) and the orthogonal factorization of A be
given by (1.10).

With MATLAB one finds that

ρA = 1.2370× 106.

However, the growth factor ρQ for the orthogonal factor Q in (1.10) is

ρQ = 1.1185× 107 > ρA.

We note that

‖L−1‖F =
(
425 + 6× 25− 1

)1/2
= 1.1185× 107,

so it matches ρQ to five significant digits.
This example points out that Wilkinson’s matrix does not produce the largest

possible growth in the 2-norm, but as Corollary 2.3 states, its orthogonal factor does.
The MATLAB 4.2c routine lu(X) pivoted when performed on the Q from this

example, but still produces a very large growth factor. Thus we had to factor Q using
a Gaussian elimination routine that did not pivot to get these results.

As we have shown, orthogonal matrices are the worst case for 2-norm growth in
GEPP.
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Abstract. In this paper we provide a robust reordering scheme for sparse matrices. The
scheme relies on the notion of multisection, a generalization of bisection. The reordering strategy
is demonstrated to have consistently good performance in terms of fill reduction when compared
with multiple minimum degree and generalized nested dissection. Experimental results show that by
using multisection, we obtain an ordering which is consistently as good as or better than both for a
wide spectrum of sparse problems.

Key words. ordering algorithms, minimum degree algorithm, nested dissection
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1. Introduction. It is well recognized that finding a fill-reducing ordering is
crucial to the success of the numerical solution of sparse linear systems. For sym-
metric positive-definite systems, the minimum degree [47] and the nested dissection
[15] orderings are perhaps the most popular ordering schemes. They represent two
opposite approaches to the ordering problem. Minimum degree is a “bottom-up” ap-
proach that uses local information, while nested dissection is a “top-down” approach
that primarily uses global information. However, the two methods share a common
undesirable characteristic. Both schemes produce generally good orderings, but the
ordering quality is not uniformly good.

The main contribution of this paper is to introduce a robust ordering scheme that
gives good quality orderings consistently, near equal or better than minimum degree
and nested dissection. The basic tool is a multisector, a generalization of a bisector.
A multisector is a subset of vertices whose removal subdivides the graph into two
or more components. We call the resulting partition a domain decomposition. The
whole ordering process has two independent phases: the ordering of the vertices in
the components (the domains) and the ordering of the multisector (the interface).

An outline of this paper is as follows. In section 2, we provide evidence on the
inconsistent ordering quality of the minimum degree and nested dissection schemes.
The multisection ordering scheme is described in section 3, where the notions of
domain decomposition, multisector, and multisection ordering are introduced. The
quality of the resulting ordering depends on three factors: the domain decomposition,
the ordering method for the domains, and the ordering method for the multisector.

In section 4, we consider numerical experiments of the multisection ordering ap-
proach on regular grids. We show that multisection gives an ordering quality close
to the optimal nested dissection ordering [15] for square and cubic grids, and local
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nested dissection ordering [9] for grids with large aspect ratios. Section 5 evaluates
multisection on some structural analysis matrices from the Harwell–Boeing collection
[12]. We use an incomplete nested dissection scheme to determine a multisector and
its associated domain decomposition. Section 6 contains our concluding remarks.

2. Minimum degree and nested dissection orderings.

2.1. General overview. The minimum degree ordering algorithm is a symmet-
ric version of the Markowitz scheme [39]. It was first described and used by Tinney
and Walker [47]. The basic minimum degree algorithm can be best described in terms
of elimination graphs [44]. Let G be the graph associated with a given sparse matrix.
The scheme selects a vertex v of minimum degree in G. This vertex is numbered
next in the ordering and is eliminated from the graph G to form its elimination graph
Gv. The graph G is then replaced by this elimination graph Gv, where the selec-
tion/elimination process is repeated. Many important enhancements have been made
to the implementation of the minimum degree ordering; the survey paper [14] contains
a comprehensive account of such enhancements.

To choose a vertex to eliminate, the minimum degree algorithm uses the degree of
the vertex, which is a local graph property. If we view the ordering as the construction
of the elimination tree,1 the tree is formed from bottom-up. This means vertices
associated with the bottom part of the tree get their ordering assignments first.

The minimum degree ordering has been generally recommended as a general pur-
pose fill-reducing reordering scheme. Its wide acceptance is largely due to its effec-
tiveness in reducing fill and its efficient implementation. However, since the scheme
uses only local information, it produces only adequate orderings for large problems.
There is room for improvement.

Another popular fill-reducing ordering is the nested dissection ordering [15] and
its generalizations. In contrast to the minimum degree algorithm, nested dissection is
a top-down scheme. It finds a separator, a subset of vertices whose removal renders
the remaining graph disconnected, and numbers the vertices in the separator last.
The process is then repeated recursively on each of the resulting components. Nested
dissection constructs the elimination tree from the root down.

In [15] and [27] it is showed that nested dissection on grid problems will give
optimal orderings (to within a constant factor) with respect to the number of factor
nonzeros and factor operation counts. For general graph problems, the recursive
approach of finding and ordering separators is often referred to as generalized nested
dissection [34]. For the remainder of this paper, we shall simply use nested dissection
to refer to generalized nested dissection.

A separator is a global property of the graph. The quality of a nested dissection
ordering depends crucially on the quality of its separators. With good separators,
nested dissection gives high quality orderings for a large class of graphs. However, on
a grid graph with a large aspect ratio, e.g., an h×k grid where h is appreciably smaller
than k, a nested dissection ordering is inferior to a minimum degree ordering. A good
separator is not enough; the ordering of the vertices found in the different levels of the
separators is important. In many cases, the ordering given by the recursive ordering
of the separators in nested dissection can be improved.

2.2. Shortcomings of minimum degree and nested dissection. To illus-
trate the inconsistent ordering quality from the minimum degree (MMD) [35] and the

1The elimination tree is a useful tool in the study of sparse matrix factorization. See [38] for a
survey article.
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Fig. 1. Comparison of MMD and ND for 2-D regular grids of different aspect ratios.

grid-based nested dissection (ND) [15] algorithms, we apply the two algorithms on
a sequence of rectangular grids of increasing aspect ratios. We run the orderings on
grids of the following sizes: 128 × 128, 64 × 256, 32 × 512, 16 × 1024, 8 × 2048, and
4× 4096, respectively, so that the number of unknowns are the same (214 = 16384).

In Figure 1, we plot the performance ratio of MMD/ND versus the base-2 loga-
rithm of the aspect ratios of the rectangular grids. The variation in performance is
rather drastic. For the grid of unit aspect ratio, ND outperforms MMD by a factor
of two in factorization operations. On the other end, for grids of large aspect ratios,
MMD is better than ND in operations by a factor of close to two.

Such performance variations can also be found in practical sparse matrix prob-
lems. In section 5 we will compare minimum degree, nested dissection, and multi-
section on a set of matrices from the Harwell–Boeing sparse matrix collection [12].
For seven of the 16 matrices minimum degree generates an ordering with fewer op-
erations than our nested dissection ordering. Part of this can be explained by the
aspect ratio of the graphs of the matrices.2 For example, one of the test matrices,
BCSSTK25, is a finite element model of a tall building and has a graph with a large
aspect ratio.

The shortcomings of the minimum degree ordering are largely due to the local
nature of the algorithm. Selecting a vertex to eliminate, based on the local degree
information, can often lead to less-than-desirable choices. Berman and Schnitger [8]
have shown that there is a minimum degree sequence for the square grid so that the
resulting ordering has factor nonzeros and operation counts an order of magnitude
more than the optimal. By construction, their less-than-optimal ordering generates
separators with a severe “fractal” nature. Virtually any minimum degree ordering
has this property although to a lesser extent.

2The aspect ratio for a geometric object can be loosely defined using a major axis and cross-
sections perpendicular to the axis. Both concepts can be extended to general graphs, where the
Euclidean distance metric is replaced by the natural distance metric of a graph, namely, the distance
between two vertices is the length of the shorted path connecting them.



MULTISECTION ORDERINGS OF SPARSE MATRICES 819

On the other hand, the shortcoming of nested dissection can be best explained
by its performance on problems of large aspect ratios. The experimental results in
Figure 1 on rectangular grids of varying aspect ratios show that the difference in
performance is quite significant. Since we are using the best separator (best in terms
of both the separator size and the component balance) on the grid at each step of
nested dissection, we cannot attribute the problem to the quality of the separators.
The problem is with the way the last few levels of separators are numbered. Indeed,
our approach of using multisectors provides a more effective way of numbering the
vertices associated with these separators.

3. The multisection ordering algorithm. In nested dissection, a separator
in the form of a bisector is used to split the given graph into two subgraphs where
each subgraph is ordered recursively. The vertices associated with the bisector usu-
ally form a clique in the filled graph. If the separator is minimal and each of the
two subgraphs is connected, then the bisector forms a clique in the filled graph.
Our approach uses the notion of a multisector separator, which splits the given
graph into a number of subgraphs. In general, the multisector vertices induce a
sparse submatrix in the filled graph. Within this framework, we can, therefore, view
nested dissection as a multilevel bisection scheme. On the other hand, this new ap-
proach is a bilevel multisection scheme. For simplicity, we shall simply refer to it as
multisection.

3.1. Domain decomposition and the multisector. Multisection is closely
related to the notion of domain decomposition, which we now formally define. Let
A be an irreducible matrix with symmetric structure and let G = (V,E) be the
undirected graph of the structure of A. V is the set of vertices and E ⊆ V × V is
the set of edges. Edge (i, j) is in E if and only if ai,j 6= 0. For a subset U ⊆ V , the
boundary of U , written Adj(U), is the set of all vertices adjacent to those in U but
not including any in U , i.e., Adj(U) = {v /∈ U | (u, v) ∈ E for some u ∈ U}.

Consider a partition of the vertex set V :

V = Φ ∪ Ω1 ∪ Ω2 ∪ · · · ∪ ΩM ,

where each Ωi is a domain and Φ is the set of interface vertices. Each domain Ωi is a
connected subgraph of G whose boundary Adj(Ωi) is contained in Φ. This partition
of V induces a block partition of the matrix A,

A =




AΩ1,Ω1
AΩ1,Φ

. . .
...

AΩM ,ΩM AΩM ,Φ

AΦ,Ω1
· · · AΦ,ΩM AΦ,Φ


 .

Since the domains are separated from one another by the set Φ, we shall also refer to Φ
as a multisector, for it generalizes the notion of a bisector. Without loss of generality,
we shall assume that the multisector partition is nontrivial; that is, M > 1 and Φ is
nonempty.

Given this domain decomposition, we impose one condition on the ordering: All
vertices in the domains are numbered before any vertex in the multisector. Since the
domains are isolated from each other, each can be ordered independently.

We use the constrained minimum degree algorithm [37] to order the vertices in
each domain. For domain Ωi, we construct the graph Gi = (Ωi ∪ Adj(Ωi), Ei) where
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domains and multisector

Fig. 2. A multisector Φ = {2, 4, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 27, 33}.

Ei = E ∩ (Ωi× (Ωi ∪Adj(Ωi))) contains all edges (u, v) ∈ E where u ∈ Ωi. While the
vertices in Adj(Ωi) contribute to the degrees of the vertices in Ωi, only vertices in Ωi

are allowed to be eliminated.
To order the multisector vertices we consider GV \Φ, the elimination graph of G

after all vertices in the domains have been eliminated. Note that GV \Φ is also the
graph of the Schur complement matrix

AΦ,Φ −
M∑
i=1

AΦ,ΩiA
−1
Ωi,Ωi

AΩi,Φ.

From this equation it is clear that the elimination graph GV \Φ (the structure of
the Schur complement matrix) does not depend on the ordering of domain vertices.
Therefore, the ordering of the multisector vertices in this elimination graph can pro-
ceed independently of the ordering of the domain vertices.

Figure 2 contains an example of a domain decomposition of a 6 × 6 grid graph.
The vertices are partitioned into six domains and a multisector:

Φ = {2, 4, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 27, 33}.
Multisector vertices are represented by squares and domain vertices by circles.

3.2. Compressed graphs. Often the time required to find an ordering can be
significantly reduced by taking advantage of indistinguishable vertices. For a given
graph, two vertices are said to be indistinguishable if they are adjacent and have ex-
actly the same set of neighbors (including themselves). The elimination graph GV \Φ
of a domain decomposition usually has many fewer indistinguishable vertices than
original vertices. This is important since the execution time of the minimum degree
ordering depends on the number of indistinguishable vertices instead of the number
of original vertices. Figure 3 contains the Schur complement matrix associated with
the domain decomposition of Figure 2. There are 16 vertices and 10 indistinguishable
ones. For example, {4, 10, 16} forms a set of indistinguishable vertices, since they all
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Fig. 3. The Schur complement matrix has 16 vertices and 10 indistinguishable vertices. Orig-
inal nonzero entries are denoted by ‘×,’ fill entries by ‘+.’

have the same adjacent set {2, 8, 14, 20, 21, 22, 23} in the elimination graph. Indistin-
guishability is an equivalence relation defined on the original vertices, and so induces
a partition of V .

Let V be any general partition of the original vertices V . The weight of v ∈ V,
written w(v), is the number of original vertices contained in v. Similarly, the weight
of the pair (u,v), written w(u,v), is the number of distinct edges (u, v) ∈ E where
u ∈ u and v ∈ v. For a given partition V of V , the compressed graph induced by the
partition is the graph (V,E), where E is the set of pairs (u,v) ⊆ V×V with nonzero
weights.

In particular, the indistinguishability relation induces a partition V of the vertices,
which in turn defines a special block partition of the original matrix A. To each edge
(u,v) is associated a submatrix Au,v of the original matrix, namely, the submatrix
whose rows correspond to vertices in u and whose columns correspond to vertices in
v. The weight of the edge (u,v) is the number of nonzero entries in the corresponding
submatrix. There is one important relation between the weights of an edge and its two
incident vertices in the compressed graph, namely, w(u,v) = w(u) · w(v), i.e., each
submatrix Au,v induced by the block partition is either dense or zero. Furthermore,
there is no partition of the vertices with smaller cardinality for which w(u,v) =
w(u) · w(v) holds for all edges (u,v) ∈ E.

In our software, instead of ordering the graphG = (V,E) of the matrix A, we order
G = (V,E), the natural compressed graph [1], [11], of A, where V is the partition in-
duced by the indistinguishability relation. Table 2 in section 5 contains some statistics
on the sizes of the unit weight graph G = (V,E) and the weighted graph G = (V,E)
for some structural analysis matrices from the Harwell–Boeing test collection. The
ratio |E|/|E| can be as high as 10-30 for these matrices, and since the complexity of
the ordering process contains an O(|E|) or O(|E|) term, the ordering times for the
compressed graph can be appreciably smaller than those for the original graph.
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3.3. A family of multisection ordering algorithms. Following is a skeleton
of the multisection ordering scheme based on the notion of a domain decomposition.

MS (ordering method-1, ordering method-2):
Given a domain decomposition (Φ,Ω1,Ω2, . . .ΩM ) of V ;
for each domain Ωi do

Order the graph Gi = (Ωi, Ei) by ordering method-1;
Form the elimination graph GV \Φ and order by ordering method-2;

A multisection (MS) ordering is defined by three choices:
1. How to determine the domain decomposition?
2. What fill-reducing ordering to order the domains Ωi?
3. What fill-reducing ordering to order the multisector?

In the literature, there are a number of existing ordering schemes using this multisec-
tion approach.

• One-way nested dissection–MS(PROFILE, PROFILE). The one-way dissection
scheme by George [16] chooses a set of equally spaced parallel lines as its multisector
of a regular grid graph. Each component in the remaining graph is ordered by a profile
ordering. The elimination graph associated with the multisector is also numbered by
a profile ordering. We can, therefore, view one-way dissection as a MS(PROFILE,
PROFILE) ordering scheme. George provided experimental and theoretical results
to show that one-way dissection can be better than nested dissection for grid graphs
with large aspect ratios. In his master thesis [40], Ng has considered the recursive use
of the one-way dissection approach. This can also be viewed as using some form of
multisector.

• Local nested dissection–MS(ND, PROFILE). The local nested dissection (LND)
scheme in [9] carries the one-way dissection idea further. A rectangular grid of large
aspect ratio is subdivided into roughly square domains by a set of parallel horizontal
and vertical lines. Each square domain is ordered by nested dissection. The multi-
sector defined by this set of lines is then numbered by a profile ordering. The LND
scheme is, therefore, a MS(ND, PROFILE) ordering method.

• Incomplete nested dissection–MS(CMD, ND) and MS(MMD, ND). There are
two generic forms of an incomplete nested dissection ordering. In both forms, the
multisector is constructed using the recursive bisection process of nested dissection
and the ordering of the multisector vertices follows the given nested dissection order-
ing. The difference lies in how the vertices in the domains are ordered, using either
multiple minimum degree (MMD) [35] or constrained minimum degree (CMD) [37].
The latter algorithm usually generates a better ordering than the former on the do-
main subgraphs. There are many examples of incomplete nested dissection in the
literature [3], [6], [7], [10], [19], [20], [22], [23], [28], [30], [33], [36], [42], [43], includ-
ing three excellent state-of-the-art software packages, CHACO from Sandia National
Laboratories [24], METIS from the University of Minnesota [29], and WGPP from
IBM [21].

The above methods are all members of the multisection family of ordering al-
gorithms. In the following sections we will compare incomplete nested dissection
algorithms with a new method, MS(CMD, MMD), where vertices in the domains are
ordered with constrained minimum degree and the Schur complement graph is or-
dered with MMD. We will refer to the MS(CMD, MMD) algorithm as multisection,
in contrast with an incomplete nested dissection method (ND).
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What remains is to specify how the multisector is created. In [6], the authors
looked at two possibilities. The first method is to order the graph using MMD and
use the elimination tree to extract a multisector. (Each domain is a subtree of the
elimination tree; the multisector consists of all remaining vertices.) This multisector is
then smoothed to remove the fractal nature of the separators that form the multisector.
The second method, as described in [3], [6] performs recursive bisection on the graph
until the subgraphs are a certain size, then take the multisector to be the union of
the separators.

Subsequent to [6], Rothberg independently discovered the MS method using the
second technique [45]. In his work, a multisector was formed of the separators obtained
from the CHACO code [24] and automatic ND from SPARSPAK [17]. Multisection
consistently performed as well or better than the ND algorithm that generated the
multisector, evidence that supports our results in section 5 where we obtain a multi-
sector from the METIS software package [29] and our own ND software [4].

4. Experimental results on regular grids. In this section we present some
experimental results for the MS(CMD, MMD) ordering algorithm on regular grids.
For grid problems it is easy to construct an ideal set of multisectors. In this way, we
can study the effectiveness of MS(CMD, MMD) ordering when compared with some
theoretically-optimal orderings.

4.1. Square and cubic regular grids. We first consider 9-point operators on
two-dimensional k×k grids and 27-point operators on three-dimensional k×k×k grids.
For these graphs, the ND ordering [15] gives the best results (aside from some minor
variations on very small grids due to edge effects). For a square k × k grid, ND first
bisects the grid with a vertical separator creating two subgrids, each approximately
k/2 × k in size. Each of these subgrids is bisected by a horizontal separator forming
a total of four k/2 × k/2 subgrids. The process repeats on each of the subgrids
recursively. The separators are vertical or horizontal lines of grid points.

We construct a multisector in a similar way, composed of horizontal and vertical
grid lines (planes in 3-D) that span the grid. The simplest multisector we call Φ2,
which splits each side of the grid in two with a single separator in each grid direction.
There are four domains in 2-D, each approximately k/2× k/2 in size. For a 3-D grid
there are eight domains, each approximately k/2× k/2× k/2 in size. The multisector
Φ3 splits the 2-D grid into nine domains, each approximately k/3 × k/3 in size. In
general, the Φm multisector creates M = m2 domains in 2-D, (M = m3 domains in
3-D), each domain is roughly k/m along each side. Note that the multisector Φ1 is
empty and the entire grid is one domain. We can parameterize the MS(CMD, MMD)
ordering by the Φm multisector and Φ1 corresponds to MMD on the original grid
graph.

Our first experiment is to fix the number of domains and let the grid sizes grow.
For 2-D k × k grids we looked at 1 ≤ m ≤ 7. For 3-D k × k × k grids we looked at
1 ≤ m ≤ 4. Figure 4 contains four plots, results for 2-D grids at the top and 3-D
grids on the bottom. The ratio of MS(CMD, MMD) factor entries to those of ND are
found on the left and factorization operations on the right.

For ND, the number of factor entries is O(k2 log k) in 2-D and O(k4) in 3-D; the
number of factorization operations is O(k3) in 2-D and O(k6) in 3-D. We have scaled
the number of factor entries and operations appropriately. In each plot the bottom
curve is ND while the top curve is MMD. The MS curves are found between ND and
MMD. As k grows, the relative performance of MMD versus ND becomes appreciably
worse, more for factorization operations than factor entries and more for 3-D than 2-D.
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Fig. 4. Multisection vs. nested dissection on square and cubic regular grids.

The difference between MS and ND grows at a much smaller rate. For 2-D grids
there is a steady improvement as m increases. For 3-D grids the smaller values of m
are better; no doubt this is due to the relatively larger portion of factor entries and
operations attached to the top level separators.

4.2. Rectangular quadrilaterals and hexahedra. Multisection performs
fairly well when compared to ND on square and cubic regular grids. We now turn to
grids with large aspect ratios and compare MS to local nested dissection (LND) [9],
the best ordering for rectangular grids.

Table 1 presents some results for a 255 × 31 2-D grid and a 127 × 15 × 15
3-D grid. Both grids have an aspect ratio of 8, large enough to make LND clearly
better than ND, but not large enough to make minimum degree better than nested
dissection.

The results of MMD, ND, and MS are given relative to LND. The performance of
ND relative to LND is virtually the same in two and three dimensions; ND requires
around 10 percent more factor entries and 40 percent more factorization operations.
However, MMD shows its strong dependence on the dimensionality of the graph for
its 3-D performance is much worse than that for 2-D.

What is important to note is that MS will generate good orderings with many
different multisectors. We have observed this behavior across a wide range of ma-
trices; the quality of the MS ordering is not strongly dependent on the number
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Table 1
Comparing multiple minimum degree (MMD), nested dissection (ND), multisection (MS),

against local nested dissection (LND). The 255 × 31 grid is partitioned by an m1 × m2 grid of
roughly square domains. The 127× 15× 15 grid is partitioned by an m1 ×m2 ×m3 grid of roughly
cubic domains. All statistics are relative to LND.

255× 31 grid

METHOD NZF OPS

MMD/LND 1.24 1.73

ND/LND 1.11 1.41

MS/LND

m1 m2 M

16 2 32 1.14 1.35

24 3 72 1.08 1.22

32 4 128 1.08 1.20

40 5 200 1.08 1.23

48 6 288 1.08 1.25

127× 15× 15 grid

METHOD NZF OPS

MMD/LND 1.92 3.86

ND/LND 1.12 1.42

MS/LND

m1 m2 m3 M

8 1 1 8 1.78 3.44

16 2 2 64 1.12 1.15

24 3 3 144 1.23 1.67

of domains induced by the multisector. Furthermore, additional experiments have
also shown that the ordering quality is also relatively insensitive to the shape of do-
mains.

5. Experimental results on some sparse matrices from structural analy-
sis. The experimental results in section 4 on the 2D and 3D-grid problems suggest
that the multisection ordering MS(CMD, MMD) can lead to very competitive order-
ings. The multisectors used are based on the geometry of the grids, and so can be
regarded as the best we can get for a specified number of domains. For general sparse
matrix problems, the MS ordering algorithm depends on the use of an appropriate
domain decomposition. To avoid the “fractal” nature of the separators from MMD,
each domain should have a “smooth” boundary.

5.1. Finding a domain decomposition via recursive bisection. A simple
domain decomposition method can be formulated based on incomplete nested dissec-
tion. The vertex set V of the initial graph is decomposed into two or more connected
subgraphs by removing a bisector S. The connected components of V \ S are recur-
sively bisected until each remaining subgraph is smaller than some prescribed size.
Each remaining subgraph is a domain in the domain decomposition. The quality of
the resulting domain decomposition depends on the method to find bisectors in the
recursive steps.

Recently, there have been a number of published papers and software codes that
find a partition of a given graph. Notable examples include the CHACO [24], METIS
[29], and WGPP [21] software packages that use a multilevel approach to find a graph
bisector.

We have developed a software code called DDSEP [4] that partitions a graph in
three steps.

1. Find an initial multisector. Construct a domain decomposition of the graph
by “growing” domains from random seed vertices.

2. Find an initial separator formed of multisector vertices. Form the domain/
segment graph [4] where each segment is a subset of the multisector ver-
tices. Apply a block version of the Kernighan–Lin scheme [32] on the do-
main/segment graph to obtain a graph bisector composed of segments.

3. Improve the bisector. Improve the bisector using graph matching
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Table 2
Statistics for Harwell–Boeing matrices.

ORIGINAL COMPRESSED MMD

MATRIX |V | |E| |V| |E| NZF/103 OPS/106

BCSSTK15 3948 113868 3948 113868 663 172

BCSSTK16 4884 285494 1778 36502 742 146

BCSSTK17 10974 417676 5219 81062 1141 201

BCSSTK18 11948 137142 10926 122177 657 138

BCSSTK23 3134 42044 2930 35256 461 142

BCSSTK24 3562 156348 892 12756 296 38

BCSSTK25 15439 236802 13183 161964 1544 339

BCSSTK29 13992 605496 10202 313846 1721 424

BCSSTK30 28924 2014568 9289 222884 3731 869

BCSSTK31 35588 1145828 17403 288806 5160 2411

BCSSTK32 44609 1970092 14821 226974 5175 1048

BCSSTK33 8738 583166 4344 164284 2656 1300

BCSSTK35 30237 1419926 6611 65934 2782 406

BCSSTK36 23052 1120088 4351 37166 2766 618

BCSSTK37 25503 1115474 7093 88924 2831 558

BCSSTK39 46772 2042522 10140 81762 7671 2194

techniques [36] or the Dulmage–Mendelsohn decomposition [13], [41]
if the graph has unit weight vertices, or by using a generalized Dulmage–
Mendelsohn decomposition [5] or max flow solver [5], [25] if the graph is
weighted.

The DDSEP software has been demonstrated to be quite effective in finding good
partitions of general connected graphs and also efficient in terms of execution time
[4]. We now compare the domain decomposition approach DDSEP and the multilevel
approach in METIS to find ND and MS orderings.

5.2. Results on practical structural problems. We have selected a set of
practical sparse matrices arising from structural analysis problems from the Harwell–
Boeing collection [12]. Table 2 provides a list of the problems and their characteristics.
The column labeled ORIGINAL contains the number of vertices |V | and the number
of edges |E| of the original given graph. We have also applied the graph compression
technique in [1] to identify the indistinguishable vertices in the original graph. The
column labeled COMPRESSED gives the number of vertices |V| and the number
of edges |E| of the compressed graph. All of our ordering software works with the
compressed graph, and this often results in significantly decreased ordering times
when compared with using the original graph.

The last two columns in Table 2 present the number of factor entries and oper-
ations (both additions and multiplications) when the matrices are ordered using our
MMD software, scaled by 103 and 106, respectively. For each matrix we made 21 runs
of MMD where each run began with a randomly, symmetrically permuted matrix.
Table 2 contains the median values of these runs. When we compare the ordering
quality of the ND and MS methods, we scale their statistics by the corresponding
MMD values.

Table 3 contains statistics for two ND algorithms—one from METIS and one
using our DDSEP software—and MS where the multisector has been obtained from
either METIS or DDSEP. Again, we made 21 runs for each algorithm and matrix and
present the median value, scaled by the MMD factor entries (NZF) and factorization
operations (OPS). An entry in the table that is greater (less) than one means that the
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Table 3
A comparison of ND (nested dissection) and MS (multisection) relative to MMD (multiple

minimum degree) using DDSEP and METIS to find the multisector via recursive bisection.

NZF OPS

ND MS ND MS

MATRIX METIS DDSEP METIS DDSEP METIS DDSEP METIS DDSEP

BCSSTK15 0.80 0.75 0.83 0.76 0.60 0.53 0.64 0.56

BCSSTK16 1.01 0.97 0.89 0.89 1.01 0.96 0.77 0.77

BCSSTK17 1.07 0.95 0.93 0.86 1.12 0.90 0.80 0.67

BCSSTK18 1.04 0.93 0.91 0.89 0.84 0.77 0.67 0.70

BCSSTK23 1.01 0.84 0.95 0.83 0.88 0.67 0.81 0.66

BCSSTK24 1.18 1.04 1.08 1.00 1.32 1.05 1.13 0.97

BCSSTK25 1.16 1.02 0.96 0.90 1.34 1.14 0.86 0.80

BCSSTK29 1.15 0.96 0.98 0.97 1.15 0.85 0.86 0.89

BCSSTK30 1.29 1.19 1.08 1.05 1.62 1.51 1.16 1.07

BCSSTK31 1.02 0.88 0.90 0.94 0.72 0.55 0.64 0.72

BCSSTK32 1.32 1.08 1.11 0.95 2.00 1.37 1.38 0.87

BCSSTK33 0.93 0.80 0.84 0.78 0.82 0.59 0.68 0.57

BCSSTK35 1.38 1.10 1.14 1.00 2.16 1.33 1.48 0.98

BCSSTK36 1.27 1.07 1.11 0.93 1.68 1.25 1.29 0.82

BCSSTK37 1.35 1.05 1.14 0.92 2.04 1.25 1.45 0.78

BCSSTK39 1.11 0.93 1.02 0.90 1.38 0.94 1.06 0.78

MEAN 1.13 0.97 0.99 0.92 1.29 0.98 0.98 0.79

ordering algorithm performed worse (better) than MMD. Both METIS3 and DDSEP
recursively split a subgraph until it has 100 or fewer vertices, (for a weighted graph,
until the vertices in the subgraph have total weight less than 100).

Of the two ND algorithms, DDSEP consistently outperforms METIS. We believe
that DDSEP produces better separators; see [4] for a comparison. There are three
possible reasons:

• DDSEP is more flexible in enforcing a balance constraint than METIS; the
latter tries to balance the size of the two subgraphs at the expense of a possible
larger bisector. See [46] for a more complete discussion where evidence shows
that it is effective to allow some imbalance in the partition to reduce the
bisector size.

• DDSEP works exclusively with vertex bisectors while METIS finds an edge
bisector and then extracts a vertex bisector; see [19], [20], [26] for a discussion
of the drawbacks to finding a vertex separator from an edge separator.

• DDSEP uses a powerful algorithm (a generalized Dulmage–Mendelsohn de-
composition or solving a max flow problem [5]) to smooth a bisector.

Both MS algorithms, the first using the multisector from METIS, the second using the
multisector from DDSEP, consistently outperform their corresponding ND algorithms.
Where ND is better than MS, the difference is not large. While there are seven
matrices where ND using DDSEP does not produce as good an ordering as MMD,
there is only one such case for MS using DDSEP.

Table 4 contains the ordering times for four out of the five methods. All order-
ing codes are written in C and were run on a Sparc20 using the gcc compiler with
the -O4 option. In general, METIS takes modest amounts of CPU times, but it is

3The options we used for METIS were recommended to us by the author, George Karypis, namely,
SHEM (sorted heavy edge), BGKLR (combination of boundary greedy and boundary Kernighan–
Lin), and GGPKL (graph growing followed by boundary Kernighan–Lin).
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Table 4
Execution time for the ordering algorithms.

ordering CPU time in seconds portion of factorization time

ND MS ND MS

MATRIX MMD METIS DDSEP DDSEP MMD METIS DDSEP DDSEP

BCSSTK15 1.18 1.33 3.39 3.45 11.7% 13.2% 33.6% 34.2%

BCSSTK16 0.27 2.76 1.40 1.39 3.1% 32.1% 16.3% 16.2%

BCSSTK17 0.82 5.19 4.43 4.45 7.6% 44.0% 37.5% 37.7%

BCSSTK18 2.50 1.81 10.38 10.47 30.9% 22.4% 128.2% 129.3%

BCSSTK23 0.90 0.77 1.95 1.95 10.7% 9.2% 23.2% 23.2%

BCSSTK24 0.07 1.32 0.58 0.57 3.2% 60.0% 26.4% 25.9%

BCSSTK25 3.34 4.79 11.62 11.42 7.1% 10.2% 24.6% 24.2%

BCSSTK29 1.77 6.89 11.22 11.24 7.1% 27.7% 45.1% 45.1%

BCSSTK30 1.66 23.81 11.08 11.15 3.3% 46.6% 21.7% 21.8%

BCSSTK31 4.74 18.51 20.04 20.27 3.3% 13.1% 14.1% 14.3%

BCSSTK32 2.75 28.63 16.89 17.08 4.5% 46.5% 27.4% 27.7%

BCSSTK33 1.04 18.51 5.75 5.78 1.4% 24.2% 7.5% 7.6%

BCSSTK35 0.85 17.69 6.50 6.57 3.6% 74.0% 27.2% 27.5%

BCSSTK36 0.74 13.72 4.20 4.23 2.0% 37.7% 11.5% 11.6%

BCSSTK37 0.93 14.22 6.81 6.82 2.8% 43.4% 20.8% 20.8%

BCSSTK39 1.28 29.99 10.09 10.18 1.0% 23.2% 7.8% 7.8%

penalized because it cannot work with the compressed graph.4 Compare the times
for BCSSTK15 where the compressed graph is identical to the original graph. For
this matrix, METIS is almost three times as fast as DDSEP. We have observed this
general tendency across the entire set of test matrices; DDSEP is usually a factor of
two or more slower than METIS on the original graph. Part of this difference is due
to the more powerful smoother, but part is because DDSEP trades more computation
for reduced working storage. DDSEP uses only O(|V| log(|V|)) working storage and
does not replicate or destroy the input structure of the graph.

The ordering times for ND and MS with DDSEP include the time to order the
vertices in the domains using our MMD software. The time in MS to order the vertices
in the multisector is relatively small, and so we see the ND and MS ordering times
are almost identical (again the median of 21 runs). It is clear that the bulk of the
ordering time is spent finding the multisector via nested dissection.

Table 4 also provides the ordering times as the percentage of time needed for the
numerical factorization of the MMD ordering. Our multifrontal factorization code
from [2] consistently achieves 15–20 mflops for this collection of matrices. The MMD
ordering time is a small percentage of the factorization time for the larger problems,
while the ND and MS times can be up to five times greater. For all but four matrices,
the MS ordering time takes less than one third of the factorization time. All the
matrices in Table 4 are small to moderate in size. For larger matrices that we see
in practice, up to two million degrees of freedom, the MMD ordering time is a very
small fraction of the factorization time. The cost of the ND and MS orderings is also
negligible.

The quality of the ND and MS orderings is somewhat dependent on the depth
to which the ND is taken. Table 5 presents some statistics for three of the matrices.
We have varied the maximum domain size (domain weight for a compressed graph)
that defines when a subgraph will be split. Doubling the maximum domain size
roughly means reducing the number of levels in the separator tree by one. The results

4METIS first finds an edge separator and then extracts the vertex separator using the graph
matching algorithm from [41] that does not take into account any vertex weights.
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Table 5
The influence of maximum domain size. |Ωmax| is the upper bound on the weight of a domain.

Factor entries (NZF) and operation counts (OPS) are relative to multiple minimum degree. CPU
times are in seconds.

NZF OPS CPU

MATRIX |Ωmax| ND MS ND MS ND MS

BCSSTK31 100 0.88 0.94 0.56 0.73 20.04 20.27

200 0.88 0.90 0.57 0.62 17.38 17.49

400 0.90 0.88 0.59 0.59 15.27 15.29

800 0.90 0.88 0.61 0.60 13.48 13.62

1600 0.91 0.88 0.65 0.61 12.08 12.16

BCSSTK37 100 1.05 0.92 1.25 0.78 6.81 6.82

200 1.07 0.95 1.30 0.85 5.61 5.59

400 1.08 0.98 1.32 0.94 4.82 4.82

800 1.12 1.05 1.44 1.12 4.05 4.04

1600 1.14 1.09 1.54 1.32 3.39 3.39

BCSSTK39 100 0.93 0.90 0.94 0.78 10.09 10.18

200 0.93 0.89 0.93 0.77 7.88 7.92

400 0.96 0.91 0.98 0.79 6.66 6.72

800 0.99 0.92 1.02 0.81 5.56 5.57

1600 1.01 0.94 1.09 0.85 4.66 4.66

for BCSSTK31 show that ND improves as one reduces the maximum domain size
but the MS ordering becomes worse. For BCSSTK37 both orderings improve as the
maximum domain size decreases, while for BCSSTK39 the ordering quality is more
flat throughout the parameter range. Note that the bulk of the ordering times are
spent finding the separators at the highest levels. In general, the ordering quality of
MS tends to be less sensitive to the number of levels of separators that are used to
construct the multisector than ND, although this is problem dependent.

6. Concluding remarks. In this paper, we have introduced multisection, a
robust ordering method using the notion of multisectors. We have demonstrated that
it produces consistently high quality orderings for graphs of different characteristics.
Its performance compares favorably with the popular minimum degree ordering MMD,
and a state-of-the-art generalized ND software METIS.

There are several directions for future work. Foremost is to find high quality mul-
tisectors at less cost than performing ND. In the past [6] we have found a multisector
by first ordering the graph using MMD, extracting a multisector from the elimina-
tion tree, smoothing this multisector, and then ordering using MS, for a total cost of
between two and three times a single MMD ordering. In general, the quality of these
orderings lies somewhere between those of MMD and MS using ND to find the multi-
sector. We have constructed decent multisectors using the generalized pseudoextents
algorithm from [18]. Again, the ordering quality lies between that of MMD and MS
using ND to find the multisector, but finding the multisector can take considerable
time, particularly when the number of domains is large. Each of these two methods
produce multisectors that are locally smooth, i.e., the boundary of each domain is
smooth, but there is little or no global smoothness as is found in a multisector from
ND. In other words, the multisector may not contain a good global bisector.

It appears that some type of global smoothness should be present, i.e., the mul-
tisector must contain smooth portions at a higher level than the boundary of a single
domain. We feel that a viable approach is to form the multisector using recursive
multisection of the graph, in the same spirit as the quadrisection and octasection
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from [23] and the k-way partitioning from [31]. This has the potential to reduce the
ordering time because fewer levels of recursion are required, and possibly improve the
resulting ordering, for often a multisector with a small number of subgraphs has better
properties than the equivalent multisector found by repeated application of bisection.

Table 5 illustrates a drawback to the MS(CMD, MMD) ordering, namely, that
the ordering may be sensitive to the choice of multisector. One could evaluate the
orderings for several multisectors chosen from a single domain/separator tree and
choose the best. While this will amortize the time spent in the recursive bisection
process, the portion of time in the ordering steps will soon dominate. However, one
can evaluate a sequence of MS(ND, MMD) orderings (ND on the domains) on a
sequence of nested multisectors in much less time than to evaluate each separately.
We will report on this work in progress in a future paper.

Acknowledgments. We would like to thank Ed Rothberg and Bruce Hendrick-
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Abstract. A numerical method for computing the square root of a symmetric positive definite
matrix is developed in this paper. It is based on the Padé approximation of

√
1 + x in the prime

fraction form. A precise analysis allows us to determine the minimum number of terms required
in the Padé approximation for a given error tolerance. Theoretical studies and numerical experi-
ments indicate that the method is more efficient than the standard method based on the spectral
decomposition, unless the condition number is very large.

Key words. matrix square root, Padé approximation, prime fraction form
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1. Introduction. The numerical computation of the square root of a matrix
has been studied by a number of authors [12, 14, 4, 6, 7, 5, 11, 10, 13]. A popular
approach is based on the Schur decomposition of the matrix [4, 7]. Iterative methods
are also possible [12, 14, 6, 13]. For a symmetric positive definite matrix A, there
is a unique symmetric positive definite square root (denoted by

√
A). For the given

spectral decomposition

A = V ΛV T ,(1.1)

where Λ is the diagonal matrix of the eigenvalues, V is the orthogonal matrix of the
corresponding eigenvectors; the square root of A is given by

√
A = V

√
ΛV T .(1.2)

Since
√
A is also symmetric, it is only necessary to calculate its lower or upper trian-

gular part. If the decomposition (1.1) is available, about n3 additional operations are
needed to calculate

√
A by (1.2). For a full matrix A, the spectral decomposition (1.1)

requires approximately 9n3 operations [8]. Therefore, the total number of arithmetic
operations is around 10n3.

In this paper, we present a new method for computing
√
A that requires about

10n3/3+5n2m/2 operations, wherem is an integer that depends on the desired relative
accuracy ε and the spectral condition number κ of the matrix A. More precisely, we
have

m ∼ κ1/4

4

√
ln

(
2

ε

)
ln

(
1 +

2

ε
√
κ

)
.(1.3)

The new method should be more efficient than the standard procedure if the matrix
A is not very ill conditioned. It turns out that parallel implementation of the new
method is also very easy.
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Our method is based on the (m,m) diagonal Padé approximation [2] for the
function

√
1 + x written in the prime fraction form [3, 9]

√
1 + x ≈ 1 +

m∑
j=1

a
(m)
j x

1 + b
(m)
j x

,(1.4)

where

a
(m)
j =

2

2m+ 1
sin2 jπ

2m+ 1
, b

(m)
j = cos2

jπ

2m+ 1
.(1.5)

The basic steps of the new method are presented in the next section. For a
given desired accuracy ε, a technique for choosing the integer m and a proper scaling
parameter is developed in section 3. Numerical examples are presented in section 4.

2. The new method. For an n × n symmetric positive definite matrix A and
a small positive parameter ε, our method for finding

√
A is as follows: 1. Reduce the

matrix A to a tridiagonal matrix by orthogonal similarity transformations. That is,

A = QTQT ,

where Q is an orthogonal matrix and T is a symmetric tridiagonal matrix.
2. Find the largest and smallest eigenvalues of T , say λ1 > λn > 0.
3. Determine the integer m and a scalar µ ∈ (λn, λ1) as follows:

(a) Find t ∈ (0, 1) from the following equation by Newton’s method:

(αβ)t + 1 = τ(αt + βt),(2.1)

where

α =
2

ε
− 1, β = 1 +

2

ε
√
κ
, τ =

√
κ+ 1√
κ− 1

, κ =
λ1

λn
.(2.2)

(b) Find m and µ by

m =

⌈
1− t

2t

⌉
, µ = λ1

(
αt − 1

αt + 1

)2

.(2.3)

4. For the symmetric tridiagonal matrix X = T/µ− I, evaluate

Rm =
√
µ

m∑
j=1

a
(m)
j (I + b

(m)
j X)−1X,

where a
(m)
j , b

(m)
j are the Padé coefficients listed in (1.5).

5. Evaluate the approximation of
√
A by

√
A ≈ Sm =

√
µI +QRmQ

T .(2.4)

For the matrix X defined above, we have T = µ(I +X). Therefore,

√
A = Q

√
TQT = Q

√
µ(I +X)QT =

√
µQ

√
I +XQT .
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Based on the Padé approximation of
√

1 + x, we have the following approximation for
the square root of I +X:

√
I +X ≈ I +

m∑
j=1

a
(m)
j (I + b

(m)
j X)−1X.

This gives rise to

√
A ≈ √

µI +Q


√µ m∑

j=1

a
(m)
j (I + b

(m)
j X)−1X


QT =

√
µI +QRmQ

T .

Step 1 above is exactly the same as in standard numerical methods for computing
eigenvalues and eigenvectors of a symmetric matrix [8]. When the matrix A is full,
Householder reflectors are usually used for this purpose. The matrix Q is not explicitly
formed; only the related vectors for each Householder matrix are stored. The number
of arithmetic operations required in this step is about 4n3/3. In our program, we use
the LAPACK [1] routine xSYTRD.

Step 2 calculates the extreme eigenvalues of T (also of A). Many different methods
can be used. The required number of operations should be O(n). We use the bisection
method xSTEBZ of LAPACK in our program. This step is necessary since we need the
extreme eigenvalues to determine the optimal scaling parameter µ and the integer m
in the Padé approximation (1.4). The time spent on this step is negligible.

The theory behind step 3 will be developed in the next section. A good initial
guess for t (for solving (2.1) with Newton’s method) is given in (3.4). The number of
operations required in this step is O(1). In section 3, it is proved that

||
√
A− Sm||2 ≤ ε||

√
A||2(2.5)

for the chosen m and µ, where || · ||2 denotes the matrix 2-norm.
Step 4 involves the sum of m matrices

X
(m)
j = (I + b

(m)
j X)−1(

√
µa

(m)
j X).

We could initialize Rm as the zero matrix, then update Rm by

Rm := Rm +X
(m)
j for j = 1, 2, ...,m.

Only the lower (or upper) triangular part of the matrix needs to be calculated, since

the matrices are symmetric. To find X
(m)
j , it is necessary to solve the system

(I + b
(m)
j X)X

(m)
j =

√
µa

(m)
j X.(2.6)

The tridiagonal coefficient matrix I + b
(m)
j X is symmetric positive definite, since T is

positive definite, 0 < b
(m)
j < 1, and

I + b
(m)
j X = (1− b

(m)
j )I +

b
(m)
j

µ
T.

The matrix I + b
(m)
j X is always better conditioned than the original matrix A. Its

spectral condition number can easily be found as

cond(I + b
(m)
j X) =

λ1 + µ tan2(jθ)

λn + µ tan2(jθ)
for θ =

π

2m+ 1
.
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For large κ = λ1/λn, the asymptotic formula (3.6) for µ is derived in section 3.
Therefore,

cond(I + b
(m)
j X) ∼ Dj +

√
κ

Dj +
√
κ−1

, where Dj =
lnα

lnβ
tan2(jθ)

for α, β given in (2.2). We conclude that for a typical j, the spectral condition number

of the matrix I + b
(m)
j X is O(

√
κ). For small j, the condition number is larger, but

the coefficient a
(m)
j is smaller. Therefore, the relatively large error in the numerical

solution of (I+b
(m)
j X)−1X is reduced by the factor of a

(m)
j in X

(m)
j . If the matrix A is

not very ill conditioned, the integer m is not large (compared with n), and we expect

that the matrices X
(m)
j (for j = 1, 2, ...,m) and Rm can be accurately calculated.

To solve (2.6), we first calculate the decomposition I + b
(m)
j X = LDLT , where

L is a unit lower bidiagonal matrix and D is a diagonal matrix. This requires O(n)
operations. The columns of (2.6) can be solved afterwards. Since X is tridiagonal, the
right-hand side of the kth column has at most three nonzero entries. Meanwhile, only

the lower triangular part of the matrix X
(m)
j is needed. These considerations lead

to a reduction in the total number of operations required. The solution of column k
requires about 4(n−k) operations. The summation of all k for 1 ≤ k ≤ n gives rise to

the leading term 2n2. This is the total number of operations required to solve X
(m)
j .

Since there are m such matrices and we have to add them together, the number of
operations required to calculate Rm is thus 5

2mn2.

For a share memory multiprocessor computer, step 4 can be efficiently imple-

mented. Clearly, the m matrices X
(m)
j can be calculated independently on different

processors. After that, the sum can be carried out recursively in pairs. When more

processors are available, the columns of the matrix X
(m)
j can also be computed con-

currently once the LDLT decomposition is completed. On a distributed memory

multicomputer system, if the matrices X
(m)
j are calculated in different processes, the

communication cost to add them together may be too high. Alternatively, concur-
rency can be achieved by calculating a block of columns of Rm in each process.

When the matrix A is reduced to the tridiagonal matrix T in step 1, a sequence
of Householder reflectors is used. We have QT = Hn−2Hn−3 · · ·H2H1, where Hk is an
orthogonal matrix of the form I − τkvjv

T
k for a scalar τk and some column vector vk.

In step 5, we calculate QRmQ
T for a given symmetric matrix Rm. This can easily be

achieved by applying the Householder reflectors in the reverse order. Using the same
technique as in the reduction step, we have an efficient algorithm that requires only
2n3 operations to calculate QRmQ

T . Finally, the matrix Sm is obtained by adding
the diagonals by

√
µ.

The total number of arithmetic operations required by our method is 10
3 n

3+ 5
2n

2m.
The main contributions come from steps 1, 4, and 5. The time spent on steps 2 and
3 are negligible.

3. Parameter selection. In this section, we study the selection of the integer
m and the scaling parameter µ for a given desired accuracy ε and the given extreme
eigenvalues λ1, λn. This is closely related to the accuracy of the Padé approximation
to the function

√
1 + x. We first establish an exact formula for the error of this

approximation.
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Theorem 3.1. For any nonnegative integer m and x > −1, let

Em(x) =
√

1 + x− 1−
m∑
j=1

a
(m)
j x

1 + b
(m)
j x

,(3.1)

where a
(m)
j , b

(m)
j are given as in (1.5). Then

Em(x) = 2
√

1 + x
γ2m+1(x)

1 + γ2m+1(x)
for γ(x) =

√
1 + x− 1√
1 + x+ 1

.

Proof. Let f(x) =
√

1 + x− 1; we observe that

f(x) =
x

2 + f(x)
.

The continued fraction approximation to f(x) can be introduced by

f0(x) = 0, fk+1 =
x

2 + fk(x)
for k = 0, 1, 2, ....

It is known [3] that the functions {f2(x), f4(x), f6(x), ...} are the diagonal Padé ap-
proximations of f(x), and they can be written as

f2m(x) =
m∑
j=1

a
(m)
j x

1 + b
(m)
j x

.

The rational recursion for {fk(x)} can be solved. Let

R =

[
0 x
1 2

]

and the kth power of R be given by

Rk =

[
r
(k)
11 r

(k)
12

r
(k)
21 r

(k)
22

]
.

Then it is easy to prove by induction that

fk(x) =
r
(k)
11 f0(x) + r

(k)
12

r
(k)
21 f0(x) + r

(k)
22

=
r
(k)
12

r
(k)
22

.

The eigenvalues of R are

σ1 = 1 +
√

1 + x, σ2 = 1−√1 + x.

Writing down the corresponding eigenvectors, we obtain

R =

[
x x
σ1 σ2

] [
σ1 0
0 σ2

] [
x x
σ1 σ2

]−1

.

Therefore,

Rk = − 1

2x
√

1 + x

[
x(σk1σ2 − σ1σ

k
2 ) x2(σk2 − σk1 )

σk+1
1 σ2 − σ1σ

k+1
2 x(σk+1

2 − σk+1
1 )

]
.
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This gives rise to

fk(x) =
r
(k)
12

r
(k)
22

=
x(σk1 − σk2 )

σk+1
1 − σk+1

2

.

Notice that f(x) = x/σ1; we have

fk(x)− f(x) =
x[1− (σ2/σ1)

k]

σ1[1− (σ2/σ1)k+1]
− x

σ1
= 2

√
1 + x

(σ2/σ1)
k+1

1− (σ2/σ1)k+1
.

For k = 2m and σ2/σ1 = −γ, we get the desired result for Em(x) = f(x)−
f2m(x).

If the Padé approximation for
√

1 + x is used to approximate
√
λ for λ ∈ [λn, λ1],

it is natural to scale λ by µ, write λ = µ(1 + x), and then use the formula

√
λ =

√
µ
√

1 + x ≈ √
µ


1 +

m∑
j=1

a
(m)
j x

1 + b
(m)
j x


 for x ∈

[
λn
µ
− 1,

λ1

µ
− 1

]
.

One immediate question asks: how to choose µ such that the maximum error for
approximating

√
λ on the interval [λn, λ1] is minimized. Furthermore, if a desired

accuracy is given, what is the minimum m to obtain that accuracy? These questions
are answered in the following theorem.

Theorem 3.2. For ε > 0 and λ1 > λn > 0, let m and µ be given by (2.3); then

√
µ |Em(x)| ≤ ε

√
λ1 for

λn
µ
− 1 ≤ x ≤ λ1

µ
− 1.

Proof. For any integer m ≥ 0 and µ ∈ (λn, λ1), from Theorem 3.1, we have

Em

(
λ1

µ
− 1

)
= 2

√
λ1

µ


1 +

(√
λ1 +

√
µ√

λ1 −√µ

)2m+1


−1

,

−Em

(
λn
µ
− 1

)
= 2

√
λn
µ


(√µ+

√
λn√

µ−√λn

)2m+1

− 1



−1

.

The above formulas allow us to extend the definitions of Em(λ1/µ−1) and Em(λn/µ−
1) to arbitrary real number m. Now, for any fixed m ≥ 0, we observe that there is a
unique solution of µ in (λn, λ1) such that

√
µEm

(
λ1

µ
− 1

)
= −√µEm

(
λn
µ
− 1

)
.(3.2)

This is so because
√
µEm(λ1/µ− 1) is a monotonically decreasing function of µ that

takes a positive value at λn and is zero at λ1, while −√µEm(λn/µ − 1) is a mono-
tonically increasing function of µ that is zero at λn and positive at λ1. On the other
hand, for any fixed µ in (λn, λ1), both Em(λ1/µ−1) and Em(λn/µ−1) are decreasing
functions of m (converge to zero as m→∞). If we denote the value of both sides of
(3.2) by εm, then εm is a decreasing function of m that converges to zero as m→∞.
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Now, for a small ε > 0, let m∗ be the real number such that εm∗ = ε
√
λ1. We

show that t = 1/(2m∗ + 1) satisfies (2.1). To simplify the notation, let κ = λ1/λn
and s =

√
µ/ 4
√
λ1λn. This gives rise to

Em

(
λ1

µ
− 1

)
= 2

√
λ1

µ

[
1 +

(
κ1/4 + s

κ1/4 − s

)2m+1
]−1

,

−Em

(
λn
µ
− 1

)
= 2

√
λn
µ

[(
s+ κ−1/4

s− κ−1/4

)2m+1

− 1

]−1

.

The conditions for m∗ and µ are

Em∗

(
λ1

µ
− 1

)
= −Em∗

(
λn
µ
− 1

)
= ε

√
λ1

µ
.(3.3)

This leads to (
κ1/4 + s

κ1/4 − s

)2m∗+1

=
2

ε
− 1 = α,

(
s+ κ−1/4

s− κ−1/4

)2m∗+1

= 1 +
2

ε
√
κ

= β,

or

κ1/4 + s

κ1/4 − s
= αt,

s+ κ−1/4

s− κ−1/4
= βt.

Solving s from the above two equations, we have

s =
αt − 1

αt + 1
κ1/4 =

βt + 1

βt − 1
κ−1/4.

This gives rise to an equation for t:

(
√
κ− 1)(αβ)t − (

√
κ+ 1)(αt + βt) +

√
κ− 1 = 0.

The above is the same as (2.1). From the earlier equation for s and s =
√
µ/ 4
√
λ1λn,

we obtain

µ = λ1

(
αt − 1

αt + 1

)2

.

It is straight forward to verify that (2.1) for t and the above formula for µ also imply
the condition (3.3). Since both Em(λ1/µ−1) and Em(λn/µ−1) are positive decreasing
functions of m and m ≥ m∗, we have

0 < Em

(
λ1

µ
− 1

)
≤ Em∗

(
λ1

µ
− 1

)
= ε

√
λ1

µ
,

0 < −Em

(
λn
µ
− 1

)
≤ −Em∗

(
λn
µ
− 1

)
= ε

√
λ1

µ
.
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For x > −1 and γ(x) = (
√

1 + x− 1)/(
√

1 + x + 1) (as defined in Theorem 3.1),
we have |γ(x)| < 1. Writing down γ(x) as

γ(x) = 1− 2√
1 + x+ 1

,

it is clear that γ is a monotonically increasing function of x. Similarly, we write Em(x)
as

Em(x) = 2
√

1 + x

(
1− 1

1 + γ2m+1(x)

)

and conclude that Em(x) is a monotonically increasing function of x. Furthermore,
Em(x) is negative for −1 < x < 0 and positive for x > 0, and Em(0) = 0. Therefore,

|Em(x)| ≤ max

{
Em

(
λ1

µ
− 1

)
,−Em

(
λn
µ
− 1

)}
≤ ε

√
λ1

µ

for λn/µ− 1 ≤ x ≤ λ1/µ− 1. This concludes our proof for Theorem 3.2.
We now summarize our approximation result in the following theorem.
Theorem 3.3. Let A be an n×n symmetric positive definite matrix whose largest

and smallest eigenvalues are λ1 and λn, respectively. For µ and m given in (2.3),

||
√
A− Sm||2 ≤ ε||A||2,

where Sm is the approximation given in (2.4).
Proof. Let xk = λk/µ− 1 be the kth eigenvalue of X. We have∥∥∥∥∥∥

√
I +X − I −

m∑
j=1

a
(m)
j (I + b

(m)
j X)−1X

∥∥∥∥∥∥
2

= max
1≤k≤n

∣∣∣∣∣∣
√
I + xk − 1−

m∑
j=1

a
(m)
j xk

1 + b
(m)
j xk

∣∣∣∣∣∣
≤ max

λn/µ≤x+1≤λ1/µ

∣∣∣∣∣∣
√
I + x− 1−

m∑
j=1

a
(m)
j x

1 + b
(m)
j x

∣∣∣∣∣∣ ≤ ε

√
λ1

µ
.

Therefore,

||
√
A− Sm||2 = ||Q(

√
µ
√
I +X −√µI −Rm)QT ||2

= ||√µ√I +X −√µI −Rm||2 ≤ ε
√
λ1 = ε||

√
A||2.

This concludes our proof.
For the given error tolerance ε and extreme eigenvalues λ1, λn, we use (2.1) to

solve t, then calculate m and µ from (2.3). To provide a good initial guess for t, we
develop an asymptotic expansion for small t (i.e., large m). Equation (2.1) can be
written as

et(lnα+ln β) + 1 =

(
1 +

2√
κ− 1

)
(et lnα + et ln β).

For small t, we have the following expansion:

2 + t(lnα+ lnβ) +
t2

2
(lnα+ lnβ)2 + · · ·

=

(
1 +

2√
κ− 1

)[
2 + t(lnα+ lnβ) +

t2

2
(ln2 α+ ln2 β) + · · ·

]
.
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Table 3.1
A comparison of exact m∗ with the approximation in (3.5).

κ Exact m∗ Approximate m∗
16 4.727 4.476
81 7.467 7.316

256 9.996 9.890
625 12.407 12.328

1296 14.736 14.673
2401 17.000 16.949
4096 19.209 19.167
6561 21.371 21.335
104 23.491 23.460

6.25× 106 91.029 91.030
108 151.890 151.893

1.6× 109 233.322 233.326

This gives rise to

t2 lnα lnβ ∼ 4√
κ− 1

or

t ∼ 2√
(κ1/2 − 1) lnα lnβ

,(3.4)

where α and β are given in (2.2). The right-hand side above is a good initial guess for
t. It can be used by Newton’s method to solve t from (2.1). Since t = 1/(2m∗ + 1),
we also obtain the following asymptotic formula for m∗:

m∗ ∼
√
κ1/2 − 1

4

√
ln

(
2

ε
− 1

)
ln

(
1 +

2

ε
√
κ

)
− 1

2
.(3.5)

This formula is very accurate. A less accurate and slightly simpler formula for m is
(1.3). In Table 3.1, we compare the exact and approximate values of m∗ for a few
different values of κ.

Since what we are looking for is the integer m greater than or equal to m∗, it is
clear that the approximation (3.5) serves that purpose extremely well. The depen-
dence of m∗ on κ = λ1/λn is shown in Figure 3.1. Both the exact and approximate
values of m∗ are shown, but there is no noticeable difference. The error of the ap-
proximation formula (3.5) is shown in Figure 3.2.

Based on the above asymptotic formula for t and the expansion αt = et lnα ≈
1 + t lnα+ · · ·, we have

µ = λ1

(
αt − 1

αt + 1

)2

∼ λ1

(
t lnα

2

)2

.

Therefore, for large κ, the scaling parameter µ is given by

µ ∼ lnα

lnβ

√
λ1λn.(3.6)
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Fig. 3.1. The dependence of m∗ on κ.
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Fig. 3.2. The difference between exact and approximate values of m∗.

4. Numerical examples. The method outlined in section 2 has been imple-
mented in a FORTRAN program. It calculates an approximation Sm to

√
A for a

desired relative accuracy ε, where A is the given real symmetric positive definite ma-
trix. To demonstrate the accuracy and efficiency of our method, we compare our
results with the “exact” solution obtained from a direct calculation of the spectral
decomposition (1.2). Relative errors in the different matrix norms are calculated.
We denote these errors in Frobenius norm, 1-norm, and 2-norm by ef , e1, and e2,
respectively. Namely,

ef =
||√A− Sm||f
||√A||f

, e1 =
||√A− Sm||1
||√A||1

, e2 =
||√A− Sm||2
||√A||2

.

The following calculations are performed on a SUN Ultra 1 (model 170) workstation.
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Table 4.1
Relative errors for approximating the square root of Example 1.

n m κ(A) ef e1 e2
10 6 29.4410 4.43E-06 7.13E-06 5.41E-06

100 7 41.1412 1.84E-06 6.09E-06 2.93E-06
200 7 41.8252 2.05E-06 9.38E-06 3.19E-06
300 7 42.0545 2.13E-06 1.31E-05 3.50E-06
400 7 42.1694 2.34E-06 1.80E-05 3.94E-06
500 7 42.2385 2.39E-06 2.23E-05 4.94E-06

Table 4.2
Relative errors of different methods for n = 300.

Method ef e1 e2

Padé: ε = 10−6, m = 8 1.15E-06 1.40E-05 2.80E-06
Padé: ε = 10−7, m = 10 1.11E-06 1.19E-05 2.82E-06
Spectral decomposition 2.75E-06 2.20E-05 4.56E-06

Example 1. The (i, j) entry of the n× n matrix is

aij =
1

2 + (i− j)2
.

We calculate the square root of this matrix for the desired error tolerance ε = 10−5 in
single precision, then compare the result with the double precision “exact” solution
obtained by the spectral decomposition method. This is a well-conditioned matrix
and the condition number κ(A) grows with n very slowly. The integer m to achieve
the desired accuracy is quite small. In Table 4.1, we list m, κ(A), and the relative
errors for various n. We notice that the error in the 2-norm is indeed bounded by
ε = 10−5. For the relatively large values of n, the accuracy may not be improved by
choosing a smaller ε in a single precision calculation, due to round-off errors. However,
this is consistent with the single precision result obtained from the standard spectral
decomposition method. In Table 4.2, we list the relative errors for ε = 10−6 and 10−7,
together with those errors for the single precision spectral decomposition method. We
observe that the results by our method for all three selections of ε are actually more
accurate than the result obtained from the standard method.

Example 2. This is the coefficient matrix associated with the standard second
order finite difference discretization of the Laplacian on a unit square with Dirichlet
boundary conditions. The (i, j) entry of this n× n matrix is given by

aij =




4 if i = j,
−1 if |i− j| = p,
−1 if |i− j| = 1 and (i+ j) mod (2p) 6= 1,
0 otherwise,

where n = p2. The condition number κ of this matrix is known to be proportional
to n2. Since the dominant term for m is κ1/4 (see equation (1.3)), we expect that m
is roughly proportional to p. This is confirmed in Table 4.3 where the relative errors
are also listed.

These calculations are performed for the desired accuracy ε = 10−5 in single
precision; then the results are compared with the double precision “exact” solution
obtained from the standard spectral decomposition method which is based on the
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Table 4.3
Relative errors for approximating the square root of Example 2.

n m ef e1 e2
16 4 4.74E-06 1.21E-05 9.65E-06
36 5 3.79E-06 1.37E-05 9.95E-06
64 6 2.36E-06 1.07E-05 7.08E-06

100 7 1.49E-06 7.75E-06 4.65E-06
144 8 1.02E-06 6.21E-06 3.07E-06
196 8 2.08E-06 1.27E-05 6.67E-06
256 9 1.39E-06 1.14E-05 4.27E-06
324 9 2.26E-06 1.61E-05 6.99E-06
400 10 1.59E-06 1.65E-05 4.05E-06
484 10 2.25E-06 2.41E-05 6.65E-06

Table 4.4
Execution times in seconds by the Padé approximation method (Tnew) and the spectral decom-

position method (Told).

Matrix n Tnew Told
Example 1 100 0.05 0.12
Example 1 200 0.27 0.90
Example 1 300 0.84 2.90
Example 1 400 2.07 7.15
Example 1 500 4.64 14.81
Example 2 100 0.04 0.12
Example 2 196 0.25 0.81
Example 2 289 0.77 2.37
Example 2 400 2.11 6.55
Example 2 484 4.40 13.21

LAPACK routine xSYEV for the spectral decomposition (1.1) and a straightforward
evaluation of (1.2). When n is not very small, the result obtained for ε = 10−5 is
about as accurate as the single precision result by the standard method. For n = 400,
the spectral decomposition method gives rise to a numerical solution whose relative
errors are

ef = 2.45E-06, e1 = 2.48E-05, e2 = 4.77E-06.

Notice that the last column in Table 4.3 is always less than ε, as it is proved in
Theorem 3.3.

For both examples, a significant reduction in the total execution time is observed
when our method is compared with a single precision computation by the spectral
decomposition method. The timing results reported in Table 4.4 are obtained on a
SUN Ultra 1 (model 170) workstation based on the compiler f77 (version 4.0) from
Sun Microsystems. All programs including LAPACK are compiled with the option
“-fast.”

Our program uses the LAPACK routine xSYTRD for the reduction to tridiagonal
form based on Householder reflectors. For banded matrices, the reduction step can
be based on Givens rotations and we can use the LAPACK routine xSBTRD for this
purpose. The matrix in Example 2 is sparse and banded; therefore, the total execution
time reported in Table 4.4 can be further reduced. The orthogonal matrix Q for the
reduction to tridiagonal form is implicitly given as a product of Given rotations and
it is later applied to the matrix Rm as in step 5. Since the reduction step is common
to both methods, we expect that the required execution time to decrease roughly the
same amount for both methods.
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5. Conclusion. In this paper, we have developed a new method for calculating
the square root of a symmetric positive definite matrix. While the traditional method
based on the spectral decomposition requires about 10n3 arithmetic operations, our
method requires 10

3 n
3 + 5

2mn2 operations. The number m depends on the spectral
condition number κ and the desired accuracy, but it is often quite small compared
with n, unless the matrix is very ill conditioned. As is demonstrated in the numeri-
cal experiments, for many symmetric positive definite matrices, our method is more
efficient than the traditional method based on the spectral decomposition.

The program for this new method can be obtained by e-mail from the author at
mayylu@cityu.edu.hk.
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versity Press, Cambridge, UK, 1996.

[3] A. Bamberger, B. Engquist, L. Halpern, and P. Joly, Higher order paraxial wave equation
approximations in heterogeneous media, SIAM J. Appl. Math., 48 (1988), pp. 129–154.
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Abstract. This paper treats the problem of triangularizing a matrix by hyperbolic Householder
transformations. The stability of this method, which finds application in block updating and fast
algorithms for Toeplitz-like matrices, has been analyzed only in special cases. Here we give a gen-
eral analysis which shows that two distinct implementations of the individual transformations are
relationally stable. The analysis also shows that pivoting is required for the entire triangularization
algorithm to be stable.
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1. Introduction. Let A be a positive definite matrix of order p and let RTR be
its Cholesky factorization. Given an m× p matrix X, the Cholesky updating problem
is to compute the Cholesky factorization

R̂TR̂ = Â ≡ A+XTX

from that of A. Since XTX is positive semidefinite, Â is positive definite and always
has a Cholesky factor.

It is well known that the Cholesky updating problem can be solved by orthogonal
triangularization. Specifically, there is an orthogonal matrix Q such that

QT

(
R
X

)
=

(
R̂
0

)
,

where R̂ is upper triangular. From the orthogonality of Q, it follows that

R̂TR̂ =

(
R
X

)T

QQT

(
R
X

)
= A+XTX,

so that R̂TR̂ is the required Cholesky factorization. The matrix Q is usually generated
as a product of Householder transformations or plane rotations. For details see, e.g.,
[11].

Now let Y be an n× p matrix. The Cholesky downdating problem is to calculate
the Cholesky factor R̂ of Â = A− Y TY from that of A. The downdating problem is
known to be difficult. An obvious problem is that Â can be indefinite, in which case
the problem has no (real) solution. A more subtle problem is that information present
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in the original problem may be represented only imperfectly in the Cholesky factor.
For more on this see [17, 3].

The solution to the downdating problem may also be cast in terms of an orthog-
onal transformation. In particular, if

Q

(
R
0

)
=

(
R̂
Y

)
,(1.1)

then R̂TR̂ = A − Y TY . Thus if Q is chosen so that R̂ is triangular, then R̂ is the
solution to the downdating problem. Computing such an orthogonal transformation
is the basis of a class of algorithms — linpack-type algorithms — for this problem see
[8, 9, 16].

The Cholesky downdating problem can be solved more directly by an analogue
of orthogonal triangularization which we will call hyperbolic triangularization. Specif-
ically, a signature matrix is a diagonal matrix whose diagonal elements are ±1. We
will say that Q̆ is S-orthogonal if

Q̆TSQ̆ = S,

or equivalently if

Q̆SQ̆T = S.

Let

S = diag(Ip,−In)

be the signature matrix corresponding to the partition(
R
Y

)
.

Suppose we can determine an S-orthogonal matrix Q̆ such that

Q̆T

(
R
Y

)
=

(
R̂
0

)
.(1.2)

Then it follows that R̂TR̂ = A−Y TY , so that R̂ is the downdated Cholesky factor. In
practice the matrix Q̆ is usually computed as a product of hyperbolic rotations [10, 6]
or hyperbolic Householder transformations [15, 14].

In this paper we will be concerned with the mixed updating problem of calculating
the Cholesky factor of A+XTX−Y TY from that of A. Although the problem can be
treated as an update followed by a downdate, it is natural to treat it on its own terms.
The problem has been considered by Cybenko and Berry [7] in connection with fast
algorithms for Toeplitz-like matrices and also by Atkinson [1]. Mixed problems arise
naturally in computing the hyperbolic singular value decomposition; a description of
the decomposition and signal processing applications are in [13].

The major contribution of this paper is a rounding-error analysis of the use of
hyperbolic Householder transformations in the mixed problem. Specifically, we will
show that if R̂ is the computed value of the new Cholesky factor then there is an
orthogonal matrix Q such that

QT


R
X
0


 =


R̂0
Y


+ E,(1.3)
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where E is suitably small. Since it is not possible to associate E exclusively with
the original data R, X, and Y , this result is not backward stability. Instead we call
it relational stability. In [18] it is shown that relational stability is preserved under
repeated updates and downdates. In consequence, if a Cholesky factor in the sequence
is well conditioned it will be computed accurately. By way of previous results, rela-
tional stability was established in [17] for the linpack algorithm, in [5] for the block
downdating problem, and in [4] for the algorithm of [6].

The fact that downdating can be cast in terms of both orthogonal and S-
orthogonal matrices suggests that there is a close relation between the two classes.
In section 2 we will show that there is indeed a general correspondence between or-
thogonal matrices with nonsingular principle minors and S-orthogonal matrices. In
section 3 we will use this correspondence to derive our hyperbolic triangularization
algorithm and two implementations of it. In section 4 we will give rounding-error
analyses to show that both implementations are relationally stable. This is in marked
contrast to hyperbolic rotations, whose natural implementation is not relationally sta-
ble. The relational stability result is relative to certain intermediate quantities which
can grow, and in section 5 we show how to use pivoting to control this growth. The
paper concludes with some applications and numerical examples.

In this introduction we have placed Cholesky factors to the fore to stress updating
and the need for relational stability. However, for simplicity of exposition, we can lump
R with X. Thus in the sequel we will consider the hyperbolic triangularization problem
of determining an S-orthogonal transformation Q̆ such that

Q̆T

(
X
Y

)
=

(
R̂
0

)
,(1.4)

where R̂ is upper triangular.

2. Orthogonal and S-orthogonal transformations. In this section we will
establish a relation between orthogonal and S-orthogonal transformations. The rela-
tion can be best described in terms of exchange of variables in linear systems. In what
follows S will denote a signature matrix of the form

S = diag(Im,−In).

Let Q be an orthogonal matrix and consider the partitioned linear system(
Q11 Q12

Q21 Q22

)(
b1
b2

)
=

(
c1
c2

)
,(2.1)

where Q11 is of order m. If Q11 is nonsingular, then the equation Q11b1 +Q12b2 = c1
may be solved for b1 and the result substituted in the equation Q21b1 + Q22b2 = c2.
The result is a linear system

(
Q−1

11 −Q−1
11 Q12

Q21Q
−1
11 Q22 −Q21Q

−1
11 Q12

)(
c1
b2

)
=

(
b1
c2

)
,(2.2)

whose matrix we will denote by Q̆. Since the operator that generates Q̆ from Q
represents an exchange of b1 and c1, repeating it will return us to the original system.
We will denote this operator by exc(Q).
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We are now ready to state the correspondence between orthogonal and S-orthog-
onal matrices.1

Theorem 2.1. Let Q be of order m + n and let Q11 be its leading principal
submatrix of order n. Let S = diag(Im,−In). If Q is orthogonal with Q11 nonsingular,
Q̆ = exc(Q) is S-orthogonal. Conversely, if Q̆ is S-orthogonal, then Q̆11 is nonsingular
and Q = exc(Q̆) is orthogonal.

Proof. Assume first that Q is orthogonal and Q11 is nonsingular. Then (2.1) and
the orthogonality of Q imply that

‖b1‖2 + ‖b2‖2 = ‖c1‖2 + ‖c2‖2.

Interchanging b1 and c1 gives the system (2.2), in which

‖c1‖2 − ‖b2‖2 = ‖b1‖2 − ‖c2‖2.

In other words, with d = (cT1 bT2 )
T

we have

dTSd = dTQ̆TSQ̆d.(2.3)

Now it is easy to see that for any vector c1 and b2, there are unique vectors b1 and
c2 satisfying (2.1). Hence (2.3) holds identically in d. By the uniqueness of quadratic
forms, this implies that Q̆ is S orthogonal.

The converse proceeds similarly, provided we can establish the nonsingularity of
Q̆11. But by the S-orthogonality of Q̆, we have

Q̆T
11Q̆11 = I + Q̆T

21Q̆21,

which is the sum of a positive definite matrix and a semidefinite matrix. Thus Q̆T
11Q̆11

and hence Q̆11 is nonsingular.
It follows that there is a one-one correspondence between orthogonal matrices with

nonsingular leading principal submatrices and S-orthogonal matrices. The hypothesis
that Q11 be nonsingular is not a restriction in downdating applications. For if Q
satisfies (1.1), then Q11R = R̂. But for the downdating to be well posed A and
A−Y TY must be positive definite. Hence R, R̂, and Q11 = R̂R−1 must be nonsingular.

The correspondence gives us considerable flexibility in the way we implement
downdating procedures. The key operation is to compute the matrix-vector product(

Q̆11 Q̆12

Q̆21 Q̆22

)(
x
y

)
=

(
x̂
ŷ

)
.(2.4)

Let (
Q11 Q12

Q21 Q22

)(
x̂
y

)
=

(
x
ŷ

)
(2.5)

be the corresponding orthogonal system. Then we have the following options.
1. Apply Q̆ directly as in (2.4).
2. Compute x̂ from (2.4) and then ŷ from (2.5).
3. Solve for x̂ in (2.5) and then compute ŷ from the same system.

1Paul Van Dooren has informed us that the result is a folk theorem in circuit theory, although
references to the general result seem to be hard to find (see [2] for a special case). The proof is
adapted from a communication by Van Dooren.
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Similar alternatives exist when the system that results from exchanging y and ŷ is
available. If both are available there is a fourth alternative.

4. Solve for x̂ in (2.5) and solve for ŷ in the system that results from exchanging
y and ŷ.

All these alternatives are mathematically equivalent. But depending on their imple-
mentations they may differ numerically.

An important special case is when Q11 is a scalar. In particular, if Q̆ is a hyperbolic
rotation — i.e., x and y are scalars — the second and third strategies listed above yield
a mixed algorithm, first presented in [6], that is relationally stable. Another case is
when only x is a scalar and Q is a Householder transformation. Again the second and
third strategies yield a relationally stable algorithm [15, 14].

3. Hyperbolic Householder transformations and hyperbolic triangu-
larization. The correspondence result of the last section provides a natural way to
move from elementary orthogonal transformations, which are used in updating, to
S-orthogonal equivalents, which are used in downdating. In particular, we will be
concerned with the S-orthogonal equivalent of the Householder transformation

H = I − uuT,

where u is a vector with ‖u‖ =
√

2. Let

u =

(
ux
uy

)
,

where ux is of dimension m. Since

(I − uxu
T
x )−1 = I + uxu

T
x /c,(3.1)

where

c = 1− ‖ux‖2,(3.2)

we see that the S-orthogonal transformation corresponding to H is

H̆ =

(
I + uxu

T
x /c uxu

T
y /c

−uyuT
x /c I − uyu

T
y /c

)
= I + SuuT/c.

The case c = 0 occurs if and only if I − uxu
T
x is singular. We shall see presently that

singularity does not arise in our applications.
Following the natural correspondence between the orthogonal and S-orthogonal

cases, we refer to H̆ as a hyperbolic Householder transformation. The hyperbolic
Householder transformations of [15, 14] are symmetric and have the form S + uuT/c.
Computationally the two forms are essentially the same. However, the form given
here relates more naturally via the correspondence theorem to standard Householder
transformations.

The process of computing R̂ in (1.4) is analogous to unitary triangularization by
Householder transformations. The following is a recursive description. Assume that
X is m× p and Y is n× p. The first step is to partition(

X
Y

)
=

(
x1 X2

y1 Y2

)
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and compute a vector u such that

(I + SuuT/c)

(
x1

y1

)
=

(
ρe1

0

)
.(3.3)

(The scalar ρ is the (1, 1) element of the final triangular form R̂.)
To compute u, note that by the correspondence theorem, u also satisfies

(I − uuT)

(
ρe1

y1

)
=

(
x1

0

)
.

The orthogonality of I − uuT implies that ρ2 + ‖y1‖2 = ‖x1‖2 or

ρ = ±
√
‖x1‖2 − ‖y1‖2.

For numerical stability we choose the sign of ρ so that

sign(ρ) = −sign(ξ1),

where ξ1 is the first component of x1. It is now easy to verify that

u = ν−1

(
x1 − ρe1

−y1

)
≡
(
ux
uy

)
,(3.4)

where

ν =
√
‖x‖2

1 − ρξ1

is taken to make ‖u‖ =
√

2.
For later reference we make the following observations about u. For the downdat-

ing problem to be well posed, we require that

‖x1‖ > ‖y1‖.
Consequently, because of the choice of sign for ρ, ‖u1‖ > ‖u2‖. Since ‖u‖2 = 2, we
have

‖ux‖2 > 1.

This ensures that −1 ≤ c < 0.
Once u has been determined, we compute

(I + SuuT/c)

(
x1 X2

y1 Y2

)
=

(
X̂

Ŷ

)
≡
(
ρe1 X̂2

0 Ŷ2

)
.

We can then proceed recursively by triangularizing the submatrix(
X̂2[2:m, 2:p]

Ŷ2[1:n, 2:p]

)

by a transformation which is S-orthogonal with respect to diag(Im−1, In).
A complete description of our algorithm requires that we specify how we apply

our hyperbolic Householder transformations. In section 2 we listed four ways to apply
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a hyperbolic transformation. We will now see how these methods appear in the present
application.

The first method is the direct application of the transformation(
I + uxu

T
x /c uxu

T
y /c

−uyuT
x /c I − uyu

T
y /c

)(
x
y

)
=

(
x̂
ŷ

)
.(3.5)

The second method is to compute x̂ from (3.5) and then determine ŷ from the or-
thogonal system (

I − uxu
T
x −uxuT

x

−uyuT
x I − uyu

T
y

)(
x̂
y

)
=

(
x
ŷ

)
.(3.6)

These two algorithms are numerically distinct.
The third algorithm to solve for x̂ in (3.6) and then determine ŷ directly from

(3.6). This algorithm is the same as the second, at least when the implementation
takes advantage of the structure of the matrices. From (3.1) and (3.6), we have

x̂ = (I + uxu
T
x /c)x− (I + uxu

T
x /c)uxu

T
y y.

After a little simplification this expression becomes

x̂ = x+
uT
xx+ uT

y y

c
ux,

which is just what one obtains from (3.5).
Similarly, when the formulas for fourth method in section 2 are simplified the

method is equivalent to (3.5) with its formulas similarly simplified.
Thus the correspondence theorem gives two methods for applying hyperbolic

Householder transformations. We will show in the next section that they are both
relationally stable. This fact is a little surprising, since the same approach applied to
hyperbolic rotations gives two algorithms, only one of which is relationally stable.

The reason for this difference is that a hyperbolic Householder transformation is
not generated and applied explicitly. Instead, its application to a vector is represented
as a correction to that vector by another vector from the rank-one matrix SuuT/c. If
we were to form the matrix and apply it — something economy would keep us from
doing in practice — the algorithm would be as unstable as the direct application of a
hyperbolic rotation.

4. The error analysis. In this section we are going to establish the relational
stability of hyperbolic triangularization by hyperbolic Householder transformations.
We will analyze the algorithm based on direct application of the transformations in
detail and then indicate how the same methods apply to the mixed application.

We will analyze the first step of the triangularization algorithm. The step is rep-
resentative of the others. The hyperbolic Householder transformation H̆ is generated

from the vector (xT
1 yT

1 )
T
.

It is important to note that the transformation associated with a step is used
in two different ways. First, it is applied to a general column of the current matrix.
Second, it is implicitly applied to the column whose trailing elements are set to zero
(in our exposition the first column). Consequently, we will prove two results.

First, let (
x̂
ŷ

)
= fl

[
H̆

(
x
y

)]
,
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where fl denotes the computed value. We will show that there is a Householder trans-
formation H̃ such that

H̃

(
x̂
y

)
=

(
x
ŷ

)
+ f,(4.1)

where ‖f‖ is small compared to ‖x‖, ‖y‖, ‖x̂‖, and ‖ŷ‖. The transformation H̃ does
not depend on x, y, x̂, or ŷ.

Second, in the notation of (3.3), we will show that

H̃

(
x1

0

)
=

(
ρe1

y1

)
+ g,(4.2)

where g is small compared to ‖x1‖ and ‖y1‖. Here ρ is the computed quantity. The
transformation is computed from x1 and y1.

We will assume that the reader is familiar with the basics of rounding error analy-
sis (see, e.g., [12]). Computations are assumed to be done in floating-point arithmetic
with rounding unit εM.

Since the object of the analysis is to establish relational stability and not to derive
detailed error bounds, we will introduce the following notational simplification. For
any vector x with components ξi, we will denote generically by 〈x〉 a vector of the
form

〈x〉 =




ξ1(1 + ε1)
ξ2(1 + ε2)

...
ξm(1 + εm)


 ,

where εi = O(εM). In other words 〈x〉 is x with its components altered by small relative
perturbations. The operator 〈·〉 has a number of obvious properties — for example,

fl(uTx) = 〈u〉Tx = uT〈x〉.
When the distinction is important, we will use subscripts to distinguish different
applications of the operator to the same object — e.g., 〈x〉1 and 〈x〉2.

Turning now to the analysis itself, we will first establish (4.1). The strategy is the
following. After defining ũ, which generates H̃, we show that(

I + ũxũ
T
x /c̃ ũxũ

T
y /c̃

−ũyũT
x /c̃ I − ũyũ

T
y /c̃

)(〈x〉
〈y〉
)

=

(
x̂+ f̄x
ŷ + f̄y

)
,(4.3)

where f̄x and f̄y are suitably small and c̃ ≡ 1−‖ũx‖2
2. Since ũ is the generating vector

of a Householder transformation, we may exchange variables to get

H̃

(
x̂+ f̄x
〈y〉

)
=

( 〈x〉
ŷ + f̄y

)
.

Equivalently,

H̃

(
x̂
y

)
=

(
x
ŷ

)
+

(〈x〉 − x
f̄y

)
− H̃

(
f̄x

〈y〉 − y

)
≡
(
x
ŷ

)
+ f,

which is of the form (4.1). Multiplication by H̃ in this equation does not magnify the
error because H̃ is orthogonal.
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We begin with the construction of H̃, which will be done by making small relative
perturbations in the components of the computed u to give ũ. For the analysis to
go through, these perturbations must accomplish two things. First we must have
‖ũ‖ =

√
2, and second we must have

c̃ ≡ 1− ‖ũx‖2 = 〈c〉.(4.4)

Here c is the computed quantity which satisfies

c = 1− ‖〈ux〉‖2

for some appropriate perturbation of ux.
Now all that prevents u from being normalized are the small relative errors made

in dividing by ν in (3.4). Hence we can normalize u by making small relative pertur-
bations in its elements. However, we must take care that the perturbations enforce
(4.4). We consider two cases.

First, assume that ‖ux‖2 > 1.5. Then ux accounts for a substantial proportion of
the norm of u, and we can normalize the latter by small relative perturbations in the
former. But in this case, c, which is less than −0.5, is insensitive to such perturbations,
so that (4.4) is satisfied.

Second, assume that ‖ux‖2 ≤ 1.5. In this case, small relative perturbations in ux
may cause large relative deviation of 1−‖ux‖2 from c. However, there will always be
a small relative perturbation ũx = 〈ux〉 such that c = 1− ‖ũx‖2. Having determined
ũx, we may adjust uy, which is substantial, to normalize ũ.

In either case, we obtain a normalized ũ = 〈u〉 that satisfies (4.4).2

We turn now to the application of the transformation. An elementary rounding-
error analysis which exploits (4.4) and the fact that ũ = 〈u〉 gives the following results:

x̂ = 〈x〉2 +
ũT
x 〈x〉1 + ũT

y 〈y〉1
c̃

〈ũx〉(4.5)

and

ŷ = 〈y〉2 +
ũT
x 〈x〉1 + ũT

y 〈y〉1
c̃

〈ũy〉.

Subtracting 〈x〉2 from both sides of (4.5) and taking norms, we get∥∥∥∥∥ ũ
T
x 〈x〉1 + ũT

y 〈y〉1
c̃

〈ũx〉
∥∥∥∥∥ ≤ ‖x̂‖+ ‖〈x〉2‖.

Hence replacing 〈x〉2 by 〈x〉1 and 〈ũx〉 by ũx, we may write

x̂ = 〈x〉1 +
ũT
x 〈x〉1 + ũT

y 〈y〉1
c̃

ũx − f̄x,(4.6)

where

‖f̄x‖ = (‖x̂‖+ ‖〈x〉2‖)O(εM).

2An alternative is to ignore the normalization condition and adjust ux so that (4.4) is satisfied.
The resulting H̃ is not orthogonal but is nearly so. The proof proceeds as usual, except that it must
be verified that we can pass from (4.3) to (4.1) without increasing the error. At the end we normalize
ũ and absorb the error into f .
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Likewise we can show that

ŷ = 〈y〉1 +
ũT
x 〈x〉1 + ũT

y 〈y〉1
c̃

ũy − f̄y,(4.7)

where

‖f̄y‖ = (‖ŷ‖+ ‖〈y〉2‖)O(εM).

With a slight change in notation, equations (4.6) and (4.7) are precisely (4.3). More-
over ‖fx‖ and ‖fy‖ are suitably bounded. Hence we have shown that the direct ap-
plication of a hyperbolic Householder transformation is relationally stable, i.e., (4.1)
holds.

We must now show that H̃ introduces zeros into the first column to working
accuracy. Another simple rounding-error analysis (which uses the facts that ‖x1‖ ≥ |ρ|
and that ξ1 and ρ have opposite signs) shows that

ũ = ν−1

(〈x1〉 − 〈ρ〉e1

−〈y1〉
)
,

where ν =
√‖x1‖2 − ρξ1. It then follows that

H̃

(
x1

0

)
=

(
x1

0

)
− 1

‖x1‖2 − ρξ1

(
(〈x1〉 − 〈ρ〉e1)(〈x1〉 − 〈ρ〉e1)

Tx1

−〈y1〉(〈x1〉 − 〈ρ〉e1)
Tx1

)

=

(
x1

0

)
− 1

‖x1‖2 − ρξ1

(
(〈x1〉 − 〈ρ〉e1)(〈‖x1‖2〉 − 〈ρ〉ξ1)

−〈y1〉(〈‖x1‖2〉 − 〈ρ〉ξ1)
)
.

But because ρξ1 ≤ 0,

〈‖x1‖2〉 − 〈ρ〉ξ1
‖x1‖2 − ρξ1

= 〈1〉,

and (4.2) follows directly.
Turning now to the second form of the algorithm, in which we compute x̂ as usual

and then compute y from the orthogonal system, we note that this is equivalent to a
factored computation of the form(

I 0
uyu

T
x I − uyu

T
y

)(
I + uxu

T
x /c uxu

T
y /c

0 I

)(
x
y

)
=

(
x̂
ŷ

)
.

The analysis of this algorithm proceeds as above, with the exception that instead of
(4.3) we show that(

I 0
I − ũyũ

T
x −ũyũT

y

)(
I + ũxũ

T
x /c̃ ũxũ

T
y /c̃

0 I

)(〈x〉
〈y〉
)

=

(
x̂+ f̄x
ŷ + f̄y

)
,

where f̄x and f̄x are suitably small.

5. Pivoting. In the last section we analyzed the first step of the hyperbolic
triangularization algorithm. Since relational stability is cast in terms of orthogonal
matrices, we may combine the errors from the several steps to give a relational stabil-
ity result. However, the errors will be small only when compared to the largest of the
intermediate quantities formed in the course of the reduction. If these quantities are
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large compared to ‖X‖ and ‖Y ‖, the final result will be less than satisfactory. Unfor-
tunately, numerical experiments show that growth in the intermediate quantities can
occur. See section 6.

The source of the difficulty can be seen by repartitioning H̆. Specifically, let (with
a change in notation)

u =


 υ
ux
uy


 ,

so that

H̆


ξ
x
y


 =




ξ +
υξ+uT

xx+uT
y y

c υ

x+
υξ+uT

xx+uT
y y

c ux

y − υξ+uT
xx+uT

y y

c uy


 ≡


ξ̂
x̂
ŷ


 .(5.1)

Since |υ|, ‖ux‖, and ‖uy‖ are bounded by
√

2, the quantity

σ =
υξ + uT

xx+ uT
y y

c

must be large for there to be any significant increase in the size of the transformed
vector. But from the first row of (5.1), we find that

|σ| ≤ |ξ|+ |ξ̂|
|υ| .

Now |ξ| ≤ ‖X‖. Moreover, in the triangularization algorithm, ξ̂ is an element of the
final matrix R̂ and is also bounded by ‖X‖. Hence for there to be a growth in the
transformed vector, the first component υ of u must be small. But

υ = ν−1(ξ1 + sign(ξ1)
√
‖x1‖2 − ‖y1‖2).

Consequently if the first component of x1 happens to be small, υ can also be small.
The natural cure is to pivot for size in the matrix X. Specifically, a row interchange

is made to move the largest element of x1 into the first position. This insures that

|ξ1| ≥ ‖x1‖√
m

,

and υ cannot be inordinately small. In practice this method has proven effective in
preventing growth and stabilizing the triangularization process.
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It is worth noting that this problem does not occur in the pure downdating prob-
lem where X = R. In this case, x1 has only one component and hence |υ| > 1. The
same is true in each stage of the reduction.

6. Numerical examples. The first example concerns the necessity and effec-
tiveness of pivoting. Specifically, we consider the updating problem

Q̆


R
xT

yT


 ≡ Q̆




√
δ 1

0 1
1 1

1−√
δ 1


 =


R̂0

0




for various values of the parameter δ. For the unpivoted algorithm, we compute the
error

EUP = R̂TR̂− (RTR + xxT − yyT)

and the last elements x2 and y2 of x and y after a hyperbolic Householder has been
computed to zero the first components. For the pivoted reduction we define EP in
analogy with EUP. The following are the results.

δ ‖EUP‖ x2 y2 ‖EP‖
1.0e−03 1.2e−15 −3.4e+00 −3.3e+00 6.9e−16
1.0e−05 6.7e−14 −1.2e+01 −1.2e+01 6.7e−16
1.0e−07 6.6e−13 −3.9e+01 −3.9e+01 3.9e−17
1.0e−09 1.1e−12 −1.3e+02 −1.3e+02 1.0e−15
1.0e−11 2.0e−12 −4.0e+02 −4.0e+02 5.2e−16
1.0e−13 1.1e−09 −1.3e+03 −1.3e+03 5.6e−16
1.0e−15 3.8e−09 −4.0e+03 −4.0e+03 9.3e−16

For δ = 1.0e−15, we have κ2(R̂) = 5.6e+03, which is the worst case. Thus for
each value of δ, we have a tractable problem. But in the absence of pivoting there is a
significant growth in the intermediate quantities x2 and y2, which causes a significant
loss in relational stability. The pivoted algorithm has no such problem. These results
have been confirmed by experiments with larger, unstructured problems.

We next consider an example of the simple downdating problem which illustrates
the difference between hyperbolic rotations and 2 × 2 hyperbolic Householder trans-
formations. The elementary hyperbolic rotation

Q̆ =
1

c

(
1 s
s 1

)

for −1 < c ≤ 0 may be written in hyperbolic Householder form

Q̆ =

(
1 0
0 −1

)
+

1

c

(√
1− c
s√

1− c

)(√
1− c

s√
1− c

)
.

The direct application of a hyperbolic rotation is known to be unstable, yet the results
of this paper show that the application of the same transformation in the form of a
hyperbolic Householder transformation will be relationally stable.
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Consider the computation of Q̆ such that

Q̆

(
R
yT

) 1 1
0 1

1− δ 1 +
√
δ


 =

(
R̂
0

)
.

For δ < 0.1 the matrix RTR − yyT is positive definite, so that this downdating
problem is well posed. We computed a downdated R̂ using both hyperbolic rotations
and hyperbolic Householders transformations to obtain errors ER and EH. The errors
for different values of δ were as follows.

δ ‖ER‖ ‖EH‖
1.0e−03 1.1e−15 2.0e−16
1.0e−05 2.7e−14 1.2e−16
1.0e−07 9.7e−14 6.6e−17
1.0e−09 5.6e−13 3.0e−16

Even in this small example, the superior stability of the hyperbolic Householder form
of the transformation is evident.

The final example illustrates the importance of relational stability. Specifically, we
performed the following experiment. An ill-conditioned matrix R0 was generated by
computing the R-factor from the QR decomposition of a matrix of standard normal
deviates (mean zero and standard deviation one). The leading 2×2 principal submatrix
was then replaced by the R-factor of another matrix of normal deviates with standard
deviation of 10−7. This is a particularly difficult matrix for two reasons.

1. The condition number of R0 is a little less than the reciprocal square root
of the precision used in the experiments (about 10−16). This degree of ill-
conditioning is about as great as any downdating algorithm can tolerate.

2. The ill-conditioning is located at the northeast corner of the matrix and will
be propagated by the algorithm throughout the matrix. If, instead, the trailing
principal submatrix were small, the ill-conditioning would remain localized.

Two auxiliary matrices R− and R+ were generated as follows. For m,n ≥ 2, two
m × p matrices X and Z and an n × p matrix Y of standard normal deviates were
created. The matrix R+ was obtained by updating Y into R0. The matrix R− was
obtained in two stages. First, X was updated into R0. Second, Z was updated into the
result while the first row of X was simultaneously downdated. The matrices R− and
R+ will, in general, be well conditioned, and R+ was obtained by a process involving
a mixed update and downdate. The following display indicates the relation between
the matrices (⊕ indicates updating and ª downdating).

R− = (R0 ⊕X)⊕ Z ªX[1, :]qaqR+ = R0 ⊕ Y.

We then took the algorithm through the valley of death by downdating Z and
the last m− 1 rows of X to get a matrix R̃0, which in exact arithmetic would be R0,
and then updating with Y to get a matrix R̃+, which in exact arithmetic would be
R+. The following is the result of ten runs of the experiment with p = 20, n = 5, and
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m = 3.

κ(R0)
‖R̃0−R0‖
‖R0‖ κ(R+) ‖R̃+−R+‖

‖R+‖
2.3e+08 1.7e−02 2.0e+02 4.0e−15
1.3e+08 6.1e−03 1.8e+02 1.6e−15
1.4e+09 3.7e−02 1.4e+03 7.8e−14
6.8e+08 1.0e−02 2.6e+02 1.2e−14
4.8e+08 5.0e−02 2.3e+02 5.1e−15
6.9e+08 2.3e−03 2.8e+02 5.5e−15
1.0e+08 1.3e−03 3.3e+02 1.7e−15
7.4e+08 2.2e−02 1.2e+02 2.5e−15
5.5e+08 5.9e−03 3.1e+02 2.4e−14
3.9e+08 3.1e−03 2.2e+02 5.9e−15

It is seen that in passing from R− to R̃0, there is an almost complete loss of accuracy,
as predicted by the theory of downdating. On the other hand, almost full accuracy
is restored in passing to R̃+. Such is the power of relational stability to create a silk
purse out of a sow’s ear.
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Abstract. We both characterize and give a convergent algorithm for finding a matrix in a
linear variety of matrices that is nearest (in the Frobenius norm) to the positive semidefinite (PSD)
matrices. Our motivation is from matrix completions, and in that setting our observations take
an especially useful form that we use to bound, and sometimes give closed-form formulae for, the
distance from the set of completions to the PSD matrices in terms only of specified data.
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1. Introduction. Given a linear variety L of the n × n Hermitian matrices
Hn, we characterize the matrices in L that are nearest, in the Frobenius norm, to
the convex cone Ωn of positive semidefinite (PSD) matrices. This characterization
suggests a simple algorithm whose convergence we prove. In the event that L intersects
Ωn, the algorithm produces a PSD matrix in L. On a very general level (i.e., two
convex sets in a vector space) these ideas are not new. However, our motivation is
from matrix completion problems, and the specialization of these observations to the
problem of a completion nearest to Ωn takes on a nice and useful form, which we
exploit in the final section to bound, and in some cases give closed-form formulas for
the distance of the set of completion to Ωn, in terms only of specified data.

2. Preliminaries and optimality conditions. The subspace of the n×n ma-
trices Mn consisting of Hermitian matrices is denoted by Hn. As a real vector space,
it has dimension n2, and all considerations herein will take place in this vector space.

Results restricted to the n(n−1)
2 -dimensional subspace of real symmetric matrices are

entirely analogous.
Let S be a (real) subspace of the space of Hermitian matrices Hn, and let L =

A0 + S for some fixed Hermitian matrix A0. The orthonormal complement of S is
denoted by S⊥. Let Ωn be the cone of positive semidefinite matrices. For Hermitian
matrices, the usual PSD partial order is defined by

X ≥ Y if and only if X − Y ∈ Ωn.

The Frobenius inner product is defined and denoted as follows:

〈X,Y 〉F def
= Tr(XY ∗),

then

‖X‖2
F = 〈X,X〉F .
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We use the following easily proved, well-known fact:

(1) 〈P,Q〉F ≥ 0 (P,Q ∈ Ωn).

Theorem 2.1. For A ∈ L with Jordan decomposition A = A++A−, the condition

(2) ‖A−‖F ≤ ‖T − P‖F (T ∈ L;P ∈ Ωn)

is valid if and only if A− ∈ S⊥.
Proof. Suppose first that A− ∈ S⊥. Since any T ∈ L is in A+ S,

T − P = A− + {A+ + S − P} for some S ∈ S.

Then apparently,

‖T − P‖2
F ≥ ‖A−‖2

F + 2〈A−, A+ + S − P 〉F .

Since by assumption

〈A−, A+〉F = 0 and 〈A−, S〉F = 0,

and by (1),

−〈A−, P 〉F ≥ 0,

we can conclude that

‖T − P‖2
F ≥ ‖A−‖2

F ,

which leads to (2).
Conversely, suppose that (2) is satisfied. Then for any S ∈ S, considering T =

A+ S, P = A+ in (2), we have

‖A− + S‖2
F ≥ ‖A−‖2

F .

But this is valid for all S ∈ S only if A− ∈ S⊥.
The following theorem is very well known.
Theorem 2.2. Let K,−N ∈ Ωn, and M = K +N . Then

‖M+‖F ≤ ‖K‖F , ‖M−‖F ≤ ‖N‖F .

Proof. Since

(3) M+ +M− = K +N, so that M+ −N = K + (−M−),

it follows, from the orthogonality of M+,M−, and (1), that by the Schwarz inequality

‖M+‖2
F = 〈M+,M+〉F ≤ 〈M+,M+ −N〉F ,

= 〈M+,K〉F ≤ ‖M+‖F · ‖K‖F ,

which leads to the first inequality of (3).
We point out in the following example that, although ‖M+‖F ≤ ‖K‖F , we do

not in general have M+ ≤ K.
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Example. Let

K =

(
4 2
2 2

)
and N =

(−1 −2
−2 −4

)
;

then

M =

(
3 0
0 −2

)
and M+ =

(
3 0
0 0

)

so that

K −M+ =

(
1 2
2 2

)
,

which is not in Ωn. Thus M+ 6≤ K.

Our interest is in the problem

(L) min
A∈L
B∈Ωn

‖A−B‖F = ∆(L).

Since L and Ωn are closed convex sets, it is a standard fact that ∆(L) is well defined
and is attained at at least one pair A ∈ L, B ∈ Ωn.

If d(A,Ωn) denotes the minimum distance from a particular A ∈ Hn to Ωn, we
of course have

∆(L) = min
A∈L

d(A,Ωn) = min
A∈L

‖A−‖F .

We are interested in both the structure of the minimizing matrices in L, solutions to
(L), and the minimum distance, ∆(L) from L to Ωn, primarily in the case of com-
pletions, and we study the former in this section. This leads to a natural algorithm,
discussed in the next section, and to formulae for the minimum distance, discussed in
the final section.

Corollary 2.3. Let A be an n×n partial Hermitian matrix. The completion Â
is nearest to Ωn if and only if every entry of Â− in an unspecified position of A is 0.

Proof. From Theorem 2.1, Â− is the nearest completion to Ωn if and only if
A− ∈ S⊥. But S is generated by element of the canonical basis corresponding to
the unspecified entries. Then the orthogonal complement S⊥ is generated by ele-
ments of that basis with zero entries in the unspecified positions, which completes the
proof.

3. Algorithms. In this section, we present an algorithm for the general linear
variety and its particular form for the completion case.

Given a matrix B ∈ L, ‖B−‖F is the distance from B to Ωn. Thus we want to
minimize ‖B−‖F in order to find the solution to our problem.

If {A1, . . . , Am} is an orthonormal basis for S, the orthogonal complement of S,
S⊥ can be described by

S⊥ = span{Am+1, . . . , An2},

in which Am+1, . . . , An2 completes A1, . . . , Am to an orthonormal basis of Hn.



864 CHARLES JOHNSON AND PABLO TARAZAGA

Algorithm 1.
Given B0 ∈ L
for k = 0, 1, 2, . . .
Bk = (Bk)+ + (Bk)−
B̂k =

∑n2

i=m+1〈(Bk)−, Ai〉FAi
Bk+1 = (Bk)+ + B̂k

First of all, observe that, because B̂k is the projection of (Bk)− onto S⊥, we have
the orthogonal decomposition

(Bk)− = B̂k + ((Bk)− − B̂k).

Thus (Bk)− − B̂k is an element of S, which implies that

Bk+1 = (Bk)+ + B̂k = (Bk)+ + (Bk)− − ((Bk)− − B̂k) = Bk − ((Bk)− − B̂k)

is in L.
Theorem 3.1. Algorithm 1, above, is a descent algorithm, i.e.,

‖(Bk+1)−‖F < ‖(Bk)−‖F ,
unless the pair Bk ∈ L, (Bk)+ is a solution to problem (L).

Proof. Clearly

‖B̂k‖2
F < ‖(Bk)−‖2

F ,

unless B̂k = (Bk)− (i.e., Bk, (Bk)+ is a solution), because B̂k is the projection of
(Bk)− on S⊥. But then

B̂k = (B̂k)+ + (B̂k)−;

then

Bk+1 = (Bk)+ + (B̂k)+ + (B̂k)−,

with (Bk)+ + (B̂k)+ in Ωn and (B̂k)− ∈ −Ωn. But

Bk+1 = (Bk+1)+ + (Bk+1)−,

and by Theorem 2.2,

‖(Bk+1)−‖F ≤ ‖(B̂k)−‖F ≤ ‖(B̂k)‖F < ‖(Bk)−‖F ,
which proves the theorem.

Remark. We note that, because we are minimizing ‖(Bk)−‖2
F , we may view this

algorithm as minimizing the 2-norm of the negative eigenvalues.
In the completion case, the fact that orthogonality of A− to the linear variety

implies that the entries of A− in the unspecified positions of A have to be 0 simplifies
the algorithm. In this event, Algorithm 1 becomes Algorithm 2.

Algorithm 2.
Given B0 ∈ L
for k = 0, 1, 2, . . .
Bk = (Bk)+ + (Bk)−
B̂k =

{
((Bk)−)ij if the i, j entry is specified
0 otherwise

Bk+1 = (Bk)+ + B̂k
After decomposing Bk = (Bk)+ + (Bk)−, we simply set equal to 0 those entries

of (Bk)− in the unspecified positions and add the resulting matrix to (Bk)+.
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4. Minimum distance to the PSD matrices. Here we restrict our attention
to the linear variety of all completions of a given n×n partial Hermitian matrix A, the
graph of whose specified entries is G. As usual, we assume that all diagonal entries of
A are specified. Our focus is now upon the minimum value of the objective function
in problem (L) rather than upon minimizing completions Â. Let

∆(A) = min
Â a completion of A

‖Â−‖F ,

the (Frobenius) distance from the linear variety of completions of A to Ωn.
We may always compute ∆(A) via the methods of the prior section, etc., but we

would like to have a closed-form formula for ∆(A) in terms of the specified entries
of A. This is difficult to obtain in general. However, we are able to give a simple
formula in certain cases and, more generally, we relate ∆(A) to certain other natural
quantities associated with the problem. In the process, we introduce some concepts
and prove some lemmas that may be of independent interest.

An obvious necessary condition for A to have a completion in Ωn (i.e., ∆(A) =
0) is that A be partial PSD (A[α] ∈ Ω|α| whenever A[α] is fully specified). So, a
natural quantity is how little the data need be modified in order to make it partial
PSD. For a conventional Hermitian matrix B, G(B) is the graph of the nonzero (off-
diagonal) entries of B. If B is a conventional matrix, the sum A + B simply means
the partial matrix whose graph is G and whose specified entries are those of A plus
the corresponding entries of B.

δ(A) = min
G(B)⊂G

A+B is partial PSD

‖B‖F .

We refer to a matrix B that attains δ(A) as a minimal perturbation (for A). Of course,
it may be that no minimal perturbation yields a partial matrix with PSD completions.

Lemma 4.1. For any partial Hermitian matrix A,

δ(A) ≤ ∆(A),

with equality if and only if there is a minimal perturbation of A that has a PSD
completion.

Proof. If Â is a solution to problem (L), then G(Â−) ⊂ G, by Corollary 2.3, and
∆(A) = ‖Â−‖F . But, Â − Â− = Â+ ∈ Ωn and so, A − Â− is partial PSD. Thus,
δ(A) ≤ ‖ − Â−‖F = ‖Â−‖F = ∆(A). If equality holds in the last inequality, then
B = −Â− is a minimal perturbation for A for which A+B has a PSD completion. On
the other hand, if B is such a minimal perturbation for A, then ∆(A) ≤ ‖B‖F = δ(A),
which means that δ(A) = ∆(A).

We note that implicit in the above is the fact that ∆(A) is also the minimum by
which A may be perturbed to make it PSD completable, i.e.,

∆(A) = min
A+B has a

PSD completion

‖B‖F ,

a fact that is not of direct interest to us here.
In case G is chordal (no induced simple cycles of four or more vertices), partial

positive semidefiniteness implies PSD completability [2]. Further, if G is not chordal,
there exists partial PSD matrices A (δ(A) = 0) that have no PSD completion (∆(A) >
0). We may state the following theorem.
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Theorem 4.2. For every undirected graph G and every partial Hermitian matrix
A with graph G, we have

δ(A) ≤ ∆(A).

Equality holds for every partial A with graph G if and only if G is chordal.
We note that, for general (nonchordal) graphs, we know of no certain way to

compute δ(A). It would be of interest, under appropriate normalization, to relate the
worst case ∆(A) − δ(A) to the graph of G. Let A0 be the completion of A in which
all unspecified entries are chosen to be 0. We may, for example, define

∆(G) = max
‖A0‖F=1

(∆(A)− δ(A)).

Alternate normalizations might be convenient. Of course, ∆(G) = 0 for all chordal
graphs, while ∆(G) > 0 for nonchordal graphs. Is the value of ∆(G) related to a
measure of nonchordality?

We next turn to ideas that permit the calculation of ∆(A) under special cir-
cumstances. For the principal submatrix A[α] of an n × n (partial or conventional)
matrix A, we denote by Aα the n×n matrix that agrees with A at entries (i, j), when
i, j ∈ α, and when it is 0 at other entries. Note that (Aα)− agrees with (A[α])− in the
α positions (and is zero elsewhere), so that ‖(Aα)−‖F = ‖(A[α])−‖F . For a partial
Hermitian matrix A with graph G, we further define

(AG)− =
∑
α

(Aα)−,

in which the sum is over the maximal cliques α of G.
If A is partial PSD, Aα is PSD so that (Aα)− = 0; hence (AG)− = 0. In general,

(A− (AG)−)α ≥ Aα − (Aα)− = (Aα)+ ≥ 0,

so that A−(AG)− is always partially PSD. Finally, if the set of summands in (AG)− is
Frobenius orthogonal, we say that the partial HermitianA is negative clique orthogonal
(NCO). A is special NCO if it is NCO and if A− (AG)− has PSD completions. If G
is chordal, all NCO partial matrices are special NCO. A simple way for A to be NCO
is for distinct cliques α, for which A[α] is not PSD, to be nonoverlapping. We call
such an A negative isolated. It is possible to be NCO without being negative isolated;
in this event, overlapping blocks must themselves be orthogonal. We now define the
following key, and easily computed, quantity of interest:

γ(A) =

(∑
α

‖A[α]−‖2
F

)1/2

.

A related quantity is

Γ(A) = ‖(AG)−‖F .

It is then a simple observation that the following holds.
Lemma 4.3. For a partial Hermitian matrix A, we have

γ(A) ≤ Γ(A),
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with equality occurring if and only if A is NCO.
Proof. We may calculate

Γ(A)2 = 〈(AG)−, (AG)−〉F =

〈∑
α

(Aα)−,
∑
α

(Aα)−

〉
F

=
∑
α

‖(Aα)−‖2
F + 2

∑
α6=β

〈(Aα)−, (Aβ)−〉F

= γ(A)2 + 2
∑
α6=β

〈(Aα)−, (Aβ)−〉F ≥ γ(A)2.

The inner product 〈(Aα)−, (Aβ)−〉F ≥ 0 because (Aα)−, (Aβ)− ∈ −Ωn. Thus Γ(A) ≥
γ(A), with equality exactly when

∑
α6=β〈(Aα)−, (Aβ)−〉F = 0, or each 〈(Aα)−, (Aβ)−〉F =

0, i.e., A is NCO.
Since −(AG)− is the perturbation that makes A partial PSD, it is clear that

δ(A) ≤ Γ(A). Interestingly, although it is generally smaller than Γ(A), γ(A) is also
an upper bound for δ(A).

A characterization and parametrization of a minimal member of the set {C ; C ≥
A,B} is found in [1]. In particular we have the following fact.

Lemma 4.4. Suppose that A, B ∈ Ωn. Then

min
C≥A,B

‖C‖2
F ≤ ‖A‖2

F + ‖B‖2
F ,

with equality occurring if and only if 〈A,B〉F = 0.
Proof. Let C = A+ (B −A)+. Since

C = A+ (B −A)+ = A+ (B −A)− (B −A)− = B + (A−B)+,

inequality C ≥ A,B is immediate. Remark further that

C =
(A+B) + |A−B|

2
.

We have

‖C‖2
F = ‖A‖2

F + ‖(B −A)+‖2
F + 2〈A, (B −A)+〉F

= ‖A‖2
F + ‖B −A‖2

F − ‖(B −A)−‖2
F + 2〈A,B −A〉F − 2〈A, (B −A)−〉F

= ‖A‖2
F + ‖B‖2

F − ‖A+ (B −A)−‖2
F

= ‖A‖2
F + ‖B‖2

F − ‖B − (B −A)+‖2
F ,

which proves the inequality in the assertion.
If the equality occurs in the assertion, it follows from above that

A = −(B −A)−, B = (B −A)+,

so that

A+B = |B −A|,
which implies 〈A,B〉F = 0.

Conversely if 〈A,B〉F = 0, then generally C ≥ A,B implies C ≥ A+B; hence

‖C‖2
F ≥ 〈A+B,A+B〉F = ‖A‖2

F + ‖B‖2
F ,
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and the equality occurs.
The above computation shows that

min
C≥A,B

‖C‖2
F ≤ ‖A‖2

F + ‖B‖2
F − 1

4
‖(A+B)− |A−B|‖2

F .

We note that, when A and B are not orthogonal, the inequality of the lemma
may be improved with further manipulation, for example, to

‖C‖4
F ≤ (‖A‖2

F + ‖B‖2
F )2 − 〈A,B〉2F ,

and better.
The lemma allows us to do the following. Let

A =


A11 A12 ?
A∗12 A22 A23

? A∗23 A33




be partial Hermitian, with the two maximal specified principal submatrices

A1 =

(
A11 A12

A∗12 A22

)
and A2 =

(
A22 A23

A∗23 A33

)
.

Suppose that

(A1)− = B =

(
B11 B12

B∗
12 B22

)
and (A2)− = C =

(
C11 C12

C∗
12 C22

)
,

and define

B′ =


B11 B12 0
B∗

12 B22 0
0 0 0


 and C ′ =


 0 0 0

0 C11 C12

0 C∗
12 C22


 .

Then A − (B′ + C ′) is partial PSD, but ‖B′ + C ′‖F may be bigger than γ(A) =
(‖B′‖2

F + ‖C ′‖2
F )1/2 to the extent that ‖B22 + C11‖2

F exceeds ‖B22‖2
F + ‖C11||2F .

However, the lemma allows us to replace B22 + C11 with a matrix D22, such that

‖D22‖2
F ≤ ‖B22‖2

F + ‖C11‖2
F ,

and A−D is partial PSD, with

D =


B11 B12 0
B∗

12 D22 C12

0 C∗
12 C22


 ;

then ‖D‖F ≤ γ(A). Simply pick −D22 in relation to −B22 and −C11 as guaranteed
by the lemma. Then

−
(
B11 B12

B∗
12 D22

)
≥ −B and −

(
D22 C12

C∗
12 C22

)
≥ −C,

as −D22 ≥ −B22, −C11. Since A1 −B = (A1)+ and A2 −C = (A2)+ are PSD, this
guarantees that A−D is partial PSD. Since δ(A) ≤ ‖D‖F , we have δ(A) ≤ γ(A).
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Repeating the method in Lemma 4.4 we can prove the following.
Lemma 4.5. For Bi ≥ 0 (i = 1, . . . , N) there is C such that

C ≥ Bi (i = 1, 2, . . . , N) and ‖C‖2
F ≤

N∑
i=1

‖Bi‖2
F .

If

min
C≥Bi,i=1,...,N

‖C‖2
F =

N∑
i=1

‖Bi‖2
F ,

then

〈Bi, Bj〉F = 0 (i 6= j).

Theorem 4.6. For any partial Hermitian matrix A,

δ(A) ≤ γ(A).

If equality holds, then A is NCO.
Proof. For any maximal clique α let

B(α)
def
= − (Aα)−.

Then there is C such that C ≥ B(α) for all maximal cliques α and

‖C‖2
F ≤

∑
α

‖B(α)‖2
F .

Since

(A+ C)α ≥ (A+B(α))α = (Aα)+ ≥ 0,

A+ C is partial PSD. Let C̃ be the projection of C to S⊥. Then G(C̃) ⊂ G, A+ C̃
is again partial PSD, and

δ(A) ≤ ‖C̃‖F ≤ ‖C‖F ,
which proves the first inequality.

Finally, by Lemma 4.5 δ(A) = γ(A) is possible only when

〈Bi, Bj〉 = 0 (i 6= j);

that is, A is NCO.
We suspect that the converse to the equality statement of the above theorem

holds, i.e., if A is NCO, then δ(A) = γ(A). The equality is clear when A is negative
isolated, because (AG)− is obviously a minimal perturbation. However, even when A
is special NCO, we do not know a proof.

We may now give a formula for ∆(A), when A is special NCO.
Theorem 4.7. If A is a special NCO partial Hermitian matrix, then

∆(A) = γ(A).
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Proof. Let Â be a PSD completion of A−(AG)−, and list the maximal cliques of G
as α1, . . . , αk. First, notice that 〈(AG)−, Â〉 = 0, since 〈A[αi]−, A[αi]−A[αi]−〉F = 0
and A is NCO. Now, consider the completion Â + (AG)− of A. Since Â is PSD
and (AG)− ∈ −Ωn, and the two are orthogonal, we have Â = (Â + (AG)−)+ and
(AG)− = (Â + (AG)−)−. Since G((AG)−) ⊂ G, the graph of the specified entries of
A, we have by Corollary 2.3, that Â+ (AG)− is a completion of A that is nearest to
Ωn. Thus, ∆(A) = ‖(AG)−‖F = Γ(A) = γ(A).

In the case of chordal graphs, the situation is simplified.
Corollary 4.8. Let G be a chordal graph and A a partial Hermitian matrix

with graph G. Then,

∆(A) ≤ γ(A).

Equality occurs if and only if A is NCO.
Proof. Since G is chordal, ∆(A) = δ(A) ≤ γ(A), i.e., the inequality from Theo-

rems 4.2 and 4.6. Also, since G is chordal, A is NCO if and only if A is special NCO.
Thus, if A is NCO, equality follows from the previous theorem. On the other hand,
if equality holds, then δ(A) = ∆(A) = γ(A), and A is NCO, by Theorem 4.6.

In case G is chordal and A is NCO with graph G, we then have

∆(A) = γ(A) = Γ(A) = δ(A).

Already in the general chordal case (no NCO assumption), it appears difficult to give
a formula for ∆(A). It may be strictly less than γ(A), and no simple correction terms
seem to remedy the situation.

Examples. Given the partial matrix

A =




1 1 1 ? 1
1 3/2 5/2 1 ?
1 5/2 1 3/2 ?
? 1 3/2 1 2
1 ? ? 2 1


 ,

we can use Algorithm 2 to compute ∆(A) = 1.6799. This partial matrix A has four
specified cliques α1 = {1, 2, 3}, α2 = {2, 3, 4}, α3 = {4, 5}, and α4 = {1, 5}. Then we
can compute the corresponding A[αi]− for i = 1, 2, 3, 4.

(A[α1])− =


−0.0018 −0.0316 0.0357
−0.0316 −0.5555 0.6271
0.0357 0.6271 −0.7078


 ,

(A[α2])− =


−0.4751 0.6233 −0.1939

0.6233 −0.8178 0.2544
−0.1939 0.2544 −0.0791


 ,

(A[α3])− =

(−0.5000 0.5000
0.5000 −0.5000

)
, (A[α4])− =

(
0 0
0 0

)
,

which allows us to compute γ(A) = 2.1173.
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On the other hand, we can generate from the A[α]−,

(AG)− =



−0.0018 −0.0316 0.0357 0 0
−0.0316 −1.0306 1.2504 −0.1939 0
0.0357 1.2504 −1.5256 0.2544 0

0 −0.1939 0.2544 −0.5791 0.5000
0 0 0 0.5000 −0.5000


 ,

and then compute Γ(A) = 2.7948. Then for this example we have

∆(A) < γ(A) < Γ(A).

We want to illustrate now inequalities in the other sense, this classical example
in PSD completion problems, shows a reversed inequality. Given the partial matrix

B =




1 1 ? −1
1 1 1 ?
? 1 1 1
−1 ? 1 1


 ,

it is easy to see that for every specified clique, (B[α])− = 0 which implies (BG)− = 0.
Then γ(B) = Γ(B) = 0. Now using Algorithm 2, we can compute ∆(B) = 0.5858;
then for this matrix B we have

γ(B) = Γ(B) < ∆(B).

In the most general setting we know that

δ(A) ≤ ∆(A), γ(A), Γ(A),

and

γ(A) ≤ Γ(A),

and that ∆(A) can be both larger (when A is partial PSD without PSD completions)
and smaller (as in the chordal non-NCO case) than both γ(A) and Γ(A).

Acknowledgments. We want to thank Professor T. Ando and the referee for
bringing to our attention reference [1], and for their suggestion to improve this paper
by including shorter proofs of Theorems 2.2 and 4.7, and Lemma 4.4.
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Abstract. In this paper, we study the partition of the space of quadruples of matrices according
to the set of discrete structural invariants, proving that it is a stratification and that the structural
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We give an application to obtain bifurcation diagrams for some few-parameters families of quadru-
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Introduction. We consider the space Mn,m,p of quadruples of matrices (A B
C D )

corresponding to a time-invariant linear multivariable system

ẋ = Ax+Bu

y = Cx+Du

}
,

and in this space we consider the strict equivalence transformation given by the control
system interpretation of basis changes in the state space, the input space and output
space, and operations of state feedback and output injection.

The partition of the space of quadruples of matrices into orbits under strict equiv-
alence is not a locally finite partition (under small perturbations, the eigenvalues take
an infinity of different values in such a way that the quadruples are nonequivalent).
Then, it is not a stratification (although the orbits are smooth submanifolds).

We define in the space Mn,m,p a new equivalence relation in the following manner
(see subsections 1.2 and 1.3). We call the Kronecker–Segre symbol (KS-symbol) σ of
a quadruple of matrices (A B

C D ) ∈ Mn,m,p the set that consist of the collection of its
discrete invariants. Two quadruples of matrices have the same KS type if and only if
they have the same KS-symbol σ. Note that then they can differ only in the continuous
invariants. An equivalence class, called the Kronecker–Segre stratum (KS-stratum),
E(σ) in Mn,m,p, consists of the set of all quadruples of matrices having a given KS-
symbol σ. Obviously, equivalence classes are invariant under strict equivalence.

We prove that this partition is in fact a stratification of the space of quadruples
of matrices.

After this we analyze the conditions of stability under this new equivalence re-
lation (Theorem 5.3) from which we can deduce the “genericity” of this property
(Theorem 5.6). Given a family Λ −→ Mn,m,p of linear systems parametrized over a
space Λ, the above stratification defined in Mn,m,p induces a partition in Λ. However,
some extra conditions are necessary in order to ensure that this induced partition Λ
is also a stratification. Then we have precise knowledge of the local structures in Λ.
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These conditions are guaranteed if the family is transversal to the stratification. The
Thom Transversality Theorem ensures that it occurs “generically” when the stratifica-
tion of Mn,m,p is Whitney regular. Then we can speak about “generic families,” and
for these families a stratification of Λ is obtained (it is called a bifurcation diagram).

In the case where the family is versal, the singularities of the stratification of the
space of parameters Λ can be examined after the following theorem (see [1] and [12]):
A family ϕ : Λ −→Mn,m,p is versal in p0 if and only if it is transversal to the orbit
of G crossing through ϕ(p0) = (A B

C D ) at p0 ∈ Λ.
For square matrices, V.I. Arnold in [1] studied the bifurcation diagrams parti-

tioning Mn(C) with regard to the Segre symbol, and C.G. Gibson, in [7], proved that
this stratification verifies the Whitney regular conditions.

In the case of pairs of matrices, M.I. Garćıa-Planas studied in [6] the partition of
the set Mn,m = Mn(C)×Mn×m(C) with regard to the BK-symbol (that is, the set
formed by the controllability indices and the Segre symbol (A, B)) and proved that
for m = 1 this stratification verifies the Whitney regular conditions.

K. Tchon in [13] proved that the induced stratification over the open dense set of
Mn,m formed by the completely reachable pairs of matrices is Whitney regular. This
case is immediate since the strata are the orbits under strict equivalence.

We will study here the stratification induced over the open dense subsets of
Mn,m,p, An,m,p = {(A B

C D ) ; rankD = min (m, p)}. It is Whitney regular when we
consider the special cases with m = p, m = p+ 1, and m+ 1 = p.

Finally we enumerate the singularities of “bifurcation diagrams” of some few-
parameter families defined using the miniversal deformation.

0. Preliminaries.
0.1. For every integer p, we will denote by Mp(C) the space of p-square complex

matrices and by Gl(p;C) the linear group formed by the invertible matrices of Mp(C).
We will denote by Mp×q(C) the space of rectangular complex matrices having p rows
and q columns.

We will deal mainly with quadruples of matrices
n m

n
p (A B

C D ) such that A ∈Mn(C),

B ∈ Mn×m(C), C ∈ Mp×n(C), and D ∈ Mp×m(C). Mn,m,p will denote the space
of such quadruples of matrices; that is to say, Mn,m,p = Mn(C) × Mn×m(C) ×
Mp×n(C)×Mp×m(C).

0.2. Throughout this paper the term manifold is used as an abbreviation for
complex differentiable manifold. We recall that if M is a manifold, X, Y are subman-
ifolds of M , and x ∈ X ∩ Y ; one says that X, Y are transversal at x if the tangent
spaces at x verify the relation

TxM = TxX + TxY.

Then, X∩Y is also a submanifold of M , and its dimension is dimX+dimY −dimM .
In particular, if

TxM = TxX ⊕ TxY,

we say that X, Y are minitransversal at x.
0.3. According to [1, Theorem 5.3] and [8, section 2], the space Mp(C) can be

partitioned into a finite number of Segre Strata, each one formed by the matrices
having the same Segre symbol (or the same Jordan type). Thus, it is the uncountable
union of similarity classes, differing only in the values of the distinct eigenvalues. If
A ∈ Mp(C), we denote by σS(A), OS(A), and ES(A) the Segre symbol, Segre orbit,
and Segre stratum of A, respectively.
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If J ∈Mp(C) is a Jordan matrix, we denote by ΓS(J) the miniversal deformation
of J described in [1, section 4]. In fact, it is a linear variety of Mp(C), minitransversal
to OS(J) at J .

After [6], the space Mn,m = {(A,B) | A ∈Mn(C), B ∈Mn×m(C)} can be parti-
tioned into a finite number of Brunovsky–Kronecker strata, each one formed by the
pairs of matrices having the same discrete invariants.

0.4. A stratification Σ of a subset X of a manifold M is a partition of X into
submanifolds of M , called the strata, which satisfies the local finiteness condition, that
is to say, every point in X has a neighborhood in M which meets only finitely many
strata.

Let X, Y be disjoint submanifolds in Cm such that p ∈ X ∩ Y . Y is said to be
regular over X at the point p if for any sequence of points {xn} in X and {yn} in Y
converging to p and satisfying the two conditions

(i) the sequence of tangent spaces TynY (regarded as linear subspaces in Cm =
Tyn(C)m) converges to a subspace T in the corresponding Grassmannian;

(ii) the sequence of lines xnyn converges to a line ` in the Grasmannian of lines
trough the origin in Cm;

one has ` ⊂ T .
This is called the Whitney regular conditions.
A Whitney stratification Σ of M is a stratification such that for any pair of strata

X,Y ∈ Σ, Y is Whitney regular over X at the point p, ∀p ∈ X. In this situation, we
may also say that the stratification Σ is Whitney regular.

We recall that a stratification Σ verifies the frontier condition if for any strata
X, Y with X ∩ Y 6= ∅, then X ⊆ Y .

Now suppose that Σ is a Whitney regular stratification with connected strata;
then Σ verifies the frontier condition. Furthermore, if X∩Y 6= ∅, then dimX < dimY ,
that is to say, the frontier of a stratum is a union of strata of strictly lower dimension.

We refer to [8, pp. 9–16] for the definitions and results which are needed in what
follows.

1. The Kronecker stratification. We shall partitionMn,m,p into a finite num-
ber of subsets, each one formed by all the quadruples of matrices having the same
complete system of discrete invariants. Hence, each one of these subsets is an orbit
or an uncountable union of strict equivalence classes, differing only in the values of
the eigenvalues.

In section 4 we shall prove that this partition is in fact a constructible regular
stratification. So, we refer to it as the Kronecker–Segre stratification of Mn,m,p. Of-
ten, we will abbreviate Kronecker by K and Kronecker-Segre by KS, e.g., K-canonical
form, KS-stratification, etc.

1.1. We recall that two quadruples of matrices (A B
C D ),

(
A′ B′
C′ D′

)
of Mn,m,p are

called similar if there exist P ∈ Gl(n;C), V ∈ Gl(m;C), W ∈ Gl(p;C), J ∈
Mn×p(C), and K ∈Mm×n(C) such that(

A′ B′
C′ D′

)
= ( P J

0 W ) (A B
C D )

(
P−1 0
K V

)
.

This is an equivalence relation.
We remark that two quadruples (A B

C D ) and
(
A′ B′
C′ D′

)
are equivalent if and only if

the pencils
(
A+λIn B

C D

)
and

(
A′+λIn B′

C′ D′

)
are strictly equivalent. We refer to [10], [11],

and [14] for a complete system of invariants and for a Kronecker canonical form that
we will denote by

(
Ac Bc

Cc Dc

)
.
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1.2. With the above notation, the KS-symbol σ of the quadruple (A B
C D ) is formed

by the column minimal indices ki, row minimal indices li, exponents of infinite ele-
mentary divisors mi + 1, and the Segre symbol of J ni,j :

σ = (k, l,m, σ(1), σ(2), . . . , σ(u))

= ((k1, . . . , kr), (l1, . . . ls), (m1, . . . ,mt),

(n1,1, n1,2, . . .), (n2,1, n2,2, . . .), . . . , (nu,1, nu,2, . . .)).

We will denote by d = rankD and δ =
∑

i,j nij (that is to say, the size of J).
1.3. A KS-stratum, E(σ), in Mn,m,p consists of all quadruples of matrices hav-

ing a given KS-symbol σ. We denote by E (A B
C D ) the K-stratum of the quadruple

(A B
C D ). Then, there are only finitely many KS-strata partitioning Mn,m,p. A stratum

is an orbit if it is formed by quadruples with no continuous invariants. Otherwise, it
is an uncountable union of orbits, differing only in the values of the eigenvalues.

We denote by Σ = ∪σE(σ) this partition, and it will be called the KS-stratification.

2. The orbits.
2.1. We consider the Lie group

G =
{(

( P J
0 W ) ,

(
P−1 0
K V

)) ∣∣∣ P∈Gl(n;C),V ∈Gl(m;C),W∈Gl(p;C)
J∈Mn×m(C),K∈Mm×n(C)

}
and its action on Mn,m,p according to the formula

α : G ×Mn,m,p −→ Mn,m,p,((
( P J

0 W ) ,
(
P−1 0
K V

))
, (A B

C D )
) −→ ( P J

0 W ) (A B
C D )

(
P−1 0
K V

)
.

Given a quadruple (A B
C D ) ∈ M, we take α(A B

C D ) : G −→Mn,m,p as the mapping

defined by g −→ α(g, (A B
C D )), for all g ∈ G.

The equivalence class of a quadruple (A B
C D ) with regard to relation 1.1 is just its

orbit by this action: O (A B
C D ) = α(A B

C D )G.

Proposition 2.1. (1) The orbits O (A B
C D ) are constructible sets.

(2) The orbits O (A B
C D ) are complex submanifolds of Mn,m,p.

Proof. First we recall that a set is called constructible if it is a finite union of
locally closed sets (see [9] for basic properties). For the proof, we need a theorem
of Chevalley (see, for example, [9, Theorem 4.4]): the image of a constructible set
under a regular rational mapping is constructible. The assertion follows from the
fact that the orbit through (A B

C D ) is the image of the constructible set G under the
rational mapping α(A B

C D ). (Remember that a regular rational mapping is a mapping

of a subset of Cp into Cq whose components are rational functions with denominators
nowhere zero in the domain.)

Since any constructible set has at least one nonsingular point, and taking into
account that the orbits satisfy a homogeneity property (that is to say, given two
points on one orbit, there is a diffeomorphism of Mn,m,p mapping one point to the
other and preserving orbits), we conclude that every point on an orbit is nonsingular,
that is to say, an orbit is a nonsingular constructible set, hence a manifold.

Remark 2.2. The property of homogeneity of the orbits can be used to reduce
our study to quadruples of matrices in their K-canonical form.

2.3. Orbits locally look like the group action quotient stabilizer: let Est (A B
C D )

be the stabilizer of (A B
C D ) under the action α

Est (A B
C D ) = {g ∈ G | α (g, (A B

C D )) = (A B
C D )},
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and let V ⊂ G be a submanifold of G minitransversal to Est (A B
C D ) at the identity

element I = (( In 0
0 Ip

), ( In 0
0 Im

)) ∈ G.

Then, the map defined as ϕ : V −→ O (A B
C D ) by ϕ(g) = α(A B

C D )(g) gives a local

parametrization of O (A B
C D ) at (A B

C D ).

3. Local triviality along the orbits. As in the method used in [7], the central
point in the study of the stratification is its reduction to the study of the intersection
of the strata with a submanifold Γ transversal to the orbits.

The key point is the selection of the submanifold Γ, in order to have an appro-
priate description of its intersection with the KS-stratification (see Lemma 4.1). In
our case, we select Γ as the miniversal deformation defined in [5, subsection II.5]. An
explicit description of this “orthogonal” miniversal deformation, as well as a “min-
imal” miniversal deformation deduced from the “orthogonal” one, was obtained by
the author jointly with M. D. Magret and presented at the 3rd IMA conference, July
1995. Such forms have been independently derived by J. Berg and H. Kwatny in [2]
and A. Edelman, E. Elmroth, and B. K̊agström in [4]; they obtain the miniversal
deformation of a pencil and we can deduce a miniversal deformation of a quadruple
intersecting the miniversal deformation of the pencil associated with a quadruple with
the variety of pencils in the form A+ λB with B =

(
In 0
0 0

)
.

3.1. One can get all structures by moving in tangent (1st component of α) and
transversal directions (2nd component of α) by means of the following decomposi-
tion lemma that provides the desired local trivialization along the orbits. It can be
proved by means of the inverse function theorem (in a similar way as in [6, Chapter
I, subsection I.3.3] for pairs of matrices).

Lemma 3.1. Let (A B
C D ) be a quadruple in Mn,m,p, O (A B

C D ) its orbit, and Γ =
(A B
C D ) + F a linear variety minitransversal to O (A B

C D ):

TMn,m,p = F ⊕ T(A B
C D )O (A B

C D ) .

Let ϕ : V −→ O (A B
C D ) be a local parametrization as in subsection 2.3. Then the

mapping

β : Γ× ϕ(V ) −→Mn,m,p,

β
(
(A B
C D ) + (X Y

Z T ) ,
(
A′ B′
C′ D′

))
= α

(
ϕ−1

(
A′ B′
C′ D′

)
, (A B

C D ) + (X Y
Z T )

)
is a local diffeomorphism at ((A B

C D ) , (A B
C D )) which preserves the orbits.

3.2. From [5, subsection II.5], the equations which X, Y , Z, and T must satisfy
if (A B

C D ) + (X Y
Z T ) ∈ Γ are

[A,X∗] +BY ∗ − Z∗C = 0

X∗B + Z∗D = 0

Y ∗B + T ∗D = 0

CX∗ +DY ∗ = 0

CZ∗ +DT ∗ = 0



.

Solving this system, it is easy to derive other miniversal deformations with more zero
entries in the matrices. In our case we will use the following “minimal” miniversal
deformation
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A1

A2

A3

J






B1 0 0 0
0 0 0 0
0 0 B2 0
0 0 0 0







0 C1 0 0
0 0 0 0
0 0 C2 0
0 0 0 0







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Id







+







0 0 0 0
X2

1 0 0 X2
4

0 0 0 0
X4

1 X4
2 0 X4

4







0 Y 1
2 0 0

0 Y 2
2 0 0

Y 3
1 Y 3

2 0 0
0 Y 4

2 0 0






Z1

1 0 Z1
3 0

Z2
1 Z2

2 Z2
3 Z2

4
0 0 Z3

3 0
0 0 0 0






T 1
1 T 1

2 T 1
3 0

T 2
1 T 2

2 T 2
3 0

T 3
1 T 3

2 T 3
3 0

0 0 0 0






,

where

A1 = diag(N1
1 , . . . , N

1
r ),

A2 = diag(N2
1 , . . . , N

2
s ),

A3 = diag(N3
1 , . . . , N

3
t ),

A4 = diag(J1, . . . , Ju),

B1 = diag(B1
1 , . . . , B

1
r ),

B2 = diag(B2
1 , . . . , B

2
t ),

C1 = diag(C1
1 , . . . , C

1
s ),

C2 = diag(C2
1 , . . . , C

2
t ).

N1
i =

(
0 0

Iki−1 0

)
∈Mki(C), 1 ≤ i ≤ r,

N2
i =

(
0 Ili−1

0 0

)
∈Mli(C), 1 ≤ i ≤ s,

N3
i =

(
0 Imi−1

0 0

)
∈Mmi

(C), 1 ≤ i ≤ t,

Ji = diag(J1
i , . . . , J

αi
i ),

Jνi = λiIni,ν +
(

0 0
Ini,ν−1 0

)
∈Mni,ν (C),

B1
i = ( 1 0 ... 0 )

t ∈Mki×1(C), 1 ≤ i ≤ r,

B2
i = ( 0 ... 0 1 )

t ∈Mmi×1(C), 1 ≤ i ≤ t,

C1
i = ( 1 0 ... 0 ) ∈M1×li(C), 1 ≤ i ≤ s,

C2
i = ( 1 0 ... 0 ) ∈M1×mi

(C), 1 ≤ i ≤ t,

1 ≤i ≤ u, 1 ≤ ν ≤ αi.

For the commodity and, if the confusion is not possible, the indices n1,1, . . . , n1,α1 ,
n2,1, . . . , n2,α2

, . . . , nu,1, . . . , nu,αu can be called n1, . . . , nδ.
Also,

(i) Y 2
1 , Y 2

4 , Z2
2 , Z4

2 , T 1
1 , T 1

2 , T 1
3 , T 2

1 , T 2
2 , T 2

3 , T 3
1 , T 3

2 , and T 3
3 are free.

(ii) If X2
1 =


X21

11 ... X21
1r

...
...

X21
s1 ... X21

sr


, then X21

ij =

(
? 0 ... 0
...

...
...

? 0 ... 0

)
if kj ≤ li, and X21

ij =

( ? ... ?
0 ... 0
...

...
0 ... 0

)
if kj > li.

(iii) All elements in X2
4 are zero, except those in rows {l1, l1 + l2, . . . , l1 + l2 +

· · ·+ ls}, that are free.
(iv) All elements in X4

1 are zero, except those in columns {k1, k1 + k2, . . . , k1 +
k2 + · · ·+ kr}, that are free.

(v) X4
4 is Arnold’s solution.

(vi) If Y 1
1 =


 Y 11

11 ... Y 11
1r

...
...

Y 11
r1 ... Y 11

rr


, then Y 11

ij = 0 if ki ≤ kj + 1, and Y 11
ij =




0
?
...
?
0
...
0


 if

ki > kj + 1, with ki − kj − 1 nonzero entries.
(vii) All elements in Y 1

2 are free, except those in rows {1, 1+k1, . . . , 1+k1 + · · ·+
kr}, that are zero.
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(viii) All elements in Y 3
1 are free, except those in rows {m1,m1 + m2, . . . ,m1 +

m2 + · · ·+mt}.
(ix) All elements in Y 3

2 are free, except those in rows {m1,m1 + m2, . . . ,m1 +
m2 + · · ·+mt}.

(x) All elements in Z1
1 are zero, except those in columns {1, 1 + l1, . . . , 1 + l1 +

· · ·+ ls−1}.

(xi) If Z1
2 =


 Z12

11 ... Z12
1r

...
...

Z12
s1 ... Z12

sr


, then Z12

ij = 0 if li + 1 ≥ lj and Z12
ij = ( 0 ? ... ? 0 ... 0 )

if li + 1 < lj , with lj − li − 1 nonzero entries.
(xii) All elements in Z1

3 are free, except those in columns {1, 1+m1, . . . , 1+m1 +
· · ·+mt−1}.

(xiii) All elements in Z2
2 are free, except those in columns {1, 1 + l1, . . . , 1 + l1 +

· · ·+ ls−1}.
(xiv) All elements in Z2

3 are free, except those in columns {1, 1+m1, . . . , 1+m1 +
· · ·+mt}.

(xv) If Z3
3 =


 Z33

11 ... Z33
1t

...
...

Z33
t1 ... Z33

tt


, then Z33

ij = ( 0 ... 0 ? ... ? ) with mj−1 nonzero entries.

For this particular variety Γ, it is easy to discuss how the KS-symbol of (A B
C D ) +

(X Y
Z T ) varies according to the values of the entries of (X Y

Z T ).
In particular, we have the following.
Proposition 3.2. With the notation in subsection 3.2 and, if (A B

C D ) is in its
canonical reduced form then,

(a) If (X Y
Z T ) 6= ( 0 0

0 0 ), then (A B
C D ) + (X Y

Z T ) does not belong to O (A B
C D ).

(b) (A B
C D ) + (X Y

Z T ) belongs to E (A B
C D ) if and only if Y = 0, Z = 0, T = 0,

and partitioning X into blocks corresponding to the blocks in A, X =

( 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 X4

4

)
and

J +X44 has the same Segre symbol as J .

4. The strata. Now, we can prove (see Theorem 4.2) that the KS-strata are
manifolds, and we give their dimension (see Proposition 4.3). As we have said above,
first, in Lemma 4.1 we reduce the problem to the intersection of a KS-stratum with
the variety Γ in subsection 3.2. Then, the result follows from the description of this
intersection in subsection 3.2, and the fact that the Segre strata are also manifolds.

Other properties of the KS-strata such as constructible and connected are pre-
sented in Proposition 4.4 and subsections 4.5 and 4.6.

Lemma 4.1. Let (A B
C D ) ∈ Mn,m,p, O (A B

C D ) be its orbit, E (A B
C D ) its stratum,

and Γ as in Lemma 3.1. Then, in a neighborhood of (A B
C D ), E (A B

C D ) is a submanifold
of Mn,m,p if and only if E (A B

C D ) ∩ Γ is a submanifold of Γ.
Proof. Let us assume that E (A B

C D ) is regular at (A B
C D ). Since Γ is transversal to

O (A B
C D ), it is also transversal to E (A B

C D ). Hence, E (A B
C D ) ∩ Γ is regular at (A B

C D ).
Conversely, let us assume that E (A B

C D )∩Γ is regular at (A B
C D ). According to 3.1,

we have

E (A B
C D ) = β((E (A B

C D ) ∩ Γ)× ϕ(V ))

locally at (A B
C D ). Therefore, E (A B

C D ) is regular at (A B
C D ).

4.2. Finally, taking into account the particular form of E (A B
C D ) ∩ Γ in 3.2, we

have the following theorem.
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Theorem 4.2. Any KS-stratum is a submanifold of Mn,m,p.
Proof. The proof is obvious in the case when the quadruple (A B

C D ) has no contin-
uous invariants because E (A B

C D ) = O (A B
C D ). So, let (A B

C D ) ∈Mn,m,p be a quadruple
with continuous invariants, O (A B

C D ) its orbit, and E (A B
C D ) its KS-stratum. We must

prove that E (A B
C D ) is regular at (A B

C D ).
Because of Remark 2.2, we can assume that (A B

C D ) is in its KS-reduced form. By
Lemma 4.1 it is sufficient to prove that E (A B

C D ) ∩ Γ is regular at (A B
C D ), where Γ is

the particular variety in subsection 3.2. Then it follows that E (A B
C D ) ∩ Γ is formed

by the quadruples of the form

(
A′ B
C D

)
, with A′ =

(
A1

A2

A3

J+X44

)
,

such that J +X44 has the same Segre symbol as J , or equivalently, such that J +X44

belongs to the Segre stratum ES(J) of J .
Therefore, the mapping φ : Mδ(C) −→Mn,m,p defined by

φ(M) = (A B
C D ) ,

with B = Bc, C = Cc, D = Dc, and A =

(A1

A2

A3

M

)
is an embedding such that

φ(ES(J) ∩ ΓS(J)) = E (A B
C D ) ∩ Γ.

(Note that φ(J) = (A B
C D ).)

C. G. Gibson in [7, subsection 2.4] proved that the Segre strata are regular. Hence
ES(J) ∩ ΓS(J) is regular at J , (we recall that ΓS(J) is a linear variety transversal
to the Segre orbit of J , and hence also transversal to ES(J) at J), and the proof is
completed.

Proposition 4.3. Let (A B
C D ) be a quadruple in Mn,m,p, O (A B

C D ) be its orbit,
and E (A B

C D ) its stratum. Then,

dimE (A B
C D ) = u+ dimO (A B

C D ) ,

where u is the number of distinct eigenvalues of (A B
C D ).

Proof. It is sufficient to bear in mind that, in the above proof, dim(ES(J) ∩
ΓS(J)) = u (see [1, subsection 5.5]).

Proposition 4.4. The KS-strata are constructible sets.
Proof. Let E(σ) be the KS-stratum corresponding to the KS-symbol

σ = (ε, η, d, σ(1), . . . , σ(u)).

Let us consider the set C(u) = {(λ1, . . . , λu) | λi 6= λj if i 6= j} ⊂ Cu. For each
(λ1, . . . , λu) ∈ C(u), let K(σ; (λ1, . . . , λu)) be the K-matrix of E(σ) with eigenvalues
λ1, . . . , λu. Finally, let us consider the mapping ψ : G ×C(u) −→Mn,m,p defined by

ψ(g, (λ1, . . . , λu)) = α(g,K(σ; (λ1, . . . , λu))).

Obviously, G×C(u) is a constructible set, ψ is a rational map, and ψ(G×C(u)) =
E(σ), so that, according to the Chevalley theorem, E(σ) is a constructible set.
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4.5. With the notations of the above proof, since ψ is continuous and G ×C(u)

is connected, we have the following.
Proposition 4.5. The KS-strata are connected sets.
4.6. Obviously, the action of C in Mn,m,p defined by (λ, (A B

C D )) −→ (
A+λIn B

C D

)
preserves the KS-strata.

Proposition 4.6. Let E(σ) be a KS-stratum, (A B
C D ) ∈ E(σ), and λ ∈ C. Then,

(
A+λIn B

C D

) ∈ E(σ).

5. Structural stability. In [5], the author jointly with J. Ferrer studied the
structural stability of a quadruple of matrices under the equivalence relation defined
in subsection 1.1. J. Demmel and A. Edelman in [3] list in a parallel way the generic
structures for nonsquare pencils. They come very close to treating the square case,
observing that each eigenvalue considered only as “other than zero or infinity” reduces
the codimension of the orbit by one. However, we remark that we cannot deduce the
stability of the quadruples by means of the stability of pencils, because a quadruple
(A B
C D ) as a pencil (A B

C D )+λ
(
In 0
0 0

)
is never structurally stable (it is not equivalent to

(A B
C D ) + λ

(
In 0
0 D1

)
, with matrix D1 having full rank).

Now we are going to identify the generic quadruple, studying the stability under
the equivalence relation defined by the strata according to the usual definition.

Definition 5.1. A quadruple of matrices (A B
C D ) ∈ Mn,m,p is structurally stable

if and only if it is an interior point of its stratum.
Proposition 5.2. A quadruple is structurally stable if and only if any quadruple

in its stratum is structurally stable.
Proof. The proof is obvious, taking account that E(σ) is a connected mani-

fold.
Taking into account that the structurally stable quadruples of matrices with m 6=

p have no finite eigenstructure, its strata coincides with its orbit, then we analyze the
stability of strata for quadruples of matrices with m = p.

Theorem 5.3. A quadruple (A B
C D ) ∈ Mn,m,m is structurally stable if and only

if rankD = m and the K-canonical form of the quadruple is ( J 0
0 I ) and J has distinct

eigenvalues.
Proof. A stratum E(σ) is an open set if and only if

dimE(σ) = n2 + nm+ np+mp;

equivalently, if and only if

dimTO (A B
C D )

⊥
= u,

where (A B
C D ) is any quadruple in the stratum, and this is verified if and only if the

given condition holds.
Note. The following expression of

dimTO (A B
C D )

⊥
,

in terms of the discrete invariants of (A B
C D ), was presented at the 3rd IMA conference
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in July 1995 by the author jointly with M. D. Magret:

dim T(A B
C D )O (A B

C D )
⊥

=
∑

1≤i,j≤r
max{0, kj − ki − 1}+

∑
1≤i≤t

(mi − 1)

+
∑

1≤i≤r

∑
1≤j≤s

(ki + lj) + r
∑

1≤i≤δ
ni +

∑
1≤i,j≤s

max {0, li − lj − 1}

+
∑

1≤i≤t
(mi − 1) +

∑
1≤i,j≤t

(min {mi,mj} − 1) + s
∑

1≤i≤δ
(ni)

+
∑

1≤i≤u
(ni,1 + 3ni,2 + 5ni,3 + . . .+ (2αi − 1)ni,αi)

+ (m− (r + t+ d))
∑

1≤i≤s
li +


n− ∑

1≤i≤r
ki −

∑
1≤i≤s

li −
∑

1≤i≤t
mi


 (m− (r + t+ d))

+ (p− (s+ t+ d))
∑

1≤i≤r
ki +


n− ∑

1≤i≤r
ki −

∑
1≤i≤s

li −
∑

1≤i≤t
mi


 (p− (s+ t+ d))

+ (m− (r + t+ d))
∑

1≤i≤r
(ki − 1) + (m− (r + t+ d))

∑
1≤i≤t

(mi − 1)

+ (p− (s+ t+ d))
∑

1≤i≤t
(li − 1) + (p− (s+ t+ d))

∑
1≤i≤t

(mi − 1)

+ (m− d)(p− d).

J. Demmel and A. Edelman in [3] give the codimension of the orbit of a pencil
A + λB in terms of its discrete invariants. Notice that if we consider the particular
pencil where B =

(
In 0
0 0

)
and counting the codimension of its orbit referred to the

variety of pencils A+λB with B =
(
In 0
0 0

)
, the formula presented in [3] coincides with

this one.
5.4. Now we are going to deduce conditions for a stratum to be “generic” ac-

cording to the following definition.
Definition 5.4. A stratum E(σ) is called generic if and only if it is an open

dense set and its boundary is the union of strata of lower dimension.
5.5. Structural stability is a generic property in the space of time-invariant

multivariable systems. In fact, when m 6= p generically any two systems of the same
dimensions are equivalent.

Theorem 5.6. A stratum E(σ) is generic if and only if it is structurally stable.
Proof. Obviously if E(σ) is a generic stratum, then it is structurally stable.
Conversely, let E(σ) be a structurally stable stratum. To prove that it is a dense

set it suffices to consider for any quadruple (A B
C D ) ∈Mn,m,p (that we can take in its

K-canonical form) the quadruple (A B
C D ) + (X Y

Z T ) where entries in the matrices X, Y ,
Z, T are:
—T is a matrix such that rank (D+T ) = min (m, p), and ‖T‖ < ε. We can take such
a matrix because the set of rectangular matrices having full rank is an open dense set.
—We fix such a matrix T .
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If m = p, we take Y = 0, Z = 0 and the entries in X are such that the matrix

A+X −B(D + T )−1C

is in the generic stratum of the space of square matrices and ‖X‖ < ε.

For example, if A =
(

0 1 0
0 0 0
0 0 0

)
, B =

(
0 0
1 0
0 0

)
, C = 0, and D = ( 0 0

0 1 ), then the

matrices (
A+X B
C D+T

)
,

where X =
(
ε1

ε2
ε3

)
, εi − εj 6= 0 for i 6= j, and T = ( ε4 0 ), ε4 6= 0, are in the

structurally stable stratum.
If m > p, we take Z = 0 and let (In, V,W,K, J) ∈ G be such that(

A+X B+Y
C D+T

) ∼ (A1 (B1 0)
0 (0 Ip)

)
.

Then we take X, Y such that (A1, B1) is in the generic stratum of the space of
pairs of matrices under block similarity and ‖X‖ < ε, ‖Y ‖ < ε.

For example, if A =
(

0 1 0
0 0 0
0 0 0

)
, B =

(
0 0
1 0
0 1

)
, C = ( 0 0 0 ), and D = ( 0 0 ), then the

matrices (
A+X B+Y
C D+T

)
,

where X =
(

0 0 0
0 0 0
ε1 0 0

)
, ε1 6= 0, Y = 0, and T = ( 0 ε2 ), ε2 6= 0, are in the structurally

stable stratum.
If m < p, we take Y = 0 and let (In, V,W,K, J) ∈ G be such that

(
A+X B
C+Z D+T

) ∼ ( A1 0(
C1
0

) (
0
Im

) ) .
Then we take X, Z such that

(
A1

C1

)t
is in the generic stratum of the space of pairs

of matrices under block similarity, and ‖X‖ < ε, ‖Z‖ < ε.

For example, if A =

(
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1

)
, B =

(
1
0
0
0

)
, C = ( 0 0 1 0

0 0 0 0 ), and D = ( 0
0 ), then the

matrices (
A+X B
C+Z D+T

)
,

where X =

(
0 0 0 ε1
ε2 0 0 0
0 0 0 0
0 0 0 0

)
, εi 6= 0, Z = 0, and T =

(
0
ε3

)
, ε3 6= 0, are in the structurally

stable stratum.
Clearly (A B

C D ) + (X Y
Z T ) ∈ E(σ). Finally, u is a lower boundary for the dimension

of TO (A B
C D )

⊥
.

6. Regularity properties of the KS-stratification. We will study the regu-
larity of the KS-stratification over strata called simple (Proposition 6.2). Since they
have a particular homogeneity property (Proposition 6.3), their regularity follows from
the Whitney theorem (Proposition 6.4).

In the following we will write as An,m,p the space of quadruples of matrices such
that the last matrix has full rank, that is to say,

An,m,p = {(A B
C D ) ; rankD = min (m, p)} ⊂ Mn,m,p.
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Finally we are going to prove that in the spaces Mn,m,m, Mn,p+1,p, Mn,m,m+1

the KS-stratification induced over the open dense sets An,m,m ⊂Mn,m,m, An,p+1,p ⊂
Mn,p+1,p, and An,m,m+1 ⊂ Mn,m,m+1, respectively, satisfies the Whitney regular
condition which basically is a fancy continuity condition.

6.1. First, we are going to prove the Whitney regularity condition of the KS-
stratification over the so-called simple strata.

Definition 6.1. A quadruple of matrices (A B
C D ) ∈ Mn,m,p is called simple if

it has, at most, one eigenvalue. A stratum E(σ) is called simple if its elements are
simple, that is to say, if σ = (k, l,m, σ(1)) or σ = (k, l,m).

6.2. The simple strata verify a particular homogeneity property (in some sense
the converse to the one in subsection 4.6).

Proposition 6.2. Let E(σ) be a simple stratum. For any (A B
C D ) ,

(
A′ B′
C′ D′

) ∈
E(σ), there exists a diffeomorphism f of Mn,m,p, preserving strata, and such that
f (A B

C D ) =
(
A′ B′
C′ D′

)
.

Proof. If the quadruple (A B
C D ) ∈ E(σ) has no eigenvalues, the proof is trivial. Let

λ, λ′ be the eigenvalues of (A B
C D ) and

(
A′ B′
C′ D′

)
, respectively. Then because of 4.6 the

quadruple
(
A+(λ′−λ)In B

C D

)
is equivalent to

(
A′ B′
C′ D′

)
. Hence, there exists g0 ∈ G such

that
(
A′ B′
C′ D′

)
= α

(
g0,
(
A+(λ′−λ)In B

C D

))
. It is straightforward that the mapping

f (X Y
Y Z ) = α

(
g0,
(
X+(λ′−λ)In Y

Z T

))
verifies the desired conditions.

6.3. The Whitney theorem states that any stratum of a constructible locally
finite stratification has a Whitney regular point. Hence, any stratum E(σ) has a
point (A B

C D ) such that Σ is Whitney regular over E(σ) at (A B
C D ). In the particular

case where E(σ) is simple, the above homogeneity property implies that all the points
of E(σ) are Whitney regular. Therefore, we have the following.

Proposition 6.3. Σ is Whitney regular over any simple KS-stratum.
6.4. Finally, we tackle the following.
Proposition 6.4. The natural stratification in

(i) An,m,m,
(ii) An,p+1,p,
(iii) An,m,m+1,

induced by the KS-stratification in Mn,m,m, Mn,p+1,p, Mn,m,m+1, respectively, are
Whitney regular.

Proof. (i) The K-canonical form of square quadruples (A B
C D ) with D having

full rank is ( J I ). All small perturbations of this quadruple will have K-canonical
form

(
J′

I

)
. So, without loss of generality, we can consider only pairs (J, I). C.G.

Gibson in [7] shows that V.I. Arnold [1] constructed a Whitney stratification of J .
The stratum of I is the whole space of m-square complex matrices, which is trivially
Whitney regular. Now, by [8, Theorem 1.2], the product of Whitney stratifications is
a Whitney regular stratification of (J, I).

(ii) The canonical form of rectangular quadruples (A B
C D ) with m = p + 1 and

D having full rank is
(
Ac Bc

Cc Dc

)
, where Bc = (Bc1 0 ), Bc1 ∈ Mn×1(C), Cc = 0, Dc =

( 0 Ip ). All small perturbations of this quadruple will have K-canonical form
(
A′c B′c
C′c D

′
c

)
,

where B′c = (B′c1 0 ), B′c1 ∈ Mn×1(C), C ′c = 0, D′c = ( 0 Ip ). So, without loss of
generality, we can consider only elements of Mn,1×Mp(C), where Mn,1 is the space
of pairs of matrices such that the second matrix is a column matrix. In the space of
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pairs of matrices, a stratification was defined in [6], and in the case Mn,1 in [6] it is
proved to be is Whitney regular. Now it follows as in (i).

(iii) The proof is analogous to (ii).

7. Bifurcation diagrams. Let ϕ : Λ −→Mn,m,p be a family of quadruples of
matrices transversal to the stratification. Then after [8], the induced partition on Λ
is also a stratification, and

codimϕ−1(E(σ)) = codimE(σ).

7.1. Since An,m,m, An,p+1,p, An,m,m+1 are endowed with a Whitney stratifi-
cation, we can make use of the Thom transversality theorem. The set of families of
quadruples of matrices transversal to the stratification is open and dense in the spaces
C∞(Λ,An,m,m), C∞(Λ,An,p+1,1), C

∞(Λ,An,m,m+1), respectively. We call such fam-
ilies “generic.”

In these cases the singularities of the bifurcation diagrams of ϕ−1(An,m,p) (m = p,
m = p+ 1, or p = m+ 1) for a generic family ϕ : Λ −→ An,m,p are easily checked.

In the case m = p, with the same notation as in subsection 6.4, the bifurcations
of (J, I) are exactly those of J . See [1] for discussion and sketches of some simple
bifurcations.

In the case m = p + 1, also with the same notation as in subsection 6.4, the
bifurcations of

(
Ac Bc

Cc Dc

)
are exactly those of (Ac, Bc1). See [6] for discussion of some

bifurcations of few-parameters generic families.
7.2. Taking into account that a miniversal deformation of a quadruple of matri-

ces (A B
C D ) is a minitransversal family to its orbit, it then follows that it is a transversal

family to its stratum. It is possible to describe “bifurcation diagrams” using versal
deformations of a quadruple, that is to say, the stratification may be seen directly in
the miniversal deformation.

In fact, starting from a miniversal deformation of a quadruple we can obtain a
minitransversal family to its stratum (but not transversal to the orbit) in the following
manner. Obviously we can reduce the study to the case where the quadruple is in its
K-canonical form, and we consider the minimal miniversal deformation Γ defined in
subsection 3.2.

If we take X44 such that traceXi = 0, for each diagonal block Xi corresponding
to the diagonal blocks in J1, . . . Ju, we obtain a minitransversal family to the stratum
E(σ).

7.3. Now we are going to use this minitransversal family to the strata in a
particular case.

Let (A B
C D ) ∈M5,m,p m ≥ p+ 2, where

A =

(
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

)
, B =

(
0 0 0 ...
0 0 0 ...
1 0 0 ...
0 1 0 ...
0 0 0 ...

)
, C =

(
0 0 0 0 0
0 0 0 0 0
...

...
...

...
...

)
, D =

(
0 0 1
0 0

...
0 0 1

)
.

A minitransversal family to the strata is (A B
C D )+(X Y

Z T ), where X =

(
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
x 0 0 y 0

)
,

Y =

(
0 0 0 ...
0 z 0 ...
0 0 0 ...
0 0 0 ...
0 0 0 ...

)
, Z = 0, T = 0.

The singularities of bifurcation diagrams are as follows in a neighborhood of
(A B
C D ), almost all of quadruples are in the generic stratum formed by quadruples
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in the form
(
A1 B1

C1 D1

)
, where A1 =

(
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

)
, B =

(
0 0 0 ...
0 0 0 ...
1 0 0 ...
0 0 0 ...
0 1 0 ...

)
, C =

(
0 0 0 0 0
0 0 0 0 0
...

...
...

...
...

)
,

D =
(

0 0 1
0 0

...
0 0 1

)
situated outside the hyperbolical paraboloid surface

xz + y = 0.

Quadruples situated in {xz + y = 0} − {(0, 0, 0)} are in the stratum formed by

quadruples in the form
(
A1 B1

C1 D1

)
, where

A1 =

(
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 a

)
, B =

(
0 0 0 ...
1 0 0 ...
0 0 0 ...
0 1 0 ...
0 0 0 ...

)
, C =

(
0 0 0 0 0
0 0 0 0 0
...

...
...

...
...

)
, D =

(
0 0 1
0 0

...
0 0 1

)
.

Remark 7.3. Notice that in the neigborhood of the quadruple (A B
C D ) given in

subsection 7.3 where the miniversal deformation is defined, the stratification induced
(the strata are the intersection of the strata in Mn,m,p with the neigborhood) is
Whitney regular. Then the transversal families defined over this neigborhood form
an open and dense set.

Acknowledgments. The author is pleased to thank the referees for their valu-
able suggestions.
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Abstract. Generalized predictor companion matrices arise in the linear prediction approach for
the fit of a weighted sum of n exponentials to a given set of data points. They are special solutions
of matrix equations of the type H(l + p) S = H(l), where for each l ≥ 0 H(l) is an M × N Hankel
matrix obtained from this data (M ≥ N > n). We discuss in this paper results about the eigenvalue
locations of this class of solutions by means of linear algebra techniques. An application of these
results in the case that all the exponents have either negative or positive real parts is that the n
exponentials can correspond to eigenvalues which are outside the unit circle depending on the choice
of generalized predictor companion matrices. The other (N−n) eigenvalues of these matrices always
lie inside the unit circle and approach zero when p increases. This separation can facilitate their
numerical calculation.
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1. Introduction. The identification of the parameters of functions

h(t) = r1e
s1t + · · ·+ rne

snt, Re si < 0, i = 1, ..., n,(1.1)

is a problem which has been studied by several researchers in a variety of disciplines
such as signal processing, mechanical vibrations, harmonic retrieval, acoustics, nuclear
magnetic resonance, etc. One of the approaches to the problem is the linear prediction
technique, which describes the problem as a matrix equation of the type H(l + 1) =
H(l) S, where H(l) is an M × N Hankel matrix whose i, j entries are hl+i+j−2 =
h((l + i + j − 2)∆t) with ∆t as the sampling interval [11], [12]. This equation will
be called a prediction equation of the system if both M and N are greater than or
equal to n. Observe that, if the available data is free of noise, n is the rank of H(l) for
any l (with respect to numerical rank determination; see, e.g., [2], [6], [17]). Usually
we choose M ≥ N > n so that H(l) is rank deficient, and thus there are an infinite
number of solutions of the prediction equation, which are called predictor matrices of
the system. An important result is that n of the eigenvalues of S are es1 ∆t, ..., esn ∆t,
which are called system eigenvalues. The parameters r1, ..., rn are calculated once
these eigenvalues are known.

In practical parameter identification problems the Hankel data matrices are cor-
rupted by noise, which is assumed to be additive: H̃(l) = H(l)+El. Several algorithms
have been proposed for solving these problems, and an analysis of some available al-
gorithms is presented in [19]. The prediction methods are based on solutions of

H̃(l)x = H̃(l + 1)eN ,(1.2)
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where eN is the transpose of the canonical vector (0 · · · 01), for example, the Minimum-
Norm method [9], in which x is the minimum norm least squares solution. The
different possible choices for the dimensions M,N of H̃(l) and the ways of solving
(1.2) have originated several estimation methods. For example, in [15] the Total
Least Squares (TLS) approach is applied for solving the equation (1.2) to diminish
the noise effects from the data matrices. Other methods are the Single Shift-Invariant
and the Subspace Fitting methods (see again [19]), which include several algorithms
like ESPRIT [14], HTLS [20], Kung’s method [10], MUSIC [16], etc. Contributions for
parameter estimation problems also appear in [1], [4], [7], [11], [12], and [21], among
others. However, we don’t intend to introduce here a better performing method for
identifying parameters in the practical sense. The goal of this paper is to present
theoretical results about the locations of the eigenvalues of a class of solutions of the
general prediction equation H(l + p) = H(l) S, p 6= 0, referred to here as generalized
companion predictor matrices. These matrices naturally arise from the concept of
linear prediction. Since any solution S is an N × N matrix and N > n, S has
extraneous eigenvalues in addition to the system eigenvalues. Therefore, one problem
is how to distinguish the system eigenvalues from the entire spectra of S, supposing
the data free of noise. Our goal is to show that if the n exponentials are such that their
exponents have either negative or positive real parts, then there are solutions S for
which the system eigenvalues have absolute value greater than 1 while the extraneous
ones have modulii less than 1. We begin with p = 1 and show that when S is the
companion matrix C(c) = [e2 e3 · · · eN c], where ei is the ith canonical column vector
and c is the minimum 2-norm least squares solution of H(l)x = H(l + 1) eN , then
the extraneous eigenvalues are located inside the unit circle. Observe that the system
eigenvalues corresponding to undamped signals (Re si > 0) should lie outside the unit
circle. It is worth emphasizing that the eigenvalue locations of companion predictor
matrices was studied earlier, for example, by Kumaresan [9], in the context of the
analysis of zeros of linear prediction-error filter polynomials for a class of deterministic
signals. Here, we state results about these locations in a linear algebra context.
This is done in section 2. Also in section 2, we show that the companion matrix
Ĉ(b) = [b e1 e2 · · · eN−1], which is the solution of the backward prediction equation
H(l−1) = H(l) S, with b being the minimum 2-norm least squares solution of H(l)x =
H(l − 1) e1, has the extraneous eigenvalues equal to the conjugates of the extraneous
eigenvalues of C(c) = [e2 e3 · · · eN c]. Now, the corresponding system eigenvalues,
e−s1∆t, ..., e−sn∆t, lie outside the unit circle if all the signals are damped (Re si < 0).
Results about eigenvalues of companion matrices can also be found in [3], [5], [8], [18].
In section 3, we introduce the concept of generalized companion predictor matrices
as a class of solutions of the equation H(l+ p) = H(l) S, p 6= 0, 1,−1. We also present
some results about the locations of the eigenvalues of these matrices. We finish this
paper with numerical examples and some remarks.

2. Companion predictor matrices. Let H(l) be an M × N Hankel matrix
whose entries are samples of h(t):

H(l) = [~hl
~hl+1 · · · ~hl+N−1] =




hl hl+1 · · · hl+N−1

hl+1 hl+2 · · · hl+N

...
...

...
hl+M−1 hl+M · · · hl+M+N−2


 .(2.1)

Then by (1.1), for all l ≥ 0,
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H(l) = VΛlRWT ,(2.2)

where V = V(λ1, ..., λn) is the M × n Vandermonde matrix described by

V =




1 · · · 1
λ1 · · · λn
...

...

λM−1
1 · · · λM−1

n


 ,(2.3)

Λ = diag(λ1, ..., λn), with λj = esj∆t, R = diag(r1, ..., rn), and W is the submatrix of
V formed by taking its N first rows. A direct consequence of this decomposition is
that, for all l ≥ 0, rank(H(l)) = n whenever M ≥ N ≥ n and λi 6= λj for i 6= j.

A predictor matrix, that is, a matrix S such that H(l+ 1) = H(l)S, gives the new

data sample ~hl+N from the preceding N samples ~hl,~hl+1, ...,~hl+N−1. Observe that
there can be an infinite number of matrices S satisfying this equation and that the
parameters λi can be found from the eigenvalues of any predictor matrix according
to the following relation:

H(l + 1) = H(l)S

m

WTS = ΛWT .(2.4)

Lemma 2.1. Let S be a solution of (2.4), where W is any N × n matrix and
Λ = diag(λ1, ..., λn). Then N (WT ) is an invariant subspace under S. Furthermore,
if λi 6= 0 for all i, SN (WT ) = N (WT ).

Proof. x ∈ N (WT ) ⇔ WTx = 0 ⇒ 0 = ΛWTx = WTSx ⇔ Sx ∈ N (WT ) (if
λi 6= 0 for all i, ⇒ can be replaced by ⇔ in the above chain).

Lemma 2.2. Let S be a solution of (2.4), where W is a full rank N × n matrix
(n ≤ N) and Λ = diag(λ1, ..., λn). Let P be a N × (N − n) matrix whose columns are
an orthonormal basis of N (WT ), and let Q be an N × n matrix whose columns are
an orthonormal basis of the row space of WH , that is, N (WT )⊥. Then, for x 6= 0,
PHSPx = λx if and only if SPx = λPx. Moreover, λ(S) = λ(QHSQ) ∪ λ(PHSP) =
λ(Λ) ∪ λ(PHSP).

Proof. From Lemma 2.1, the columns of SP form a basis for N (WT ). Then,
since P is a full rank matrix, given any vector x there is a unique vector y such that
Py = SPx: y = PHSPx. Therefore, PHSPx = λx⇔ SPx = λPx. Now, observe that(

QH

PH

)
S
(
Q P

)
=

(
QHSQ 0
PHSQ PHSP

)
.

Moreover, as W = QZ, for some n× n nonsingular matrix Z, then

QHSQ = Z−HZHQHSQ = Z−HWTSQ =

= Z−HΛWTQ = Z−HΛZHQHQ = Z−HΛZH .

Remark 2.3. By equation (2.2), the rows of H(l) for any l are spanned by the rows
of WT . So, the matrix Q in Lemma 2.2 can be calculated from a QR decomposition
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of H(l)H . By Lemma 2.2, the characteristic polynomial of S, p(x), can be written
as p(x) = (x − λ1) · · · (x − λn)g(x). Since one of our goals is to identify the λi,
i = 1, ..., n, then it is important to know the properties of the N−n roots of g(x), which
will be called extraneous roots from now on. Observe that g(x) is the characteristic
polynomial of PHSP. We will focus our attention on a special solution S of equation
(2.4)—the companion predictor matrix:

C = [e2 e3 · · · eN c] =




0 0 · · · 0 c0
1 0 · · · 0 c1
0 1 · · · 0 c2
...

...
. . .

...
...

0 0 · · · 1 cN−1



N×N

(2.5)

in which the column vector c is the minimum 2-norm solution of the system

H(l) c = H(l + 1)eN ,(2.6)

or, equivalently, of the following system:

WT c = ΛWT eN .(2.7)

Proposition 2.4. Let W = W(λ1, ..., λn) be a Vandermonde matrix of order
N × n, N > n, where λi 6= λj for i 6= j, and let C = C(c) be a companion matrix
whose N th column vector, c = (c0, ..., cN−1), is a solution of (2.7). If µ1, ..., µN−n
are the extraneous roots of the characteristic polynomial of C, then an eigenvector
associated with µi is the vector of coefficients of the polynomial (x − λ1) · · · (x −
λn)(x− µ1) · · · (x− µi−1)(x− µi+1) · · · (x− µN−n).

Proof. Since C is a solution of (2.4), an eigenvector associated with an extraneous
root belongs to N (WT ). Without loss of generality we may consider only the case of
µ1. So, let a = (a0, ..., aN−1) be an eigenvector associated with µ1. Then Ca = µ1a is
equivalent to 


c0aN−1 = µ1a0,
a0 + c1aN−1 = µ1a1,
...

...
...

aN−2 + cN−1aN−1 = µ1aN−1.

Since aN−1 6= 0 (otherwise a = 0), we can write

c0 =
µ1a0

aN−1
, c1 =

µ1a1 − a0

aN−1
, ..., cN−1 =

µ1aN−1 − aN−2

aN−1
.

On the other hand, since a ∈ N (WT ),

a(x) = aN−1x
N−1+· · ·+a1x+a0 = aN−1(x−λ1) · · · (x−λn)(x−k1) · · · (x−kN−n−1).

By comparing the coefficients of a(x) to the coefficients of c(x) = xN − (cN−1x
N−1 +

· · ·+ c1x + c0), we conclude that c(x) = 1
aN−1

a(x)(x− µ1).

In order to prove the first proposition about the location of the eigenvalues of this
matrix, we first state the following lemma, which is easily verified.

Lemma 2.5. Let P be an m× n matrix whose columns are orthonormal. If B is
an r × s submatrix of P , then ||B||2 ≤ 1.
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Proposition 2.6. Let W = W(λ1, ..., λn) be a Vandermonde matrix of order
N × n, N > n, where λi 6= λj for i 6= j, and let C = C(c) be a companion matrix
whose N th column vector, c = (c0, ..., cN−1), is the minimum 2-norm solution of (2.7).
Then the N − n extraneous roots of the characteristic polynomial of C have moduli
less than 1.

Proof. Since C is a solution of (2.4), by Lemma 2.2 the extraneous roots are the
ones of the characteristic polynomial of PHCP, where P is such that its columns form
an orthonormal basis of N (WT ). Since c is the minimum norm solution of a linear
system, whose matrix is WT , c ∈ N (WT )⊥. Hence, PHC =

(
BH 0

)
, where B is a

submatrix of P. Let µ be an extraneous root. Now, by Lemma 2.2 the extraneous
roots are the roots of the characteristic polynomial of PHCP, and an eigenvector y of
C associated with an extraneous eigenvalue is of the form y = Px for some x. If µ 6= 0
then y has its last coordinate a different from 0 (if not, Cy = µy ⇒ y = 0). So, if

y =
(
v
a

)
= Px is an eigenvector of C associated with µ such that ||y|| = 1 (therefore

||x|| = 1), then

|µ| = |µx| = ||PHCPx|| = || (BH 0
)(v

a

)
|| = ||BHv|| ≤ ||BH ||||v||.

By Lemma 2.5, ||BH ||2 ||v||2 ≤ ||v||2. And in the case of 2-norm, ||v|| < ||
(
v
a

)
||

= 1.
Remark 2.7. It can happen that a companion matrix as defined in Proposition 2.4

can have a system eigenvalue as an extraneous eigenvalue, as in the following example.
Example 2.8. Let λ1 = 1 and λ2 be the real root of the polynomial 2x3 + 3x2 +

4x + 1. Let

WT =

[
1 λ1 λ2

1

1 λ2 λ2
2

]
.

Let C(c) be the companion matrix such that c = (c0, c1, c2) is the minimum 2-norm
solution of (2.7). Then x3− c2x

2− c1x− c0 = (x− λ1)(x− λ2)
2. Therefore, although

λ2 is the only extraneous root, its geometric multiplicity is 1 and not 2 because a
companion matrix is nonderogatory [22], [13].

Since the parameters si in the function h(t) have negative real parts, the nonex-
traneous eigenvalues esi∆t of any solution S of (2.4) have moduli less than 1. Our goal
is to identify these eigenvalues among all the eigenvalues of S. The above proposition
states that when S = C(c) the extraneous eigenvalues also have moduli less than 1.
At first sight this doesn’t help us in the task of identification of the nonextraneous
roots. However, when the solution Ĉ(b) of the backward prediction equation

H(l + 1) b = H(l)e1(2.8)

is considered, the nonextraneous eigenvalues have moduli greater than 1, while the
extraneous roots, which are the conjugates of the extraneous roots of C(c), have moduli
less than 1. A separation between the two sets of eigenvalues is then realized. This
companion matrix, which from now on will be called companion b-predictor matrix,
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is

Ĉ = Ĉ(b) = [b e1 e2 · · · eN−1] =




bN−1 1 0 · · · 0
bN−2 0 1 · · · 0

...
...

...
. . .

...
b1 0 0 · · · 1
b0 0 0 · · · 0



N×N

,(2.9)

which satisfies

H(l + 1)Ĉ = H(l) ⇔ WT Ĉ = Λ−1WT .(2.10)

As before, the column vectors of W are left eigenvalues of Ĉ, which are now related
to λ−1

1 , ..., λ−1
n . One can see that Ĉ(b) = PTC(b̂)P, where P = PT is the N × N

permutation matrix such that Pei = eN−i and b̂ = Pb.
Remark 2.9. Another result obtained in a similar way to Proposition 2.4 is that if

µ1, ..., µr are the nonzero extraneous roots of the characteristic polynomial of Ĉ, the
companion matrix whose first column vector, b = (bN−1, ..., b0), is a solution of (2.10),
then an eigenvector associated with µi is the vector of coefficients of the polynomial
(x−λ1) · · · (x−λn)(x−µ−1

1 ) · · · (x−µ−1
i−1)(x−µ−1

i+1) · · · (x−µ−1
r ). This means that if

we have an extraneous root, then an eigenvector associated with it gives us the other
extraneous roots in addition to the system eigenvalues.

Proposition 2.10. Let W = W(λ1, ..., λn) be a Vandermonde matrix of order
N ×n, N > n, where λi 6= λj for i 6= j, λi 6= 0 for all i. Let Ĉ = Ĉ(b) be a companion
b-predictor matrix whose first column vector, b = (bN−1, ..., b0), is the minimum 2-
norm solution of (2.8). Then the nonextraneous eigenvalues of Ĉ are λ−1

i , i = 1, ..., n,
and the (N −n) extraneous roots are the conjugates of the (N −n) extraneous roots of
C = C(c), the companion matrix where c is the minimum 2-norm solution of equation
(2.7).

Proof. By (2.10) the column vectors of W are left eigenvectors of Ĉ corresponding
to the eigenvalues λ−1

1 , ..., λ−1
n .

In order to see that the N − n extraneous eigenvalues of C are the conjugates of
the N − n extraneous eigenvalues of Ĉ, let p(z) and p̂(z) be defined as

p(z) = zN − cN−1z
N−1 − · · · − c1z − c0

and

p̂(z) = zN − bN−1z
N−1 − · · · − b1z − b0,

respectively. Then p(z) = f(z)g(z) and p̂(z) = f̂(z)ĝ(z), where f(z) = (z−λ1) · · · (z−
λn) and f̂(z) = (z − λ−1

1 ) · · · (z − λ−1
n ). The problem is then to show that the roots

of g(z) are the conjugates of the roots of ĝ(z). Or equivalently, that the points which
minimize the function

F = F (z1, ..., zN−n) = 1 + |F1(z1, ..., zN−n)|2 + · · ·+ |FN (z1, ..., zN−n)|2

are the conjugates of the points which minimize

F̂ = F̂ (z1, ..., zN−n) = 1 + |F̂1(z1, ..., zN−n)|2 + · · ·+ |F̂N (z1, ..., zN−n)|2,
where

zN − F1z
N−1 − · · · − FN = f(z)(z − z1) · · · (z − zN−n)
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and

zN − F̂1z
N−1 − · · · − F̂N = f̂(z)(z − z1) · · · (z − zN−n).

On the other hand,

2πi F =

∫
B

z̄f(z)f(z) |z − z1|2 · · · |z − zN−n|2dz,

where B is the unit circumference. Moreover, for z ∈ B, z = z̄−1, and so,

f(z)f(z) = |λ1|2 · · · |λn|2f̂(z̄)f̂(z̄).

But f̂(z̄)f̂(z̄) = |z̄ − λ−1
1 |2 · · · |z̄ − λ−1

n |2 = |z − λ−1
1 |2 · · · |z − λ−1

n |2. Let d(z) =

(z − λ−1
1 ) · · · (z − λ−1

n ). So,

F = |λ1|2 · · · |λn|2D, where 2πiD =

∫
B

z̄d(z)d(z) |z − z1|2 · · · |z − zN−n|2dz.

Therefore, F and D have the same minimum points. But the minimum points of D
are the conjugates of the ones of F̂ .

Remark 2.11. Since the eigenvalues of a matrix depend continuously on its en-
tries, given a companion b-predictor matrix Ĉ(b), where b is the minimum 2-norm
solution of the prediction system, there is a neighborhood V of b in C

N such that
the companion matrices Ĉ(b̂) still have n eigenvalues with moduli greater than 1 and

(N − n) eigenvalues with moduli less than 1 for all b̂ ∈ V.

3. Generalized companion predictor matrices. We shall now generalize the
notion of a companion predictor matrix. Since for all l ≥ 0 we have H(l+ 1) = H(l)C,
then for any positive integer p, H(l+p) = H(l+p−1)C = H(l+p−2)C2 = · · · = H(l)Cp.
So, it is possible to compute the state l + p directly from the state l. This motivates
the following definition.

Definition 3.1. Let H(l) be a Hankel matrix defined as in (2.1). Let p be a
positive integer. Sp is a p-predictor matrix if, for all l ≥ 0, H(l + p) = H(l)Sp.

From the above definition and (2.2), we have

H(l + p) = H(l)Sp ⇔ WTSp = ΛpWT .(3.1)

There is a collection of matrices which satisfy the above definition, and for all these
matrices Sp, WT is a matrix of left eigenvectors of Sp associated with λp1, ..., λ

p
n. We

shall analyze the eigenvalue location of a class of p-predictor matrices, 1 ≤ p < N ,
which in some sense are a sort of generalized companion matrices:

Cp = [ep+1 · · · eN c(1) · · · c(p)].(3.2)

Here, c(i), i = 1, ..., p, are column vectors satisfying the following system:

H(l)c(i) = H(l + p)eN−i+1(3.3)

or, equivalently,

WT c(i) = ΛiWT eN , i = 1, . . . , p.(3.4)
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Proposition 3.2. Let Cp be a p-predictor matrix defined as in (3.2) with the
column vectors c(i), 1 ≤ i ≤ p, being the minimum 2-norm solutions of the system
(3.4), where W = W(λ1, . . . , λn) is an N × n Vandermonde matrix with λi 6= λj if
i 6= j, and Λ = diag(λ1, . . . , λn). Then λp1, ..., λ

p
n are n of its eigenvalues and the

extraneous roots have moduli less than 1. Moreover, if 1 ≤ p ≤ n, then rank(Cp) ≤ n;
otherwise, rank(Cp) ≤ N + n− p.

Proof. Since Cp is also a solution of the equation H(l + p) = H(l)Sp, we have by
(3.1) that

WTCp = ΛpWT .(3.5)

Therefore, λp1, ..., λ
p
n are eigenvalues of Cp. The proof that the extraneous roots have

moduli less than 1 is analogous to the proof of Proposition 2.6, remarking that now
the last p coordinates of the eigenvectors of Cp cannot be all null at the same time.

If 1 ≤ p ≤ n, the set of vectors ΛiWT en, i = 1, ..., p, is linearly independent.
Let (WT )† be the pseudoinverse of WT . Then, since (WT )† is a full rank matrix,
the vectors c(i) = (WT )†Λi WT eN , i = 1, ..., p, are linearly independent. So, p ≤
rank(Cp) ≤ n. For n < p ≤ N , since for all i, 1 ≤ i ≤ p, c(i) ∈ N (WT )⊥, and
dim N (WT )⊥ = n, rank(Cp) ≤ N + n− p.

When linear prediction is carried out in the backward direction we have the
following definition.

Definition 3.3. Let H(l) be a Hankel matrix defined as in (2.1). Sbp is said to

be a p-backward predictor matrix if, for p > 0 and l ≥ 0, H(l) = H(l + p)Sbp.
Analogous to the case of forward prediction, if (∀i) λi 6= 0 and λi 6= λj for i 6= j,

then

H(l) = H(l + p)Cbp ⇔ WTSbp = Λ−pWT .(3.6)

Hence, λ−p1 , ..., λ−pn belong to the spectrum of Sbp. Again, we are interested in analyzing
p-backward predictor matrices of the following type:

Cbp = [b(p) · · · b(1) e1 · · · eN−p],(3.7)

where bi is the minimum norm solution of

H(l + p)b(i) = H(l)ei, i = 1, ..., p,(3.8)

which is equivalent to the following equation:

WT b(i) = Λ−iWT e1, i = 1, ..., p.(3.9)

Proposition 3.4. Let W = W(λ1, . . . , λn) be a Vandermonde matrix of order
N × n, N > n, where λi 6= λj for i 6= j, λi 6= 0 for all i. Let p ≤ N and Cbp =

[b(1) · · · b(p) e1 · · · eN−p], where b(i) is the minimum 2-norm solution of (3.9). Then,
λ−p1 , ..., λ−pn are n of its eigenvalues, whereas the extraneous roots are the conjugates
of those of its corresponding matrix Cp (equation (3.2)).

Proof. As Cbp is also a solution of the equation H(l+p)Sbp = H(l), we have by (3.6)
that

WTCbp = Λ−pWT .(3.10)

Therefore, λ−p1 , ..., λ−pn are eigenvalues of Cbp.
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N (WT ) is an invariant right subspace of both Cp and Cbp (Lemma 2.1), which is

associated with the extraneous roots (Lemma 2.2). Now, let U = (uji ) be a matrix
whose (N −n) columns form an orthonormal basis of N (WT ). We wish to prove that
UHCp U is equal to the conjugate of UHCbp U , which yields the statement about the

extraneous roots. Since the last p columns of Cp as well as the first p columns of Cbp
are in N (WT )⊥, we have

UHCp U =



ū1
p+1 · · · ū1

N 0 · · · 0
...

...
...

...

ūN−np+1 · · · ūN−nN 0 · · · 0







u1
1 · · · uN−n1
...

...

u1
N−p · · · uN−nN−p

u1
N−p+1 · · · uN−nN−p+1

...
...

u1
N · · · uN−nN




and

UHCbp U =




0 · · · 0 ū1
1 · · · ū1

N−p
...

...
...

...

0 · · · 0 ūN−n1 · · · ūN−nN−p







u1
1 · · · uN−n1
...

...
u1
p · · · uN−np

u1
p+1 · · · uN−np+1
...

...

u1
N · · · uN−nN



.

So,

UHCbp U = (UHCp U)H .

Remark 3.5. Observe that the above demonstration provides another proof of
Proposition 2.10.

Remark 3.6. When the eigenvalues λi are either real or complex conjugate pairs,
both matrices Cp and Cbp are real, and so, those invariant subspaces are also real.

Remark 3.7. If U is an orthonormal basis of N (WT ), both (Ĉ)p and Cbp can be
decomposed as

(Ĉ)p = (I − UUH) (Ĉ)p + UUH (Ĉ)p = L+M,(3.11)

Cbp = (I − UUH) Cbp + UUH Cbp = L+ M̂,(3.12)

where UUH is the orthogonal projection onto N (WT ) and I −UUH is the orthogonal
projection onto N (WT )⊥. Observe that I − UUH = (WT )†WT and (WT )†WT (Ĉ)p =
(WT )†WT Cbp = (WT )†∆−p WT = L, because both matrices are solutions of (3.6).

Hence, (Ĉ)p − Cbp = M− M̂. Since the first p columns of Cbp belong to N (WT )⊥,

the first p columns of M̂ = UUH Cbp are zero. Thus, (Ĉ)p − Cbp = M− Np, where N
is the nilpotent matrix such that Ne1 = 0, Nei = ei+1 for i = 1, . . . , N − 1. The
nonzero extraneous roots of Cbp are the nonzero eigenvalues of X = UUHCbp, which

equals UUHNp. On the other hand, the nonzero eigenvalues of X are the nonzero
eigenvalues of UUH

(p+1:N,1:N−p), that is, the submatrix of UUH with the rows and
columns indicated by the subscript.
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p=1 p=2

p=4 p=8

Fig. 3.1. Eigenvalue locations of p-backward predictor matrices.

We hope for a better separation of the system eigenvalues from the extraneous
roots of p-backward predictor matrices when p increases, because UUHNp = 0 when
p = N . Thus, the nonzero extraneous roots approach zero when p increases. The
system signals have moduli greater than 1 and they will increase in magnitude with
p. Observe that if |µ1| ≥ |µ2| ≥ · · · ≥ |µN−n| are the extraneous roots of Cbp, then

N−n∑
i=1

|µi|2 ≤ ||UUHNp||2F =

N−p∑
i=1

||UUH ei||22.

Since ||Cbp||F ≤ ||(Ĉ)p||F , we also expect a better separation between the two classes

of eigenvalues when the matrix Cbp is used instead of (Ĉ)p.
In Fig. 3.1, we can see the behavior of the eigenvalues of Cbp, which is a p-backward

predictor matrix for a three-dimensional representation of a simulated mechanical
system whose impulse response function is

h(t) = e−0.06t sin(4t) + 0.8e−0.056t sin(t) + 1.2e−0.09t sin(9t),

taking N = 80 and ∆t = 0.05. We observe in Fig. 3.1 that the locations of the
extraneous roots seem to have a certain pattern. This is because these roots are
eigenvalues of submatrices Pp corresponding to different p values of P0 = UUH , with
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p=4 p=8

Fig. 3.2. Eigenvalue locations of powers p of a 1-backward predictor matrix.

p=16 p=1 and ∆̂t = 16∆t

Fig. 3.3. Eigenvalue locations of a 16-backward predictor matrix and a 1-backward predictor
matrix after a downsampling operation.

each submatrix Pr embedded in Ps if r > s. In Fig. 3.2 we can compare the locations
of the extraneous roots of (Ĉ)p with the corresponding roots of Cbp.

Concluding remarks. In this paper an eigenvalue locations analysis of gener-
alized companion predictor matrices has been presented and illustrated by numerical
examples. A final remark is that if the sample rate is reduced by a factor of p
(∆̂t = p∆t), the resulting regular predictor matrix Ĉb has the same system eigenval-
ues as the generalized companion matrix Cbp (sample rate equal to ∆t). However, the
extraneous eigenvalues are very different. This fact is illustrated for p = 16 in Fig. 3.3.
The regular predictor matrix (∆̂t = 0.8) has their extraneous eigenvalues close to the
unit circle, while the extraneous eigenvalues of Cb16 (∆t = 0.05) are closer to zero.

Acknowledgments. The authors wish to thank Alan McCoy (CERFACS) and
Iain Duff (CERFACS/Rutherford Appleton Laboratory) for profitable discussions and
helpful comments regarding the presentation of this paper.
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Abstract. In this article we present some recent results on the linear complementarity problem.
It is shown that (i) within the class of column adequate matrices, a matrix is in Q0 if and only if it is

completely Q0 (ii) for the class of C
f
0 -matrices introduced by Murthy and Parthasarathy [SIAM J.

Matrix Anal. Appl., 16 (1995), pp. 1268–1286], we provide a sufficient condition under which a matrix

is in P0 and as a corollary of this result, we give an alternative proof of the result that C
f
0 ∩Q0 ⊆ P0

(iii) within the class of INS-matrices introduced by Stone [Department of Operations Research,
Stanford University, Stanford, CA, 1981], a nondegenerate matrix must necessarily have the block
property introduced by Murthy, Parthasarathy, and Sriparna [G. S. R. Murthy, T. Parthasarathy,
and B. Sriparna, Linear Algebra Appl., 252 (1997), pp. 323–337]. Furthermore, we conjecture that if
a matrix has block property, then it must be Lipschitzian. This problem is an important one from
two angles: if the conjecture is true, it provides a finite test to check whether a given matrix is
Lipschitzian or nondegenerate INS; and it settles an open problem posed by Stone. It is shown that
the conjecture is true in the cases of 2× 2-matrices, nonnegative and nonpositive matrices of general
order.

Key words. linear complementarity problem, adequacy, matrix classes, principal pivoting

AMS subject classification. 90C33

PII. S0895479896313814

1. Introduction. Given a matrix A ∈ Rn×n and q ∈ Rn the linear complemen-
tarity problem (LCP) is to find a vector z ∈ Rn such that

Az + q ≥ 0, z ≥ 0, and zt(Az + q) = 0.(1.1)

LCP has numerous applications, both in theory and in practice, and is treated by
a vast literature (see [2, 10]). Let F (q,A) = { z ∈ Rn

+ : Az + q ≥ 0 } and
S(q,A) = { z ∈ F (q,A) : (Az + q )tz = 0 }. A number of matrix classes have
been defined in connection with LCP, the fundamental ones being Q and Q0. The
class Q consists of all real square matrices A such that S(q,A) 6= φ for every q ∈ Rn

[11], and Q0 consists of all real square matrices A such that S(q,A) 6= φ whenever
F (q,A) 6= φ [9].

For any positive integer n, write n̄ = {1, 2, . . . , n}, and for any subset α of n̄,
write ᾱ = n̄ \ α. For any A ∈ Rn×n, Aαα is obtained by dropping rows and columns
corresponding to ᾱ from A. For any x ∈ Rn, xα is obtained from x by dropping
coordinates corresponding to ᾱ, and xi denotes the ith coordinate of x. Consider
A ∈ Rn×n. If α ⊆ n̄ is such that det Aαα 6= 0, then the matrix M defined by

Mαα = (Aαα)−1, Mαᾱ = −MααAαᾱ, Mᾱα = AᾱαMαα, Mᾱᾱ = Aᾱᾱ −MᾱαAαᾱ

is known as the principal pivotal transform (PPT) of A with respect to α and will
be denoted by ℘α(A). Note that a PPT is defined only with respect to those α for
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which detAαα 6= 0. By convention, when α = ∅, detAαα = 1 and M = A (see [2]).
Whenever we refer to PPTs, we mean the ones which are well defined.

We shall recall the definitions of some matrix classes that are relevant to this
paper. Let A ∈ Rn×n. Then A is said to be a P -matrix (P0-matrix) if all its principal
minors are positive (nonnegative); if all principal minors of A are nonzero, then A
is called a nondegenerate matrix; A is semimonotone (E0) if (q,A) has a unique

solution for every q > 0; A is fully semimonotone (Ef
0 ) if every PPT of A is in E0;

A is copositive (C0) if xtAx ≥ 0 for every x ≥ 0; A is fully copositive (Cf
0 ) if every

PPT of A is in C0. For the definition of INS and Lipschitzian matrices see section 3.

In this article, we present some new results pertaining to three matrix classes,
namely, (i) the class of adequate matrices introduced by Ingleton [4], (ii) the class of
fully copositive matrices introduced by Murthy and Parthasarathy [7], and (iii) the
class of INS-matrices introduced by Stone [13].

In the case of adequate matrices (see section 2), our main result is that a col-
umn adequate matrix is in Q (in Q0) if and only if it is completely-Q (completely-
Q0). Characterization of completely-Q0 matrices in general is a complex problem [1].
Murthy and Parthasarathy [6, 7, 8] have shown that nonnegative matrices, symmetric

copositive matrices, Cf
0 -matrices and Lipschitzian matrices are in Q0 if and only if

they are completely-Q0.

Within the class of Cf
0 -matrices, we provide a sufficient condition under which a

matrix will be in P0. As a corollary to this result, we provide an alternative proof of
a result due to Murthy and Parthasarathy which states that Cf

0 ∩Q0-matrices are in

P0. As another consequence of this result, we deduce that a bisymmetric Ef
0 -matrix

A is positive semidefinite if, and only if, the rows and columns of A+At corresponding
to the zero diagonal entries are zero.

Last, we consider the class of INS-matrices and show that a nondegenerate INS-
matrix must necessarily satisfy the block property. There are no constructive charac-
terizations of Lipschitzian or INS-matrices. In [8], the authors showed that Lip-
schitzian matrices must necessarily satisfy the block property, and Stone [14] showed
that Lipschitzian matrices are nondegenerate INS-matrices. We conjecture that block
property is a characterization of Lipschitzian matrices. It is proven that the conjecture
is true in the cases of nonnegative or nonpositive matrices and 2× 2 matrices.

The results on adequate and Cf
0 -matrices are presented in section 2, and the

results on INS- and Lipschitzian matrices are presented in section 3.

2. Results on adequate and Cf
0 -matrices. A number of matrix classes are

invariant under principal pivoting; i.e., if a matrix is in class C, then all its PPTs
are also in C. The matrix classes Q, Q0, P , P0, E

f
0 , C

f
0 , INS- and Lipschitzian

matrices all fall in this category. In the definition below we consider another class of
matrices which is also invariant under PPTs.

Definition 2.1. Say that a real square matrix A ∈ Λ if for every PPT M of A
the diagonal entries are nonnegative.

Remark 2.2. Note that Ef
0 , which contains the classes P0 and Cf

0 (see [2, 6, 7]),

is a subclass of Λ. However, Λ\Ef
0 is nonempty as

[
0

−1
−1

0

]
is an example of this kind.

Furthermore, it is easy to check that if A ∈ Λ, then At ∈ Λ.

Another class of matrices that is required for our results is the following.
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Definition 2.3. Say that a real square matrix A has property (D) if for every
index set α the following holds:

detAαα = 0 ⇒ columns of A·α are linearly dependent.

Let D denote the class of matrices satisfying property (D). Note that if A ∈
Λ (A ∈ D), then Aαα ∈ Λ (Aαα ∈ D) for every α. An interesting property of D
is that if A ∈ D, then (q,A) has a solution with a complementary basis for any q
with S(q,A) 6= φ (see [7]). Another interesting property of D, which is a direct
consequence of the definition, is the following.

Proposition 2.4. If A ∈ D is nonsingular, then A is nondegenerate.
A matrix A is said to be a column (row) adequate matrix if A (At) is in D ∩

P0. Ingleton [4] introduced the class of adequate matrices (i.e., both row and column
adequate) and showed that if A is adequate, then, for every q with S(q,A) 6= φ,
Az + q is unique over S(q,A). We now present our main results on column adequate
matrices.

Theorem 2.5. If A ∈ Λ ∩D, then A ∈ P0.
Proof. We prove this by induction on n. Obviously the theorem is true if n = 1.

Assume that the theorem is true for all (n− 1)× (n− 1) matrices. Let A ∈ Rn×n ∩
Λ ∩ D. By above observations, Aαα ∈ P0 for all α such that |α| = n − 1. Suppose
A 6∈ P0. Then detA < 0. Note that A is almost P0. Since A ∈ Λ, diagonal entries of
A−1 are equal to zero. This means that detAαα = 0 for all α with |α| = n− 1. Since
A ∈ D, this implies that columns of A are linearly dependent which contradicts that
A is nonsingular. It follows that A ∈ P0.

Corollary 2.6. Suppose A ∈ Rn×n. The following conditions are equivalent:
(a) A ∈ P0 ∩D;
(b) A ∈ Λ ∩D.
It is known that nondegenerate Ef

0 -matrices are P -matrices.

Corollary 2.7. If Ef
0 ∩D, then A ∈ P0.

A matrix A is said to be completely-Q (completely-Q0) if all its principal sub-
matrices including A are Q-matrices (Q0-matrices). Cottle introduced these classes
in [1] and characterized completely-Q matrices as the class of strictly semimonotone
matrices (A is said to be strictly semimonotone if (q,A) has a unique solution for
every nonnegative q). One of the problems posed by Cottle [1] is the characterization
of completely-Q0 matrices which is still an open problem. Murthy and Parthasarathy
have characterized completely-Q0 matrices in certain special cases (see [6, 7, 8]). The
following result augments these special cases with column adequate matrices.

Theorem 2.8. Suppose A ∈ Λ ∩D. Then
(a) A ∈ Q0 if and only if A is completely-Q0;
(b) A ∈ Q if and only if A is completely-Q.
Proof. (a) It suffices to show the “only if” part. Suppose Aαα 6∈ Q0, say, for

α = {1, 2, . . . , n − 1}. By Theorem 2.19 of [7], there exists a β such that n ∈ β,
detAββ 6= 0 and M·n ≤ 0, where M = ℘β(A). Since A ∈ P0 (Theorem 2.5 above),

Mnn =
detAγγ
detAββ

= 0, where γ = β \ {n}. This implies detAγγ = 0, which in turn

implies detAββ = 0 as A ∈ D. From this contradiction, it follows that Aαα ∈ Q0. By
induction it follows that A is completely-Q0.

(b) Once again, we will show the “only if” part. Note that the conclusions of
Theorem 2.19 of [7] remain valid even if we replace Q0 by Q in the statement of that
theorem (almost the same proof can be repeated). Hence it follows (from the proof of
part (a) here) that A is completely-Q.
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Corollary 2.9. Every column adequate matrix is in Q if and only if it is strictly
semimonotone.

We now turn our attention to the results on Cf
0 -matrices. In [6], using the con-

cept of incidence, it was shown that Cf
0 ∩ Q0 ⊆ P0. We recapture this result as a

consequence of our results here.
Theorem 2.10. Suppose A ∈ Rn×n ∩ Cf

0 , n ≥ 2. If the rows and columns of
A+At corresponding to the zero diagonal entries of A are zero, then A ∈ P0.

Proof. From the hypothesis and Theorem 3.17 of [7], it is clear that every 2 × 2
principal submatrix of A is in P0. Assuming that every (k − 1) × (k − 1), k ≥ 2,
principal submatrix of A is in P0, we will show that every k × k principal submatrix
of A is also in P0. Let B be any k×k principal submatrix of A such that all its proper
principal minors are nonnegative. Suppose detB < 0. Arguing as in Theorem 3.17 of
[7], we can show that

B−1 =

[
0 C
D 0

]
,

where C and D are nonnegative square matrices of the same order. It follows that C
and D are nonsingular and that B =

[
0

C−1
D−1

0

]
. From the hypothesis, it follows that

C−1 + (D−1)t = 0 and hence D−1 = −(C−1)t. This in turn implies that D = −Ct.
This contradicts that D is nonnegative. Hence detB ≥ 0. The theorem follows.

Corollary 2.11. Suppose A ∈ Rn×n ∩Cf
0 ∩Q0. Then A ∈ P0.

Proof. If n = 1, there is nothing to prove. Assume n ≥ 2. We will show that
every 2× 2 principal submatrix of A is in P0. Suppose, to the contrary, assume that
Aαα 6∈ P0 for some α with |α| = 2. Without loss of generality, we may take α = {1, 2}.
Then Aαα ' [

0
+

+
0

]
(this notation means a11 = a22 = 0 and a12, a21 are positive).

Since Aαα 6∈ Q0, we must have n > 2 and a j ∈ ᾱ such that aj1 < 0 (follows

from Theorem 2.9 of [7]). Note that if a1j ≤ 0, then A 6∈ Cf
0 . But if a1j > 0, then

also A 6∈ Cf
0 (follows from Theorem 4.1 of [8]). It follows that every 2 × 2 principal

submatrix of A is in P0 and hence A ∈ P0. Arguing as in Lemma 3.2 of [6], we can
show that for every i such that aii = 0, we have aij + aji = 0 for all j. Notice that
in the proof of Lemma 3.2 of [6] we need only that every 2 × 2 principal submatrix
of A is in P0. Hence the rows and columns of A+At corresponding to zero diagonal
entries of A are zero. From Theorem 2.10, it follows that A ∈ P0.

In [6], it was shown that a Cf
0 -matrix is in Q0 if and only if it is completely-Q0.

The arguments used to prove this can be extended to obtain the following result.
Theorem 2.12. Suppose A ∈ Rn×n ∩Cf

0 . If A ∈ Q0, then At and all its PPTs
are completely-Q0.

Proof. It can be verified that if a matrix B ∈ Λ satisfies the condition that for
every PPT C of B satisfies

cii = 0 ⇒ cij + cji = 0 for all i and j,

then B and all its PPTs are completely-Q0 matrices. This is because, if B has this
property, then Graves’s algorithm processes (q,B) for any q and terminates either
with a solution or with the conclusion that F (q,B) = ∅ (see Chapter 4 of [10] and
Theorem 3.4 of [6]). Therefore, we will show that any PPT of At will satisfy the above
condition. Let D = ℘α(At) for some α. Observe that ℘α(A) exists. Let M = ℘α(A).
It can be checked that, M = SDtS, where S =

[
Iαα
0

0
−Iᾱᾱ

]
. Hence for each i, j, either

dij + dji = mij +mji or dij + dji = −(mij +mji). If dii = 0 for some i, then mii = 0,
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and by Theorem 3.4 of [6], mij + mji = 0. From this it follows that if for some
i, dii = 0, then dij + dji = 0.

One may ask whether the converse of the above theorem is true. That is, if A ∈ Cf
0

and At and all its PPTs are completely-Q0, then is it true that A ∈ Q0? The answer
to this question is “no.” The problem arises from the fact that transpose of a Cf

0 -

matrix need not be in Cf
0 . As a counter example, consider the Cf

0 -matrix A =
[
1
1

0
0

]
.

It can be checked, directly or using Theorem 2.5 of [7], that At and its PPT are
completely-Q0 but A 6∈ Q0.

A matrix A is said to be bisymmetric if, for some index set α, Aαα and Aᾱᾱ are
symmetric and Aᾱα = −At

αᾱ. It is easy to check that PPTs of bisymmetric matrices
are bisymmetric.

Theorem 2.13. Suppose A ∈ Rn×n is a bisymmetric Ef
0 -matrix. Then the fol-

lowing are equivalent:

(a) A ∈ Q0;
(b) A is positive semidefinite;
(c) for any i, j, aii = 0 ⇒ aij + aji = 0;
(d) every 2× 2 principal submatrix of A is in P0.

Proof. We first observe that every bisymmetric Ef
0 -matrix is in Cf

0 (Theorem 4.7
of [6]). Implication (a) ⇒ (b) was already established in [6]. The implication (b) ⇒
(c) is a well-known fact about positive semidefinite matrices. The implication (c) ⇒
(d) is a direct consequence of Theorem 2.10. To complete the proof of the theorem,
we will show that (d) ⇒ (a). Assume that A satisfies (d). Using the fact that every

2 × 2 principal submatrix of A is in Cf
0 ∩ P0, it is easy to show that A satisfies (c).

Hence, by 2.10, A ∈ P0. Let M be any PPT of A. Suppose mii = 0 for some i. As A is
bisymmetric, so is M . So for any j, either mij = −mji or mij = mji. If mij = −mji,
then mij + mji = 0. If mij = mji, then, as M ∈ P0 and mii = 0, we must have
mij = mji = 0. Thus for any j, mij +mji = 0. By Theorem 3.4 of [6], it follows that
A ∈ Q0.

3. Block property. Stone [13] introduced the class of INS-matrices. A matrix
A is said to be an INSk-matrix if |S(q,A)| = k for all q ∈ intK(A), where K(A) is the
set of all p for which S(p,A) 6= ∅; and INS = ∪∞k=0INSk. Next we say that A is Lip-
schitzian matrix if there exists a positive number λ, called the Lipschitzian constant,
such that for any p, q ∈ K(A), the following holds: given any x ∈ S(p,A), there exists
a z ∈ S(q,A) such that ‖x − z‖ ≤ λ‖p − q‖. Stone [14] showed that Lipschitzian
matrices are nondegenerate INS-matrices and conjectured that the converse is also
true. Furthermore, he showed that the conjecture is true with an additional assump-
tion of Lipschitz path-connectedness (see [14] for details). To date, no constructive
characterizations are known for INS and Lipschitzian matrix classes. Thus, there is
no finite procedure to verify whether a given matrix is INS or Lipschitzian.

Definition 3.1. Say that A has property (B) if every PPT M of A has the
following block structure (subject to a principal rearrangement):

M =




M11 0 . . . 0 M1l+1

0 M22 . . . 0 M2l+1
...

...
...

...
0 0 . . . Mll Mll+1

Ml+11 Ml+12 . . . Ml+1l Ml+1 l+1



,
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where M11,M22, . . . ,Mll are all negative N -matrices (i.e., all entries and all principal
minors are negative) and the diagonal entries of Ml+1 l+1 are positive.

In [8], the authors showed that every Lipschitzian matrix must have property (B).
In this section, we will show that every nondegenerate INS-matrix also must have
property (B).

Note that if a matrix A has property (B), then it must be nondegenerate as every
PPT of A has no zero diagonal entries (see Corollary 3.5, p. 204 of [10]). From the
definition, property (B) is invariant under PPTs and is inherited by all the principal
submatrices.

Theorem 3.2. Suppose A ∈ Rn×n is a nondegenerate INS-matrix. Then A has
property (B).

Proof. Let α = {i : aii < 0}. By Theorem 5 of [12], Aαα is a nondegenerate INS-
matrix. Also, for i, j ∈ α, i 6= j, Aββ ∈ INS, where β = {i, j}. It is easy to check
that if Aββ has a positive entry, then Aββ 6∈ INS. It follows that Aαα is nonpositive
and hence in Q0. From Corollary 3.5 of [14], Aαα is Lipschitzian. From Theorem 4.7
of [8],

Aαα =




N1 0 . . . 0
0 N2 . . . 0
...

...
...

0 0 . . . N l


 for some l ≥ 1,

where each N i is a negativeN -matrix. Since every PPT of nondegenerate INS-matrix
is also nondegenerate INS, we conclude that A has property (B).

Our conjecture is that property (B) is also sufficient condition for a matrix to be
Lipschitzian. Below we verify this conjecture in certain special cases.

Theorem 3.3. Suppose A ∈ Rn×n. Assume that any one of the following condi-
tions holds:

(i) n = 2;
(ii) A ≤ 0;
(iii) A is completely-Q;
(iv) A ≥ 0.

Then the following statements are equivalent:
(a) A is nondegenerate INS;
(b) A is Lipschitzian;
(c) A has property (B).
Proof. In view of Stone’s result that (b) ⇒ (a) (Theorem 3.2 of [14]), it suffices

to show that (c) implies (b). So assume that (c) holds.
(i). If the diagonal entries of A are negative, then property (B) implies that either

A is a negative N -matrix or A ' [−
0

0
−
]
. In either case, A is Lipschitzian (see [3]). If

the diagonal entries of A are positive, then either A is a P -matrix or A−1 is a negative
N -matrix. Once again A is Lipschitzian (see [5]). Consider the last case a11 < 0 and
a22 > 0, without loss of generality. It is easy to check (graphically) that A is INS and
that K(A) is Lipschitz path-connected (see [14] for details and the example following
Definition 3.3 in [14]). From Theorem 3.4 of [14], we conclude A is Lipschitzian.

(ii). By property (B), A can be decomposed into a block diagonal matrix where
each submatrix on the diagonal is a negative N -matrix. As negative N -matrices are
Lipschitzian, one can easily verify that A is also Lipschitzian.

(iii). In this case we actually show that A is a P -matrix and this we do by
induction on the order of the matrix. Obviously the result is true for n = 1. Assume
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the result for all matrices of order n − 1, n > 1. Suppose A ∈ Rn×n satisfies the
hypothesis. Then all the proper principal minors of A are positive. If A 6∈ P , then
detA < 0 and the diagonal entries of A−1 are negative. By property (B), A−1 must
be nonpositive. But this contradicts that A ∈ Q. Hence A ∈ P .

(iv). From the hypothesis and (c), aii > 0 for all i. Since A ≥ 0, A is completely-Q.
Therefore A ∈ P .

Proposition 3.4. Suppose A ∈ Rn×n. Assume that for some index set α, Aαα

is Lipschitzian and Aᾱᾱ ∈ P . If Aᾱα = 0 or Aαᾱ = 0, then A is Lipschitzian.
Proof. Assume Aᾱα = 0. Let p, q ∈ K(A). Let λ1 and λ2 be the Lipschitzian

constants corresponding to Aαα and Aᾱᾱ respectively. Take any arbitrary x ∈ S(p,A).
We will exhibit a z ∈ S(q,A) such that ‖z − x‖ ≤ λ‖p − q‖, where λ, to be chosen
later, depends only on λ1, λ2, and A. Since S(q,A) 6= φ, choose any z̄ ∈ S(q,A).
Let y = Ax + p and w̄ = Az̄ + q. Note that xα ∈ S(p′α, Aαα) and z̄α ∈ S(q′α, Aαα),
where p′α = pα +Aαᾱxᾱ and q′α = qα +Aαᾱz̄ᾱ. Since Aαα is Lipschitzian, there exists
a zα ∈ S(q′α, Aαα) such that

‖xα − zα‖ ≤ λ1‖p′α − q′α‖
≤ λ1‖pα − qα‖+ λ1‖B‖‖xᾱ − zᾱ‖.

Since zα ∈ S(q′α, Aαα), wα = Aααzα + qα + Aαᾱz̄ᾱ and wt
αzα = 0. This implies

z = (ztα, z̄
t
ᾱ)t ∈ S(q,A). As Aᾱᾱ ∈ P , xᾱ and zᾱ are the unique solutions of (pᾱ, Aᾱᾱ)

and (qᾱ, Aᾱᾱ). Therefore, ‖xᾱ − zᾱ‖ ≤ λ2‖pᾱ − qᾱ‖. Combining this with the above
inequality, we get

‖x− z‖ ≤ ‖xα − zα‖
≤ λ1‖pα − qα‖+ (λ1λ2‖B‖+ λ2)‖pᾱ − qᾱ‖
≤ λ1‖p− q‖+ (λ1λ2‖B‖+ λ2)‖p− q‖
≤ λ‖p− q‖, where λ = λ1 + λ2 + λ1λ2‖B‖.

It follows that A is Lipschitzian, and the case Aαᾱ = 0 can be tackled in a similar
fashion.

Proposition 3.4 is not valid if we simply assume that Aαα and Aᾱᾱ are Lip-
schitzian. As a counter example, consider A =

[−1
0

1
−1

]
. It is clear that A 6∈ INS, and

hence A is not Lipschitzian.
The following is an example of a matrix with property (B).
Example 3.5.

A =


 −1 −2 −2
−2 −1 1

1 0 1


 .

It is not known whether A is Lipschitzian or not.

Acknowledgments. The authors wish to thank Dr. G. Ravindran and Mr. Amit
K. Biswas for some useful discussions.
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Abstract. Statistical condition estimation is applied to the linear least squares problem. The
method obtains componentwise condition estimates via the Fréchet derivative. A rigorous statistical
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1. Introduction. The linear least squares problem

min
x
‖Ax− b‖2,

where b ∈ R
m and A ∈ R

m×n
q (subscript on R is the rank of A), has unique minimum

2-norm solution

x = A+b,(1)

where A+ is the Moore–Penrose pseudoinverse of A. Standard approaches [8, Chap-
ter 9], [11], [13, section 4], [27] to determining the sensitivity of the solution to the
linear least squares problem estimate the 2-norm condition number with respect to
pseudoinversion of A. This value, denoted κ2(A), is given by

κ2(A) = ‖A‖2‖A+‖2 =
σ1(A)

σq(A)
,

where σ1(A) ≥ · · · ≥ σq(A) > 0 are the nonzero singular values of A. Indeed, κ2(A)
plays a major role in bounding relative changes in the solution to a linear least squares
problem due to perturbations in the arguments. For example, if A,E ∈ R

m×n such
that A has full rank and ‖A+‖2‖E‖2 < 0.2, and if x 6= 0 solves

min
z
‖Az − b‖2

and x+ y solves

min
z
‖(A+ E)z − b‖2,

then [8, p. 9.5] A+ E has full rank and

‖y‖2
‖x‖2

≤ 1.6

(
κ2(A) + κ2

2(A)
‖b−Ax‖2
‖A‖2‖x‖2

) ‖E‖2
‖A‖2

.(2)
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Note that the sensitivity of the linear least squares solution is proportional to κ2(A)
when the residual b−Ax is small compared with the norms of A and x; otherwise, it
is proportional to the square of κ2(A) (also see [10, section 5.3.9]).

Normwise condition estimation approaches consolidate all sensitivity information
into a single number. Thus, important information may be lost if individual solution
components have widely disparate sensitivity. A method that estimates the compo-
nentwise condition of the solution vector is often preferable [1, section 4.3.2], [4], [5],
[13], [21]. This is illustrated by the following example.

Example 1. Let

A =


 1 1

ε 0
0 ε


 , x =

[
1/ε
ε

]
, and b =


 1/ε+ ε

1
ε2


 ,

where ε > 0. In exact arithmetic, x is the minimum 2-norm solution to the linear
least squares problem minz‖Az − b‖2. However, suppose we are solving for x on a
finite-word-length computer. Say we have 16 digits of precision, and let ε = 10−8.
Then

A =


 1 1

10−8 0
0 10−8


 , x =

[
108

5× 10−9

]
, and b =


 108

1
10−16


 ,

where b is b rounded to 16 digits and x is the exact minimum 2-norm solution to
the linear least squares problem minz‖Az − b‖2 rounded to 16 digits. The 2-norm
condition number of A is κ2(A) ≈ 108. The normwise relative error

‖x− x‖2
‖x‖2

≈ 5× 10−17

is quite small; however, the componentwise relative errors are

|x1 − x1|
|x1| = 0,

|x2 − x2|
|x2| = 0.5.

The first component of the computed solution exhibits 0% relative error, while the
second component exhibits 50% relative error. All the digits of x1 are correct, while
the first digit of x2 is only correct upon rounding. Thus, individual components of
the solution vector may be much more relatively ill conditioned than is indicated by
the standard 2-norm condition number.

Things may also be better than they seem, i.e., κ2(A) may be a gross overestimate
of the sensitivity of the problem, especially if b is well aligned with the range of A,
denoted R(A). Examples in this paper were computed with Matlab 4.2a on a Sun
SPARCstation, which has a relative machine precision of eps ≈ 2.22× 10−16.

Example 2. Let A be as in Example 1, and let

b =


 2

ε
ε


 and c =


 1 + ε
−1/ε
−1/ε


 .
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Note that b ∈ R(A) for all ε, while for small ε, say 10−8, the vector c is almost
orthogonal to R(A). Matlab gives minimum 2-norm solutions xb and xc for the
linear least squares problems corresponding to (A, b) and (A, c), respectively. If we
denote the exact minimum 2-norm solutions by xb and xc, we find that

‖xb − xb‖2
‖xb‖2

≈ 4× 10−16,

‖xc − xc‖2
‖xc‖2

≈ 3× 108.

In fact, the relative error in each component of xb is on the order of 10−16, while the
relative errors in the components of xc are on the order of 1 and 108, respectively.
Given the large condition number κ(A) ≈ 108, we might be surprised that xb is so
close to xb.

Finally, standard condition estimation methods do not necessarily respect the
structure of certain problems.

Example 3. Suppose

A =


 ε 1

2ε 0
3ε 0


 and b =


 1

1
1


 .

Note that for ε = 10−8, we have κ2(A) ≈ 3 × 107. However, the solution vector
x = A+b is sensitive only to perturbations of the first column of A; that is, if we
restrict perturbations of A and b to be additive of the form

E =


 0 ε1

0 ε2
0 ε3


 and f =


 φ1

φ2

φ3


 ,

respectively, where the εi and φi are small, then the linear least squares problem is
quite well conditioned.

These examples illustrate three potential deficiencies in using κ2(A) to estimate
the sensitivity of the solution to the linear least squares problem minx‖Ax− b‖2.

1. The sensitivity of each component of the solution vector is not calculated;
hence, κ2(A) may grossly underestimate the sensitivity of specific components
of the solution vector.

2. If perturbations are due to rounding and b is well aligned with R(A), then
κ2(A) may grossly overestimate the sensitivity of the solution.

3. When perturbations are restricted to a specific structure, κ2(A) may grossly
overestimate the sensitivity of the solution.

Introduced by Kenney and Laub in [16], a statistically based method for estimat-
ing the condition of general matrix functions addresses these deficiencies. The method
produces componentwise condition estimates for matrix functions in such a way that
all input data can be considered in forming the estimates. This is done by evaluating
a matrix function at the original arguments as well as at slightly perturbed argu-
ments. Condition is then estimated by considering the effect on the solution due to
perturbations of the arguments. A small number of function evaluations at perturbed
arguments suffices to give a highly reliable condition estimate; hence, the method is
referred to as small-sample statistical condition estimation (SCE). For general ma-
trix functions, the amount of computation is directly proportional to the number of
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function evaluations done, similar to Stewart’s stochastic perturbation theory [24].
However, for many problems (in particular, linear systems and linear least squares),
SCE is able to exploit Fréchet derivatives and factorizations of the data to reduce
the computational cost to that of standard condition estimation methods. SCE has
accuracy and storage requirements similar to other condition estimation approaches,
and it is easy to adapt the method to respect constraints on the structure of allowable
perturbations.

In his comprehensive survey of componentwise perturbation results [13], Higham
defines the componentwise relative backward error of the computed solution x to a
linear system Ax = b as

ω|A|,|b|(x) = min{ε : (A+ E)x = b+ f, |E| ≤ ε|A|, |f | ≤ ε|b|},
with matrix absolute values being defined componentwise and inequalities holding
componentwise. This scalar is the same as the output value BERR from the Lapack
[1] expert driver routines xyySVX. It is essentially a bound on the relative perturbations
in components of A and b such that x is an exact solution. SCE, on the other hand,
provides a full vector of condition numbers, giving an estimate of the sensitivity
of each entry in the solution, similar to the approach of Chandrasekaran [4] and
Chandrasekaran and Ipsen [5]. Furthermore, Lapack assumes that perturbations
have magnitudes relative to the input data, while SCE and Higham’s analysis allow
more general perturbations.

The application of SCE to nonsingular linear systems was investigated in [17].
In the present paper we examine how SCE can be applied to (full column rank)
linear least squares problems. The remainder of this section introduces notation and
reviews the theories of SCE and linear least squares. Section 2 discusses how to
apply SCE methods to unstructured linear least squares problems. There we re-
examine Example 1 using SCE methods. Sections 3 and 4 apply SCE to linear least
squares problems in which the perturbations are relative and structured, respectively.
These sections contain examples and methods that illustrate various points in the
discussion, including Examples 2 and 3. Section 5 compares computational costs of
the SCE method and standard condition estimation methods. Section 6 illustrates
the application of SCE to some well-known linear least squares examples.

1.1. Notation. For simplicity, our matrices and vectors have real entries; how-
ever, the theory can be extended easily to matrices and vectors with complex entries.
Single vertical bars around a matrix or vector indicate the componentwise absolute
value of the matrix or vector. A matrix or vector surrounded by single vertical bars
and then raised to a power signifies that the absolute values of the entries are to be
raised to that power. For example, if A is the diagonal matrix with diagonal entries
(−1, 2,−3), then |A|2 is the diagonal matrix with diagonal entries (1, 4, 9).

The vec operation forms the Kronecker vector of a matrix by stacking its columns.
The unvec operation undoes the vec operation. Hence, if A is the 4×4 identity matrix
I4, then v = vec(A) = [eT1 , e

T
2 , e

T
3 , e

T
4 ]T and, assuming it is known from the context

that A ∈ R
4×4, then A = unvec(v) sets A equal to I4.

If a vector z is selected uniformly and randomly from the unit sphere Sp−1 in

R
p, we write z ∼ U(Sp−1). If scalars xi are independently selected from a normal

distribution with mean µ and variance σ2, we write xi ∼ N(µ, σ2); for example,
samples taken from the standard normal distribution are N(0, 1).

We denote the Fréchet derivative of a matrix function g : R
n → R

m with respect
to the variable X ∈ R

p by Dg(X) = (∂gi/∂xj) ∈ R
m×p. The Fréchet derivative of g
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with respect to X evaluated in the direction Y ∈ R
p is denoted Dg(X;Y ) = Dg(X)Y .

When X and Y are matrices, we replace them by their Kronecker vectors in the
derivative.

1.2. Review of statistical condition estimation. A function is said to be
locally sensitive at a point if small changes in its arguments at that point can cause
large relative changes in its value. The work in [16] shows that the local sensitivity
(or condition) of a function at a point can be estimated accurately by randomly
perturbing the arguments to the function and observing the effects on the function’s
value. In fact, [16, section 2] gives a rigorous theory for evaluating the probability of
accuracy in the sensitivity estimate.

For example, suppose g : R
p → R is at least twice continuously differentiable. If

we denote the gradient of g by the row vector vT , then the local sensitivity of g at a
point x ∈ R

p can be measured by the 2-norm of v evaluated at x. Expanding g in a
Taylor series about x,

g(x+ δz) = g(x) + δv(x)T z + O(δ2),(3)

where δ ∈ R is small and z ∈ R
p has unit 2-norm, we see that if ‖v‖2 is large, a small

perturbation in x can yield a large change in g in the direction of z. Indeed, we see
from (3) that ‖v‖2 is a first-order bound on the ratio of the function value error to
the argument error

|g(x+ δz)− g(x)|
‖(x+ δz)− x‖2

≤ ‖v‖2 + O(δ).

The discussion in [16, section 2] shows that if z ∼ U(Sp−1), then the absolute
value of the Newton quotient

dz ≡ g(x+ δz)− g(x)

δ

divided by the Wallis factor

ωp =




1 for p = 1,
2
π for p = 2,
1·3·5···(p−2)
2·4·6···(p−1) for odd p > 2,
2
π

2·4·6···(p−2)
3·5·7···(p−1) for even p > 2

(4)

is a first-order condition estimator; that is, the probability of a relative error in the
estimate is inversely proportional to the size of the error. This is because the expected
value of the condition estimator

ν ≡ |vT z|
ωp

is equal to the 2-norm of v

E(ν) = ‖v‖2,
and for γ > 1

Pr(‖v‖2/γ ≤ ν ≤ γ‖v‖2) ≥ 1− 2

πγ
+ O

(
1

γ2

)
.
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In practice, the Wallis factor can be approximated accurately [16, section 6] by

ωp ≈
√

2

π(p− 1
2 )
.(5)

For linear least squares problems, the subject of this paper, it is important to
realize that we can avoid the approximation inherent in using the Newton quotient
by evaluating the Fréchet derivative directly and efficiently from the QR factors of
the data matrix (see (16)–(17)).

We can improve our estimator with more function evaluations. Suppose ν1, ν2, . . . , νk
∈ R are condition estimates corresponding to orthonormal vectors z1, z2, . . . , zk ∼
U(Sp−1). The original theoretical work on SCE by Kenney and Laub [16] discusses
how such a set of vectors might be obtained, for example, by a QR decomposition of
an arbitrary set of vectors w1, w2, . . . , wk with wi ∼ U(Sp−1). The expected value of
the norm of the projection of v onto the span of the vectors zi is

E

(√
|vT z1|2 + · · ·+ |vT zk|2

)
= E

(√
(ωpν1)2 + · · ·+ (ωpνk)2

)
=

ωp
ωk
‖v‖2,(6)

where ωp and ωk are defined in (4). We see from (6) that the subspace condition
estimator

ν(k) ≡ ωk
ωp

√
|vT z1|2 + · · ·+ |vT zk|2(7)

has expected value ‖v‖2. Thus, it is a kth-order condition estimator (see [16, sec-
tion 2]); that is, the probability of a relative error of size γ in the condition estimate
is proportional to γ−k. For example, for k = 3, the estimator ν(3) has probability
0.9989 of being within an order of magnitude of the true condition number ‖v‖2. Rel-
ative accuracy within an order of magnitude is usually sufficient for estimating the
local condition of a function. The averaged condition estimator

ζ(k) =
|vT z1|+ · · ·+ |vT zk|

k ωp
,(8)

which is the standard Monte Carlo method for finding the expected value (see [16,
section 1]), is also a kth-order condition estimator, and it can be computed somewhat
faster than the subspace estimator ν(k) (see section 5). For the averaged condition
estimator, the vectors zi ∼ U(Sp−1) are selected independently but are not necessarily
mutually orthogonal.

To this point in the paper, the function g has been scalar valued; however, we
can easily extend SCE to vector- and matrix-valued functions by viewing g as a map
from R

p to R
q (using the operations vec and unvec to convert between matrices and

vectors), where each of the q entries of g is a scalar-valued function. Evaluating the
matrix function at a slightly perturbed argument yields a local condition estimate for
each component of the computed solution.

1.3. Review of linear least squares. The local approximation of a nonlinear
real-world problem by a linear model can give rise to discrepancies between predicted
and actual data. Measurement error and computational rounding error can also con-
tribute to the inexactness of the model. Thus, the linear model may be inconsistent.
It also may be overdetermined or underdetermined. Even in the case of a consistent
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linear model with a square system matrix, the matrix may be singular. Standard
nonsingular linear system condition estimation methods [6], [12], [14] cannot handle
these general situations; rather, we require linear least squares methods [3], [8], [10],
[18], [25].

1.3.1. Perturbed linear least squares. Suppose A ∈ R
m×n and b ∈ R

m. We
assume for the remainder of this paper that neither A nor b is zero. The linear least
squares problem is to find an x ∈ R

n such that Ax is as close as possible to b in
the 2-norm sense, i.e., x is a solution to minz‖Az − b‖2. In the unperturbed case,
the unique solution is given by (1). However, due to measurement inaccuracies and
finite-precision representation, A and b may be slightly perturbed from their true
values [22], [23], in which case we say that A and b are subject to input error (see [1,
section 4.1]). Rounding error may also occur during computation. We can treat both
input errors and rounding errors as perturbations of the true input data.

Perturbations may be additive or multiplicative. Multiplicative perturbations are
scaled componentwise by the original data entries, hence we also refer to them as
relative perturbations (also see [1, section 4.3.2]). Multiplicative perturbations are
the most common perturbations seen in practice, resulting naturally from both input
errors (except for zero entries) and rounding errors. Suppose A ∈ R

m×n
n and b ∈ R

m,
and define

Ã = A+ E and b̃ = b+ f,(9)

where E and f are perturbations. The perturbed data components take the form

ãij = aij + eij and b̃i = bi + fi.

In the case of relative perturbations, the entries of E and f are of the form

eij = aijεij and fi = biφi,(10)

respectively, leading to perturbed data components of the form

ãij = aij(1 + εij) and b̃i = bi(1 + φi).(11)

The goal of linear least squares in the perturbed case is to find x̃ = x+ y to minimize

‖Ãx̃− b̃‖2.(12)

The unique minimum 2-norm solution to the perturbed linear least squares problem is
x̃ = Ã+b̃. In (12) we have allowed perturbations in both A and b. This is reminiscent
of the total least squares problem in which there is no underlying assumption that
errors occur only in b. The total least squares problem is discussed extensively in [9]
and [26].

The rank of a matrix may change when the matrix is perturbed. We say that the
matrix E is an acute perturbation of the matrix A if rank(A+E) = rank(A). The set
of acute perturbations of A is the set on which the pseudoinverse is continuous about
A. Suppose that E is an acute perturbation of A. Let

µ = max

{‖E‖2
‖A‖2

,
‖f‖2
‖b‖2

}
,



STATISTICAL CONDITION ESTIMATION 913

and assume that µκ2(A) < 1. Thus, µ is a measure of the maximum relative pertur-
bation in the arguments to the linear least squares problem. Define

θ = sin−1

(‖b−Ax‖2
‖b‖2

)
,

where x solves the least squares problem exactly. The angle θ measures the amount
of misalignment between b and R(A). Note that if b is not orthogonal to R(A), then
x 6= 0. In this case, [10, section 5.3.8] shows that

‖y‖2
‖x‖2

≤ µ

cos(θ)

(
2κ2(A) + sin(θ)κ2(A)2

)
+ O(µ2),

where y = x̃− x is the difference between the perturbed and exact solutions.
Thus, if b is well aligned with R(A), then the bound on the condition of the

linear least squares solution is proportional to κ2(A), while if b is not well aligned
with R(A), the bound is proportional to the square of κ2(A) divided by the cosine
of θ. Note that if b is nearly orthogonal to R(A), then the bound may be extremely
high. This echoes the result in (2).

1.3.2. The Fréchet derivative and linear least squares. Suppose that A ∈
R
m×n and b ∈ R

m. Perturbing [A, b] to [A + δE, b + δf ] in the normal equations
ATAx = AT b, where δ ∈ R and [E, f ] has Frobenius norm equal to one, we get the
normal equations corresponding to the perturbed linear least squares problem

(A+ δE)T (A+ δE)(x+ δyδ) = (A+ δE)T (b+ δf).(13)

Express the solution to the linear least squares problem as a function of [A, b]

x = g([A, b]) = A+b,(14)

and let y = Dg([A, b]; [E, f ]) be the Fréchet derivative of (14) with respect to [A, b]
evaluated in the direction [E, f ]. After some algebraic manipulation of (13) and taking
the limit as δ → 0, we find that y is a solution to the nonnegative definite linear system
(see also [10, section 5.3.8] and [13, Theorem 4.2])

ATAy = AT (f − Ex) + ET (b−Ax).

For nonsingular linear systems in which Ax = b, this reduces to the Fréchet derivative
presented in [17, section 2]. If A has full column rank and we have its QR factors

QA =

[
Q1

Q2

]
, A =

[
R
0

]
,(15)

then

y = R−1
(
Q1(f − Ex) +R−TET (b−Ax)

)
(16)

= R−1
(
Q1(f − Ex) +R−TETQT

2 Q2b
)
.(17)

In practice, we cannot obtain the exact Fréchet derivative since we do not have the
exact solution x. However, we usually only need condition estimates to be within an
order of magnitude or so of the true condition of the problem, hence an approximate
solution x will give a sufficiently good approximation of the Fréchet derivative.
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Suppose now that E and f are random variables whose entries are i.i.d. N(0, 1),
but [E, f ] does not necessarily have Frobenius norm equal to one. We can rewrite
(16) as

y =
1

‖[E, f ]‖F
R−1

(
g − Sx+ ‖b−Ax‖2R−Th

)
,(18)

where

S = Q1E ∈ R
n×n,

g = Q1f ∈ R
n,(19)

h =
1

‖b−Ax‖2
ET (b−Ax) ∈ R

n .

Since the rows of Q1 and Q2 are orthonormal and the residual b−Ax lies in R(Q2),
the entries of S, g, and h are i.i.d. N(0, 1) (see [15, p. 135] or [20] for details). Hence,
S, g, and h can be produced directly rather than via the costly products of (19). Since
we no longer have E and f , we replace ‖[E, f ]‖F in (18) by its expected value [7]

E (‖[E, f ]‖F ) =

√
2 Γ

(
m(n+1)+1

2

)
Γ
(
m(n+1)

2

) ≈
√
m(n+ 1).

Fréchet derivative information in the general case of non-full-rank A is more
problematic. The easily derived identity (e.g., see [25])

(A+ F )
+ −A+ ≡ −(A+ F )

+
FA+ + (A+ F )

+
(A+ F )

+T
FT (I −AA+)

+ (I − (A+ F )
+
(A+ F ))FTA+TA+

can be applied to derive an expression for (A+ δE)
+
(b+ δf)−A+b with notation as

in the beginning of this section. However, there are two principal difficulties. The first
is the need to compute or estimate (A+ δE)

+
, which cannot be determined directly

or efficiently from an already computed QR factorization of A. The second and more
important reason is that the pseudoinverse is, in general, a discontinuous function of
its argument. Specifically, it is easily shown that if rank(A+ δE) > rank(A), and this
is the generic situation if A is rank deficient, then

‖(A+ δE)
+ −A+‖2 ≥

1

δ
.

Thus, we shall confine our attention in this paper to the important practical case
where A ∈ R

m×n
n .

2. SCE for full column rank linear least squares. We now combine the
results of section 1.2 and (18) to obtain an SCE-based method for estimating the
condition of the solutions to full-column-rank linear least squares problems. Inputs
to the method are the matrix A ∈ R

m×n
n and the vector b ∈ R

m, and the output is
the relative condition vector κrel ∈ R

n, which is an estimate of the relative sensitivity
of each entry of the computed solution vector x. The method requires the QR factors
of A, where Q ∈ R

m×m is orthogonal and R ∈ R
n×n is upper triangular. Generally,

these will have been calculated during the solution of the linear least squares problem.
The perturbations Sj , gj , and hj in the method correspond to S, g, and h of (18).
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The integer k ≥ 1 refers to the number of perturbations of input data. Note that
when k = 1, there is no need to orthonormalize the set of vectors in Step 1 of the
method.

Algorithm 1 (subspace condition estimation for linear least squares).
1. Generate (S1, g1, h1), (S2, g2, h2), . . . , (Sk, gk, hk) with entries in N(0, 1). For

j = 1, 2, . . . , k, let ξj = ‖[Sj , gj , hj ]‖F . Orthonormalize the set of vec-

tors {vec([Sj , gj , hj ]) : j = 1, 2, . . . , k} to get the set {zj ∈ R
n(n+2) : j =

1, 2, . . . , k}, e.g., using QR factorization. Then for each j, let [Sj , gj , hj ] =
ξj unvec(zj).

2. Let p = m(n+ 1). Approximate ωk and ωp using (5).
3. For j = 1, 2, . . . , k, calculate uj = R−1

(
gj − Sjx+ ‖b−Ax‖2R−Thj

)
. Using

the approximations for ωk and ωp, calculate the absolute condition vector

κabs =
ωk

ωp
√
p

∣∣∣|u1|2 + |u2|2 + · · ·+ |uk|2
∣∣∣1/2.

4. Let the relative condition vector κrel be the vector κabs divided componentwise
by x, leaving entries of κabs corresponding to zero entries of x unchanged.

A similar method based on the averaged condition estimator of (8) can also be
obtained. With such a method, the orthonormalization in Step 1 can be avoided.

Consider the SCE approach on Example 1. Algorithm 1 readily detects the differ-
ences in sensitivity of each of the components of the solution vector x. Recall that the
first entry of the computed solution vector x is much more accurate than the second
entry. Denote the relative condition vector obtained from applying the SCE method
to data [A, b] with k perturbations by κrel,k([A, b]). Then

κrel,1([A, b]) ≈
[

6× 107

1× 1024

]
,

κrel,2([A, b]) ≈
[

9× 107

2× 1024

]
,

κrel,8([A, b]) ≈
[

7× 107

1× 1024

]
.

An averaged condition estimator-based method applied to the same data yields

κrel,1([A, b]) ≈
[

4× 107

8× 1023

]
,

κrel,2([A, b]) ≈
[

8× 107

2× 1024

]
,

κrel,8([A, b]) ≈
[

1× 108

2× 1024

]
.

SCE clearly reveals the relative ill conditioning in the second component of the
solution vector compared to the first component. We see this even in the k = 1 case. In
fact, several perturbations are not necessary to get a good condition estimate; one or
two perturbations are usually sufficient. However, note that the norm of the condition
vector ‖κrel,2‖2 ≈ 1024 in this example is quite large compared to the Frobenius norm
condition number κF (A) ≈ 108. Each entry of κrel,2 is quite a bit larger than we
would have expected based on our analysis of Example 1 in section 1. However,
the discussion of section 1 assumed that errors were from rounding only, leading
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to multiplicative rather than additive perturbations. Unlike additive perturbations,
multiplicative perturbations have size relative to the size of the perturbed quantity.
The next section describes how SCE can be adapted to handle such perturbations.

3. SCE for relative perturbations. Relative perturbations were introduced
in section 1.3.1. The magnitudes of such perturbations are relative to the magnitudes
of the corresponding entries in the input arguments (see (10)). These perturbations
may arise from input error or from rounding error, and hence are the most common
perturbations encountered in practice. In fact, Lapack algorithms that provide com-
ponentwise error bounds [1, section 4.3.2] assume that perturbations of input data
are relative. It is often the case that we wish to know the sensitivity of a function to
relative perturbations of its arguments. For example, if errors in the input [A, b] to
the function

g([A, b]) = A+b

are due to rounding in a finite-word-length computer, then we would expect the
mantissas of the computer-represented entries of [A, b] to be perturbed by similar
amounts, on the order of the computer’s relative machine precision. This is true even
though the exponents of the entries of [A, b] may be quite different, leading to greatly
differing absolute errors. SCE is flexible enough to accurately gauge the sensitivity of
matrix functions subject to relative perturbations.

Let L be the function that multiplies each component of an m× (n+ 1) matrix,
call it M , by the corresponding component of [A, b] ∈ R

m×(n+1). The (i, j)th entry
of the componentwise product is

L(M)ij = [A, b]ij mij .

Define Z ∈ R
m×(n+1) to be the matrix of all ones. Then (compare (10) and (11))

L(Z + [E, f ]) = L(Z) + L([E, f ])(20)

= [A, b] + L([E, f ]).(21)

We see from (20)–(21) that L converts a general perturbation of Z into a relative
perturbation of [A, b]. Therefore, to obtain the sensitivity of the solution with respect
to relative perturbations, we simply evaluate the Fréchet derivative of

g([A, b]) = g(L(Z))

with respect to Z in the direction [E, f ], which is

Dg(Z; [E, f ]) = Dg(L(Z)) DL(Z; [E, f ])

= Dg([A, b])L([E, f ])

= Dg([A, b];L([E, f ]))

since L is linear. Thus, to estimate the condition of the linear least squares solution
when perturbations have relative magnitudes, we first generate the perturbations E
and f and multiply them componentwise by the entries of A and b, respectively. Then
we proceed as for general perturbations.

From section 1.2, the above discussion, and (16) we obtain an SCE-based method
for estimating the condition of solutions to linear least squares problems with relative
perturbations. Inputs to the method are A ∈ R

m×n
n and b ∈ R

m, and the output
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is the relative condition vector κrel, an estimate of the relative sensitivity of each
entry of the solution vector x ∈ R

n. It is assumed that perturbations Ej and fj have
entrywise magnitudes relative to the magnitudes of A and b. The method requires the
QR factors of A that are assumed to have been calculated during the solution of the
linear least squares problem. The integer k ≥ 1 refers to the number of perturbations
of input data (k = 1 or 2 generally being adequate in practice).

Algorithm 2 (subspace condition estimation for relative perturbations).
1. Generate (E1, f1), (E2, f2), . . . , (Ek, fk) with entries in N(0, 1) and orthonor-

malize them (Ej ∈ R
m×n, fj ∈ R

m).
2. For j = 1, 2, . . . , k, set [Ej , fj ] equal to the componentwise product of [A, b]

with [Ej , fj ].
3. Let p = m(n+ 1). Approximate ωk and ωp using (5).
4. For j = 1, 2, . . . , k, calculate uj = R−1

(
Q1(fj − Ejx) +R−TET

j (b−Ax)
)
.

Using the approximations for ωp and ωk, calculate the absolute condition
vector

κabs =
ωk
ωp

∣∣∣|u1|2 + |u2|2 + · · ·+ |uk|2
∣∣∣1/2 .

5. Let the relative condition vector κrel be the vector κabs divided componentwise
by x, leaving entries of κabs corresponding to zero entries of x unchanged.

Applying Algorithm 2 to A and b of Example 1, we find that

κrel,1([A, b]) ≈
[

2
7× 1015

]
,

κrel,2([A, b]) ≈
[

0.2
1× 1016

]
,

κrel,9([A, b]) ≈
[

1
2× 1016

]
.

These results agree with the discussion of Example 1 in section 1.
Applying Algorithm 2 to A and b of Example 1, we find that

κrel,1([A, b]) ≈
[

1
1

]
,

κrel,2([A, b]) ≈
[

1
2

]
,

κrel,9([A, b]) ≈
[

2
2

]
.

SCE clearly reveals the insensitivity of the linear least squares solution of Example
1 to relative perturbations when b is well aligned with R(A). However, applying
Algorithm 2 to A and c of Example 2, we find that

κrel,1([A, c]) ≈
[

2× 1016

8× 1015

]
,

κrel,2([A, c]) ≈
[

6× 1015

3× 1015

]
,

κrel,9([A, c]) ≈
[

1× 1016

6× 1015

]
.

In this case c is not well aligned with R(A), and the SCE method reveals that the
entrywise condition numbers of this least squares problem are on the order of κ2

2(A).
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4. SCE for structured perturbations. Perturbations of the input data to a
linear least squares problem may be restricted to a specific structure. For example,
they may be constrained by physical properties of the system being modeled or by the
mathematical form of the modeling matrices. Perturbation structure may also arise
as a consequence of the method used to obtain the solution. For example, the solution
of an upper triangular system by backsolving does not involve the lower triangular
zero entries of the data matrix; hence, perturbing these entries is not necessary, and
may lead to an inaccurate sensitivity estimate.

Frequently, we wish to estimate the sensitivity of matrix functions when only a
restricted class of perturbations is allowed (see [13, section 2.1] for several references).
For example (see section 6.1), in linear regression one column of the data matrix
may correspond to a constant term and is not subject to perturbations. If our data
matrix is the incidence matrix for an electrical circuit, perturbations will not affect
the numerous zero entries of the matrix, and the nonzero entries will be perturbed
symmetrically. SCE can handle these and other forms of perturbation easily.

Suppose the augmented matrix [A, b] of a linear least squares problem is generated
from a vector z ∈ R

p by an affine function F : R
p → R

m×(n+1)

F (z) = L(z) +K = [A, b],

where L is a linear function and K is a constant matrix. We can express the linear
least squares function as

g([A, b]) = g(F (z)).(22)

For example, suppose our linear least squares data consist of a truncated symmetric
Toeplitz matrix T ∈ R

4×3 and a vector v ∈ R
4, whose first two entries we assume will

not be perturbed:

[T |v] =




t1 t2 t3 k1

t2 t1 t2 k2

t3 t2 t1 v3

t4 t3 t2 v4


 .

Then we can represent the data by the functions

F (z) =




z1 z2 z3 k1

z2 z1 z2 k2

z3 z2 z1 z5
z4 z3 z2 z6




= L(z) +K =




z1 z2 z3 0
z2 z1 z2 0
z3 z2 z1 z5
z4 z3 z2 z6


+




0 0 0 k1

0 0 0 k2

0 0 0 0
0 0 0 0




evaluated at the point

z[T,v] = [t1, t2, t3, t4, v3, v4]
T .

The Fréchet derivative of (22) with respect to z evaluated in the direction z̃ is

Dg(z; z̃) = Dg(F (z)) DF (z; z̃)

= Dg([A, b])L(z̃)

= Dg([A, b];L(z̃))
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since F = L + K is affine. The SCE method respects the perturbation structure by
perturbing only the generating vector z by z̃, and then linearly mapping z̃ to the
correct matrix and vector shapes corresponding to structured perturbations E and f .

From section 1.2, the above discussion, and (16) we obtain an SCE-based method
for estimating the condition of solutions to linear least squares problems with struc-
tured perturbations. Inputs to this method are A ∈ R

m×n
n and b ∈ R

m, where [A, b]
has been obtained from an affine function F = L + K. The method outputs the
relative condition vector κrel, an estimate of the relative sensitivity of each entry of
the solution vector x ∈ R

n. It is assumed that perturbations zj ∈ R
p are constrained

by the linear structure map L. The method requires the QR factors of A that are
assumed to have been previously calculated during the solution of the linear least
squares problem. The random vectors zj ∈ R

p are mapped by L to the structured
perturbations Ej ∈ R

m×n and fj ∈ R
m. The integer k ≥ 1 refers to the number of

perturbations of input data (k = 1 or 2 generally being adequate in practice).
Algorithm 3 (subspace condition estimation for structured perturbations).
1. Generate z1, z2, . . . , zk with entries in N(0, 1) and orthonormalize them (zj ∈

R
p).

2. Approximate ωk and ωp using (5).
3. For j = 1, 2, . . . , k, set [Ej , fj ] = L(zj).
4. For j = 1, 2, . . . , k, calculate uj = R−1

(
Q1(fj − Ejx) +R−TET

j (b−Ax)
)
.

Using the approximations for ωk and ωp, calculate the absolute condition
vector

κabs =
ωk
ωp

∣∣|u1|2 + |u2|2 + · · ·+ |uk|2
∣∣1/2 .

5. Let the relative condition vector κrel be the vector κabs divided componentwise
by x, leaving entries of κabs corresponding to zero entries of x unchanged.

When we apply Algorithm 3 to Example 3, we find that

κrel,1 ≈
[

0.7
0.9

]
,

κrel,2 ≈
[

0.9
3

]
,

κrel,6 ≈
[

0.8
2

]
.

SCE is able to respect the structure of the perturbations in this example, providing a
more realistic estimate of the sensitivity than the 2-norm condition number κ2(A) ≈
108. Example 3 might arise in a linear regression situation in which the sample times
are considered to be exact, for instance.

5. Comparison with existing algorithms. SCE applied to the full column
rank linear least squares problem requires about the same amount of computation
as other condition estimation methods. A Matlab implementation of Algorithm 1
written by the authors requires O(n2k2 + m) flops, where the data matrix is m × n
and k is the number of perturbations of the input data. An averaged condition
estimator-based algorithm requires O(n2k + m) flops. For most problems, k = 1 is
sufficient. The m term represents the cost of calculating the norm of the residual.
This quantity can be calculated during QR factorization. Standard methods that
estimate the sensitivity of the solution to the least squares problem [3], [8], [10], [18],
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[25] require O(n2) flops after QR factorization; however, for these methods to obtain
results as accurate as those provided by the SCE method, they also must calculate the
norm of the residual. If we know a priori that the 2-norm of b is equal to a constant β
and we accumulate Householder transformations on b during QR factorization (giving
us Qb), then we can calculate the norm of the residual in O(n) flops (see (15)) by

‖b−Ax‖2 =

√
β2 − ‖Q1b‖22.

The additional work required to obtain a condition estimate of the linear least
squares problem is small compared to the work to solve the linear least squares prob-
lem itself, which is on the order of mn2 flops if done by QR factorization. The ratios
of flops required to obtain condition estimates to flops required to solve the linear
least squares problem are

k2

m
≈ 1

m
for subspace SCE,

k

m
≈ 1

m
for averaged SCE,

1

m
for standard methods.

In the case of more general full-column-rank linear least squares problems of the form

min
X
‖AX −B‖2,(23)

where A ∈ R
m×n
n and B ∈ R

m×p, SCE algorithms can obtain condition estimates in
approximately order n2p flops, while the solution of the linear least squares problem
requires order mn2p flops; hence, the condition-estimate-to-solution flop ratio is again
about 1/m. Condition estimation of (23) is easily done by solving p independent
standard linear least squares problems, each corresponding to one column of X and
one column of B. The QR factors are obtained once and then reused for each column
of the solution and of the condition estimate.

6. Examples. The authors have applied SCE to examples from various sources.
Some of these examples are discussed below.

6.1. Linear regression. Suppose we collect data with a system that provides
a sample every microsecond ti starting at t1 = 10−6. Assume that we have obtained
the data bi = 12, 13, 18, 27 for i = 1, 2, 3, 4, respectively, which we believe have an
approximately affine relationship; that is, we want to determine the line b = αt + β
that most closely fits the data, where b is the vector comprised of the data samples
bi. Define

A =




t1 1
t2 1
t3 1
t4 1


 and x =

[
α
β

]
.

We want the minimum 2-norm solution to the linear least squares problem minx‖Ax−
b‖. The 2-norm condition number of A is κ2(A) ≈ 106; however, Matlab gives the
exact solution

x =

[
5× 106

5

]
.
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Realistically, we would expect no perturbation in the second column of A and only
small relative perturbations in the first column of A. Applying SCE for structured
and relative perturbations to [A, b], we get the relative condition vector

κrel([A, b]) ≈
[

2
4

]
,

indicating that this linear least squares problem is well conditioned despite a large
κ2(A).

6.2.  ×  Vandermonde. This example is a generalization of one from [13,
section 2]. Let A ∈ R

8×8 have entries aij = j2(i−1), let b = e1 ∈ R
8, and let c equal

the sum of the columns of A. Now κ2(A) ≈ 1013, but Algorithm 2 yields condition
estimates κrel([A, b]) and κrel([A, c]), whose largest entries are on the order of 105

and 108, respectively. In his discussion of the example in [13, section 2], Higham
observes that a normwise error bound can grossly overestimate the true sensitivity
of a solution when perturbations are restricted to be of a certain type. The example
clearly illustrates this.

6.3. Longley. The well-known Longley regression problem [2], [19] is quite ill
conditioned, with κ2(Longley) ≈ 109. Nevertheless, componentwise relative condition
estimation can tighten the upper bound on the sensitivity of the solution, as was
observed in [13, section 4]. Algorithm 2 yields the condition vector

κrel(Longley) ≈ 103
[

5 90 20 5 4 80 5
]T

for the Longley data. The last column of the Longley data matrix lists years in which
the row of data was obtained. Presumably, this column is not subject to input error,
nor is the first column, which corresponds to the linear regression constant. If we use
a combination of Algorithms 2 and 3 to reflect this perturbation structure, we obtain
an even tighter bound on componentwise condition

κrel(Longley) ≈ 10
[

7 200 30 8 5 200 7
]T

.

7. Conclusion. The general theory of SCE, a statistically based method of ob-
taining componentwise sensitivity for general matrix functions, is described in [16].
The method is based on perturbing the inputs to matrix functions and measuring the
resulting changes in the outputs. The application of SCE to nonsingular linear sys-
tems is examined in [17]. In this paper we have applied SCE to the full-column-rank
linear least squares problem min

x
‖Ax− b‖2, where A ∈ R

m×n
n and b ∈ R

m. Here,

SCE takes advantage of the availability of the explicit Fréchet derivative of the linear
least squares problem. Furthermore, taking advantage of the QR factors obtained
in the primary function evaluation allows us to avoid doing additional full function
evaluations, thus keeping computational costs for SCE to a level comparable with
conventional condition estimators. Moreover, SCE has several advantages over other
methods. Most importantly, it provides a full vector of condition numbers rather
than a single number, as in norm-based condition estimation approaches. Hence, it
has the ability to reveal component-specific sensitivities in the solution to a linear
least squares problem. SCE also considers all input data when forming its condition
estimates, not merely the data matrix A. Thus, more reliable results can be obtained
reflecting the relative alignment of the observation vector b with respect to the range
of A.
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The flexibility of SCE allows it to be adapted to problems with perturbations of
small relative magnitudes and perturbations obeying specific structural constraints,
thus providing condition numbers that more realistically measure the sensitivity of
such problems. A rigorous statistical theory exists for SCE that describes how likely its
condition estimate lies within a specified range of the true condition. The probability
of accuracy can be increased by doing additional perturbations of the input arguments.
Software for the SCE method, written in Matlab by the authors, has performed
successfully on a wide variety of linear least squares problems.

Acknowledgments. The authors thank Shivkumar Chandrasekaran, Thorkell
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Abstract. Starting from the existence of a Cp-basis for any Cp-family of subspaces having
constant dimension, we construct a Brunovsky basis of class Cp for a Cp-family of pairs of matrices
having constant Brunovsky type. We derive a global pole assignment theorem for such kinds of pairs.
In all the cases we assume that the manifold of parameters is contractible.

Key words. block-similarity, Brunovsky, pole assignment, principal bundles, families of sub-
spaces
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1. Introduction. There is an abundance of literature concerning parametrized
families of linear systems. “Most results attempt in essence to establish local-global
principles: does pointwise solvability imply the existence of nicely parametrized solu-
tion?” [17].

In particular, there is also a wealth of literature concerning the problems dealt
with in this paper—global reduction to the canonical form and global pole assignment.
Both problems have been studied widely for pointwise controllable families. One of the
aims of this paper is to present a generalization to families non-necessarily pointwise
controllable.

For a general introduction to families of linear systems, see, for example, [13].
Some problems that justify the study of families of systems are presented there, and
one tackles the classification of families (fine moduli spaces), the existence of global
canonical forms, and some others. In fact, [13] deals with a more general class of
families of linear systems in terms of bundles over the space of parameters, which
includes the parametrized ones.

An alternative generalization is the consideration of systems over rings—this is
to say, pairs of matrices with entries on a commutative ring. The particular case of
parametrized families arises when rings of functions defined in the space of parameters
are considered. See [15] and [2] for a general introduction, and [17] for a survey and
many references mainly centered on control and stabilization problems.

The Swan theorem connects these approaches to local-global problems by means
of the correspondence between vector bundles and projective modules.

Let us now see in more detail the problems explicitly studied in this paper. The
central one is Theorem 4.1 in section 5: the existence of a differentiable reduction
to the Brunovsky form (or equivalently, the existence of a differentiable Brunovsky
basis) for a differentiable family of pairs of matrices having constant Brunovsky type,
provided that the manifold of parameters is contractible.

For pointwise completely controllable families, the result is classical in the con-
tinuous case [2] or for polynomial rings [18]. It is also well known in the differentiable
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case and used in the literature without explicit reference (see, for example, [14], [17]).
On the other hand, the global reduction to the Jordan form for a family of square
matrices has been more recently studied by [4], [8], and [5].

However, the extension to the general case starting on the above “extreme” cases
(controllable, Jordan) does not seem trivial in spite of the global splitting in [13,
Section 11.3.1] because this is not a direct split.

In fact, this obstruction is not surprising because it appears in other problems
concerning parametrized families of systems. For example, the construction of a
versal deformation has been solved in [1] for square matrices and in [18] for pointwise
controllable pairs of matrices. But the general case does not derive from them (see
[6]).

Second, we study the global pole assignment of parametrized families, which has
been widely studied (see, for example, [17]), always under the hypothesis of pointwise
controllability. The problem is solved in [2] and [16] by means of algebro-geometric and
algebraic techniques, respectively, if provided constant controllability indices. Other
conditions are considered, for example, in [19] (constant rank ofB, ring controllability)
or in [12] (one-dimensional manifold of parameters).

Here the general result for non-necessarily pointwise controllable families (The-
orem 5.1, in section 5) is derived as an application of the previous one about global
reduction to Brunovsky form. By means of it, the proof in [9] of pole assignment for
a pair of matrices (non-necessarily controllable) can be immediately translated into a
differentiable family of pairs of matrices having constant Brunovsky type.

Going back to the central result about global reduction to the Brunovsky form,
our technique consists essentially of extending the construction in the constant case to
the parametrized one by means of Theorem 2.2, in section 2—the existence of global
differentiable bases for a differentiable family of subspaces having constant dimension,
parametrized over a contractible manifold.

A classical and fundamental reference for this basic tool in the continuous case
is [10]. In fact, it proves by means of the method of cocycles a generalization for
operator valued functions defined on a contractible manifold, provided it is compact.
In our case of matrix valued differentiable functions on a contractible manifold non-
necessarily compact, it is used, for example, in [13], and it is explicitly presented in
[20] (remark after Section 2.5).

For the continuous case, the key point is [11, Section 3.4.8] about the triviality
of bundles over contractible spaces. Then, the smooth case follows by means of
approximation theorems. Alternatively, we have checked that the proof of this key
point in [11] for the continuous case can be adapted to the differentiable one.

Notice that the hypothesis that the manifold of parameters must be contractible
is only used for Proposition A to be verified. Then, all the machinery works under
other conditions whenever Proposition A holds (for example, under the conditions of
[11, Section 8.1.2]).

This technique for extending the local case to the parametrized one is possible if
we have a geometrical description of the construction in the constant case (in terms
of kernels, supplementary subspaces, . . .). In this case, we use the description of a
Brunovsky basis obtained in [7] as a basis of the global space adapted to an increasing
chain of certain subspaces.

The minimum subspace of this chain corresponds to the uncontrollable subsystem,
whose Brunovsky bases are, in fact, Jordan bases. For this step, we remark that in
[5] the same technique has been used for the case of square matrices having constant
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Jordan type, by means of the usual description of Jordan bases as adapted to an
increasing chain of kernels.

Notice that this method does not need further references to algebro-geometric
or algebraic techniques, but only Proposition A and the standard machinery for the
constant case. As one of the referees has pointed out, this presentation seems more
accessible to engineers.

Moreover, our approach has some connections with that in [3]. There, the control
properties of a pair of matrices (A,B) are studied by means of the geometric proper-
ties of the curve γ : R −→ Grs,n, γ(τ) = Im (eAτB). Here, we do not consider a pair
(A,B), but a Cp-family of pairs (A(t), B(t)), t ∈M , having constant Brunovsky type.
Then, instead of a curve in Grs,n, we could consider a multiparametrized mapping
Γ : M × R −→ Grs,n, Γ(t, τ) = Im (EA(t)τB(τ)). It can be expected that some
control properties of the family should be related to the geometric properties of Γ.

In sections 2 and 3 we recall, respectively, the basic facts about differentiable
families of subspaces and about global similarity of square matrices which we will use
in the sequel. See [5] for more details. Section 4 is devoted to the proof of the main
Theorem 4.1. And section 5 contains the application to global pole assignment.

Throughout the paper K denotes R or C, (e1, . . . , en) the standard basis of Kn,
and Grk,n the set of k-dimensional subspaces of Kn. If v1, . . . , vs are vectors of Kn,
then [v1, . . . , vs] will denote the subspace spanned by them.

We write Mn×k(K) for the vector space of (n × k)-matrices with entries in K,
M∗

n×k the open subset formed by the matrices A ∈ Mn×k(K) having rank k (≤ n),
and Gl(n) the linear group of nonsingular matrices of Mn(K). If A ∈ Mn×m(K),
we also denote by A the linear map from Km to Kn defined by (x1, . . . , xm) −→
(x1, . . . , xm)At, where At is the transpose matrix of A. Id will denote the identity
mapping, and Idk the identity k-matrix.

By a differentiable manifold we mean a Cp-manifold, 1 ≤ p ≤ ∞. Throughout
the paper M will be a differentiable manifold. In the same way, by a differentiable
map between two of such manifolds, we mean a Cp-morphism.

2. Differentiable families of subspaces. In Grk,n the usual topology and
differentiable structure is considered. With them, Grk,n is a compact homogeneous
manifold. This topology is equivalent to the one induced by the gap metric [9]. A
proof of this equivalence is given in [5].

By a family of k-subspaces of Kn parametrized on M we mean a map L : M −→
Grk,n. If it is differentiable, we write L ∈ Cp(M,Grk,n). The existence of “differen-
tiable local basis” is a useful criterium for the differentiability of a family of subspaces.
It follows immediately from the local triviality of a bundle.

Proposition 2.1. Let M be a differentiable manifold, and L : M −→ Grk,n
a family of k-subspaces parametrized on M . Then, L is differentiable if and only
if: for every t0 ∈ M there is an open neighborhood Wt0 of t0 in M , and k maps
vi ∈ Cp(Wt0 ,K

n), 1 ≤ i ≤ k, such that {v1(t), . . . , vk(t)} is a basis of L(t), for all
t ∈Wt0 .

For example, if L ∈ Cp(M,Grk,n), then L⊥ ∈ Cp(M,Grn−k,n), where L⊥(t) =
L(t)⊥. Also, if A ∈ Cp(M,Mn×m(K)), with rank A(t) = k, for all t ∈ M , then Im
A ∈ Cp(M,Grk,n) and Ker A ∈ Cp(M,Grn−k,n).

Let us assume that M is contractible. As we have remarked in the introduction,
a basic tool in our technique is the existence of a “differentiable global basis”(in fact,
we will use the corollary).

Theorem 2.2 (see the introduction for the references). Let M be a contractible
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manifold, and L ∈ Cp(M,Grk,n) a differentiable family of k-subspaces parametrized
on M . Then there exist k maps vi ∈ Cp(M,Kn), 1 ≤ i ≤ k, such that {v1(t), . . . , vk(t)}
is a basis of L(t) for every t ∈M .

Corollary 2.3. Let M be a contractible manifold, and Li ∈ Cp(M,Grki,n),
1 ≤ i ≤ 2, such that L1(t) ⊂ L2(t), for all t ∈ M . Then there exist v1, . . . , vk ∈
Cp(M,Kn), k = k2 − k1, such that

L2(t) = L1(t)⊕ [v1(t), . . . , vk(t)] , for all t ∈M.

3. Global similarity of class Cp. As we have said in the introduction, the
first step in the proof of Theorem 4.1 about block-similarity of class Cp is the already
known analogous result concerning similarity. Let M be a differentiable manifold,
and A ∈ Cp(M,Mn(C)); that is to say, A(t) is a family of n-square complex matrices,
parametrized by t ∈ M , and of class Cp. The family A(t) is said to have constant
Jordan type if the number of distinct eigenvalues and the list of the sizes of the Jordan
blocks corresponding to different eigenvalues are independent of t.

Proposition 3.1. Let M be a simply connected manifold, and A ∈ Cp(M,Mn(C))
having constant Jordan type. Then:

(i) there exist λ1, . . . , λq ∈ Cp(M,C) such that λ1(t), . . . , λq(t) are the q distinct
eigenvalues of A(t), for every t ∈M ;

(ii) the respective algebraic multiplicities m1, . . . ,mq of these eigenvalues are con-
stant.

Theorem 3.2. Let M be a contractible manifold, and A ∈ Cp(M,Mn(C)) having
constant Jordan type. Then, there exists S ∈ Cp(M,Gl(n)) such that S(t)−1A(t)S(t)
is a Jordan matrix, for all t ∈M .

4. Global block-similarity of class Cp.

4.1. Brunovsky form. We recall some basic properties of the block-similarity
of pairs of matrices. Let us consider pairs of matrices (A B), where A ∈ Mn(C)
and B ∈Mn×m(C). Two of such pairs (A B) and (A′ B′) are called block-similar
if there are complex matrices S ∈ Gl(n), T ∈ Gl(m), and C ∈ Mm×n such that
A′ = S−1(A+BCS−1)S, B′ = S−1BT , or, equivalently,

(A′ B′) = S−1(A B)

(
S 0
C T

)
.

Every pair (A B) is block-similar to its so-called Brunovsky form:


N1 E1

N2 E2

. . . . . .
Nr Er

J 0


 ,

where k1 ≥ · · · ≥ kr, Ni is a nilpotent ki-matrix, Ei is the column (ki × 1)-matrix
transpose of (0 . . . 0 1), and J is a Jordan matrix. This canonical form is unique,
up to permutations of the Jordan blocks in J . In particular, r = rankB, and s ≡
k1 + . . .+ kr = rank (B AB . . . An−1B).

Numbers k1, . . . , kr are called the controllability indices of (A B). Although the
Jordan matrix J is not uniquely determined, its similarity invariants are well defined;
we will refer to them as the Jordan invariants of the pair (A B). In particular, the
eigenvalues of the pair (A B) are those of J .
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Two pairs are block-similar if and only if they have the same Brunovsky form.
Thus, the controllability indices and the Jordan invariants of the pair form a complete
family of invariants for the block-similarity.

Analogous considerations are valid for pairs of matrices of the form
(
A
B

)
. By

duality, both constructions are equivalent. In particular, the controllability indices

and the Jordan invariant of a pair (A B) coincide with those of its transpose
(
At

Bt

)
.

4.2. Brunovsky bases. We shall follow the method in [7] for the construction
of Brunovsky bases. We recall that, up to reordering, a Brunovsky basis of a pair(
A
B

)
is obtained there by successive extensions in the chain of subspaces

Yn = · · · = YN ⊂ YN−1 ⊂ YN−2 ⊂ · · · ⊂ Y2 ⊂ Y1 ⊂ Y0 ≡ C
n ⊂ Y−1 ≡ C

n+m

(the inclusions are strict) where

Yi = Ker




B
BA
. . .
BAi−1


 , 1 ≤ i ≤ n .

One verifies that A(YN ) ⊂ YN . And for 0 ≤ i ≤ N − 1, if Y i is any complementary
subspace to Yi+1 in Yi, this is to say Yi = Yi+1 ⊕ Y i, then: A is injective on Y i;
A(Y i) ⊂ Yi−1; A(Y i) ∩ Yi = {0}.

Moreover, in this description the controllability indices are characterized as the
conjugate partition of the one formed by the differences dimYi − dimYi+1, and the

Jordan invariants of the pair
(
A
B

)
are those of the endomorphism A| : YN −→ YN ,

defined as the restriction of A. In particular, k1 = N , r = n − dimY1, and s =
n− dimYN .

4.3. Constant Brunovsky type. Now let us consider families of pairs of ma-
trices. Let M be a differentiable manifold, and (A B) ∈ Cp(M,Mn×(n+m)(C)), that
is to say, (A(t) B(t)) is a family of pairs of matrices, where A ∈ Cp(M,Mn(C)) and
B ∈ Cp(M,Mn×m(C)). We say that the family (A(t) B(t)) has constant Brunovsky
type, if

(i) the controllability indices are constant,
(ii) the Jordan invariants have constant type.

Notice that, with regard to the description in section 4.2, it is equivalent to saying
that:

(i′) the dimensions of the subspaces Yi(t) are independent of t,
(ii′) the family of endomorphisms A(t)| : YN (t) −→ YN (t) has constant Jordan

type.

4.4. Global Brunovsky bases. For such a differentiable family (A(t) B(t))
having constant Brunovsky type, the question lies in the construction of a Brunovsky
basis depending differentiably on t ∈M , provided that M is contractible.

Theorem 4.1. Let Mbe a contractible manifold, and (A B)∈Cp(M,Mn×(n+m)(C))
a differentiable family of pairs of matrices having constant Brunovsky type. Then,
there exist S ∈ Cp(M,Gl(n)), T ∈ Cp(M,Gl(m)), and C ∈ Cp(M,Mm×n(C)) such
that

S(t)−1(A(t) B(t))

(
S(t) 0
C(t) T (t)

)
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is a Brunovsky matrix, for all t ∈M .
Proof. Our aim is to adapt to parametrized pairs the construction relative to a

constant pair (A B) sketched in section 4.2. In fact, as it was the case there, we

shall deal with pairs of the form
(
A(t)
B(t)

)
. In order to do so, we shall consider the chain

of subspaces

Yn(t) = · · · = YN (t) ⊂ YN−1(t) ⊂ · · · ⊂ Y1(t) ⊂ Y0(t) ≡ C
n ⊂ C

n+m,

where

Yi(t) = Ker




B(t)
B(t)A(t)
. . .
B(t)A(t)i−1


 , 1 ≤ i ≤ n.

Because of hypothesis (i′) and the examples after Proposition 2.1, each term in the
chain is a differentiable family of subspaces having constant dimension. The desired
basis shall be constructed by successive extensions in this chain. The key point is
the application of Theorem 3.2 in the first step and of Corollary 2.3 in the following
ones. First, let us see that there exists a differentiable Jordan basis of the family
of restrictions A(t)| : YN (t) −→ YN (t). Let w̄1(t), . . . , w̄n+m(t) be a differentiable
basis of Cn+m such that: [w̄s+1(t), . . . , w̄n(t)] = YN (t), [w̄1(t), . . . , w̄n(t)] = Cn, for
all t ∈ M (cf. Corollary 2.3). Because of A(t)(YN (t)) ⊂ YN (t) and B(t)(YN (t)) = 0

for all t ∈ M , if we apply this change of basis to
(
A(t)
B(t)

)
we obtain a matrix of the

form (
A11(t) 0

A21(t) A22(t)

B1(t) 0

)

where, for each t ∈ M , A22(t), is the matrix of the restriction A(t)| in the new basis
w̄s+1(t), . . . , w̄n(t). According to hypothesis (ii′), A(t) has constant Jordan type, so
that Theorem 3.2 can be applied. Hence, there exists a differentiable Jordan basis
ws+1(t), . . . , wn(t) of A(t)|, and the first step is finished.

Let us denote W (t) the differentiable basis ws+1(t), . . . , wn(t) of YN (t) obtained
above. Let us extend this basis successively. Corollary 2.3 ensures the existence of a
differentiable basis VN−1(t) such that

YN−1(t) = [W (t)]⊕ [VN−1(t)].

We have remarked in section 4.2 that map A(t) is injective on [VN−1(t)], and that
its image forms direct sum with YN−1(t) in YN−2(t). Then, again by virtue of Corol-
lary 2.3, there exists a differentiable basis VN−2(t) such that

YN−2(t) = YN−1(t)⊕ [A(t)(VN−1(t))]⊕ [VN−2(t)].

Following this way, the next step gives

YN−3(t) = YN−2(t)⊕ [A2(t)(VN−1(t))]⊕ [A(t)(VN−2(t))]⊕ [VN−3(t)].

and so on.
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4.5. Additional remarks.
(1) In fact, Proposition 3.1 can be also applied to A(t) in the previous proof.

Thus, in the conditions of Theorem 4.1
- there exist λ1, . . . , λq ∈ Cp(M,C) such that λ1(t), . . . , λq(t) are the distinct

eigenvalues of (A(t) B(t)), for every t ∈M ;
- the respective algebraic multiplicities m1, . . . ,mq of these eigenvalues are con-

stant.
(2) One has a similar result to the above theorem if we consider families of pairs

of matrices (A B) with real coefficients. The only difference is that the matrix J(t)
in its Brunovsky form (cf. 4.1) is a real Jordan matrix instead of a complex one.
Obviously, the corresponding matrices S(t), T (t), and C(t) are also real.

5. Global pole assignment of class Cp. We assume that M is a contractible
manifold, and (A B) ∈ Cp(M,Mn×(n+m)(R)), a differentiable family of pairs of
matrices having constant Brunovsky type. Then, s = k1 + · · ·+ kr is constant. Also
(cf. 4.5), there exist λ1, . . . , λq ∈ Cp(M,C) such that λ1(t), . . . , λq(t) are the distinct
eigenvalues of (A(t) B(t)), having constant multiplicities m1, . . . ,mq.

We say that a set of maps µi ∈ Cp(M,C), 1 ≤ i ≤ s, is closed under conjugation
if for each i there is j such that µi(t) = µj(t) for every t ∈M .

Theorem 5.1. Let M be a contractible manifold, (A B) ∈ Cp(M,Mn×(n+m)(R))
a differentiable family of pairs of matrices having constant Brunovsky type, λ1, . . . , λq ∈
Cp(M,C) giving the distinct eigenvalues of (A B), and m1, . . . ,mq their respective
algebraic multiplicities. If µi ∈ Cp(M,C), 1 ≤ i ≤ s, is a set of maps closed un-
der conjugation, then there exists a family of matrices K ∈ Cp(M,Mm×n(R)) such
that the eigenvalues of A(t)+B(t)K(t) are µ1(t), . . . , µs(t), λ1(t), . . . , λq(t), the latter
having multiplicities m1, . . . ,mq.

Proof. As we have said above, it is a simple adaptation, by means of Theorem 4.1,
of the proof in [9] relative to a constant pair. We enclose it for the convenience of the
reader.

From section 4 we know that there exists S ∈ Cp(M,Gl(n)), T ∈ Cp(M,Gl(m)),
C ∈ Cp(M,Mm×n(R)) such that

S(t)−1(A(t) B(t))

(
S(t) 0
C(t) T (t)

)

is a Brunovsky matrix for all t ∈ M . We denote by (Ā B̄) this Brunovsky family of
matrices; that is to say,

Ā(t) = S(t)−1(A(t)S(t) +B(t)C(t)),

B̄(t) = S(t)−1B(t)T (t)

We shall find a family K̄ ∈ Cp(M,Mm×n(R)) such that Ā(t) + B̄(t)K̄(t) has the de-
sired eigenvalues µ1(t), . . . , µs(t), λ1(t), . . . , λq(t). Then, if we takeK(t) = C(t)S(t)−1+
T (t)K̄(t)S(t)−1, the family A(t) + B(t)K(t) = S(t)(Ā(t) + B̄(t)K̄(t))S(t)−1 has the
same eigenvalues. Let us construct K̄(t). One has

(Ā(t) B̄(t)) =




N1 E1

. . .
. . .

Nr Er

J(t) 0
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(see 4.1). Let `j = k1 + · · ·+ kj , 1 ≤ j ≤ r, and cjq ∈ Cp(M,C) defined by

(ξ − µ`j−1+1(t)) . . . (ξ − µ`j (t)) = ξkj +

kj−1∑
q=0

cjq(t)ξ
q,

where ξ is a indeterminate. Then,

(ξ − µ1(t)) . . . (ξ − µs(t)) =
r∏

j=1


ξkj +

kj−1∑
q=0

cjq(t)ξ
q


 ,

and since {µ1, . . . , µs} is closed under conjugation we see that cjq are, in fact, real
maps.

Let K̄(t) the m× n matrix defined by K̄(t) = (K1(t) K2(t) . . . Kr(t) 0) where

Kj(t) =


 0

−c j0(t) . . . −c jkj−1(t)

0


 (mth row)

for 1 ≤ j ≤ r. Then it is easy to see that the n× n matrix Ā(t) + B̄(t)K̄(t) is of the
form 


C1(t)

. . .

Cr(t)
J(t)


 ,

where

Cj(t) =

(kj)


0 1 . . . 0
. . . . . . . . . . . .
0 . . . 0 1

−c j0(t) . . . . . . −c jkj−1(t)




Clearly, this matrix has the desired eigenvalues.

Acknowledgments. We are grateful to the referees for their careful revision and
their valuable suggestions.
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Abstract. This paper is concerned with the differential equation approximating the subspace
learning algorithm for extracting principal components. Two issues are fully resolved. First, all the
stable equilibria are found. Second, the global convergence rate is explicitly obtained. The whole
treatment is without the nonsingularity assumption on the covariance matrix.
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1. Introduction. As one of the most important principal component analysis
techniques, the subspace algorithm has been used for performing several different
learning tasks in the context of linear neural networks, see, e.g., [1, 2, 3, 4, 5]. The
implementation of this algorithm is fairly straightforward. From a system point of
view, the algorithm is simply a nonlinear system, where the input is a random signal
within some class and the output is a connection or synaptic weight matrix. Precisely,
the algorithm is described by the recursive equation

Wk+1 = Wk + γ(xk −Wkyk)yTk ,

yk = WT
k xk,

which is associated with and can be approximated in an average sense by the ordinary
differential equation (ODE)

Ẇ (t) = [I −W (t)WT (t)]CW (t),

obtained by Oja [3], where C is the covariance matrix of the input signal. Most
remarkably, such an algorithm, which is composed of the Hebbian rule and additional
feedback, is capable of extracting the main features of the input signal class.

The mathematical analysis of the subspace algorithm, which has proved to be
difficult due to the nonlinear complexity, can be traced back to Oja’s early work [6]
in the single neuron case. Later, in [7], Oja and Karhunen established a more precise
connection between the one-unit algorithm and the associated ODE. The validity of
the orthonormalization capability in the multineuron case was found by Oja [3] from
a simulation study. Theoretically, there has been considerable effort made in order
to gain insight into the subspace algorithm. For example, the approximation of the
subspace algorithm by the ODE was rigorously developed in detail by Hornik and
Kuan [8]. A local analysis of the associated ODE was given by Williams [1] and by
Krogh and Hertz [9]. A close form time-domain solution can be found in [10] and
an error function for the ODE in [11]. Recently, the global convergence analysis has
been completed by Yan, Helmke, and Moore [10], where all Oja’s conjectures are
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rigorously proved when the input covariance matrix is nonsingular. It is interesting
that the above ODE has the same form as the gradient flow of the generalized Rayleith
quotient on the Stiefel manifold of real orthogonal matrices. The global convergence
of such a flow with an initial condition restricted to being in the Stiefel manifold has
been studied in [12] using differential manifold techniques.

In this paper, we tackle some remaining theoretic issues surrounding the subspace
algorithm. Perhaps the stability issue is most important among them. Though it is
known that the associated ODE cannot have any asymptotically stable equilibrium
since no equilibrium is isolated, it is unclear whether there are any stable equilibria
and how to find them if there are any. The second important issue is related to the
quantitative performance of the subspace algorithm. Obviously, the performance is
best measured by the convergence rate, which has not been available so far. The
exponential convergence rate to be derived in the paper in terms of the eigenvalues of
the covariance matrix will also enable us to complete the global convergence analysis
without requiring the assumption that the input covariance matrix is nonsingular.

The layout of the paper is quite straightforward. Following some technical prepa-
rations in the next section, the global convergence analysis will first be carried out in
section 3. Then we shall discuss the extraction of dominant eigenspaces in section 4
and proceed to resolve the stability issue in section 5. Finally, conclusions are drawn
in section 6.

This introduction is ended with a list of some mathematical symbols and matrix
notation to be used.

• O (eαt) stands for any function f(t) with the property that e−αtf(t) is bounded
for t > 0.
• A ≥ B means that A−B is a nonnegative definite symmetric matrix.
• A1/2 — the nonnegative definite square root of A ≥ 0.
• Rn×m — the set of all n×m real matrices.
• exp(A) — the matrix exponential of A.
• ‖A‖ — the spectral norm, i.e., the maximum singular value of A.
• AT — the transpose of A.
• A† — the pseudoinverse of A.
• I — an identity matrix of appropriate dimensions.
• In — the n× n identity matrix.
• rangeA — the subspace spanned by the columns of A.
• kerA — the null subspace of A.

2. Preliminary results. In this section, we present some technical lemmas for
later use. The first lemma is given without proof.

Lemma 2.1. Given A,B ∈ Rn×n with A,B ≥ 0, and X ∈ Rm×n.
(i) If

XAiB = 0, ∀ i = 0, 1, . . . , n,

then

X(A+B)1/2 = XA1/2.

(ii) There holds ∥∥∥A1/2 −B1/2
∥∥∥ ≤ ‖A−B‖1/2 .
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Lemma 2.2. Let ∆ ∈ Rn×n be given with ∆ ≥ 0. Then for any X ∈ Rn×m there
holds ∥∥∥(I +XT∆−1X)−1 − [I −XT

(
XXT

)†
X]
∥∥∥ ≤ ∥∥X†∥∥2 ‖∆‖ .

Proof. See Appendix A.
The next two lemmas are crucial not only to our derivation of the exponential

convergence rate but also to the stability analysis.
Lemma 2.3. Let Xi ∈ Rmi×k and ∆i ∈ Rmi×mi with ∆i ≥ 0 for i = 1, 2.

Assume that there are two positive constants α1 and α2 such that

∆1 ≥ α1I ≥ α2I ≥ ∆2.

Then there holds∥∥∥∆1X1

[(
I +XT

1 ∆2
1X1 +XT

2 ∆2
2X2

)−1/2 − (I +XT
1 ∆2

1X1

)−1/2
]∥∥∥

≤ 2(α2/α1) ‖X2‖
∥∥∥X†1∥∥∥ .

Proof. See Appendix A.
Lemma 2.4. Let C1 ≥ 0 be a constant matrix with the minimum eigenvalue c1

and let c2 be a constant scalar. Assume that X2 6= 0. If c1 > c2 > 0, then for t > 0
there holds∥∥∥ exp(c2t)X2

{
I +XT

1 [exp(2C1t)− I]X1 + [exp(2c2t)− 1]XT
2 X2

}−1/2

−X2

[
S − SXT

1

(
X1SX

T
1

)†
X1S

]1/2 ∥∥∥
≤ ‖X2‖

(
1 +

∥∥X†∥∥2
+ β ‖X‖∥∥X†∥∥∥∥∥X†1∥∥∥) e−αt,

where

S =
(
XT

1 X1 +XT
2 X2

)†
,

α = min(c2, c1 − c2), β =

√
c1

c1 − c2 .

Proof. See Appendix A.

3. Global convergence. The global convergence of the subspace algorithm was
first discovered numerically by Oja [3] and was theoretically proved by Yan, Helmke,
and Moore [10] in the case where the input covariance matrix is nonsingular. The
objective of this section is twofold. First, it will be proved that the global convergence
remains true for the general case. Second, the convergence rate will be derived.

Recall that the subspace algorithm for learning principal subspaces is approxi-
mated by the ODE equation

Ẇ = (I −WWT )CW, W (0) = W0,(3.1)

where C ∈ Rn×n is the input covariance matrix and W0 ∈ Rn×k is the initial weight
matrix with k being the number of the neurons used in learning. It will prove useful
to have a singular value decomposition (SVD) of C

C = U diag c1In1
, c2In2

, . . . , cpInp , 0Inp+1
UT(3.2)
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with

U =
[
U1 U2 · · · Up Up+1

]
,(3.3)

where U is orthogonal, Ui ∈ Rn×ni , c1 > c2 > · · · cp > 0.
Now define the matrix

Θ
∆
= U


UT1 W0V1

UT2 W0V2

...
UTp+1W0Vp+1

(3.4)

with

Vi =

{(UTi Ui)† − (UTi Ui)† UTi−1

[
Ui−1

(UTi Ui)† UTi−1

]†
Ui−1

(UTi Ui)†}1/2

(3.5)

and

UTi =


0 i = 0,

WT
0

[
U1 U2 · · · Ui

]
1 ≤ i ≤ p,

I i = p+ 1.

(3.6)

As will be seen, the columns of the solution W (t) to (3.1) tend to span the same
subspace as the columns of the matrix Θ as t goes to infinity. Some interesting
properties regarding the above matrices are given below.

Lemma 3.1. Let Vi be defined in terms of W0 via (3.5)–(3.6) for i = 1, 2, . . . , p+1.
Then the following relations hold:

(i)

kerVi = rangeUTi−1 ⊕ kerUi,

(ii)

(UTi W0Vi)
T (UTi W0Vi) = ViV

†
i , i < p+ 1,

(iii)

ViVj = 0, i 6= j,

(iv)

UTi W0V
2
i W

T
0 Ui = I ⇐⇒ rankUi = ni + rankUi−1.

Proof. See Appendix A.
A key to our subsequent development is the following representation of the solu-

tion W (t).
Lemma 3.2 (see [10]). The solution W (t) to (3.1) obeys

W (t)WT (t) = exp(Ct)W0[Ik −WT
0 W0 +WT

0 exp(2Ct)W0]−1WT
0 exp(Ct)
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and

‖W (t)‖ ≤ max(1, ‖W0‖), ∀ t ≥ 0.

We are now in a position to present one of our main results concerning the expo-
nential convergence rate for (3.1).

Theorem 3.1. Let W (t) be the solution to the ODE (3.1) and define Θ as in
(3.4). Then there exists some constant orthogonal matrix Π ∈ Rk×k such that

‖W (t)−ΘΠ‖ = O
(
e−µt

)
,(3.7)

where µ > 0 is defined by

µ
∆
= min(cp, c1 − c2, c2 − c3, . . . , cp−1 − cp).

Moreover, X = ΘΘT satisfies the following relation:

CX = XC = XCX.(3.8)

Proof. Equation (3.8) is obvious upon noting that

CΘΘT = ΘΘTC = ΘΘTCΘΘT

= U


c1(UT1 W0)V 2

1 (UT1 W0)T · · · 0 0
...

. . .
...

...

0 · · · cp
(
UTp W0

)
V 2
p

(
UTp W0

)T
0

0 · · · 0 0

UT ,

which follows from (ii) and (iii) of Lemma 3.1. So, it suffices to prove (3.7). With

F (t)
∆
= exp(Ct)W0[Ik −WT

0 W0 +WT
0 exp(2Ct)W0]−1/2,

it is seen from Lemma 3.2 that F (t) is bounded with respect to t ≥ 0 and that
W (t)WT (t) = F (t)FT (t), which implies that there exists an orthogonal matrix Z(t)
such that

W (t) = F (t)Z(t), ∀ t ≥ 0.(3.9)

In addition, note that F (t) can be rewritten as

F (t) = U


ec1tUT1 W0

...

ecptUTp W0

UTp+1W0


[
I +

p∑
i=1

(
e2cit − 1

) (
UTi W0

)T
UTi W0

]−1/2

.(3.10)
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Now, it is inferred by Lemma 2.3 that for t > 0,∥∥∥∥∥ecjtUTj W0


[
I +

p∑
i=1

(
e2cit − 1

) (
UTi W0

)T
UTi W0

]−1/2

−
[
I +

j∑
i=1

(
e2cit − 1

) (
UTi W0

)T
UTi W0

]−1/2

∥∥∥∥∥

≤ 2
∥∥∥U†j ∥∥∥∥∥WT

0

[
Uj+1 · · · Up

]∥∥ ecj+1t − 1

ecjt − 1∥∥∥∥∥UTj W0


[
I +

p∑
i=1

(
e2cit − 1

) (
UTi W0

)T
UTi W0

]−1/2

−
[
I +

j∑
i=1

(
e2cit − 1

) (
UTi W0

)T
UTi W0

]−1/2

∥∥∥∥∥

≤ 2 ‖W0‖
∥∥∥U†j ∥∥∥ e−(cj−cj+1)t + 2e−cjt(3.11)

and by Lemma 2.4 that∥∥∥∥∥ecjtUTj W0

[
I +

j∑
i=1

(
e2cit − 1

) (
UTi W0

)T
UTi W0

]−1/2

− UTj W0Vj

∥∥∥∥∥
≤ ∥∥UTj W0

∥∥(1 +
∥∥∥U†j ∥∥∥2

+ β ‖Uj‖
∥∥∥U†j ∥∥∥∥∥∥U†j−1

∥∥∥) e−min(cj−1−cj , cj)t

(3.12)

with β =
√

cj−1

cj−1−cj . The combination of (3.11) and (3.12) results in

∥∥∥∥∥ecjtUTj W0

[
I +

p∑
i=1

(
e2cit − 1

) (
UTi W0

)T
UTi W0

]−1/2

− UTj W0Vj

∥∥∥∥∥
= O

(
e−min(cj−1−cj , cj−cj+1)t

)
, j = 1, . . . , p.

Meanwhile, from (ii) of Lemma 2.1 and Lemma 2.2 one has

(3.13) ∥∥∥∥UTp+1W0

[
I +

p∑
i=1

(
e2cit − 1

) (
UTi W0

)T
UTi W0

]−1/2

− UTp+1W0Vp+1

∥∥∥∥
≤ ‖W0‖

∥∥∥∥∥∥
[
I +

p∑
i=1

(
e2cit − 1

) (
UTi W0

)T
UTi W0

]−1

−
[
I − UTp

(UpUTp )† Up]
∥∥∥∥∥∥

1/2

≤ ‖W0‖
[∥∥U†p∥∥2 (

e2cpt − 1
)−1
]1/2

= O
(
e−cpt

)
.
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It is thus seen from (3.10) that

‖F (t)−Θ‖ = O
(
e−µt

)
.(3.14)

Due to (3.8), one has

(I −ΘΘT )CΘ = 0.

As a consequence, it follows from (3.9) and (3.14) that∥∥∥Ẇ (t)
∥∥∥ =

∥∥[I −W (t)WT (t)]CW (t)− (I −ΘΘT )CΘZ(t)
∥∥

≤∥∥[F (t)FT (t)−ΘΘT ]CW (t)
∥∥+

∥∥(I −ΘΘT )C[F (t)−Θ]
∥∥

=O
(
e−µt

)
.

Namely, there is some constant K > 0 such that∥∥∥Ẇ (t)
∥∥∥ ≤ Ke−µt.

With this, it is true that for t2 > t1 ≥ 0,

‖W (t2)−W (t1)‖ ≤
∫ t2

t1

∥∥∥Ẇ (t)
∥∥∥ dt ≤ ∫ t2

t1

Ke−µtdt =
K

µ

(
e−µt1 − e−µt2) ,

which clearly shows the existence of limt→∞W (t) by the Cauchy criterion. Denoting
this limit by W∞ and letting t2 go to infinity in the above gives rise to

‖W (t1)−W∞‖ ≤ K

µ
e−µt1 .

W∞ must be of the form ΘΠ for some orthogonal matrix Π due to

W∞WT
∞ = lim

t→∞F (t)FT (t) = ΘΘT .

The theorem is thus proved.
From now on, we call the limit of the solution W (t) as t→∞ the limiting solution

to (3.1). The following result directly follows from the foregoing theorem.
Corollary 3.1. Consider the ODE (3.1) with an arbitrarily given initial weight

matrix W0. Then there exists some constant orthogonal matrix Π ∈ Rk×k such that

lim
t→∞W

T (t)W (t) = ΠTΘTΘΠ,

where Θ is defined as in (3.4).
Remark 3.1. Note that the matrix Θ has a simpler form for a generic initial

point W0 when the covariance matrix C has distinct eigenvalues. In fact, all the Ui
are column vectors in this case. If W0 satisfies the rank condition

rankWT
0

[
U1 U2 · · · Uk

]
= k;(3.15)

then there holds

rangeUTi = Rk, ∀ i ≥ k,
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which implies by (i) of Lemma 3.1 that

UTi W0Vi = 0, ∀ i > k.

This leads to

Θ =
[
U1 U2 · · · Uk

]

UT1 W0V1

UT2 W0V2

...
UTk W0Vk.


Moreover, from (iii) and (iv) of Lemma 3.1 it can be further seen that ΘTΘ is an
identity matrix. As a consequence, it is concluded that WT (t)W (t) converges to the
identity matrix for any initial point W0 satisfying (3.15) in the case where C has
distinct eigenvalues.

4. Extraction of principal subspaces. Having established the global conver-
gence for the subspace equation, we turn to discuss generic properties of the limiting
solution associated with a given initial condition. In particular, we will examine when
the subspace algorithm can extract a dominant eigenspace for a generic initial weight
matrix. Throughout, W∞ will stand for the limiting solution to the ODE (3.1).

Definition 4.1. Let C be a covariance matrix with the SVD (3.2)–(3.3). The
subspace spanned by the columns of the matrix

[
U1 U2 · · · Ui

]
is called a domi-

nant eigenspace of C, where i is any integer with 1 ≤ i ≤ p+ 1.
Definition 4.2. Let a property P depend on a variable x in a real n-dimensional

Euclidean space. A subset of the space is called a proper variety if there exists a finite
system of polynomial equations in n-indeterminates, in which at least one polynomial
is nonzero, such that every element of the subset is a zero of the system. P is said to
be true for almost all x in the space if all the x for which P does not hold belong to a
proper variety of the space.

Our first result in this section states that both a given initial weight matrix and
the resulting limiting solution W∞ obey a series of rank conditions expressed in terms
of the eigenvectors of the covariance matrix. This result will be used to characterize
the set of initial weight matrices which lead to stable equilibria in the next section.

Theorem 4.1. Consider the ODE (3.1) with the initial condition W (0) = W0.
Then there holds

rankWT
∞
[
U1 U2 · · · Ui

]
= rankWT

0

[
U1 U2 · · · Ui

]
(4.1)

for i = 1, . . . , p.
Proof. First, it can be seen from (i) of Lemma 3.1 that

dim kerVi = dim rangeUTi−1 + dim kerUi,
which implies that

rankVi = rankUi − rankUi−1,(4.2)

where Vi and Ui are defined as before. Next, by appealing to Theorem 3.1 and (ii) of
Lemma 3.1 one obtains[

U1 U2 · · · Ui
]T
W∞WT

∞
[
U1 U2 · · · Ui

]
=
[
U1 U2 · · · Ui

]T
ΘΘT

[
U1 U2 · · · Ui

]
= block diag

{
V1V

†
1 , · · · , ViV †i

}
,
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which implies that

rankWT
∞
[
U1 U2 · · · Ui

]
=

i∑
j=1

rankVj .

Combining this with (4.2) immediately yields (4.1).
The following result indicates that the number of neurons employed in a network

may affect the capability of extracting a principal subspace of an input signal. To
ensure this capability, the number of neurons k must be such that the kth largest
eigenvalue of the covariance matrix is strictly greater than the (k + 1)th largest one.

Theorem 4.2. Consider the subspace equation (3.1) for the case of k neurons.
Let the input covariance matrix C have the eigenvalues

l1 ≥ l2 ≥ · · · ≥ ln
and W∞ be the limiting solution to (3.1).

(1) If lk > lk+1, the columns of W∞ span a k-dimensional dominant eigenspace
for almost all initial weight matrices W0 ∈ Rn×k.

(2) If lk = lk+1, the range of W∞ is a direct sum of a dominant eigenspace and
one nonempty proper subspace of the eigenspace corresponding to the eigenvalue lk for
almost all initial weight matrices W0 ∈ Rn×k.

Proof. As before, we adopt the SVD of C as in (3.2), where c1 > c2 > · · · > cp.
Then evidently, there holds lk = cr for some integer r with

1 ≤ r ≤ p.
Accordingly, it is true that

r−1∑
i=1

ni < k ≤
r∑
i=1

ni.

Now with the assumption that lk > lk+1, the number of columns of the matrix[
U1 U2 · · · Ur

]
(4.3)

must equal k. So the condition

rankWT
0

[
U1 U2 · · · Ur

]
= k(4.4)

holds for almost all W0 ∈ Rn×k. Moreover, under this condition, it follows from (i)
and (iv) of Lemma 3.1 that

UTi W0V
2
i W

T
0 Ui =

{
I, i = 1, . . . , r,

0, i = r + 1, . . . , p+ 1,

which implies that

W∞WT
∞ =

[
U1 U2 · · · Ur

] [
U1 U2 · · · Ur

]T
.

In particular, there holds

rangeW∞ = range
[
U1 U2 · · · Ur

]
.
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Therefore, (1) is proved. Next, we assume that lk = lk+1, in which case the number
of columns of the matrix in (4.3) is obviously greater than k, i.e.,

rank
[
U1 U2 · · · Ur

]
> k.(4.5)

If there holds

rankWT
0

[
U1 U2 · · · Ur−1

]
=

r−1∑
i=1

ni,(4.6)

rankWT
0

[
U1 U2 · · · Ur

]
= k,(4.7)

then it follows again from (i) and (iv) of Lemma 3.1 that

UTi W0V
2
i W

T
0 Ui =

{
I, i = 1, . . . , r − 1,

0, i = r + 1, . . . , p+ 1,

leading to

W∞WT
∞

=
[
U1 U2 · · · Ur−1 UrU

T
r W0Vr

] [
U1 U2 · · · Ur−1 UrU

T
r W0Vr

]T
.

It is thus deduced that

rangeW∞ = range
[
U1 U2 · · · Ur−1

]⊕ rangeUrU
T
r W0Vr.

Note that the range of UrU
T
r W0Vr cannot be equal to that of Ur due to (4.5) and

W∞ ∈ Rn×k. Moreover, it is not difficult to see from (i) of Lemma 3.1 that UTr W0Vr
cannot be zero unless

rangeWT
0 Ur ⊂ rangeWT

0

[
U1 U2 · · · Ur−1

]
,

which is impossible because of (4.7). In summary, the range W∞ is a direct sum of
the range of

[
U1 U2 · · · Ur−1

]
and a nonempty proper subspace of the range of Ur

under the two conditions (4.6) and (4.7). Since these two conditions hold for almost
all W0 ∈ Rn×k, (2) is concluded.

5. Stability. Concerning the stability of the subspace equation, there are two
known facts: one is that there exists no asymptotically stable equilibrium and the
other is that any equilibrium whose range is perpendicular to a dominant eigenspace
is unstable. The first fact is plain because no equilibrium is isolated while the second
one is intuitively clear by recalling that the solution to the equation tends to span
a dominant eigenspace for almost all initial points. In this section, it will be seen
that all the stable equilibria can be found and parameterized in a simple and explicit
way. In addition, we shall also identify the class of perturbations about an unstable
equilibrium, which do not lead the solution to deviate radically from the equilibrium.

Recall that the ODE associated with the subspace algorithm is given by

Ẇ = (I −WWT )CW.(5.1)

Without loss of generality, it will be assumed throughout this section that the covari-
ance matrix C ∈ Rn×n is nonzero and that the weight matrix W is n× k with n ≥ k.
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Let E denote the set of all the equilibrium points of the associated ODE. In other
words, E is composed of all the solutions to the algebraic equation

(I −WWT )CW = 0,(5.2)

i.e.,

E = {W ∈ Rn×k; (I −WWT )CW = 0},
which is a closed set in Rn×k. A characterization of this set was given by Oja in [13]
when C is positive definite. To get an explicit parametrization of E in the general
case, we decompose as before the input covariance matrix C as

C = U diag c1In1
, c2In2

, . . . , cpInp , 0Inp+1
UT(5.3)

with

U =
[
U1 U2 · · · Up Up+1

]
,

where U is orthogonal, Ui ∈ Rn×ni , c1 > c2 > · · · cp > 0. Then by Theorem 3.1,
E can be parameterized in terms of an arbitrary W0 and arbitrary orthogonal Π as
follows:

E =

{
p+1∑
i=1

UiU
T
i W0ViΠ; W0 ∈ Rn×k and Π ∈ Rk×k, ΠTΠ = I

}
,

where Vi is defined via (3.5) and (3.6).
For the purpose of identifying all the stable equilibria out of E, introduce the two

complementing subsets of E:

Es
∆
={W ∈ E; (5.6) and (5.7) both hold:},(5.4)

Eu
∆
=E− Es(5.5)

with

rank
[
U1 · · · Ur−1

]T
W =

r−1∑
i=1

ni,(5.6)

rank
[
U1 · · · Ur

]T
W =k,(5.7)

where r is the unique index such that the kth largest eigenvalue of C equals cr.
Remark 5.1. Quite obviously, r satisfies the inequality

r−1∑
i=1

ni < k ≤
r∑
i=1

ni,(5.8)

where
∑r−1
i=1 ni will be understood to be zero if r = 1. Moreover, k is equal to

∑r
i=1 ni

if and only if the kth largest eigenvalue of C is strictly larger than the (k+1)th largest
one.

As will be seen shortly, the set Es actually contains all the stable equilibria of the
subspace equation. In view of this, we shall first try to simplify the representation of
Es. As a direct consequence of Theorem 4.1, the following lemma is obtained which
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gives a parametrization of the set Es by characterizing the set of initial points leading
to equilibria in Es.

Lemma 5.1. Consider the ODE (5.1). Then the set Es defined as in (5.4) is
given by

Es =

{
p+1∑
i=1

UiU
T
i W0ViΠ; W0 ∈ Rn×k satisfies (5.10)–(5.11), and(5.9)

Π ∈ Rk×k, ΠTΠ = I

}
with

rank
[
U1 · · · Ur−1

]T
W0 =

r−1∑
i=1

ni,(5.10)

rank
[
U1 · · · Ur

]T
W0 =k.(5.11)

Alternatively and perhaps more elegantly, the set Es can be explicitly parameter-
ized in terms of two independent orthogonal matrices without reference to the initial
point W0.

Theorem 5.1. Let r be the unique index such that cr is the kth largest eigenvalue
of C and define the set Es as in (5.4). If r < p+ 1, then

(5.12) Es =
{[
U1 · · · Ur−1 UrΛ

]
Π;

Λ ∈ Rnr×(k−∑ r−1
i=1 ni), Π ∈ Rk×k, ΛTΛ = I, ΠTΠ = I

}
;

otherwise,

(5.13) Es =

{[
U1 · · · Ur−1 UrΛ

]
Π;

Λ ∈ Rnr×(k−∑ r−1
i=1 ni), Π ∈ Rk×k, rank Λ = k −

r−1∑
i=1

ni, ΠTΠ = I

}
.

Proof. First it can be directly verified that the algebraic equation (5.2) and the
two rank conditions (5.6)–(5.7) are satisfied by any matrix of the form[

U1 · · · Ur−1 UrΛ
]

Π

with

Λ ∈ Rnr×(k−∑ r−1
i=1 ni), Π ∈ Rk×k, rank Λ = k −

r−1∑
i=1

ni, ΠTΠ = I.

Thus, it is true that Es includes as a subset the set on the right side of (5.12) or
(5.13), depending on whether r < p+ 1.

To prove the converse inclusion, let We ∈ Es. Namely, We satisfies (5.2), (5.6),
and (5.7). It is apparent that if We is used as an initial point of the ODE (5.1), then
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the limiting solution W∞ as well as the solution W (t) will equal We. By Theorem 3.1,
there is some orthogonal matrix Π1 such that

We = U


UT1 WeV1

UT2 WeV2

...
UTp+1WeVp+1

Π1.

Since every row of UTi We with i > r is a linear combination of the rows of the matrix[
U1 U2 · · · Ur

]T
We,

which is of full column rank, it follows from (i) of Lemma 3.1 that UTi WeVi = 0 for
i > r, leading to

We =
[
U1 U2 · · · Ur

]

UT1 WeV1

UT2 WeV2

...
UTr WeVr

Π1.(5.14)

Since W = We satisfies (5.6), it follows from (iii) and (iv) of Lemma 3.1 that
UT1 WeV1

...
UTr−1WeVr−1

UTr WeVr




UT1 WeV1

...
UTr−1WeVr−1

UTr WeVr


T

=


I · · · 0 0
...

. . .
...

...
0 · · · I 0
0 · · · 0 UTr WeV

2
r W

T
e Ur



=


I · · · 0 0
...

. . .
...

...
0 · · · I 0
0 · · · 0 Λ



I · · · 0 0
...

. . .
...

...
0 · · · I 0
0 · · · 0 Λ


T

,

where Λ ∈ Rnr×l is of full column rank. Therefore, from (5.14) there exists an
orthogonal matrix Π such that

We =
[
U1 U2 · · · UrΛ

]
Π.

Moreover, the number of columns of Λ must equal k −∑r−1
i=1 ni because of

WT
e We = ΠT


In1 · · · 0 0
...

. . .
...

...
0 · · · Inr−1 0
0 · · · 0 ΛTΛ

Π

and

rankWT
e We = k.

The proof is completed by noting from (ii) of Lemma 3.1 that ΛTΛ = I if r <
p+ 1.
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Remark 5.2. In Theorem 5.1, r = p + 1 is equivalent to the fact that the kth
largest eigenvalue of C is zero, which is true if C is nonsingular.

Another important remark concerning topological properties of the set of equilib-
ria is in order.

Remark 5.3. Consider the case where the kth largest eigenvalue of C is nonzero.
It is quite obvious from the above theorem that Es is a compact set in Rn×k. On the
other hand, it is seen from the definition (5.4) that Es is an open subset of E. This
means that Eu is also a closed set in Rn×k since the equilibrium set E is a closed set.
As a result, E is divided into two disjoint nonempty closed sets Es and Eu with the
former being compact, which means that E is disconnected.

Before tackling the stability issue, we need one more technical lemma below, which
can be easily proved.

Lemma 5.2. Let A ∈ Rn×m. Then for any ε > 0, there exists δ > 0 such that∣∣∣∥∥∥(A+ ∆)
†
∥∥∥− ∥∥A†∥∥∣∣∣ < ε

provided

‖∆‖ < δ and rank(A+ ∆) = rankA.

Theorem 5.2. Let We ∈ Rn×k be an equilibrium of the ODE (5.1). For any
given number ε > 0, there exists a number δ > 0 such that the solution W (t) starting
with W (0) = We + ∆W satisfies

‖W (t)−We‖ < ε,

provided the perturbation ∆W obeys

‖∆W‖ < δ(5.15)

and

rank(We + ∆W )T
[
U1 · · · Ui

]
= rankWT

e

[
U1 · · · Ui

]
, i = 1, . . . , p+ 1.

(5.16)

Proof. Let W (t) be the solution of (5.1) with W (0) = We + ∆W and put

F (t)
∆
= exp(Ct)W (0)[Ik −W (0)TW (0) +W (0)T exp(2Ct)W (0)]−1/2.

Then by Lemma 3.2, there holds

W (t)WT (t) = F (t)FT (t), ∀ t ≥ 0.

By Lemma 5.2, there exist two constants δ1 > 0 and K1 > 0 such that∥∥∥∥{[U1 · · · Ui
]T

(We + ∆W )
}†∥∥∥∥ < K1, i = 1, . . . , p+ 1

whenever ∆W ∈ S(δ1), where S(δ) denotes the set of all the ∆W which satisfy
(5.15) and (5.16). Consequently, by examining the derivation of (3.14) with particular
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reference to (3.11), (3.12), and (3.13), it is seen that there is a constant K2 > 0 such
that

‖F (t)−Θ‖ ≤ K2e
−µt(5.17)

whenever ∆W ∈ S(δ1), where µ > 0 and Θ are defined as in Theorem 3.1. This in
turn implies the existence of a constant K3 > 0 such that∥∥[I −W (t)WT (t)]CW (t)

∥∥ ≤ K3e
−µt

whenever ∆W ∈ S(δ1). In this way, it is deduced that there exists T > 0 such that∥∥∥∥∫ t2

t1

[I −W (t)WT (t)]CW (t) dt

∥∥∥∥ < ε/3(5.18)

whenever t2 > t1 ≥ T and ∆W ∈ S(δ1). Furthermore, since the solution W (t) is
uniformly continuous with respect to the initial point W (0) on any compact interval,
there exists 0 < δ < min(δ1, ε/3) such that for all t ∈ [0, T ],∥∥[I −W (t)WT (t)]CW (t)− (I −WeW

T
e )CWe

∥∥ < ε

2T
,

i.e., ∥∥[I −W (t)WT (t)]CW (t)
∥∥ < ε

3T

whenever ‖∆W‖ ∈ S(δ). This leads to∥∥∥∥∥
∫ T

0

[I −W (t)WT (t)]CW (t) dt

∥∥∥∥∥ < ε/3(5.19)

whenever ‖∆W‖ ∈ S(δ). Combining (5.18) and (5.19) gives∥∥∥∥∫ t

0

[I −W (t)WT (t)]CW (t) dt

∥∥∥∥ < 2ε/3, t ≥ 0,

whenever ‖∆W‖ ∈ S(δ). Therefore, it is concluded that

‖W (t)−We‖ =

∥∥∥∥∆W +

∫ t

0

[I −W (τ)WT (τ)]CW (τ) dτ

∥∥∥∥
≤ε/3 + 2ε/3 = ε, t ≥ 0,

provided ‖∆W‖ ∈ S(δ). The proof is completed.
Theorem 5.3. Let Es be defined as in (5.4). Assume that the kth largest eigen-

value of the covariance matrix C is nonzero. Then, We ∈ Rn×k is a stable equilibrium
of the ODE (5.1) if and only if We ∈ Es.

Proof. Assuming that We ∈ Eu, we shall prove that We is an unstable equilibrium
of the ODE (5.1). To do this, note that the distance of We from the closed set Es is
positive. That is, one has

ε0
∆
= inf{‖W −We‖ ; W ∈ Es} > 0.
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On the other hand, for any number δ > 0 there exists W0 ∈ Rn×k with ‖W0 −We‖ < δ
such that (5.6) and (5.7) are satisfied by W = W0. By Lemma 5.1, the limiting
solution W∞ of (5.1) resulting from the initial condition W (0) = W0 must be in Es,
which leads to ‖W∞ −We‖ ≥ ε0.
This means that We is not a stable equilibrium. Thus, the “only if” part is proved.

Now assume that We ∈ Es. Then (5.6) and (5.7) are satisfied with W = We. It
is not difficult to see that this implies the existence of a number δ > 0 such that the
rank conditions

rank
[
U1 · · · Ui

]T
W = rank

[
U1 · · · Ui

]T
We, i = 1, . . . , p+ 1(5.20)

hold simultaneously for all W with ‖W −We‖ < δ. By directly applying Theorem 5.2,
it is shown that We is a stable equilibrium.

The following result is an immediate consequence of Theorems 5.1 and 5.3 and
stresses the relevance of the number of used neurons to principal subspace analysis.

Corollary 5.1. The range of every stable equilibrium is a dominant eigenspace
if and only if the kth largest eigenvalue of C is strictly larger than the (k+1)th largest
one.

6. Conclusions. This paper has studied the differential equation approximating
Oja’s subspace algorithm. A number of deep results have been obtained. The stability
results are probably most important among them. More specifically, we have derived
an explicit global exponential convergence rate for the equation in terms of the positive
eigenvalues of the covariance matrix. The larger the positive eigenvalues and the
deviations between any two of them, the greater the convergence rate. Given a generic
starting point, the range of the limiting solution to the subspace equation is either a
dominant eigenspace or a direct sum of a dominant eigenspace and a proper nonzero
subspace of an eigenspace, depending on whether the kth largest eigenvalue is greater
than the (k + 1)th largest one, where k is the number of neurons used. Finally, all
the stable equilibria have been found and parameterized in an explicit way. The
solution to the subspace equation has been shown to converge to a stable equilibrium
for almost all starting points.

Appendix.
Proof of Lemma 2.2. Let a singular value decomposition of X be

X = U

[
D 0
0 0

]
V T , U =

[
U11 U12

U21 U22

]
,

where D is a positive definite diagonal matrix of the same dimension as U11. Then
one has

[I +XT∆−1X]−1 −
[
I −XT

(
XXT

)†
X
]

= XT
[(
XXT + ∆

)−1 − (XXT
)†]

X

= V

[
D 0
0 0

]([
D2 + Σ11 Σ12

ΣT12 Σ22

]−1

−
[
D−2 0

0 0

])[
D 0
0 0

]
V T

= V

[
D
[(
D2 + Φ

)−1 −D−2
]
D 0

0 0

]
V T

= −V
[
D−1ΦD−1

(
I +D−1ΦD−1

)−1
0

0 0

]
V T ,(A.1)
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where

Φ
∆
=

{[
I 0

]
UT∆−1U

[
I
0

]}−1

.

Since

‖Φ‖ ≤ ‖∆‖ ,
it follows that∥∥∥[I +XT∆−1X]−1 −

[
I −XT

(
XXT

)†
X
]∥∥∥ ≤ ∥∥D−1

∥∥2 ‖∆‖ ,

which is desired due to
∥∥X†∥∥ =

∥∥D−1
∥∥.

Proof of Lemma 2.3. Set

X
∆
= I +XT

1 ∆2
1X1 +XT

2 ∆2
2X2 and Y

∆
= I + ∆1X1X

T
1 ∆1.

Then it is straightforward to check that

∆1X1X
−1/2 = Y −1∆1X1X

1/2 − Y −1∆1X1X
T
2 ∆2

2X2X
−1/2,(A.2)

∆1X1

(
I +XT

1 ∆2
1X1

)−1/2
= Y −1∆1X1

(
I +XT

1 ∆2
1X1

)1/2
.(A.3)

Using the identity

X1 = X1X
T
1 X1

(
XT

1 X1

)†
,

one obtains ∥∥Y −1∆1X1

∥∥ =
∥∥∥Y −1∆1X1X

T
1 ∆1∆−1

1 X1

(
XT

1 X1

)†∥∥∥
=
∥∥∥(I − Y −1)∆−1

1 X1

(
XT

1 X1

)†∥∥∥
≤
∥∥∥X†1∥∥∥ /α1.(A.4)

This leads to ∥∥∥Y −1∆1X1X
T
2 ∆2

2X2X
−1/2

∥∥∥
≤ ∥∥Y −1∆1X1

∥∥∥∥XT
2 ∆2

∥∥∥∥∥∆2X2X
−1/2

∥∥∥
≤
∥∥∥X†1∥∥∥ ‖X2‖α2/α1(A.5)

as ∆2X2X
−1XT

2 ∆2 ≤ I. On the other hand, note from (ii) of Lemma 2.1 that∥∥∥X1/2 − (I +XT
1 ∆2

1X1

)1/2∥∥∥ ≤∥∥XT
2 ∆2

2X2

∥∥1/2 ≤ ‖X2‖α2.

Thus, it follows from (A.2)–(A.5) that∥∥∥∆1X1

[
X−1/2 − (I +XT

1 ∆2
1X1

)−1/2
]∥∥∥

≤ ∥∥Y −1∆1X1

∥∥∥∥∥X1/2 − (I +XT
1 ∆2

1X1

)1/2∥∥∥+
∥∥∥Y −1∆1X1X

T
2 ∆2

2X2X
−1/2

∥∥∥
≤ 2

∥∥∥X†1∥∥∥ ‖X2‖α2/α1,
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which completes the proof.
Proof of Lemma 2.4. Let t > 0 be fixed. With

X =

[
X1

X2

]
and C =

[
C1 0
0 c2I

]
,

one has{
I +XT

1 [exp(2C1t)− I]X1 + [exp(2c2t)− 1]XT
2 X2

}−1

=
[
I +XT (exp(2Ct)− I)X

]−1

= I −XT
[
XXT + (exp(2Ct)− I)−1

]−1
X

= XT
{(
XXT

)† − [XXT + (exp(2Ct)− I)−1
]−1
}
X + I −XT

(
XXT

)†
X.

Owing to the identity

X
[
I −XT

(
XXT

)†
X
]

= 0,

it follows from (i) of Lemma 2.1 that

X2

{
I +XT

1 [exp(2C1t)− I]X1 + [exp(2c2t)− 1]XT
2 X2

}−1/2

= X2

{
XT

{(
XXT

)† − [XXT + (exp(2Ct)− I)−1
]−1
}
X
}1/2

.(A.6)

Choose two appropriate orthogonal matrices U, V and have the following partitions

X = U

[
L 0
0 0

]
V T , U =

[
U11 U12

U21 U22

]
,

where L is a positive definite diagonal matrix and U11 has the same number of rows
as X1 with the number of columns equal to the rank of X. Then one obtains

XT
{(
XXT

)† − [XXT + (exp(2Ct)− I)−1
]−1
}
X

= V

[
L−1∆

(
L2 + ∆

)−1
L 0

0 0

]
V T ,(A.7)

where

∆
∆
=

{[
UT11 UT21

]
[exp(2Ct)− I]

[
U11

U21

]}−1

=
{
UT11[exp(2C1t)− I]U11 + [exp(2c2t)− 1]UT21U21

}−1

=
{
UT11[exp(2C1t)− exp(2c2t)I]U11 + [exp(2c2t)− 1]I

}−1

=
(
e2c2t − 1

)−1
[
I + UT11

exp(2C1t)− exp(2c2t)I

exp(2c2t)− 1
U11

]−1

.

As

exp(2C1t)− exp(2c2t)I

exp(2c2t)− 1
≥ c1 − c2

c1
e2(c1−c2)t



ANALYSIS OF PRINCIPAL COMPONENT ALGORITHMS 951

from Lemma 2.2 there results

(e2c2t − 1)∆−Q ≤ β2
∥∥∥U†11

∥∥∥2

e−2(c1−c2)t,(A.8)

where Q
∆
= [I − UT11

(
U11U

T
11

)†
U11] ≤ I. Now with (A.8) and∥∥∥(I + L−1∆L−1
)−1 − I

∥∥∥ =
∥∥∥(I + L∆−1L

)−1
∥∥∥

≤
∥∥∥[I +

(
e2c2t − 1

)
L2
]−1
∥∥∥

≤
(

1 +
e2c2t − 1

‖L−2‖
)−1

≤ (1 +
∥∥L−2

∥∥) e−2c2t,

we are led to∥∥∥e2c2tL−1∆L−1
(
I + L−1∆L−1

)−1 − L−1QL−1
∥∥∥

=
∥∥∥L−1

[
(e2c2t − 1)∆−Q]L−1

(
I + L−1∆L−1

)−1

+
(
L−1QL−1 − I) [(I + L−1∆L−1

)−1 − I
] ∥∥∥

≤ β2
∥∥L−1

∥∥2
∥∥∥U†11

∥∥∥2

e−2(c1−c2)t +
∥∥L−1QL−1 − I∥∥∥∥∥(I + L−1∆L−1

)−1 − I
∥∥∥

≤ β2
∥∥L−1

∥∥2
∥∥∥U†11

∥∥∥2

e−2(c1−c2)t +
(
1 +

∥∥L−2
∥∥)2 e−2c2t.(A.9)

Since

X1 =
[
U11 U12

] [L 0
0 0

]
V T ,(A.10)

it is evident that

X1X
T
1 = U11L

2UT11 ≤ ‖L‖2 U11U
T
11

and that X1X
T
1 has the same null space as U11U

T
11. As such, the minimum nonzero

singular value of U11 is no less than that of X1X
T
1 divided by ‖L‖, i.e.,∥∥∥U†11

∥∥∥ ≤ ‖L‖∥∥∥X†1∥∥∥ .
By noting that

‖L‖ = ‖X‖ and
∥∥L−1

∥∥ =
∥∥X†∥∥ ,

(A.9) results in ∥∥∥e2c2tL−1∆L−1
(
I + L−1∆L−1

)−1 − L−1QL−1
∥∥∥

≤
[
β2 ‖X‖2 ∥∥X†∥∥2

∥∥∥X†1∥∥∥2

+
(
1 +

∥∥L−2
∥∥)2] e−2αt.(A.11)

On the other hand, in view of (A.10) and

S = V

[
L−2 0

0 0

]
V T ,
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it is readily checked that

S − SXT
1

(
X1SX

T
1

)†
X1S = V

[
L−1QL−1 0

0 0

]
V T .

Consequently, it follows from (A.6), (A.7), and (A.11) that∥∥∥ec2tX2

{
I +XT

1 [exp(2C1t)− I]X1 + (e2c2t − 1)XT
2 X2

}−1/2

−X2

[
S − SXT

1

(
X1SX

T
1

)†
X1S

]1/2 ∥∥∥
=

∥∥∥∥∥X2V

([
e2c2tL−1∆L−1

(
I + L−1∆L−1

)−1
0

0 0

]1/2

−
[
L−1QL−1 0

0 0

]1/2
)
V T

∥∥∥∥∥
≤ ‖X2‖

∥∥∥e2c2tL−1∆L−1
(
I + L−1∆L−1

)−1 − L−1QL−1
∥∥∥1/2

≤ ‖X2‖
√
β2 ‖X‖2 ‖X†‖2

∥∥∥X†1∥∥∥2

+
(

1 + ‖X†‖2
)2

e−αt

≤ ‖X2‖
(
β ‖X‖∥∥X†∥∥∥∥∥X†1∥∥∥+ 1 +

∥∥X†∥∥2
)
e−αt

as required.
Proof of Lemma 3.1. From the identity

ker
[
I −XT

(
XXT

)†
X
]

= rangeXT ,(A.12)

it is true that V 2
i UTi−1 = 0. But, Vi is symmetric; hence, it follows that ViUTi−1 = 0,

i.e., rangeUTi−1 ⊂ kerVi. That kerUi ⊂ kerVi can be seen from

kerUi ⊂ ker
(UTi Ui)†

and

ker
(UTi Ui)† ⊂ kerV 2

i = kerVi.

So there results

range UTi−1 + kerUi ⊂ kerVi.(A.13)

To prove the reverse inclusion, let

x ∈ kerVi and y =
[(UTi Ui)†]1/2 x.

Then there holds

yT
[
I −

[(UTi Ui)†]1/2 UTi−1

[
Ui−1

(UTi Ui)† UTi−1

]†
Ui−1

[(UTi Ui)†]1/2] y = 0,

or equivalently,

y ∈ ker

{
I −

[(UTi Ui)†]1/2 UTi−1

[
Ui−1

(UTi Ui)† UTi−1

]†
Ui−1

[(UTi Ui)†]1/2} .
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Again from the identity (A.12), it is deduced that

y ∈ range
[(UTi Ui)†]1/2 UTi−1.

That is, there is some vector z such that

y =
[(UTi Ui)†]1/2 UTi−1z

leading to [(UTi Ui)†]1/2 (x− UTi−1z
)

= 0.

Thus, it is concluded that

x− UTi−1z ∈ kerUi.
Since x is arbitrary, it is verified that

kerVi ⊂ rangeUTi−1 + kerUi.
Combining this with (A.13) and noting that rangeUTi−1 ∩ kerUi = ∅ yields (i).

To prove (ii), note that for i < p+ 1,

(UTi W0)TUTi W0 = UTi Ui − UTi−1Ui−1, V 2
i UTi UiV 2

i = V 2
i ,

which, together with (i), implies that

Vi(U
T
i W0Vi)

T (UTi W0Vi)Vi = V 2
i

(UTi Ui − UTi−1Ui−1

)
V 2
i = V 2

i .

Pre- and postmultiplying the above by V †i gives rise to (ii).
Since Vi is symmetric, (iii) is equivalent to the fact that ViVj = 0 for i < j. Let

us assume that i and j are such that i < j. Then, all the rows of Ui are the rows of
Uj−1. Further, note that with

Q = I −
[(UTi Ui)†]1/2 UTi−1

[
Ui−1

(UTi Ui)† UTi−1

]†
Ui−1

[(UTi Ui)†]1/2 ,
Vi can be expressed as

Vi =

{[(UTi Ui)†]1/2Q [(UTi Ui)†]1/2}1/2

=
[(UTi Ui)†]1/2Q{[Q (UTi Ui)†Q]1/2}†Q [(UTi Ui)†]1/2 .(A.14)

Here, the fact that Q2 = Q has been used. On the other hand, it is clear from (i)
that UiV 2

j = 0, implying that (UTi Ui)† Vj = 0

due to (UTi Ui)† = UTi
[(UiUTi )†]2 Ui.
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In this way, it is seen that [
(UTi Ui)†]1/2Vj = 0. This together with (A.14) gives

ViVj = 0.
To prove (iv), assume that rankUi 6= ni + rankUi−1, which implies the exis-

tence of some nonzero x ∈ rangeUTi−1 ∩ rangeWT
0 Ui. By (i), one has x ∈ kerVi.

Combining this with x ∈ rangeWT
0 Ui yields that kerViW

T
0 Ui 6= ∅. This means that

UTi W0V
2
i W

T
0 Ui is not even of full rank. Now assume that rankUi = ni + rankUi−1,

which implies that UTi W0 is of full row rank. Let Ui−1 = PQ, where P is of full
column rank and Q is of full row rank. Then, there holds

Ui =

[ Ui−1

UTi W0

]
=

[
P 0
0 I

] [
Q

UTi W0

]
,

where the two factor matrices are of full column rank and full row rank, respectively.
Thus, it can be verified that

Ui
(UTi Ui)† UTi =

[
P
(
PTP

)−1
PT 0

0 I

]
.(A.15)

In particular, one has

UTi W0

(UTi Ui)†WT
0 Ui = I and UTi W0

(UTi Ui)† UTi−1 = 0.

As a consequence, it is concluded that

UTi W0V
2
i W

T
0 Ui

= UTi W0

{(UTi Ui)† − (UTi Ui)† UTi−1

[
Ui−1

(UTi Ui)† UTi−1

]†
Ui−1

(UTi Ui)†}WT
0 Ui

= I.
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Abstract. The classical perturbation theory for Hermitian matrix eigenvalue and singular value
problems provides bounds on the absolute differences between approximate eigenvalues (singular
values) and the true eigenvalues (singular values) of a matrix. These bounds may be bad news
for small eigenvalues (singular values), which thereby suffer worse relative uncertainty than large
ones. However, there are situations where even small eigenvalues are determined to high relative
accuracy by the data much more accurately than the classical perturbation theory would indicate.
In this paper, we study how eigenvalues of a Hermitian matrix A change when it is perturbed to

Ã = D∗AD, where D is close to a unitary matrix, and how singular values of a (nonsquare) matrix

B change when it is perturbed to B̃ = D∗1BD2, where D1 and D2 are nearly unitary. It is proved
that under these kinds of perturbations small eigenvalues (singular values) suffer relative changes no
worse than large eigenvalues (singular values). Many well-known perturbation theorems, including
the Hoffman–Wielandt and Weyl–Lidskii theorems, are extended.

Key words. multiplicative perturbation, relative perturbation theory, relative distance, eigen-
value, singular value, graded matrix

AMS subject classifications. 15A18, 15A42, 65F15, 65F35, 65G99

PII. S089547989629849X

1. Introduction. The classical perturbation theory for Hermitian matrix eigen-
value problems provides bounds on the absolute differences |λ − λ̃| between approx-

imate eigenvalues λ̃ and the true eigenvalues λ of a Hermitian matrix A. When λ̃
is computed using standard numerical software, the bounds on |λ − λ̃| are typically
only moderately bigger than ε‖A‖ [15, 33, 40], where ε is the rounding error threshold
characteristic of the computer’s arithmetic. These bounds are bad news for small
eigenvalues, which thereby suffer worse relative uncertainty than large ones.

Generally, the classical error bounds are best possible if perturbations are arbi-
trary. However, there are situations where perturbations have special structures and,
under these special perturbations, even small eigenvalues (singular values) are deter-
mined to high relative accuracy by the data much more accurately than the classical
perturbation theory would indicate. A relative perturbation theory is then called
for to exploit the situations for better bounds on the relative differences between
λ̃ and λ.
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The development of such a theory goes back to Kahan [20] and is becoming a
very active area of research [1, 6, 7, 8, 9, 11, 12, 14, 16, 10, 28, 34]. In this paper,
we develop a theory by a unifying treatment that sharpens some existing bounds and
covers many previously studied cases. We shall deal with perturbations that have
multiplicative structures; namely, perturbations to unperturbed matrices are realized
by multiplying the unperturbed ones with matrices that are nearly unitary. (To be
exact, our theorems only require those multiplying matrices to be nonsingular, but
our bounds are interesting only when they are close to some unitary matrices.) For

Hermitian eigenvalue problems, we shall assume that A is perturbed to Ã = D∗AD,
where D is nonsingular; and for singular value problems we shall consider that B
is perturbed to B̃ = D∗1BD2, where D1 and D2 are nonsingular. It is proved that
these kinds of perturbations introduce no bigger uncertainty to small eigenvalues
(in magnitude) and small singular values than they would to large ones. Although
special, these perturbations cover componentwise relative perturbations of entries of
symmetric tridiagonal matrices with zero diagonal [8, 20] and componentwise relative
perturbations of entries of bidiagonal and biacyclic matrices [1, 7, 8]. More realistically,
perturbations of graded nonnegative Hermitian matrices [9, 28] and perturbations of
graded matrices of singular value problems [9, 28] can be transformed to take forms
of multiplicative perturbations as will be seen from later proofs.

Additive perturbations are the most general in the sense that if A is perturbed to

Ã, the only possible known information is on some norm of ∆A
def
= Ã−A. Such per-

turbations, no matter how small, may not guarantee relative accuracy in eigenvalues
(singular values) of the matrix under consideration. For example, when A is singular,

Ã can be made nonsingular no matter how small a norm of ∆A is; thus some zero
eigenvalues are perturbed to nonzero ones and therefore lose their relative accuracy
completely. (Retaining any relative accuracy of a zero at all ends up not changing it.)

The rest of this paper is organized as follows. Section 2 defines two kinds of
relative distances %p (1 ≤ p ≤ ∞) and χ, and Appendices A and B present proofs of
some crucial properties of %p and χ needed in this paper. We devote two sections to
present and discuss our main theorems—section 3 for relative perturbation theorems
for Hermitian matrix eigenvalue problems and section 4 for relative perturbation the-
orems for singular value problems. Long proofs of our main theorems are postponed
to sections 5 and 6. Section 7 briefly discusses how our relative perturbation theo-
rems can be applied to generalized eigenvalue problems and generalized singular value
problems.

Notation. We shall adopt the following convention: capital letters denote unper-
turbed matrices and capital letters with tildes denote their perturbed matrices. For
example, X is perturbed to X̃. Throughout the paper, capital letters are for matrices,
lowercase Latin letters for column vectors or scalars, and lowercase Greek letters for
scalars. Also,

Cm×n: the set of m× n complex matrices, and Cm = Cm×1;
Rm×n: the set of m× n real matrices, and Rm = Rm×1;
Un: the set of n× n unitary matrices;

0m,n: the m× n zero matrix (we may simply write 0 instead);
In: the n× n identity matrix (we may simply write I instead);
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X∗: the conjugate transpose of a matrix X;
λ(X): the set of the eigenvalues of X, counted according to their alge-

braic multiplicities;
σ(X): the set of the singular values of X, counted according to their

algebraic multiplicities;
σmin(X): the smallest singular value of X ∈ Cm×n;
σmax(X): the largest singular value of X ∈ Cm×n;
‖X‖2: the spectral norm of X, i.e., σmax(X);

‖X‖F: the Frobenius norm of X, i.e.,
√∑

i, j |xij |2, where X = (xij).

2. Relative distances. Classically, the relative error in α̃ = α(1 + δ) as an
approximation to α is measured by

δ = relative error in α̃ =
α̃− α
α

.(2.1)

When |δ| ≤ ε, we say that the relative perturbation to α is at most ε (see, e.g.,
[8]). Such a measurement lacks mathematical properties upon which a nice relative
perturbation theory can be built; for example, it lacks symmetry between α and α̃
and thus it cannot be a metric. Nonetheless, it is good enough and is convenient to
use for measuring correct digits in numerical approximations.

Our new relative distances have better mathematical properties, such as sym-
metry in the arguments. Topologically they are all equivalent to the classical δ-
measurement defined by (2.1). The p-relative distance between α, α̃ ∈ C is defined
as

%p(α, α̃)
def
=

|α− α̃|
p
√|α|p + |α̃|p for 1 ≤ p ≤ ∞.(2.2)

We define, for convenience, 0/0
def
= 0. %∞ has been used by Deift et al. [6] to define

relative gaps. Another relative distance that is of interest to us is

χ(α, α̃)
def
=
|α− α̃|√|αα̃| .(2.3)

This χ-distance has been used by Barlow and Demmel [1] and Demmel and Veselić [9]
to define relative gaps between the spectra of two matrices.

Appendix B will show that %p (1 ≤ p ≤ ∞) is indeed a metric on R; see also
Li [24]. (We suspect that %p is a metric on C also, but we cannot give a proof at this
point.) Unfortunately χ violates the triangle inequality and thus cannot be a metric.
In fact, one can prove that χ(α, γ) > χ(α, β) +χ(β, γ) for α < β < γ; see Lemma 6.1.

We refer the reader to Li [24] for a detailed study of the two relative distances.
Here, only properties that are most relevant to our relative perturbation theory will
be presented, and those proofs that require little work and seem to be straightforward
are omitted. Complicated proofs will be given in Appendix A.

Proposition 2.1 (see [24]). Let α, α̃ ∈ R.
1. For 0 ≤ ε < 1, ∣∣∣∣ α̃α − 1

∣∣∣∣ ≤ ε⇒ %p(α, α̃) ≤ ε
p
√

1 + (1− ε)p ,(2.4) ∣∣∣∣ α̃α − 1

∣∣∣∣ ≤ ε⇒ χ(α, α̃) ≤ ε√
1− ε .(2.5)
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2. For 0 ≤ ε < 1,

%p(α, α̃) ≤ ε⇒ max

{∣∣∣∣ α̃α − 1

∣∣∣∣ , ∣∣∣αα̃ − 1
∣∣∣} ≤ 21/p ε

1− ε .(2.6)

For 0 ≤ ε < 2,

χ(α, α̃) ≤ ε⇒ max

{∣∣∣∣ α̃α − 1

∣∣∣∣ , ∣∣∣αα̃ − 1
∣∣∣} ≤ ( ε

2
+

√
1 +

ε2

4

)
ε.(2.7)

3. Asymptotically,

lim
α̃→α

%p(α, α̃)∣∣∣ α̃α − 1
∣∣∣ = 21/p and lim

α̃→α

χ(α, α̃)∣∣∣ α̃α − 1
∣∣∣ = 1.

Thus (2.4), (2.6), (2.5), and (2.7) are at least asymptotically sharp.
The following proposition establishes a relation between %p and χ.
Proposition 2.2 (see [24]). For α, α̃ ∈ C,

%p(α, α̃) ≤ 2−1/p χ(α, α̃),

and the equality holds if and only if |α| = |α̃|.
Next we ask what are the best one-one pairings between two sets of n real numbers?

Such a question will become important later in this paper when we try to pair the
eigenvalues or the singular values of one matrix to those of another.

Proposition 2.3 (see [24]). Let {α1, α2, . . . , αn} and {α̃1, α̃2, . . . , α̃n} be two
sets of n real numbers ordered in descending order, i.e.,

α1 ≥ α2 ≥ · · · ≥ αn, α̃1 ≥ α̃2 ≥ · · · ≥ α̃n.(2.8)

We have for p = 1,

max
1≤i≤n

%1(αi, α̃i) = min
τ

max
1≤i≤n

%1(αi, α̃τ(i)).

For p > 1, if in addition all αi’s and α̃j’s are nonnegative,

max
1≤i≤n

%p(αi, α̃i) = min
τ

max
1≤i≤n

%p(αi, α̃τ(i)).(2.9)

Both minimizations are taken over all permutations τ of {1, 2, . . . , n}.
Proofs of this proposition and Proposition 2.4 below are given in Appendix A.
Remark 2.1. Equation (2.9) of Proposition 2.3 may fail if not all the αi’s and

α̃j ’s are of the same sign. A counterexample is as follows: n = 2 and

α1 = 1 > α2 = −2 and α̃1 = 4 > α̃2 = 2.

Then for p > 1,

max {%p(α1, α̃1), %p(α2, α̃2)} = %p(α2, α̃2) = 21−1/p

>
6

p
√

2p + 4p
= %p(α2, α̃1) = max {%p(α1, α̃2), %p(α2, α̃1)} .
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Remark 2.2. Given two sets of αi’s and α̃j ’s ordered as in (2.8), generally,

n∑
i=1

[%p(αi, α̃i)]
2 6= min

τ

n∑
i=1

[
%p(αi, α̃τ(i))

]2
,(2.10)

even if all αi, α̃j > 0. Here is a counterexample: n = 2,

α̃1 > α1 = α̃1/2 > α̃2 > α2 > 0,

where α2 is sufficiently close to 0, and α̃2 is sufficiently close to α1 which is fixed.
Since, as α2 → 0+ and α̃2 → α−1 ,

[%p(α1, α̃2)]
2

+ [%p(α2, α̃1)]
2 → 1,

[%p(α1, α̃1)]
2

+ [%p(α2, α̃2)]
2 → 1

p
√

2p + 1
+ 1,

(2.10) must fail for some α̃1 > α1 = α̃1/2 > α̃2 > α2 > 0.

Proposition 2.4 (see [24]). Let {α1, . . . , αn} and {α̃1, . . . , α̃n} be two sets of n
positive numbers ordered as in (2.8). Then

max
1≤i≤n

χ(αi, α̃i) = min
τ

max
1≤i≤n

χ(αi, α̃τ(i)),(2.11)

n∑
i=1

[χ(αi, α̃i)]
2

= min
τ

n∑
i=1

[
χ(αi, α̃τ(i))

]2
,(2.12)

where the minimization is taken over all permutations τ of {1, 2, . . . , n}.
Remark 2.3. Both (2.11) and (2.12) of Proposition 2.4 may fail if the αi’s and

α̃j ’s are not all of the same sign. A counterexample for (2.11) is that n = 2 and

α1 = 1 > α2 = −1 and α̃1 = 2 > α̃2 =
1

4
,

for which

max {χ(α1, α̃1), χ(α2, α̃2)} = max
{

1/
√

2, 5/2
}

= 5/2

> 3/
√

2 = max
{

3/2, 3/
√

2
}

= max {χ(α1, α̃2), χ(α2, α̃1)} .

A counterexample for (2.12) is that n = 2 and

α1 = 1 > α2 = −2 and α̃1 = 2 > α̃2 = 1,

for which

[χ(α1, α̃1)]
2

+ [χ(α2, α̃2)]
2

=
(

1/
√

2
)2

+
(

3/
√

2
)2

= 5

> 4 = 02 +
(

4/
√

4
)2

= [χ(α1, α̃2)]
2

+ [χ(α2, α̃1)]
2
.
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3. Relative perturbation theorems for Hermitian matrix eigenvalue
problems. Throughout the section, A, Ã ∈ Cn×n are Hermitian and one is a per-
turbation of the other. Denote their eigenvalues by

λ(A) = {λ1, . . . , λn} and λ(Ã) = {λ̃1, . . . , λ̃n}(3.1)

ordered so that

λ1 ≥ λ2 ≥ · · · ≥ λn, λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n.(3.2)

Theorem 3.1. Let A and Ã = D∗AD be two n × n Hermitian matrices with
eigenvalues (3.1) ordered as in (3.2), where D is nonsingular. Then

1. there is a permutation τ of {1, 2, . . . , n} such that√√√√ n∑
i=1

[
%2(λi, λ̃τ(i))

]2
≤
√
‖I − Σd‖2F + ‖I − Σ−1

d ‖2F,(3.3)

where Σd is diagonal and its diagonal entries are D’s singular values.
2. if, in addition, A is nonnegative definite,1 then

max
1≤i≤n

χ(λi, λ̃i) ≤ ‖D∗ −D−1‖2,(3.4) √√√√ n∑
i=1

[
χ(λi, λ̃i)

]2
≤ ‖D∗ −D−1‖F.(3.5)

A proof of Theorem 3.1 will be given in section 5.
A corollary of (3.3) is

(3.3a)

√√√√ n∑
i=1

[
%2(λi, λ̃τ(i))

]2
≤
√
‖I −D‖2F + ‖I −D−1‖2F

by a well-known (absolute) perturbation theorem for singular values; see (4.7). On

the other hand, (3.3a) leads to (3.3) as well by considering U∗dAUd and V ∗d ÃVd =
Σd(U∗dAUd)Σd instead, where

D = UdΣdV
∗
d(3.6)

is D’s singular value decomposition (SVD) [15, p. 71]. It is also possible to relate the
right-hand sides of (3.4) and (3.5) to the singular values of D, since for every unitarily
invariant norm2 ||| · |||,

|||D∗ −D−1||| = |||Vd(Σd − Σ−1
d )U∗d ||| = |||Σd − Σ−1

d |||.
1Then Ã must be nonnegative definite as well.
2In this we follow Mirsky [30], Stewart and Sun [35], and Bhatia [3]. That a norm ||| · ||| is unitarily

invariant on Cm×n means that it also satisfies, besides the usual properties of any norm,
1. |||UY V ||| = |||Y |||, for any U ∈ Um, and V ∈ Un;
2. |||Y ||| = ‖Y ‖2, for any Y ∈ Cm×n with rank(Y ) = 1.

Two unitarily invariant norms most frequently used are the spectral norm ‖ · ‖2 and the Frobenius
norm ‖ · ‖F. Let ||| · ||| be a unitarily invariant norm on some matrix space. The following inequalities
[35, p. 80] will be employed later in this paper:

|||WY ||| ≤ ‖W‖2|||Y ||| and |||Y Z||| ≤ |||Y |||‖Z‖2.
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The earliest relative perturbation result for eigenvalue problems goes back to a
theorem due to Ostrowski [32] (see also [18, pp. 224–225]), though he did not interpret
his theorem in the way we do now. Ostrowski proved that

for two n×n Hermitian matrices A and Ã = D∗AD with eigenvalues (3.1) ordered
as in (3.2), where D is nonsingular, we have

σmin(D)2 · λi ≤ λ̃i ≤ σmax(D)2 · λi for ≤ i ≤ n.(3.7)

Inequalities (3.7) immediately imply a relative perturbation bound

max
1≤i≤n

|λ̃i − λi|
|λi| ≤ ‖I −D∗D‖2.

This result of Ostrowski’s is independent of (3.4). Both may be attainable for the
scalar case (n = 1) or for the case when A and D are diagonal. Our bounds (3.3) and
(3.5) are the first of their kind.

Roughly speaking, the classical perturbation theory for Hermitian matrix eigen-
value problems establishes one uniform bound for all differences |λi − λ̃i| regardless
of magnitudes of λi’s. In this regard, we have the following.

Let both A and Ã be Hermitian. (No special form of Ã is assumed.) Then for
any unitarily invariant norm ||| · |||,

|||diag(λ1 − λ̃1, . . . , λn − λ̃n)||| ≤ |||A− Ã|||.(3.8)

There is a long history associated with this inequality; see Bhatia [3] for details.
Theorem 3.1 extends (3.8) to the relative perturbation theory for ||| · ||| = ‖ · ‖2 and
‖ · ‖F. Two main differences between Theorem 3.1 and (3.8) are as follows.

1. Inequality (3.8) bounds the absolute differences |λi− λ̃i|. It is in fact the best
possible as far as arbitrary perturbations are concerned. However, it may
overestimate the differences |λj − λ̃j | too much for eigenvalues λj of much
smaller magnitudes than ‖A‖2 when perturbations have special structures

such as multiplicative perturbations, for which it is possible that |||A− Ã||| is

larger than |λj − λ̃j | by many orders of magnitudes while, on the other hand,
D∗D ≈ I.

2. Theorem 3.1 exploits fully multiplicative perturbation structures by bounding
directly the relative differences χ(λi, λ̃i) or %2(λi, λ̃i) in terms of D’s depar-

tures from unitary matrices |||D∗ − D−1||| and
√
‖I − Σd‖2F + ‖I − Σ−1

d ‖2F.

Thus, all eigenvalues of the same as or much smaller magnitudes than ‖A‖2
alike provably suffer small uncertainty as long as D’s departures from unitary
matrices are small.

Such arguments more or less apply to our other relative perturbation theorems in
this paper in comparison to their counterparts in the classical absolute perturbation
theory.

In Theorem 3.1, the perturbation to A is rather restrictive but is applicable to a
more realistic situation when scaled A is much better conditioned. In Theorem 3.2, S
is a scaling matrix, often highly graded and diagonal in practice, though the theorem
does not assume this.

Theorem 3.2. Let A = S∗HS and Ã = S∗H̃S be two n×n nonnegative definite
Hermitian matrices with eigenvalues (3.1) ordered as in (3.2), and let ∆H = H̃ −H.
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If ‖H−1‖2‖∆H‖2 < 1, then

max
1≤i≤n

χ(λi, λ̃i) ≤ ‖D −D−1‖2,(3.9)

≤ ‖H−1‖2‖∆H‖2√
1− ‖H−1‖2‖∆H‖2

,(3.10) √√√√ n∑
i=1

[
χ(λi, λ̃i)

]2
≤ ‖D −D−1‖F,(3.11)

≤ ‖H−1‖2‖∆H‖F√
1− ‖H−1‖2‖∆H‖2

,(3.12)

where D =
(
I +H−1/2(∆H)H−1/2

)1/2
.

Proof. Rewrite A and Ã as

A = S∗HS = (H1/2S)∗H1/2S,

Ã = S∗H1/2
(
I +H−1/2(∆H)H−1/2

)
H1/2S

=
( (
I +H−1/2(∆H)H−1/2

)1/2
H1/2S

)∗ (
I +H−1/2(∆H)H−1/2

)1/2
H1/2S.

Set B
def
= H1/2S and B̃

def
=
(
I + H−1/2(∆H)H−1/2

)1/2
H1/2S, then A = B∗B and

Ã = B̃∗B̃. We have B̃ = DB, where D =
(
I +H−1/2(∆H)H−1/2

)1/2
. Notice that

λ(A) = λ(B∗B) = λ(BB∗) and λ(Ã) = λ(B̃∗B̃) = λ(B̃B̃∗),

and B̃B̃∗ = DBB∗D∗. Applying Theorem 3.1 to BB∗ and B̃B̃∗ yields both (3.9)
and (3.11). Inequalities (3.10) and (3.12) follow from the fact that for any Hermitian
matrix E with ‖E‖2 < 1 and for any unitarily invariant norm ||| · |||,

|||(I + E)1/2 − (I + E)−1/2||| ≤ ‖(I + E)−1/2‖2|||E||| ≤ |||E|||√
1− ‖E‖2

.

Inequality (3.10) can also be derived from the following bound essentially due to
Demmel and Veselić [9] (see also Mathias [28]).

Let the conditions of Theorem 3.2 hold. Then

max
1≤i≤n

|λ̃i − λi|
|λi| ≤ ‖H−1‖2‖∆H‖2.

(3.13)

To see how (3.13) leads to (3.10), we notice that3

χ(λi, λ̃i) =
|λ̃i − λi|
|λi| ·

√
λi

λ̃i
≤ |λ̃i − λi||λi| · ‖D−1‖2

by Ostrowski’s theorem (3.7) and that ‖D−1‖2 ≤ 1/
√

1− ‖H−1‖2‖∆H‖2.
Remark 3.1. Li [24] also considered extending Theorem 3.1 to diagonalizable

matrices under multiplicative perturbations. But the bounds obtained in a recent
paper [26] are better. Both Li [24] and Eisenstat and Ipsen [13] extended the classical
Bauer–Fike theorem [2].

3λi = 0 if and only if λ̃i = 0, since A and Ã have the same number of zero eigenvalues, if any.
So we only need to consider those i such that λi 6= 0.
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4. Relative perturbation theorems for singular value problems. Through-
out the section, B, B̃ ∈ Cm×n and one is a perturbation of the other. (We shall
assume, without loss of generality, that m ≥ n in this section.) Denote their singular
values by

σ(B) = {σ1, . . . , σn} and σ(B̃) = {σ̃1, . . . , σ̃n}(4.1)

ordered so that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n ≥ 0.(4.2)

Theorem 4.1. Let B and B̃ = D∗1BD2 be two m × n matrices with singular
values (4.1) ordered as in (4.2), where D1 and D2 are square and nonsingular. If
‖D∗1 −D−1

1 ‖2‖D∗2 −D−1
2 ‖2 < 32, then

max
1≤i≤n

χ(σi, σ̃i) ≤ 1

2
· ‖D

∗
1 −D−1

1 ‖2 + ‖D∗2 −D−1
2 ‖2

1− 1
32‖D∗1 −D−1

1 ‖2‖D∗2 −D−1
2 ‖2

,(4.3) √√√√ n∑
i=1

[χ(σi, σ̃i)]
2 ≤ 1

2
· ‖D

∗
1 −D−1

1 ‖F + ‖D∗2 −D−1
2 ‖F

1− 1
32‖D∗1 −D−1

1 ‖2‖D∗2 −D−1
2 ‖2

.(4.4)

A proof of Theorem 4.1 will be given in section 6.
The restriction ‖D∗1 −D−1

1 ‖2‖D∗2 −D−1
2 ‖2 < 32, though mild, is unpleasant. But

we argue that neither this restriction nor the factor
(
1− 1

32‖D∗1 −D−1
1 ‖2‖D∗2 −D−1

2 ‖2
)−1

plays any visible role for any applications where one might expect that perturbing B
to B̃ = D∗1BD2 retains any significant digits of B’s singular values. Our arguments
go as follows.

1. For the ease of explanation, consider the case when B and Dj are diagonal. In
order for each of B’s singular values to have at least one significant decimal digit the
same as that of the corresponding B̃’s, it is necessary that4

0.9 ≤ σmin(Dj) ≤ σmax(Dj) ≤ 1.05(4.5)

which imply that ‖D∗j −D−1
j ‖2 ≤ 0.2, and thus the factor(

1− 1

32
‖D∗1 −D−1

1 ‖2‖D∗2 −D−1
2 ‖2

)−1

≤ 1.01.

2. In fact, the restriction ‖D∗1 − D−1
1 ‖2‖D∗2 − D−1

2 ‖2 < 32 is satisfied and the
factor is almost 1 even for Dj ’s singular values being fairly away from 1. It can be
seen that

‖D∗j −D−1
j ‖2 ≤ 1 if 0.618 ≈

√
5− 1

2
≤ σmin(Dj) ≤ σmax(Dj) ≤

√
5 + 1

2
≈ 1.618,

under which circumstances the unpleasant factor is(
1− 1

32
‖D∗1 −D−1

1 ‖2‖D∗2 −D−1
2 ‖2

)−1

≤ 32/31 ≈ 1.03.

4This is for the worse case in the sense that if (4.5) is violated, then there are Dj ’s such that
some of the B’s singular values retain no significant decimal digits at all under the perturbations.
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3. In applications where ‖D∗j−D−1
j ‖2 � 1, the quantity ‖D∗1−D−1

1 ‖2‖D∗2−D−1
2 ‖2

is of second order. Then the restriction and the factor act as if they were not there.
Even more in some applications, as in Corollary 4.2, one of the Dj ’s is I for which
the restriction and the factor disappear completely.
Eisenstat and Ipsen [12] obtained the following result which is essentially a conse-
quence of Ostrowski’s theorem (see inequalities (3.7)) and which can also be seen
from known inequalities for singular values of a product of two matrices:5

Let the conditions of Theorem 4.1, except ‖D∗1 −D−1
1 ‖2‖D∗2 −D−1

2 ‖2 < 32, hold.
We have

σmin(D1)σmin(D2) · σi ≤ σ̃i ≤ σmax(D1)σmax(D2) · σi for 1 ≤ i ≤ n.(4.6)

Inequalities (4.6) imply immediately the following relative perturbation bound:

max
1≤i≤n

|σ̃i − σi|
σi

≤ max{|1− σmin(D1)σmin(D2)|, |1− σmax(D1)σmax(D2)|}.

The classical perturbation theory for singular value problems establishes one uni-
form bound for all differences σi − σ̃i, regardless of magnitudes of σi’s. The follow-
ing theorem was established by Mirsky [30], based on results from Lidskii [27] and
Wielandt [39].

For any unitarily invariant norm ||| · |||, we have

|||diag(σ1 − σ̃1, . . . , σn − σ̃n)||| ≤ |||B − B̃|||.

(No special form of B̃ is assumed.)

(4.7)

A possible application of Theorem 4.1 is related to deflation in computing SVD of a
bidiagonal matrix. For more details, the reader is referred to [6, 8, 12, 29].

Corollary 4.2. Assume, in Theorem 4.1, that one of D1 and D2 is the identity
matrix and the other takes the form

D =

(
I X

I

)
,

where X is a matrix of suitable dimensions. Then

max
1≤i≤n

χ(σi, σ̃i) ≤ 1

2
‖X‖2,(4.8) √√√√ n∑

i=1

[χ(σi, σ̃i)]
2 ≤ 1√

2
‖X‖F.(4.9)

Proof. Notice that

D∗ −D−1 =

(
I
X∗ I

)
−
(
I −X

I

)
=

(
X

X∗

)
,

5Arranging the singular values of a matrix in the decreasing order, we have (see, e.g., [19])

(the ith singular value of XY ) ≤ (the ith singular value of X) · ‖Y ‖2.



966 REN-CANG LI

and thus ‖D∗ −D−1‖2 = ‖X‖2 and ‖D∗ −D−1‖F =
√

2‖X‖F.

Eisenstat and Ipsen [12] showed that

|σ̃i − σi| ≤ ‖X‖2σi, or equivalently

∣∣∣∣ σ̃iσi − 1

∣∣∣∣ ≤ ‖X‖2.(4.10)

Our inequality (4.8) is sharper by roughly a factor of 1/2, as long as ‖X‖2 is small.
As a matter of fact, it follows from (4.8) and Proposition 2.1 that if ‖X‖2 < 4, then∣∣∣∣ σ̃iσi − 1

∣∣∣∣ ≤
(
‖X‖2

4
+

√
1 +
‖X‖22

16

)
‖X‖2

2
=
‖X‖2

2
+O

((‖X‖2
4

)2
)
.

Our inequality (4.9) is the first of its kind.

Theorem 4.3. Let B and B̃ = D∗1BD2 be two m × n matrices with singular
values (4.1) ordered as in (4.2), where D1 and D2 are square and nonsingular. Then

max
1≤i≤n

%p(σi, σ̃i) ≤ 1

21+1/p

(‖D∗1 −D−1
1 ‖2 + ‖D∗2 −D−1

2 ‖2
)
,(4.11) √√√√ n∑

i=1

[%p(σi, σ̃i)]
2 ≤ 1

21+1/p

(‖D∗1 −D−1
1 ‖F + ‖D∗2 −D−1

2 ‖F
)
.(4.12)

A straightforward combination of Proposition 2.2 and Theorem 4.1 will lead to
bounds that are slightly weaker than those in Theorem 4.3 by a factor of(

1− 1

32
‖D∗1 −D−1

1 ‖2‖D∗2 −D−1
2 ‖2

)−1

.

A proof of Theorem 4.3 will be given in section 6.
Again we shall now consider a more realistic situation when scaled B is much

better conditioned. In Theorem 4.4 below, S is a scaling matrix, often highly graded
and diagonal in practice, though the theorem does not assume this.

Theorem 4.4. Let B = GS and B̃ = G̃S be two n × n matrices with singular
values (4.1) ordered as in (4.2), where G and G̃ are nonsingular, and let ∆G = G̃−G.
If ‖∆G‖2‖G−1‖2 < 1, then

max
1≤i≤n

χ(σi, σ̃i) ≤ 1

2

∥∥∥(I + (∆G)G−1
)∗ − (I + (∆G)G−1

)−1
∥∥∥

2
,(4.13)

≤
(

1 +
1

1− ‖G−1‖2‖∆G‖2

) ‖G−1‖2‖∆G‖2
2

,(4.14) √√√√ n∑
i=1

[χ(σi, σ̃i)]
2 ≤ 1

2

∥∥∥(I + (∆G)G−1
)∗ − (I + (∆G)G−1

)−1
∥∥∥

F
,(4.15)

≤
(

1 +
1

1− ‖G−1‖2‖∆G‖2

) ‖G−1‖2‖∆G‖F
2

.(4.16)

Proof. Write

B̃ = (G+ ∆G)S = (I + (∆G)G−1)GS = DB,(4.17)
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where D = I+ (∆G)G−1. Now, applying Theorem 4.1 to B and B̃ = DB yields both
(4.13) and (4.15). We notice that

(I + E)∗ − (I + E)−1 = I + E∗ −
∞∑
i=0

(−1)iEi = E∗ + E + E
∞∑
i=2

(−1)iEi−1,

where E = (∆G)G−1 and ‖E‖2 ≤ ‖G−1‖2‖∆G‖2 < 1; therefore, for any unitarily
invariant norm ||| · |||,

|||(I + E)∗ − (I + E)−1||| ≤ |||E + E∗|||+ |||E|||
∞∑
i=1

‖E‖i2

=

( |||E + E∗|||
|||E||| +

‖E‖2
1− ‖E‖2

)
|||E|||(4.18)

≤
(

1 +
1

1− ‖E‖2

)
|||E|||.(4.19)

An application of (4.19) for ‖ · ‖2 and ‖ · ‖F completes the proof.

Equation (4.17) also makes (4.6) applicable and leads to the following.

Let the conditions of Theorem 4.4 hold. We have

max
1≤i≤n

|σ̃i − σi|
σi

≤ ‖G−1‖2‖∆G‖2.
(4.20)

This inequality also follows from [10, Theorem 1.1]. Inequality (4.14) can actually be
derived from (4.20) as follows. Notice that

χ(σi, σ̃i) =
|σ̃i − σi|
|σi| ·

√
σi
σ̃i
≤ |σ̃i − σi||σi| · ‖D−1‖1/22 ,

and that

‖D−1‖1/22 ≤ 1√
1− ‖G−1‖2‖∆G‖2

≤ 1

2

(
1 +

1

1− ‖G−1‖2‖∆G‖2

)
.

Remark 4.1. When (∆G)G−1 is nearly skew Hermitian, (4.13) and (4.15) lead to
bounds that are much better than (4.14) and (4.16). This can be seen from (4.18):

Under the conditions of Theorem 4.4, we have

max
1≤i≤n

χ(σi, σ̃i) ≤
(‖(∆G)G−1 +G−∗(∆G)∗‖2

‖(∆G)G−1‖2 +
‖(∆G)G−1‖2

1− ‖(∆G)G−1‖2

) ‖(∆G)G−1‖2
2

,√√√√ n∑
i=1

[χ(σi, σ̃i)]
2 ≤

(‖(∆G)G−1 +G−∗(∆G)∗‖F
‖(∆G)G−1‖F +

‖(∆G)G−1‖2
1− ‖(∆G)G−1‖2

) ‖(∆G)G−1‖F
2

.

Now if (∆G)G−1 is nearly skew Hermitian, then χ(σi, σ̃i) = o
(‖(∆G)G−1‖2

)
; more-

over,

‖(∆G)G−1 +G−∗(∆G)∗‖2 = O
(‖(∆G)G−1‖22

)⇒ χ(σi, σ̃i) = O
(‖(∆G)G−1‖22

)
.
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Remark 4.2. Theorem 4.4 can be extended to nonsquare matrices. Assume
B = GS and B̃ = G̃S are m × n (m ≥ n); S is a scaling matrix and both G and G̃
are m × n; G has full column rank. Let G† = (G∗G)−1G∗ be the pseudo-inverse of
G. Notice that G†G = I. We have

B̃ = G̃S = (G+ ∆G)S = (I + (∆G)G†)GS = (I + (∆G)G†)B ≡ DB.

Now, apply Theorem 4.1 to B and B̃ = DB.

5. Proof of Theorem 3.1. We need a little preparation first. A matrix Z =
(zij) ∈ Rn×n is doubly stochastic if all zij ≥ 0 and

n∑
k=1

zik =
n∑
k=1

zkj = 1 for i, j = 1, 2, . . . , n.

Using a Birkhoff theorem [4] (see also [18, pp. 527–528]) and the technique of Hoffman
and Wielandt [17] (see also [35, p. 190]), we can prove the following.

Lemma 5.1. Let Z = (zij) be an n × n doubly stochastic matrix, and let M =
(mij) ∈ Cn×n. Then there exists a permutation τ of {1, 2, . . . , n} such that

n∑
i, j=1

|mij |zij ≥
n∑
i=1

|miτ(i)|.

For X ∈ Cm×n, we introduce the following notation for a k × ` submatrix of
X = (xij):

X

(
i1 . . . ik
j1 . . . j`

)
def
=


xi1j1 xi1j2 · · · xi1j`
xi2j1 xi2j2 · · · xi2j`

...
...

. . .
...

xikj1 xikj2 · · · xikj`

 ,(5.1)

where 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < j` ≤ n. The following lemma is due
to Li [22, pp. 207–208]

Lemma 5.2 (see Li [22]). Suppose that X ∈ Cn×n is nonsingular, and 1 ≤ i1 <
· · · < ik ≤ n and 1 ≤ j1 < · · · < j` ≤ n, and k + ` > n. Then∥∥∥∥X ( i1 · · · ik

j1 · · · j`
)∥∥∥∥

2

≥ ‖X−1‖−1
2 .

Moreover, if X is unitary, then∥∥∥∥X ( i1 · · · ik
j1 · · · j`

)∥∥∥∥
2

= 1.

Proof of Theorem 3.1. We shall prove (3.3) first. Due to the argument we made
right after Theorem 3.1, it suffices for us to prove (3.3a). Let the eigen decompositions

of A and Ã be

A = UΛU∗ and Ã = Ũ Λ̃Ũ∗,
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where U and Ũ are unitary and Λ = diag(λ1, λ2, . . . , λn) and Λ̃ = diag(λ̃1, λ̃2, . . . , λ̃n).
Notice that

A− Ã = A−D∗AD = A−AD +AD −D∗AD = A(I −D) + (D−∗ − I)Ã.

Pre- and postmultiply the equations by U∗ and Ũ , respectively, to get

ΛU∗Ũ − U∗Ũ Λ̃ = ΛU∗(I −D)Ũ + U∗(D−∗ − I)Ũ Λ̃.(5.2)

Set

Q
def
= U∗Ũ = (qij), E

def
= U∗(I −D)Ũ = (eij), Ẽ

def
= U∗(D−∗ − I)Ũ = (ẽij).

Then (5.2) reads ΛQ−QΛ̃ = ΛE+ẼΛ̃, or componentwise λiqij−qij λ̃j = λieij+ ẽij λ̃j ,
so

|(λi − λ̃j)qij |2 = |λieij + ẽij λ̃j |2 ≤ (|λi|2 + |λ̃j |2)(|eij |2 + |ẽij |2),

which yields6 [%2(λi, λ̃j)]
2|qij |2 ≤ |eij |2 + |ẽij |2. Hence

n∑
i, j=1

[
%2(λi, λ̃j)

]2
|qij |2 ≤ ‖U∗(I −D)Ũ‖2F + ‖U∗(D−∗ − I)Ũ‖2F

= ‖I −D‖2F + ‖D−∗ − I‖2F.
The matrix (|qij |2)n×n is a doubly stochastic matrix. The above inequality and
Lemma 5.1 imply that

n∑
i=1

[
%2(λi, λ̃τ(i))

]2
≤ ‖I −D‖2F + ‖D−∗ − I‖2F

for some permutation τ of {1, 2, . . . , n}. This is (3.3a).
We now prove (3.4) and (3.5). Suppose that A is nonnegative definite. There is a

matrix B ∈ Cn×n such that A = B∗B. With this B, Ã = D∗AD = D∗B∗BD = B̃∗B̃,
where B̃ = BD. Let SVDs of B and B̃ be

B = UΛ1/2V ∗ and B̃ = Ũ Λ̃1/2Ṽ ∗,

where Λ1/2 = diag(
√
λ1,
√
λ2, . . . ,

√
λn) and Λ̃1/2 = diag

(√
λ̃1,

√
λ̃2, . . . ,

√
λ̃n

)
. In

what follows, we actually work with BB∗ and B̃B̃∗, rather than A = B∗B and
Ã = B̃∗B̃ themselves. We have

B̃B̃∗ −BB∗ = B̃D∗B∗ − B̃D−1B∗ = B̃(D∗ −D−1)B∗.

Pre- and postmultiply the above equations by Ũ∗ and U , respectively, to get

Λ̃Ũ∗U − Ũ∗UΛ = Λ̃1/2Ṽ ∗(D∗ −D−1)V Λ1/2.(5.3)

Write Q
def
= Ũ∗U = (qij). Equation (5.3) implies

‖D∗ −D−1‖2F = ‖Ṽ ∗(D∗ −D−1)V ‖2F =
n∑

i, j=1

|λ̃i − λj |√
λ̃iλj

|qij |2.

6This inequality still holds even if λi = λ̃j = 0 because of our convention 0/0 = 0; see section 2.



970 REN-CANG LI

Since (|qij |2)n×n is a doubly stochastic matrix, an application of Lemma 5.1 and
Proposition 2.4 concludes the proof of (3.5). To confirm (3.4), let k be the index such
that

η
def
= max

1≤i≤n
χ(λi, λ̃i) = χ(λk, λ̃k).

If η = 0, no proof is necessary. Assume η > 0. Also assume, without loss of generality,
that

λk > λ̃k ≥ 0.

Partition U, V, Ũ , Ṽ as follows:

U =
( k n−k
U1 U2

)
, V =

( k n−k
V1 V2

)
, Ũ =

( k−1 n−k+1

Ũ1 Ũ2

)
, Ṽ =

( k−1 n−k+1

Ṽ1 Ṽ2

)
,

and write Λ = diag(Λ1,Λ2) and Λ̃ = diag(Λ̃1, Λ̃2), where Λ1 ∈ Rk×k and Λ̃1 ∈
R(k−1)×(k−1). It follows from (5.3) that

Λ̃2Ũ
∗
2U1 − Ũ∗2U1Λ1 = Λ̃

1/2
2 Ṽ ∗2 (D∗ −D−1)V1Λ

1/2
1 .

Postmultiply this equation by Λ−1
1 to get

Λ̃2Ũ
∗
2U1Λ−1

1 − Ũ∗2U1 = Λ̃
1/2
2 Ṽ ∗2 (D∗ −D−1)V1Λ

−1/2
1 .(5.4)

Lemma 5.2 implies that ‖Ũ∗2U1‖2 = 1 since Ũ∗2U1 is an (n− k + 1)× k submatrix of

unitary Ũ∗U and k + (n − k + 1) = n + 1 > n. Bearing in mind that ‖Λ̃2‖2 = λ̃k =

‖Λ̃1/2
2 ‖22 and ‖Λ−1

1 ‖2 = 1/λk = ‖Λ−1/2
1 ‖22, we have

1− λ̃k
λk

=
∥∥∥Ũ∗2U1

∥∥∥
2
− ‖Λ̃2‖2

∥∥∥Ũ∗2U1

∥∥∥
2
‖Λ−1

1 ‖2

≤
∥∥∥Ũ∗2U1

∥∥∥
2
−
∥∥∥Λ̃2Ũ

∗
2U1Λ−1

1

∥∥∥
2

≤
∥∥∥Ũ∗2U1 − Λ̃2Ũ

∗
2U1Λ−1

1

∥∥∥
2

=
∥∥∥Λ̃

1/2
2 Ṽ ∗2 (D∗ −D−1)V1Λ

−1/2
1

∥∥∥
2

(by (5.4))

≤ ‖Λ̃1/2
2 ‖2

∥∥∥Ṽ ∗2 (D∗ −D−1)V1

∥∥∥
2
‖Λ−1/2

1 ‖2

=

√
λ̃k
λk

∥∥∥Ṽ ∗2 (D∗ −D−1)V1

∥∥∥
2

≤
√
λ̃k
λk
‖D∗ −D−1‖2,

an immediate consequence of which is (3.4).

6. Proofs of Theorems 4.1 and 4.3. We need the following lemma regarding
the relative distance χ.

Lemma 6.1.
1. If 0 ≤ α ≤ β ≤ β̃ ≤ α̃, then χ(α, α̃) ≥ χ(β, β̃).
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2. If α, α̃ ≥ 0, then 2χ(α, α̃) ≤ χ(α2, α̃2).
3. For α, β, γ ≥ 0, we have

χ(α, γ) ≤ χ(α, β) + χ(β, γ) +
1

8
χ(α, β)χ(β, γ)χ(α, γ).(6.1)

Thus if χ(α, β)χ(β, γ) < 8 also, then

χ(α, γ) ≤ χ(α, β) + χ(β, γ)

1− 1
8χ(α, β)χ(β, γ)

.

Proof. To prove the first inequality, we notice that function 1
x−x is monotonically

decreasing for 0 ≤ x ≤ 1, and that 0 ≤ α/α̃ ≤ β/β̃ ≤ 1. Thus

χ(α, α̃) =
1√
α/α̃

−
√
α/α̃ ≥ 1√

β/β̃
−
√
β/β̃ = χ(β, β̃),

as was to be shown. If α, α̃ ≥ 0, then

χ(α2, α̃2) = χ(α, α̃)
|α+ α̃|√|αα̃| = χ(α, α̃)

α+ α̃√
αα̃
≥ χ(α, α̃)

2
√
αα̃√
αα̃

= 2χ(α, α̃),

which confirms the second inequality.
For the third inequality (6.1), without loss of generality, we may assume 0 ≤ α ≤

γ. Now if β ≤ α or γ ≤ β, we have by the first inequality

χ(α, γ) ≤
{
χ(β, γ) ≤ χ(α, β) + χ(β, γ), if β ≤ α,
χ(α, β) ≤ χ(α, β) + χ(β, γ), if γ ≤ β,

so (6.1) holds. Consider the case 0 ≤ α ≤ β ≤ γ. It can be verified that

χ(α, γ) = χ(α, β) + χ(β, γ) + χ(
√
α,
√
β)χ(

√
β,
√
γ)χ(
√
α,
√
γ).

Inequality (6.1) follows by applying the second inequality.

Proofs of Theorems 4.1 and 4.3. Set B̂ = BD2 and denote its singular values by
σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂n. Apply Theorem 3.1 to B∗B and B̂∗B̂ = D∗2B

∗BD2 to get

max
1≤i≤n

χ(σ2
i , σ̂

2
i ) ≤ ‖D∗2 −D−1

2 ‖2 and

√√√√ n∑
i=1

[χ(σ2
i , σ̂

2
i )]

2 ≤ ‖D∗2 −D−1
2 ‖F.

Now apply the second inequality of Lemma 6.1 to obtain

max
1≤i≤n

χ(σi, σ̂i) ≤ 1

2
‖D∗2 −D−1

2 ‖2 and

√√√√ n∑
i=1

[χ(σi, σ̂i)]
2 ≤ 1

2
‖D∗2 −D−1

2 ‖F.(6.2)

Similarly for B̂ = BD2 and B̃ = D∗1BD2 = D∗1B̂, we have

max
1≤i≤n

χ(σ̂i, σ̃i) ≤ 1

2
‖D∗1 −D−1

1 ‖2 and

√√√√ n∑
i=1

[χ(σ̂i, σ̃i)]
2 ≤ 1

2
‖D∗1 −D−1

1 ‖F.(6.3)
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The first inequalities in (6.2) and (6.3), and the assumptions of Theorem 4.1, imply

χ(σi, σ̂i)χ(σ̂i, σ̃i) ≤ 1

4
‖D∗1 −D−1

1 ‖2‖D∗2 −D−1
2 ‖2 <

1

4
× 32 = 8.

By Lemma 6.1, we have

χ(σi, σ̃i) ≤ χ(σi, σ̂i) + χ(σ̂i, σ̃i)

1− 1
8χ(σi, σ̂i)χ(σ̂i, σ̃i)

≤ 1

2
· ‖D

∗
1 −D−1

1 ‖2 + ‖D∗2 −D−1
2 ‖2

1− 1
32‖D∗1 −D−1

1 ‖2‖D∗2 −D−1
2 ‖2

,√√√√ n∑
i=1

[χ(σi, σ̃i)]
2 ≤

√√√√ n∑
i=1

[
χ(σi, σ̂i) + χ(σ̂i, σ̃i)

1− 1
8χ(σi, σ̂i)χ(σ̂i, σ̃i)

]2

≤

√
n∑
i=1

[χ(σi, σ̂i)]
2

+

√
n∑
i=1

[χ(σ̂i, σ̃i)]
2

1− 1
8 max

1≤i≤n
χ(σi, σ̂i)χ(σ̂i, σ̃i)

≤ 1

2
· ‖D

∗
1 −D−1

1 ‖F + ‖D∗2 −D−1
2 ‖F

1− 1
32‖D∗1 −D−1

1 ‖2‖D∗2 −D−1
2 ‖2

,

as expected. This completes the proof of Theorem 4.1. To prove Theorem 4.3, we
notice that

%p(σi, σ̃i) ≤ %p(σi, σ̂i) + %p(σ̂i, σ̃i) (%p is a metric on R)

≤ 2−1/pχ(σi, σ̂i) + 2−1/pχ(σ̂i, σ̃i) (by Proposition 2.2)

≤ 2−1−1/p
(‖D∗2 −D−1

2 ‖2 + ‖D∗1 −D−1
1 ‖2

)
(by (6.2) and (6.3))

and√√√√ n∑
i=1

[%p(σi, σ̃i)]
2 ≤

√√√√ n∑
i=1

[%p(σi, σ̂i) + %p(σ̂i, σ̃i)]
2

(%p is a metric on R)

≤
√√√√ n∑

i=1

[%p(σi, σ̂i)]
2

+

√√√√ n∑
i=1

[%p(σ̂i, σ̃i)]
2

≤ 2−1/p

√√√√ n∑
i=1

[χ(σi, σ̂i)]
2

+ 2−1/p

√√√√ n∑
i=1

[χ(σ̂i, σ̃i)]
2

(by Proposition 2.2)

≤ 2−1−1/p
(‖D∗2 −D−1

2 ‖F + ‖D∗1 −D−1
1 ‖F

)
(by (6.2) and (6.3)).

These inequalities complete the proof of Theorem 4.3.

7. Generalized eigenvalue problems and generalized singular value
problems. In this section, we discuss perturbations for scaled generalized eigenvalue
problems and scaled generalized singular value problems. As we shall see, the results
in previous sections, as well as those in Li [25], can be applied to derive relative
perturbation bounds for these problems.
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• The generalized eigenvalue problem:
A1−λA2 ≡ S∗1H1S1−λS∗2H2S2 and Ã1−λÃ2 ≡ S∗1H̃1S1−λS∗2H̃2S2, where

H1 and H2 are positive definite; ‖H−1
j ‖2‖H̃j −Hj‖2 < 1 for j = 1, 2; S1 and

S2 are some square matrices and one of them is nonsingular.7

• The generalized singular value problem:
{B1, B2} ≡ {G1S1, G2S2} and {B̃1, B̃2} ≡ {G̃1S1, G̃2S2}, where G1 and G2

are nonsingular; ‖G−1
j ‖2‖G̃j − Gj‖2 < 1 for j = 1, 2; S1 and S2 are some

square matrices and one of them is nonsingular.
For the scaled generalized eigenvalue problem just mentioned, without loss of gener-
ality, we consider the case when S2 is nonsingular. Then the generalized eigenvalue
problem for A1− λA2 ≡ S∗1H1S1− λS∗2H2S2 is equivalent to the standard eigenvalue
problem for

A
def
= H

−1/2
2 S−∗2 S∗1H1S1S

−1
2 H

−1/2
2 ,

and the generalized eigenvalue problem for Ã1 − λÃ2 ≡ S∗1H̃1S1 − λS∗2H̃2S2 is equiv-
alent to the standard eigenvalue problem for

Ã
def
= D∗2H

−1/2
2 S−∗2 S∗1H̃1S1S

−1
2 H

−1/2
2 D2,

where

D2 = D∗2
def
=
(
I +H

−1/2
2 (∆H2)H

−1/2
2

)−1/2

and ∆H2
def
= H̃2 −H2.

So, bounding relative distances between the eigenvalues of A1 − λA2 and those of
Ã1 − λÃ2 is transformed to bounding relative distances between the eigenvalues of A
and those of Ã. The latter can be accomplished in two steps:

1. Bounding relative distances between the eigenvalues of A and those of

Â
def
= D∗2H

−1/2
2 S−∗2 S∗1H1S1S

−1
2 H

−1/2
2 D2 = D∗2AD2.

2. Bounding relative distances between the eigenvalues of Â and those of Ã.
Denote and order the eigenvalues of A, Â, and Ã as

λ1 ≥ · · · ≥ λn, λ̂1 ≥ · · · ≥ λ̂n, and λ̃1 ≥ · · · ≥ λ̃n.
Set

D1 = D∗1
def
=
(
I +H

−1/2
1 (∆H1)H

−1/2
1

)−1/2

and ∆H1
def
= H̃1 −H1.

By Theorem 3.1 on A and Â = D∗2AD2, Theorem 3.2 on Â = X∗H1X, and Ã =

X∗H̃1X, where X = S1S
−1
2 H

−1/2
2 D2, we have

χ(λi, λ̂i) ≤ ‖D2 −D−1
2 ‖2 and χ(λ̂i, λ̃i) ≤ ‖D1 −D−1

1 ‖2(7.1)

and √√√√ n∑
i=1

[
χ(λi, λ̂i)

]2
≤ ‖D2 −D−1

2 ‖F and

√√√√ n∑
i=1

[
χ(λ̂i, λ̃i)

]2
≤ ‖D1 −D−1

1 ‖F.(7.2)

7When S2 is singular, both pencils will have the same number of the eigenvalue +∞. For
convenience, we define the relative differences by any measure introduced in section 2 to be 0.
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By Lemma 6.1, we have that if ‖D1 −D−1
1 ‖2‖D2 −D−1

2 ‖2 < 8, then

χ(λi, λ̃i) ≤ χ(λi, λ̂i) + χ(λ̂i, λ̃i)

1− 1
8χ(λi, λ̂i)χ(λ̂i, λ̃i)

≤ ‖D2 −D−1
2 ‖2 + ‖D1 −D−1

1 ‖2
1− 1

8‖D1 −D−1
1 ‖2‖D2 −D−1

2 ‖2
and √√√√ n∑

i=1

[
χ(λi, λ̃i)

]2
≤

√√√√ n∑
i=1

[
χ(λi, λ̂i) + χ(λ̂i, λ̃i)

1− 1
8χ(λi, λ̂i)χ(λ̂i, λ̃i)

]2

≤

√
n∑
i=1

[
χ(λi, λ̂i)

]2
+

√
n∑
i=1

[
χ(λ̂i, λ̃i)

]2
1− 1

8 max
1≤i≤n

χ(λi, λ̂i)χ(λ̂i, λ̃i)

≤ ‖D2 −D−1
2 ‖F + ‖D1 −D−1

1 ‖F
1− 1

8‖D1 −D−1
1 ‖2‖D2 −D−1

2 ‖2
.

Notice also that for j = 1, 2 and for any unitarily invariant norm ||| · |||,

|||Dj −D−1
j ||| ≤

‖H−1
j ‖2|||∆Hj |||√

1− ‖H−1
j ‖2‖∆Hj‖2

.

So we have proved the following.
Theorem 7.1. Let A1 − λA2 ≡ S∗1H1S1 − λS∗2H2S2 and Ã1 − λÃ2 ≡ S∗1H̃1S1 −

λS∗2H̃2S2, where H1 and H2 are n×n, positive definite, and ‖H−1
j ‖2‖H̃j −Hj‖2 < 1

for j = 1, 2. S1 and S2 are some square matrices and one of them is nonsingular. Let
the generalized eigenvalues of A1 − λA2 and Ã1 − λÃ2 be

λ1 ≥ · · · ≥ λn and λ̃1 ≥ · · · ≥ λ̃n.

If θ1θ2‖∆H1‖2‖∆H2‖2 < 8, then

max
1≤i≤n

χ(λi, λ̃i) ≤ θ1‖∆H1‖2 + θ2‖∆H2‖2
1− 1

8θ1θ2‖∆H1‖2‖∆H2‖2
,√√√√ n∑

i=1

[
χ(λi, λ̃i)

]2
≤ θ1‖∆H1‖F + θ2‖∆H2‖F

1− 1
8θ1θ2‖∆H1‖2‖∆H2‖2

,

where θj
def
= ‖H−1

j ‖2
/√

1− ‖H−1
j ‖2‖∆Hj‖2 for j = 1, 2.

On the other hand, from (7.1), (7.2), and Proposition 2.2, we get

%p(λi, λ̂i) ≤ 2−1/p‖D2 −D−1
2 ‖2 and %p(λ̂i, λ̃i) ≤ 2−1/p‖D1 −D−1

1 ‖2
and√√√√ n∑

i=1

[
%p(λi, λ̂i)

]2
≤ 2−1/p‖D2−D−1

2 ‖F and

√√√√ n∑
i=1

[
%p(λ̂i, λ̃i)

]2
≤ 2−1/p‖D1−D−1

1 ‖F.
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Since %p is a metric on R, we have

%p(λi, λ̃i) ≤ %p(λi, λ̂i) + %p(λ̂i, λ̃i) ≤ 2−1/p
(‖D2 −D−1

2 ‖2 + ‖D1 −D−1
1 ‖2

)
and √√√√ n∑

i=1

[
%p(λi, λ̃i)

]2
≤
√√√√ n∑

i=1

[
%p(λi, λ̂i) + %p(λ̂i, λ̃i)

]2

≤
√√√√ n∑

i=1

[
%p(λi, λ̂i)

]2
+

√√√√ n∑
i=1

[
%p(λ̂i, λ̃i)

]2
≤ 2−1/p

(‖D2 −D−1
2 ‖F + ‖D1 −D−1

1 ‖F
)
.

Theorem 7.2. Let all conditions of Theorem 7.1, except ‖D1 − D−1
1 ‖2‖D2 −

D−1
2 ‖2 < 8, which is no longer necessary, hold. Then

max
1≤i≤n

%p(λi, λ̃i) ≤ 2−1/p(θ1‖∆H1‖2 + θ2‖∆H2‖2),√√√√ n∑
i=1

[
%p(λi, λ̃i)

]2
≤ 2−1/p(θ1‖∆H1‖F + θ2‖∆H2‖F).

As to the scaled generalized singular value problem mentioned above, we shall
consider instead its corresponding generalized eigenvalue problem [21, 36, 37] for

S∗1G
∗
1G1S1 − λS∗2G∗2G2S2 and S∗1 G̃

∗
1G̃1S1 − λS∗2 G̃∗2G̃2S2.(7.3)

Theorem 7.3. Let {B1, B2} ≡ {G1S1, G2S2} and {B̃1, B̃2} ≡ {G̃1S1, G̃2S2},
where G1 and G2 are n× n and nonsingular; ‖G−1

j ‖2‖G̃j −Gj‖2 < 1 for j = 1, 2; S1

and S2 are some square matrices and one of them is nonsingular. Let the generalized
singular values of {B1, B2} and {B̃1, B̃2} be

σ1 ≥ · · · ≥ σn and σ̃1 ≥ · · · ≥ σ̃n.
If δ12δ22 < 32, where

δjt =
∥∥∥(I + (∆Gj)G

−1
j

)∗ − (I + (∆Gj)G
−1
j

)−1
∥∥∥
t

for j = 1, 2 and t = 2, F,

then

max
1≤i≤n

χ(σi, σ̃i) ≤ 1

2
· δ12 + δ22

1− 1
32δ12δ22

,√√√√ n∑
i=1

[χ(σi, σ̃i)]
2 ≤ 1

2
· δ1F + δ2F

1− 1
32δ12δ22

.

It can be proved that for j = 1, 2 and t = 2, F,

δjt ≤
(
‖(∆Gj)G−1

j +G−∗j (∆Gj)
∗‖t

‖(∆Gj)G−1
j ‖t

+
‖(∆Gj)G−1

j ‖2
1− ‖(∆Gj)G−1

j ‖2

)
‖(∆Gj)G−1

j ‖t

≤
(

1 +
1

1− ‖G−1
j ‖2‖∆Gj‖2

)
‖G−1

j ‖2‖∆Gj‖t.
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Proof. Consider the case when S2 is nonsingular. (The case when S1 is nonsin-
gular can be handled analogously.) By (7.3), we know that the singular values of

B
def
= G1S1S

−1
2 G−1

2 and B̃
def
= G̃1S1S

−1
2 G̃−1

2 are σ1 ≥ · · · ≥ σn and σ̃1 ≥ · · · ≥ σ̃n,
respectively. Set

D1 = I + (∆G1)G−1
1 , ∆G1 = G̃1 −G1, and D2 = I + (∆G2)G−1

2 , ∆G2 = G̃2 −G2;

then B̃ = D1BD
−1
2 . By Theorem 4.1, we have

max
1≤i≤n

χ(σi, σ̃i) ≤ 1

2

‖D∗1 −D−1
1 ‖2 + ‖D−∗2 −D2‖2

1− 1
32‖D∗1 −D−1

1 ‖2‖D−∗2 −D2‖2
,√√√√ n∑

i=1

[χ(σi, σ̃i)]
2 ≤ 1

2

‖D∗1 −D−1
1 ‖F + ‖D−∗2 −D2‖F

1− 1
32‖D∗1 −D−1

1 ‖2‖D−∗2 −D2‖2
,

as were to be shown.

By the first half of the proof of Theorem 7.3 and by Theorem 4.3, we can prove
the following.

Theorem 7.4. Let all conditions of Theorem 7.3, except δ12δ22 < 32, which is
no longer necessary, hold. Then

max
1≤i≤n

%p(σi, σ̃i) ≤ 1

21+1/p
(δ12 + δ22),√√√√ n∑

i=1

[%p(σi, σ̃i)]
2 ≤ 1

21+1/p
(δ1F + δ2F).

8. Conclusions. We have developed a relative perturbation theory for eigen-
value and singular value variations under multiplicative perturbations. In the theory,
extensions of the celebrated Hoffman–Wielandt and Weyl–Lidskii theorems from the
classical perturbation theory are made. Our extensions use two kinds of relative dis-
tance: %p and χ. Topologically, these new relative distances are equivalent to the
classical measurement (2.1) for relative accuracy, but the new distances have better
mathematical properties. It is proved that %p is indeed a metric on R while χ is
not. Often it is the case that perturbation bounds using χ are sharper than bounds
using %p.

Our unifying treatment in this paper covers many previously studied cases and
yields bounds that are at least as sharp as existing ones. Our results are applicable
to the computations of sharp error bounds in the Demmel–Kahan QR [8] algorithm
and the Fernando–Parlett implementation of the Rutishauser QD algorithm [14]; see
Li [23].

Previous approaches to building a relative perturbation theory are more or less
along the lines of using the min-max principle for Hermitian matrix eigenvalue prob-
lems. Our approach in this paper, however, is through deriving the perturbation
equations (5.2) and (5.3). A major advantage of this new approach is that these per-
turbation equations will lead to the successful extensions in [25] of Davis–Kahan sin θ
theorems [5] and Wedin sin θ theorems [38].
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Appendix A. Proofs of Propositions 2.3 and 2.4.
Lemma A.1. Let α, β, α̃, β̃ ∈ R. If α ≤ β ≤ β̃ ≤ α̃, then %1(α, α̃) ≥ %1(β, β̃).

If α ≤ β ≤ β̃ ≤ α̃ and ββ̃ ≥ 0, then %p(α, α̃) ≥ %p(β, β̃) for p > 1, and it is strict if

either α < β or β̃ < α̃ holds.
Proof. We consider function f(ξ) defined by

f(ξ)
def
=

1− ξ
p
√

1 + |ξ|p , where −1 ≤ ξ ≤ 1.

When p = 1,

f(ξ) =

{
1, for −1 ≤ ξ ≤ 0,

2
1+ξ − 1, for 0 ≤ ξ ≤ 1,

so f(ξ) decreases monotonically and decreases strictly monotonically for 0 ≤ ξ ≤
1. We are about to prove that when p > 1, function f(ξ) so defined is strictly

monotonically decreasing. This is true if p =∞. When 1 < p <∞, set h(ξ)
def
= [f(ξ)]p

and g(ξ)
def
= [f(−ξ)]p. Since, for 0 < ξ < 1,

h′(ξ) = −p(1− ξ)
p−1(1 + ξp−1)

(1 + ξp)2
< 0 and g′(ξ) =

p(1 + ξ)p−1(1− ξp−1)

(1 + ξp)2
> 0,

for 0 < ξ < 1, h(ξ) is strictly monotonically decreasing and g(ξ) is strictly monotoni-
cally increasing. Thus function f(ξ) is strictly monotonically decreasing for p > 1.

There are four cases to deal with. Assume that at least one of α ≤ β and β̃ ≤ α̃
is strict.

1. 0 ≤ α ≤ β ≤ β̃ ≤ α̃, then 0 ≤ α/α̃ < β/β̃ ≤ 1; thus

%p(α, α̃) = f(α/α̃) > f(β/β̃) = %p(β, β̃).

2. α ≤ 0 ≤ β ≤ β̃ ≤ α̃ or α ≤ β ≤ β̃ ≤ 0 ≤ α̃; then

%p(α, α̃) ≥ 1 ≥ %p(β, β̃).

It is easy to verify that the equalities in the two inequality signs cannot be
satisfied simultaneously.

3. α ≤ β ≤ 0 ≤ β̃ ≤ α̃. Only p = 1 shall be considered:

%1(α, α̃) = 1 = %1(β, β̃).

4. α ≤ β ≤ β̃ ≤ α̃ ≤ 0, then 0 ≤ α̃/α < β̃/β ≤ 1; thus

%p(α, α̃) = f(α̃/α) > f(β̃/β) = %p(β, β̃).

The proof is completed.
Remark A.1. In Lemma A.1, assumption ββ̃ ≥ 0 for the case p > 1 is essential.

A counterexample is the following: let ξ > ζ > 0, and let α = −ζ ≤ β = −ζ < β̃ =
ζ < α̃ < ξ. Then

%p(α, α̃) =
ξ + ζ

p
√
ξp + ζp

< 21−1/p = %p(β, β̃).



978 REN-CANG LI

Proof of Proposition 2.3. For any permutation τ of {1, 2, . . . , n}, the idea of our
proof is to construct n+ 1 permutations τj such that

τ0 = τ, τn = identity permutation,

and for j = 0, 1, 2, . . . , n− 1,

max
1≤i≤n

%p(αi, α̃τj(i)) ≥ max
1≤i≤n

%p(αi, α̃τj+1(i)).

The construction of these τj ’s goes as follows. Set τ0 = τ . Given τj , if τj(j+1) = j+1,
set τj+1 = τj ; otherwise, define

τj+1(i) =


τj(i), for τ−1

j (j + 1) 6= i 6= j + 1,

j + 1, for i = j + 1,
τj(j + 1), for i = τ−1

j (j + 1).

In this latter case, τj and τj+1 differ only at two indices as shown in the following
picture (notice that τ−1

j (j + 1) > j + 1 and τj(j + 1) > j + 1):

s̃
ατj(j+1)

s̃
αj+1

sατ−1
j

(j+1) sαj+1

A
A
AAU

�
�
���

XXXXXXXXXXXXXXXz

���������������9

τj+1 τj+1

τj

τj

With Lemma A.1, it is easy to prove that

max
{
%p(αj+1, α̃τj(j+1)), %p(ατ−1

j
(j+1), α̃j+1)

}
≥ max

{
%p(αj+1, α̃j+1), %p(ατ−1

j
(j+1), α̃τj(j+1))

}
.

Thus τj ’s so constructed have the desired properties.
A proof of Proposition 2.4 can be given analogously with the help of the first

inequality of Lemma 6.1 and the following lemma.
Lemma A.2. Let α1 ≥ α2 > 0 and α̃1 ≥ α̃2 > 0. Then

[χ(α1, α̃1)]
2

+ [χ(α2, α̃2)]
2 ≤ [χ(α1, α̃2)]

2
+ [χ(α2, α̃1)]

2
,

and the equality holds if and only if either α1 = α2 or α̃1 = α̃2.
Proof. It can be verified that

(α̃1 − α1)2

α̃1α1
+

(α̃2 − α2)2

α̃2α2
− (α̃2 − α1)2

α̃2α1
− (α̃1 − α2)2

α̃1α2

= − (α1 − α2)(α̃1 − α̃2)(α̃1α̃2 + α1α2)

α̃1α1α̃2α2
≤ 0,

and the equality holds if and only if either α1 = α2 or α̃1 = α̃2.

Appendix B. %p is a metric on R. Throughout this appendix, we will be
working with real numbers. The definition (2.2) of %p immediately implies that

1. %p(α, α̃) ≥ 0; and %p(α, α̃) = 0 if and only if α = α̃.
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2. %p(α, α̃) = %p(α̃, α).
So it remains to show that %p satisfies the triangle inequality

%p(α, γ) ≤ %p(α, β) + %p(β, γ) for α, β, γ ∈ R(B.1)

to conclude that the following holds.
Theorem B.1. %p is a metric on R.
We strongly conjecture that %p is a metric on C. Unfortunately, we are unable to

prove it at this point.
Since %p is symmetric with respect to its two arguments, we may assume, without

loss of generality, that from now on

α ≤ γ.(B.2)

There are three possible positions for β:

β ≤ α or α < β ≤ γ or γ < β.(B.3)

The hardest part of our proof is to show that (B.1) holds for the second position of β
in (B.3). We state it in the following lemma whose proof is postponed to the end of
this section.

Lemma B.2. Inequality (B.1) holds for α ≤ β ≤ γ, and the equality holds if and
only if β = α or β = γ.

With this lemma, we are now ready to prove (B.1).

Proof of (B.1). The proof is divided into two different cases.
• The case αγ ≥ 0. Lemma B.2 says that (B.1) is true if α ≤ β ≤ γ. If either
β < α or γ < β, by Lemma A.1, we have

%p(α, γ) ≤
{
%p(α, β) ≤ %p(α, β) + %p(β, γ), if γ ≤ β,
%p(β, γ) ≤ %p(α, β) + %p(β, γ), if β ≤ α.

• The case αγ < 0. We may assume α < 0 and γ > 0 (see (B.2)). Consider the
three possible positions (B.3) for β.

1. β ≤ α < 0. In this subcase, 1/α ≤ 1/β < 0 < 1/γ. By Lemma B.2, we
have

%p(α, γ) = %p(1/α, 1/γ) ≤ %p(1/α, 1/β)+%p(1/β, 1/γ) = %p(α, β)+%p(β, γ).

2. α ≤ β ≤ γ. This subcase has been taken care of by Lemma B.2.
3. 0 < γ ≤ β. In this subcase, 1/α < 0 < 1/β ≤ 1/γ. The rest is the same

as in subcase 1 above.
The proof is completed.

Proof of Lemma B.2. Since both swapping α and γ and multiplying α, β, γ all
by −1 lose no generality, we may further assume that

α ≤ |α| ≤ γ.(B.4)

Inequality (B.1) clearly holds if one of α, β, γ is zero or if β = α, β = γ, or α = γ.
So from now on we assume

α < β < γ and α 6= 0, β 6= 0, γ 6= 0.
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For 1 ≤ p <∞,

%p(α, γ) =
γ − α

p
√
γp + |α|p =

γ − β + β − α
p
√
γp + |α|p =

γ − β
p
√
γp + |α|p +

β − α
p
√
γp + |α|p

=
γ − β

p
√
γp + |β|p +

β − α
p
√|β|p + |α|p

+(γ − β)

(
1

p
√
γp + |α|p −

1
p
√
γp + |β|p

)

+(β − α)

(
1

p
√
γp + |α|p −

1
p
√|α|p + |β|p

)
= %p(α, β) + %p(β, γ) + h,

where

h =
(γ − β)(|β|p − |α|p)

p
√
γp + |α|p p

√
γp + |β|p ·

p
√
γp + |β|p − p

√
γp + |α|p

|β|p − |α|p

+
(β − α)(|β|p − γp)

p
√
γp + |α|p p

√|α|p + |β|p ·
p
√|α|p + |β|p − p

√
γp + |α|p

|β|p − γp .

The second factors of the two summands in h are always nonnegative. Now if α <
β ≤ |α| ≤ γ, then |β|p − |α|p ≤ 0 and |β|p − γp < 0, and thus h < 0. Hence
%p(α, γ) < %p(α, β) + %p(β, γ). Consider now |α| < β < γ. Then

h =
(γ − β)(β − |α|)

p
√
γp + |α|p

(
1

p
√
γp + βp

· β
p − |α|p
β − |α| ·

p
√
γp + βp − p

√
γp + |α|p

βp − |α|p

− 1
p
√|α|p + βp

· γ
p − βp
γ − β ·

p
√|α|p + βp − p

√
γp + |α|p

βp − γp
)

< 0.

The last inequality is true because p
√
γp + βp > p

√|α|p + βp ⇒ 1
p
√
γp+βp

< 1
p
√
|α|p+βp

and

0 <
βp − |α|p
β − |α| ≤

γp − βp
γ − β ,

0 <
p
√
γp + βp − p

√
γp + |α|p

(γp + βp)− (γp + |α|p) ≤
p
√|α|p + βp − p

√
γp + |α|p

(|α|p + βp)− (γp + |α|p)
by Lemma B.3, since for 1 < p <∞, f(x) = xp is convex and g(x) = p

√
x is concave.

So we also have %p(α, γ) < %p(α, β) + %p(β, γ) for |α| < β < γ. The proof for the case
p <∞ is completed.

When p =∞, (B.4) and α < β < γ imply |γ| > max{|α|, |β|}. So

%∞(α, γ) =
γ − α
γ

=
γ − β
γ

+
β − α
γ

=
γ − β
γ

+
β − α

max{|α|, |β|} + (β − α)

(
1

γ
− 1

max{|α|, |β|}
)

< %∞(α, β) + %∞(β, γ),
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as was to be shown.
Lemma B.3. Suppose functions f(x) and g(x) are defined on the interval [a, b],

and suppose f(x) is convex and g(x) concave. Let x, y, z ∈ [a, b] and x ≤ y ≤ z. Then

f(y)− f(x)

y − x ≤ f(z)− f(y)

z − y and
g(y)− g(x)

y − x ≥ g(z)− g(y)

z − y .

A proof of this lemma can be found in most mathematical analysis books; see,
e.g., [31, section 1.4.4].
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Abstract. This paper gives an overview of frequency domain total least squares (TLS) es-
timators for rational transfer function models of linear time-invariant multivariable systems. The
statistical performance of the different approaches are analyzed through their equivalent cost func-
tions. Both generalized and bootstrapped total least squares (GTLS and BTLS) methods require
the exact knowledge of the noise covariance matrix. The paper also studies the asymptotic (the
number of data points going to infinity) behavior of the GTLS and BTLS estimators when the exact
noise covariance matrix is replaced by the sample noise covariance matrix obtained from a (small)
number of independent data sets. Even if only two independent repeated observations are available,
it is shown that the estimates are still strongly consistent without any increase in the asymptotic
uncertainty.
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1. Introduction. Total least squares (TLS) techniques have been applied with
success to a wide variety of problems [26]. This paper gives an overview of its appli-
cation to frequency domain identification of linear time-invariant multivariable sys-
tems. The key analysis tool used throughout the paper is the equivalent cost function
minimized by the TLS method. Analyzing the cost function reveals the statistical
properties of the TLS estimator, shows its shortcomings, and allows us, by compari-
son with the maximum likelihood (ML) approach, to propose weighted TLS versions
with nearly ML properties.

The paper starts by defining the parametric model and the stochastic framework
(section 2). Next, the TLS estimation of the model parameters is handled (section 3)
and some extensions are given (section 4). Sections 5 and 6 study the properties of the
generalized and bootstrapped total least squares (GTLS and BTLS) estimators when
the true noise covariance matrix is replaced by the noise sample covariance matrix.
The theory is illustrated in sections 7 and 8 by simulation and real measurement
examples.

2. Multiple input, multiple output systems.

2.1. Model equations. Consider a real, linear, time-invariant multivariable
system without time delay with nu inputs and ny outputs. Assume that the in-
put signals are periodic or time limited. The (discrete) Fourier spectra U0(jω) and
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Y0(jω) of, respectively, the input u0(t) = [u01(t)u02(t), . . . , u0nu(t)]T and output
y0(t) = [y01(t)y02(t), . . . , y0ny(t)]T signals are related to each other through a transfer
function matrix G0(jω) ∈ Cny×nu,

Y0(jω) = G0(jω)U0(jω).(1)

The (discrete) Fourier spectra U0(jω), Y0(jω) are primarily calculated from the knowl-
edge of N samples of the measured time signals. Sometimes the (discrete) Fourier
spectra are directly measured, for example, in high frequency network analyzers. If
the input is periodic and an integer number of periods of the steady state response
is measured, then the (discrete) Fourier spectra can be calculated without system-
atic errors through the discrete Fourier transforms (DFT) of the samples u0(nTs) and
y0(nTs), n = 0, 1, . . . , N−1, with Ts the sampling period [4]. If the input signal is time
limited, then, by an appropriate choice of the measurement time, the cutoff frequency
of the anti-alias filters, and the sampling frequency, the spectral leakage and alias
errors of the DFT can be made arbitrarily small [4]. Equation (1) can then be evalu-
ated at the excited DFT angular frequencies {ω1, ω2, . . . , ωF } with ωk ∈ {2πr/(NTs);
r = 0, 1, . . . , N/2}.

Unless nu = 1, it is impossible to calculate G0(jω) from (1) (U0(jω) ∈ Cnu
and Y0(jω) ∈ Cny). Therefore the multiple input, multiple output (MIMO) exper-

iment is often repeated M times with different excitation signals U
(i)
0 (jω) ∈ Cnu,

i = 1, 2, . . . ,M . Denoting the corresponding output signals by Y
(i)
0 (jω) ∈ Cny,

i = 1, 2, . . . ,M , and redefining the input/output Fourier data as

Y0(jω) =
[
Y

(1)
0 (jω)Y

(2)
0 (jω), . . . , Y

(M)
0 (jω)

]
∈ Cny×M ,

U0(jω) =
[
U

(1)
0 (jω)U

(2)
0 (jω), . . . , U

(M)
0 (jω)

]
∈ Cnu×M ,

(2)

it can easily be seen that relationship (1) is still valid. If the rank of U0(jω) equals
nu, then U0(jω) is regular and G0(jω) = Y0(jω)U+

0 (jω), where superscript + denotes
the Moore–Penrose pseudo-inverse [2]. Proceeding in this way, measurements of the
true transfer function matrix G0(jω) can be obtained experimentally [10]. An easy
quality check (= model validation) of the estimated parametric model consisting of
comparing it to the measured transfer function matrix is then possible.

There exist many parametrizations of the transfer function matrix; for exam-
ple, the state space representation, the matrix and the partial fraction descriptions,
etc. [12]. The TLS approach requires a parametrization that leads to a model equation
which is linear in the model parameters. When using the input and output Fourier
matrices U0(jω) and Y0(jω) as primary data, then the left matrix fraction description
is the only parametrization which results in linear relationship between the matrix
coefficients. The left matrix fraction description writes the transfer function matrix
as the ratio of two matrix polynomials

G(Ω, X) = D−1(Ω, X)N(Ω, X) =

[
od∑
k=0

DkΩod−k
]−1 [ on∑

k=0

NkΩon−k
]
.(3)

X = [D0D1, . . . , Dod N0N1, . . . , Non]T ∈ Rn×d(n = (od+ 1)ny + (on+ 1)nu, d =
ny) are the model parameters, Nk ∈ Rny×nu, Dk ∈ Rny×ny are the numerator and
denominator real matrix coefficients, and Ω is a generalized frequency variable. The
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generalized frequency variable Ω equals jω for continuous time systems, exp(−jωTs)
for discrete time systems, tanh(jωτ) for commensurate microwave systems, and

√
jω

for diffusion phenomena.
Notice that the transfer function model (3) is not identifiable since G(Ω, XΛ) =

G(Ω, X) for any regular matrix Λ ∈ Rd×d. To remove the parameter redundancy,
parameter constraints have to be imposed. Model (3) can be made identifiable by
fixing one matrix coefficient of the denominator polynomial, e.g., Dod = Id, or by
imposing a 2-norm constraint on the parameter matrix X, i.e., XTX = Id.

Using (1), (2), and (3), the model equation is readily obtained.

D(Ω, X)Y0(jω)−N(Ω, X)U0(jω) = 0.(4)

Since (4) is linear in the model parameters X and in the input/output Fourier data
ZT0 (jωk) = [Y T0 (jωk), UT0 (jωk)] (Z0 ∈ C(ny+nu)×M ), it can be reformulated as

XTS(jωk)Z0(jωk) = 0

where S(jω) = block diag([Ωod, . . . , 1]T ⊗ Iny,−[Ωon, . . . , 1]T ⊗ Inu),
(5)

with ⊗ the Kronecker product [3]. Rewriting equation (5), evaluated at the considered
F frequencies as an overdetermined set of 2F real-valued linear equations, gives

A0X = 0

where A0 ∈ Rm×n, X ∈ Rn×d,m = 2F, n = (od+ 1)ny + (on+ 1)nu, d = ny,
(6)

with A0 = [real(α0 1), real(α0 2), . . . , real(α0F ), imag(α0 1), . . . , imag(α0F )]T and

αT0k = [Y T0 (jωk), UT0 (jωk)]ST (jωk)

= [Y T0 (jωk)Ωodk , Y
T
0 (jωk)Ωod−1

k , . . . , Y T0 (jωk),−UT0 (jωk)Ωonk ,

−UT0 (jωk)Ωon−1
k , . . . ,−UT0 (jωk)].

(7)

The identification problem to be solved is finding an X of full column rank such that
(6) is satisfied.

2.2. Stochastic framework. In practice, the model parameters X are esti-
mated using noisy measurements U(jωk), Y (jωk) of the true (deterministic) input
and output DFT spectra U0(jωk), Y0(jωk). By introducing ZT (jωk) = [Y T (jωk),
UT (jωk)] (Z ∈ C(ny+nu)×M ), the errors-in-variables equations are

Z(jωk) = Z0(jωk) + ∆Z(jωk),(8)

with Z0(jωk) the true (unknown) values and ∆Z(jωk) the errors. Relying on the
properties of the discrete Fourier transform [5], it is reasonable to make the following
assumption.

Assumption 2.1. ∆Z(jωk), k = 1, 2, . . . , F are zero-mean, mixing1 (over the
frequency), complex distributed random matrices with known Hermitian-symmetric

1Intuitively this means that the (frequency) span of the dependency is limited or the correlation
of the errors over the frequency must tend sufficiently fast to zero. See [5] for a formal definition.
For example, filtered, white noise (with bounded moments) is mixing.



986 PINTELON, GUILLAUME, VANDERSTEEN, AND ROLAIN

matrices

E{∆Z(jωk)∆ZH(jωk)} = CZ(jωk) =

[
CY (jωk) CY U (jωk)

CHY U (jωk) CU (jωk)

]
,

satisfying E{∆Z(jωk)∆ZT (jωk)} = 0.

It is also reasonable to assume that the experimental conditions of the repeated
MIMO measurements are such that the columns of ∆Z(jωk) are independent and
identically distributed [10]. These restrictions are, however, not included in Assump-
tion 2.1; the columns of ∆Z(jωk) may be correlated and may have different covariance
matrices. In section 3.2, it will be shown that the GTLS solutions require neither the
knowledge of the individual covariance matrices of the columns of ∆Z(jωk) nor the
correlation of ∆Z(jωk) over the frequency. The optimally weighted GTLS solutions,
however, need this information. Therefore the following additional assumption is
made.

Assumption 2.2. The errors ∆Z(jωk) are independent over the frequency; the
columns of ∆Z(jωk) are independent and complex normally distributed random vec-
tors.

Putting the noisy values (8) into model equation (6) defines the noisy matrix A

A = A0 + ∆A(9)

with

A = [real(α1), real(α2), . . . , real(αF ), imag(α1), . . . , imag(αF )]T ,(10)

αTk = ZT (jωk)ST (jωk).(11)

Using the stochastic errors-in-variables framework (9), the identification problem is
reformulated as follows. Find an X of full column rank (satisfying XTX = Id) such
that AX is “as small as possible” (in Frobenius norm).

3. Parameter estimation. The weighted generalized total least squares
(WGTLS) solution to the estimation problem AX = 0 is [26]

arg min‖W (A− Â)C−1‖2F subject to ÂX = 0 and XTX = Id.
Â,X

(12)

W ∈ Rm×m is a left weighting matrix and C ∈ Rn×n is a square root of the column
covariance matrix of WA: CTC = E{∆ATWTW∆A}. The matrix C is singular for
identification problems with singular covariance matrices CZ(jωk) ∀k. This occurs
when one or more DFT spectra are noise free or when some of the noise sources are
totally correlated (see, for example, section 4.1). Elimination of Â in (12) gives the
equivalent cost function minimized by the WGTLS estimator (see Appendix 1)

arg min
X

trace((WAX)[XTCTCX]−1(WAX)T ) subject to XTX = Id.(13)

Under Assumption 2.1, and provided some regularity conditions are satisfied (see
section 5.2), it can be proven that the WGTLS solution XWGTLS for a deterministic
weighting W of full rank is strongly consistent and asymptotical normally distributed
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(m → ∞) [23]. The solution XWGTLS is not calculated by minimizing cost function
(13), but through the generalized singular value decomposition (GSVD) of the matrix
pair (WA, C) [1], [13].

The multidimensional TLS problem (12) (d = ny) can be reformulated into a
one-dimensional problem (d = 1). Indeed, applying the vec operator to XTAT ≈ 0
gives (A ⊗ Id)v ≈ 0 with v = vec(XT ). The one-dimensional constraint vT v = 1 is,
however, not sufficient to remove the parameter redundancy of a left matrix fraction
description when ny > 1. That problem can be circumvented by using, for instance,
another parametrization, e.g., a common denominator model Dk = dkId (dk ∈ R, k =
0, 1, . . . , od), or by fixing a matrix coefficient of the denominator polynomial, e.g.,
Dod = Id. This leads to a parameter vector of reduced dimension satisfying vec(XT ) =
Lx with L a constant regular matrix of full column rank (see Appendix 2). The
constraint xTx = 1 is now sufficient to remove the parameter redundancy. The one-
dimensional weighted total least squares (WTLS) solution to the estimation problem
is

arg
Â,x

min ‖W (A− Â)C−1‖2F with A = (A⊗ Iny)L

subject to Âx = 0 and xTx = 1.

(14)

W ∈ R(m·ny)×(m·ny) is a left weighting matrix and C ∈ R(n·ny)×(n·ny) is a square root
of the column covariance matrix of WA: CTC = E{∆ATWTW∆A}. Elimination of
Â in (14) results after some calculations using Kronecker algebra [3] in the following
equivalent cost function (replace A and X by, respectively, A and x in (13))

arg min
x

(
(Wvec((AX)T ))TW vec((AX)T )

xTCTCx

)
subject to vec(XT ) = Lx and xTx = 1.

(15)

The one-dimensional WGTLS solution xWGTLS is calculated through the GSVD of
the matrix pair (WA, C). Its usefulness will become clear when discussing the optimal
weighting of GTLS estimators (see section 3.4).

Note that the one-dimensional WGTLS solution (15) does not exploit the special
structure of A = (A⊗ Iny)L. When noise and/or modeling errors2 are present, it will
be different from the exact one-dimensional solution and hence also from the original
multidimensional estimates. Indeed, the exact solution satisfies (Â ⊗ Iny)Lx̂ = 0,

where Â ⊗ Iny is of rank ny(n − ny), while the WGTLS solution satisfies Âx̂ = 0,

where Â is of rank n · ny − 1. The exact one-dimensional solution can be calculated
using the structured TLS method [25]. It has a smaller uncertainty than (15) but
requires an iterative algorithm. Generalizations, refinements, and convergence issues
of this algorithm are currently under study [25].

It is readily verified that the multidimensional WGTLS cost function (13) is scale
invariant: replacing X by XΛ in (13), with Λ ∈ Rd×d a regular scaling matrix,
gives the same cost function. The one-dimensional WGTLS cost function (15) is
not scale invariant with respect to (w.r.t.) Λ: replacing vec(XT ) by vec(ΛTXT ) in
(15) yields another cost function. Consequently, the one-dimensional WGTLS es-
timates will depend on the particular choice of L (i.e., the parameter constraint).

2Model errors occur when the polynomial orders od and/or on in (3) are too small and/or when
nonlinear distortions are present.
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The one-dimensional WGTLS cost function (15) is, however, scale invariant w.r.t.
Λ = λIny(λ 6= 0), which means that the corresponding estimates are independent of
the particular constraint on x (e.g., xi = 1 or xTx = 1) [14].

3.1. TLS. Putting W = Im, C = In in (13) gives the multi-
dimensional TLS estimates

VTLS(X,Z) =
F∑
k=1

trace(εH(jωk, X)[XTX]−1ε(jωk, X))

subject to XTX = Id,

(16)

with ε(jωk, X) ∈ Cny×M a matrix polynomial in Ωk given by

ε(jωk, X) = XTαk = D(Ωk, X)Y (jωk)−N(Ωk, X)U(jωk).(17)

Calculating the expected value of (16) gives

E{VTLS(X,Z)} = VTLS(X,Z0) +
F∑
k=1

trace([XTX]−1W−2
ML(jωk, X)),(18)

where

W−2
ML(jωk, X) = E{∆ε(jωk, X)∆εH(jωk, X)} = XTS(jωk)CZ(jωk)SH(jωk)X

= (D(Ωk, X)CY (jωk)DH(Ωk, X) +N(Ωk, X)CU (jωk)NH(Ωk, X)

−2herm(D(Ωk, X)CY U (jωk)NH(Ωk, X))),

(19)

and with herm(A) = (A + AH)/2. Under Assumption 2.1, the TLS cost function
(16) converges with probability one to its expected value (18) (for the proof see [23]).
The first term on the right-hand side of (18) is minimal in the true parameter values
(VTLS(X0, Z0) = 0). However, since the second term is X-dependent, the expected
value of the cost function is in general not minimal in the true model parameters X0.
As a consequence, the TLS estimate XTLS is inconsistent. The residuals of the model
equation ε(jωk, X) have a frequency independent weighting XTX = Id in (16), which
explains why the TLS estimates overemphasize the high frequency errors [11], [14].

Putting W = Im·ny, C = In·ny in (15) gives the one-dimensional TLS estimates

VTLS(x, Z) =
F∑
k=1

trace(εH(jωk, X)ε(jωk, X))

xTx

subject to vec(XT ) = Lx and xTx = 1.

(20)

The TLS algorithm should be applied on the matrix A which has the structure (10)
with

αTk =
([
ZT (jωk)ST (jωk)

]⊗ Iny)L.(21)

The one-dimensional TLS estimates are inconsistent and suffer from the same prob-
lems as the multidimensional solution.
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3.2. GTLS. Putting W = Im in (13) gives the multidimensional GTLS esti-
mates [9]

VGTLS(X,Z) =

F∑
k=1

trace

εH(jωk, X)

[
F∑
l=1

W−2
ML(jωl, X)

]−1

ε(jωk, X)

(22)

subject to XTX = Id.

Calculating the expected value of (22) gives

E{VGTLS(X,Z)} = VGTLS(X,Z0) + ny.(23)

Since the expected value of the cost function is minimal in the true parameter values
(VGTLS(X,Z0) = 0), the estimates are strongly consistent under Assumption 2.1
(provided that the regularity assumptions of section 5.2 are satisfied). Due to the

equal weighting
∑F
l=1W

−2
ML(jωl, X) of the residuals ε(jωk, X) over all frequencies

in (22), the GTLS estimates overemphasize the high frequency errors [11], [14]. It
explains why its efficiency can be very poor.

An analytic expression B for the square root of the column covariance matrix of
A can be found [21]

B = [real(β1), real(β2), . . . , real(βF ), imag(β1), . . . , imag(βF )]T ,(24)

with

βTk = CZ(jωk)T/2ST (jωk).(25)

CZ(jωk)1/2 is a square root of CZ(jωk) and can be calculated by means of a Cholesky
or singular value decomposition. The number of rows of the rectangular matrix
B (2F (nu+ny)) can be quite large compared with the dimension of C (ny(od + 1)+
nu(on + 1)). This is the reason why the GSVD of the matrix pair (A,C), with C a
square root of BTB, is usually preferred over that of (A,B).

Putting W = Imd in (15) gives the one-dimensional GTLS estimates

VGTLS(x, Z) =

∑F
k=1 trace(εH(jωk, X)ε(jωk, X))∑F

l=1 trace(W−2
ML(jωl, X))

subject to vec(XT ) = Lx and xTx = 1.

(26)

xGTLS is calculated using the matrix pair (A, C) or (A, B) with A defined by (21)
and where B has structure (24) with

βTk = ([CZ(jωk)T/2ST (jωk)]⊗ Iny)L.(27)

Calculating the expected value of (26) gives

E{VGTLS(x, Z)} = VGTLS(x, Z0) + 1.(28)

Since (28) is minimal in the true parameter values (VGTLS(x, Z0) = 0), the estimates
are strongly consistent under Assumption 2.1 (provided that the regularity assump-
tions of section 5.2 are satisfied).
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3.3. WGTLS. It is possible to introduce frequency-dependent weights in the
multidimensional GTLS by multiplying each row of A with a frequency-dependent,
real-valued weighting function wε(jωk). This results in the following W -matrix

W = I2 ⊗ block diag(IMwε(jω1), IMwε(jω2), . . . , IMwε(jωF )).(29)

Putting W (29) in (13) gives

VWGTLS(X,Z)(30)

=

F∑
k=1

trace

w2
ε(jωk)εH(jωk, X)

[
F∑
l=1

w2
ε(jωl)W

−2
ML(jωl, X)

]−1

ε(jωk, X)


subject to XTX + Id.

Note that all the entries of the residual error matrix ε(jωk, X) in (30) are weighted
with the same scalar frequency-dependent weighting function wε(jωk).

For the one-dimensional implementation it is possible to introduce a Hermitian-
symmetric weighting matrix Wε(jωk) ∈ Cny×ny in the WGTLS cost function. Indeed,
transforming the weighted equation error as follows [3],

vec(Wε(jωk)XTS(jωk)Z(jωk))

= ([ZT (jωk)ST (jωk)]⊗Wε(jωk))vec(XT )

= (IM ⊗Wε(jωk))([ZT (jωk)ST (jωk)]⊗ Iny)vec(XT )

(31)

leads to a one-dimensional WGTLS problem with weighting matrix

W =

[
real(Wc) −imag(Wc)

imag(Wc) real(Wc)

]
,(32)

with

Wc = block diag(IM ⊗Wε(jω1), IM ⊗Wε(jω2), . . . , IM ⊗Wε(jωF )).(33)

W is symmetric since WH
c = Wc. Putting these expressions in (15) gives, after some

calculations,

VWGTLS(x, Z) =

∑F
k=1 trace(εH(jωk, X)W 2

ε (jωk)ε(jωk, X))∑F
l=1 trace(W 2

ε (jωl)W
−2
ML(jωl, X))

subject to vec(XT ) = Lx and xTx = 1.

(34)

xWGTLS is calculated using the matrix pair (AW , C) or (AW , B), where the
matrices AW = WA and B have, respectively, structure (10) and (24) with

αTk = ([ZT (jωk)ST (jωk)]⊗Wε(jωk))L

and βTk = ([CZ(jωk)T/2ST (jωk)]⊗Wε(jωk))L.
(35)
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3.4. BTLS. Adding an appropriate frequency-dependent weighting to the GTLS
estimator is the key solution to improve its efficiency. The ML solution calculated
under Assumptions 2.1 and 2.2 [9],

VML(X,Z) =
F∑
k=1

trace(εH(jωk, X)W 2
ML(jωk, X)ε(jωk, X))

subject to XTX = Id,

(36)

learns that the optimal left weighting of the residual of the model ε(jωk, X) equation
equals WML(jωk, X). X is unfortunately unknown so that only an approximation
WML(jωk, X̂) of the optimal weighting can be calculated through an initial guess X̂
of the model parameters.

Left multiplication of the residuals ε(jωk, X) (17) with WML(jωk, X̂) gives an
expression WML(jωk, X̂)XTS(jωk)Z(jωk) which can no longer be written under the
form AX = 0. Hence it is impossible to apply the full ML weighting in the multi-
dimensional WGTLS estimator. Only scalar functions of WML(jωk, X̂) are allowed
in (30). Functions that work reasonably well are

wε(jωk) =
2·ny
√

det(WML(jωk, X̂)) or wε(jωk) =

√
trace(WML(jωk, X̂)) .(37)

Putting expressions (37) in (30) defines the one-step multidimensional BTLS esti-
mates.

The one-dimensional WGTLS solution allows us to include the full ML weight-
ing. Replacing Wε(jωk) by WML(jωk, X̂) in (34) gives the one-step, one-dimensional
BTLS estimates [9]

VBTLS(x, Z, X̂) =

∑F
k=1 trace(εH(jωk, X)W 2

ML(jωk, X̂)ε(jωk, X))∑F
l=1 trace(W 2

ML(jωl, X̂)W−2
ML(jωl, X))

subject to xTx = 1 and vec(XT ) = Lx.

(38)

Assuming that the initial guess X̂ is independent of the measurements Z(jωk),
k = 1, 2, . . . , F, the expected value of (38) equals

E{VBTLS(x, Z, X̂)} = VBTLS(x, Z0, X̂) + 1.(39)

Since (39) is minimal in the true model parameters (VBTLS(x, Z0, X̂) = 0), the one-
step BTLS estimator is strongly consistent (see section 5.2). Due to the appropriate
frequency weighting, the estimates (38) have nearly ML efficiency [24], [14], [9]. The
intuitive explanation for this is the close resemblence between the BTLS and ML cost
functions: replacing X̂ by X in (38) gives VBTLS(x, Z,X) = VML(X,Z)/(Fny). The
efficiency can be improved on further by using x̂ = xBTLS to calculate an improved
weighting, recalculating the BTLS estimates, and so on until convergence is obtained.
As starting value for this iterative procedure, a strongly consistent estimate x̂ is used;
for example, x̂ = xGTLS . Although X̂ now clearly depends in each step on the
measurements Z(jωk), k = 1, 2, . . . , F, the resulting multistep BTLS estimate is still
strongly consistent under Assumption 2.1 (provided that the regularity assumptions of
section 5.2 are satisfied). Indeed, since X̂ converges strongly to X0, the cost function
(38) converges strongly (F → ∞) to VBTLS(x, Z0, X0) + 1 which is minimal in the
true model parameters x0.
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3.5. WTLS for scalar systems. A disadvantage of the BTLS estimator is that
it is not self-starting: an initial guess of the model parameters should be available to
calculate a “reasonable” weighting. The question now is: can a “reasonable” weighting
be obtained without any prior knowledge of the model parameters? For scalar systems
(nu = ny = 1), a solution has been found. The following weighting approximates the
optimal ML weighting WML(jωk, x) in a nonparametric way [15]:

W−2
ε (jωk, Gk)

=

(
σ2
Y (jωk)

|G(jωk)| + |G(jωk)|σ2
U (jωk)− 2real

(
σ2
Y U (jωk)e−j arg(G(jωk))

))
T (Ωk),

(40)

with G(jωk) = Y (jωk)/U(jωk) the measured frequency response function and

T (Ωk) =
(|Ωk|(on+1) − 1)

(|Ωk| − 1)

(|Ωk|(od+1) − 1)

(|Ωk| − 1)
.(41)

Note that T (Ωk) = (on+1)(od+1) for discrete time systems (z-domain) and for each
value |Ωk| = 1. Using (40), and defining the weighting matrix W as in (29), one can
construct a WTLS estimator

VWTLS(x, U, Y ) =
F∑
k=1

W 2
ε (jωk, Gk)

|ε(jωk, x)|2
xTx

subject to xTx = 1,(42)

and a WGTLS estimator

VWGTLS(x, U, Y ) =

∑F
k=1W

2
ε (jωk, Gk)|ε(jωk, x)|2∑F

l=1W
2
ε (jωl, Gl)W

−2
ML(jωl, x)

subject to xTx = 1.(43)

Both estimates are inconsistent since the weighting Wε(jωk, Gk) is a function of the
measurement noise. Among the existing methods, the proposed estimators (42) and
(43), considered as a pair, lead to better, or at least not worse, starting values for the
BTLS algorithm (38) [15].

4. Extensions.

4.1. Identification from transfer function matrix measurements. Some-
times the input/output Fourier data are not available and the identification should
start from measured transfer function matrices G(jωk) [17]. The model equation is
given by (4) with M = nu, Y0(jω) = G0(jω), and U0(jω) = Inu. The noise on the
transfer function measurements ∆ZT (jωk) = [∆GT (jωk) 0] satisfies Assumption 2.1
so that all the multidimensional TLS estimators developed in section 3 can still be
applied. This is no longer the case for the one-dimensional WGTLS implementa-
tions (except for the one-dimensional TLS) since, in general, the columns of ∆G(jωk)
are correlated and have different covariance matrices. Therefore the one-dimensional
implementations need more noise information in case of transfer function matrix mea-
surements.

Assumption 4.1. ∆g(jωk) = vec(∆G(jωk)), k = 1, . . . , F are zero-mean, mix-
ing (over the frequency), complex distributed random vectors with known Hermitian-
symmetric matrices E{∆g(jωk)∆gH(jωk)] = Cvec(G)(jωk), satisfying E{∆g(jωk)
∆gT (jωk)} = 0.
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Assumption 4.2. The errors ∆g(jωk) = vec(∆G(jωk)) are independent (over
the frequency) complex normally distributed random vectors.

Under Assumptions 4.1 and 4.2, the ML solution becomes

VML(X,Z) =
F∑
k=1

vecH(ε(jωk, X))W 2
ML(jωk, X)vec(ε(jωk, X))

subject to XTX = Id,

(44)

where

W−2
ML(jωk, X) = E{vec(∆ε(jωk, X))vecH(∆ε(jωk, X))}

= (Inu ⊗D(Ωk, X))Cvec(G)(jωk)(Inu ⊗DH(Ωk, X)).
(45)

For the one-dimensional WGTLS solution we use a left weighting matrix W
which has structure (32) with Wc = block diag(Wε(jω1), Wε(jω2), . . . ,Wε(jωF )) and
Wε(jω) ∈ C(nu·ny)×(nu·ny) a Hermitian-symmetric matrix. Putting these expressions
in (15) gives

VWGTLS(x, Z) =

∑F
k=1 vecH(ε(jωk, X))W 2

ε (jωk)vec(ε(jωk, X))∑F
l=1 trace(W 2

ε (jωl)W
−2
ML(jωl, X))

subject to vec(XT ) = Lx and xTx = 1.

(46)

Replacing W 2
ε (jωk) by WML(jωk, X̂) in (46) gives the BTLS estimator

VBTLS(x, Z, X̂) =

∑F
k=1 vecH(ε(jωk, X))W 2

ML(jωk, X̂)vec(ε(jωk, X))∑F
l=1 trace(W 2

ML(jωl, X̂)W−2
ML(jωl, X))

subject to vec(XT ) = Lx and xTx = 1.

(47)

Under Assumption 4.1, the properties of the one-dimensional WGTLS (46) and
BTLS (47) estimates are the same as those of section 3. The special case of indepen-
dently measured entries gij(jωk) of the transfer function matrix G(jωk) is handled in
[17].

4.2. High order systems. Transfer function model (3) leads to an ill-
conditioned matrix WA for model orders od ≥ 40. The numerical conditioning of
WA can significantly be improved by expanding the numerator and denominator of
(3) in orthogonal Forsythe polynomial matrices [7], [22]. Using this approach, very
high order scalar systems od ≥ 120 have been identified on experimental data [16].

4.3. Complex systems. The results of section 3 can be generalized to transfer
function models with complex coefficients (Nk ∈ Cny×nu, Dk ∈ Cny×ny). Therefore it
is sufficient to write model equation (4) at the excited DFT frequencies as a set of F
complex equations

A0X = 0 (A0 ∈ Cm×n, X ∈ Cn×d,m = F, n = (od+1)ny+(on+1)nu, d = ny),(48)

with A0 = [α01, α02, . . . , α0F ]T (see (7) for the definition of α0k) and to replace the
transpose operator T at the appropriate places in section 3 by the Hermitian transpose
operator H. For the WGTLS and BTLS estimators, the real-valued left weighting
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W (32) is replaced by the complex-valued weighting Wc (33). Making the changes
XTX → XHX and xTx → xHx, the expressions for the cost functions (20), (26),
(34), (36), (38), and (43) remain valid. A potential application of rational functions
with complex coefficients (scalar case) is the modeling of nuclear magnetic resonance
spectra.

5. The WGTLS estimator using the sample noise covariance matrix.

5.1. Introduction. The WGTLS solution

arg min
Â,X

‖W (A− Â)C−1‖2F subject to ÂX = 0 and XTX = Id,(49)

withX ∈ Rn×d produces consistent estimates if C satisfies CTC = E{∆ATWTW∆A}.
The covariance matrix CTC is in most practical applications unknown. This section
describes the asymptotic properties of the WGTLS estimates when the true noise
covariance matrix CTC is replaced by the sample noise covariance matrix obtained
from a small number K > 1 of independent realizations A of the true unknown matrix
A0.

The main advantages of this approach are its robustness w.r.t. incorrect noise
assumptions and the fact that no parametric noise model should be estimated (no
noise model order selection and no parametric noise model should even exist). The
only price to pay is that the measurements need to be repeated at least two times.

In order to simplify the asymptotic analysis (m→∞) of the WGTLS estimator
using the sample noise covariance matrix (SWGTLS), the main steps in the analysis
of the WGTLS estimator using the exact noise covariance matrix are first given.

5.2. WGTLS estimator—exact noise covariance matrix. The analysis of
the WGTLS estimator using the exact noise covariance matrix fits within the general
framework of [23]. Therefore only the basic assumptions and the main results will be
given here. The cost function interpretation of the WGTLS says that when XTCTCX
is regular, then

arg min
X

trace((XTCTCX)−1(XTATWTWAX))(50)

is equivalent to the WGTLS solution. To analyze the asymptotic behavior of the
estimates, one needs to make the following assumptions.

Assumption 5.1. For all m > n, the entries of A are jointly mixing (over
m) of order 4, W is deterministic with ‖W‖1 < ∞, XTCTCX is regular, and C is
deterministic with ‖C‖1 <∞.

Assumption 5.2. A0 and the zero-mean perturbation ∆A are mutually indepen-
dent and CTC = E{∆ATWTW∆A}.

Assumption 5.3. There exists an exact model A0X0 = 0.
Assumption 5.4. The excitation is persistent: 1

mA
T
0 W

TWA0 is of rank n − d
for any m > n (m =∞ included).

Theorem 5.1. Under Assumptions 5.1, 5.2, 5.3, and 5.4

arg min
X

trace((XTCTCX)−1(XTATWTWAX))

is a strongly consistent estimate.
Proof. Uniform (w.r.t. X) convergence with probability one of the WGTLS cost

toward its expected value is guaranteed under Assumption 5.1 [23]. Under Assump-
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tion 5.2, the expected value of the GTLS cost (50) becomes

E{trace((XTCTCX)−1(XTATWTWAX))}
= trace((XTCTCX)−1(XTAT0 W

TWA0X)) + d.
(51)

The cost (51) is minimal in the exact parameters X0 under Assumption 5.3. Assump-
tion 5.4 guarantees that all the global minima of (51) satisfy A0X = 0. Strong consis-
tency of the estimates XWGTLS immediately follows3 [23]: a.s. limm→∞XWGTLS =
X0.

Assumption 5.5. For all m > n, the entries of A are jointly mixing (over m) of
order ∞.

Theorem 5.2. Under Assumptions 5.1–5.5, arg minX trace((XTCTCX)−1

(XTATWTWAX)) converges in law (m → ∞) to a Gaussian random variable with
mean value X0.

Proof. For the proof, see [23].
Assumption 5.5 is, for example, satisfied for independent identical distributed

noise of the exponential family distribution [20] passing through a linear stable filter.

5.3. SWGTLS estimator—sample noise covariance matrix. The analysis
requires an additional assumption and will be done in two steps.

Assumption 5.6. A strongly consistent estimate D, independent of X, of the
noise covariance matrix CTC is available: a.s. limm→∞(D − CTC)/m = 0.

First the WGTLS estimator will be studied, assuming that a strongly consistent
estimate D of the exact noise covariance matrix is available. Next it will be shown
that the sample covariance matrix of the noise obtained from independent repeated
experiments satisfies Assumption 5.6.

Theorem 5.3. Under Assumptions 5.1–5.4 and 5.6, arg minX trace((XTDX)−1

(XTATWTWAX)) is a strongly consistent estimate (for m→∞).
Proof. Following along the lines of section 5.2, strong consistency of the estimates

is proven if it can be shown that the WGTLS cost function using the estimated noise
covariance matrix D converges uniformly with probability one to an expression which
is minimal in the true parameter values. Under Assumptions 5.1, 5.2, and 5.6 the
WGTLS cost function using the estimated noise covariance matrix D converges uni-
formly with probability one to the expected value of the cost function using the exact
noise covariance matrix (51),

(52)
a.s. lim

m→∞ trace((XTDX)−1(XTATWTWAX)

−E{(XTCTCX)−1(XTATWTWAX)})

= trace

((
XT

(
a.s. lim

m→∞
1

m
D

)
X

)−1

XT

(
a.s. lim

m→∞
1

m
(ATWTWA)

)
X

)

−trace

((
XT

(
lim
m→∞

1

m
CTC

)
X

)−1

XT

(
lim
m→∞

1

m
(AT0 W

TWA0)

)
X

)
− d

= 0.

3a.s. lim stands for “almost sure limit” or “limit with probability one”; it means that the event
“limm→∞ converges” happens with probability one. See [19] for a formal definition.
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Combining this result with Assumptions 5.3 and 5.4 proves the strong
consistency.

Assume now that repeated observations of the true unknown matrix A0 are avail-
able, A[k] = A0 + ∆A[k] (k = 1, . . . ,K), and use the mean value Ā =

∑K
k=1A

[k]/K
for the identification (put A = Ā in (50)).

Assumption 5.7. For all m > n and for all k, the entries of A[k] are jointly
mixing (over m) of order 4 and W is deterministic with ‖W‖1 <∞.

Assumption 5.8. A0 is a constant (k-independent) matrix which is stochasti-
cally independent of ∆A[k] for all k.∆A[k] is the kth independent realization (k =
1, 2, . . . ,K) of a zero-mean, noise process with k-independent covariance matrix.

Theorem 5.4. Under Assumptions 5.7 and 5.8, D = 1
K(K−1)

∑K
k=1(A[k] −

Ā)TWTW (A[k] − Ā) is a strongly consistent estimate (for m → ∞) of the column
covariance matrix CTC of Ā.

Proof. Define B[k] = WA[k] with matrix elements b
[k]
ij . The ijth element of D is

then given by

dij =
m

K(K − 1)

K∑
k=1

1

m

m∑
p=1

(
b
[k]
pi − bpi

)(
b
[k]
pj − bpj

)
with bij =

1

K

K∑
k=1

b
[k]
ij .(53)

Assumption 5.7 guarantees that the individual terms (b
[k]
pi − bpi)(b[k]

pj − bpj) of (53)

are jointly mixing (over m) of order 2 [5]. Almost sure convergence of
∑m
p=1(b

[k]
pi −

bpi)(b
[k]
pj − bpj)/m, and hence also of dij/m, toward its expected value then follows

by applying the strong law of large numbers for mixing sequences (see Lemma 3 of
[23]). Assumption 5.8 guarantees that the sample covariance is an unbiased estimate
for finite K, and hence a.s. limm→∞(D − E{D})/m = a.s. limm→∞(D − CTC)/
m = 0.

Assumption 5.9. XTCTCX is regular with ‖C‖1 <∞.
Theorem 5.5. Under Assumptions 5.3, 5.4, and 5.7–5.9,

arg min
X

trace((XTDX)−1(XT ĀTWTWĀX)),

with D given by (53), is a strongly consistent estimate (m→∞).
Proof. Apply Theorems 5.3 and 5.4.
Assumption 5.10. For all m > n and for all k, the entries of A[k] are jointly

mixing (over m) of order ∞.
Theorem 5.6. Under Assumptions 5.3, 5.4, and 5.7–5.10,

arg min
X

trace((XTDX)−1(XT ĀTWTWĀX))

converges in law (m → ∞) to the same asymptotic Gaussian distribution as the
WGTLS estimates using the exact covariance matrix.

Proof. Apply Theorem 6 of [23].
Intuitively, this result is motivated by observing that the estimates are normally

distributed for any deterministic value of CTC. Since D given by (53) converges
sufficiently fast to E{∆ĀTWTW∆Ā}, the stochastic variation in the estimate D will
become negligible w.r.t. the Gaussian stochastic variation of the estimates when using
the exact value of E{∆ĀTWTW∆Ā}.

Since (53) exists for any K ≥ 2, it follows that the asymptotic properties (strong
consistency, asymptotic covariance matrix, and asymptotic normality) of the GTLS
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estimator using the sample covariance matrix apply for any K ≥ 2. Hence only
two repeated independent experiments are sufficient to solve the errors-in-variables
problem within a TLS framework.

6. The BTLS estimator using the sample noise covariance matrix. The
reasoning will be held for the one-dimensional BTLS estimates (38) using measured
input/output Fourier data. Extension to the transfer function measurement case (47)
is straightforward.

Following along the lines of section 5.3, one could think to replace the true noise
covariance matrix CZ(jω) everywhere in (38) by the sample noise covariance matrix

ĈZ(jω) =
1

K(K − 1)

K∑
k=1

(Z [k](jω)− Z̄(jω))(Z [k](jω)− Z̄(jω))H ,(54)

where Z̄(jω) =
∑K
k=1 Z

[k](jω)/K is the sample mean (Z [k](jω), Z̄(jω) ∈ C(ny+nu)×M ).
Proceeding in that way we violate the assumptions of the framework developed in [23].
Indeed, strong consistency is only guaranteed by Theorem 4 of [23] if the number of
stochastic parameters in the weighting remains finite for finite K and F →∞ and if
they converge strongly (F →∞) to some limit value which is independent of the es-
timated model parameters x̂. Therefore, to preserve the strong consistency, the noise
covariance matrix CZ(jω) in the left weighting matrix W should be modeled over the

frequency using a finite (F -independent) number of parameters θ. The estimates θ̂
should strongly converge to some limit value θ∗, independent of the model parameters
x. As it is the case for the GTLS estimator (see section 5.3) the right weighting matrix
C must still be calculated using the original sample covariance matrices (54).

For computational reasons, only noise models CZ(jω, θ) which are linear in the
parameters are considered. For example, for the r, sth entry we get

(CZ(jω, θ))rs =

prs∑
k=1

θrsk h
rs
k (jω) r, s = 1, 2, . . . , nu+ ny,(55)

where hrsk (jω), k = 1, 2, . . . , prs are linear independent basis functions and with prs
independent of F . Under Assumptions 5.7 and 5.8 the linear least squares estimate
θ̂rs of the vector of the noise model parameters θrs,

θ̂rs = (HrsTHrs)−1HrsT [(ĈZ(jω1))rs, . . . , (ĈZ(jωF ))rs]
T

with (Hrs)kl = hrsk (jωl),
(56)

converges strongly (F → ∞) to some x-independent limit value θrs∗ . The estimated
noise model for entry r, s,

[(CZ(jω1, θ̂))rs, . . . , (CZ(jωF , θ̂))rs]
T = Hrsθ̂rs,(57)

represents a linear projection of an F -dimensional space onto a prs-dimensional space.
Replacing in (38) CZ(jω) by CZ(jω, θ̂) in the left weightingW , CZ(jω) by ĈZ(jω)

in the right weighting C, and Z(jω) by the sample mean Z̄(jω) defines the one-
dimensional, one-step BTLS using the sample noise covariance matrix (SBTLS)

VSBTLS(x, Z̄, X̂, θ̂) =

∑F
k=1 trace(εH(jωk, X)W 2

PML(jωk, X̂, θ̂)ε(jωk, X))∑F
l=1 trace(W 2

PML(jωl, X̂, θ̂)W
−2
SML(jωl, X))

subject to xTx = 1 and vec(XT ) = Lx.

(58)
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Table 1
Coefficients of the transfer function of the fifth-order butterworth filter with a transmission zero.

n0 n1 n2 d0 d1

1 0 1/9 1 0.449941

d2 d3 d4 d5 d2

0.101223 1.40740e-2 1.20939e-3 5.19623e-5 0.101223

WPML(jω, X̂, θ̂) and WSML(jω,X) stand for the ML weighting (19) calculated

with, respectively, the parametric noise model CZ(jω, θ̂) and the sample covariance
matrix ĈZ(jω),

WPML(jω, X̂, θ̂) = X̂TS(jωk)CZ(jω, θ̂)SH(jωk)X̂,

WSML(jω,X) = XTS(jωk)ĈZ(jω)SH(jωk)X.
(59)

Under the assumptions of section 5.3, the one-step and multistep (see section 3.4)
SBTLS cost functions (58) converge strongly (F → ∞ and K > 1) to, respectively,
VSBTLS(x, Z0, X̂, θ∗) and VSBTLS(x, Z0, X0, θ∗), which are minimal in x0. The one-
step and multistep SBTLS estimates are hence strongly consistent. The efficiency of
the SBTLS estimates strongly depends on the parametric noise model (56) used: the
better the parametric model explains the noise (co)variances, the closer the SBTLS
efficiency will approach the ML efficiency.

xSBTLS is calculated using the matrix pair (AW , C) or (AW , B), where the ma-
trices AW = WA and B have, respectively, structure (10) and (24) with

αTk = ([Z̄T (jωk)ST (jωk)]⊗WPML(jωk, X̂, θ̂))L,

(60)
βTk = ([ĈZ(jωk)T/2ST (jωk)]⊗WPML(jωk, X̂, θ̂))L.

7. Simulation examples.

7.1. Single input, single output systems. Three simulation examples are
shown in this section. The first illustrates the TLS, WTLS, GTLS, WGTLS, and
multistep BTLS estimators with known noise covariance matrix, while the second
and third compare the generalized and bootstrapped total least squares estimates
using the sample noise covariance matrix (respectively, SGTLS and SBTLS) to those
using the exact noise covariance matrix (respectively, GTLS and BTLS). For the three
examples, the simulated plant is a fifth-order continuous time Butterworth filter with
an extra transmission zero at 3/(2π) Hz. The coefficients of the transfer function are
given in Table 1, and the amplitude and phase characteristics are shown in Figure 1.

In the first simulation, a data set of 100 equally distributed frequencies is gener-
ated in the band [0.05 Hz, 5 Hz] : U0(jωk) = 1, Y0(jωk) = G(jωk), k = 1, 2, . . . , 100.
Independent, zero-mean Gaussian noise with variance 2E–6 is added to the input
and output spectra. One hundred disturbed data sets are generated. For each set
the model parameters are calculated using the TLS (16), WTLS (42), GTLS (22),
WGTLS (43), and BTLS (38) estimators under the constraint n1 = 0 (the zero is
forced to lie on the jω axis), and ‖x‖2 = 1. For each set, the normalized squared
residuals of the mean parameter estimates are calculated

(x̄− x0)TC†x(x̄− x0),(61)
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Fig. 1. Fifth-order Butterworth filter with a transmission zero: (a) amplitude and (b) phase
characteristics. Comparison of the relative mean square error (RMSE) of the transfer function esti-
mates, (c) results simulation 1, (d) results simulation 2: GTLS estimates (solid line) and difference
between the GTLS and SGTLS estimates (dashed line), (e) results simulation 3.

with x̄ the sample mean and Cx the sample covariance matrix of the model parameters
x. If x̄ is an unbiased Gaussian estimate of x0 and if Cx equals the true covariance
matrix, then (61) is (χ2-distributed with a number of degrees of freedom equal to the
number of parameters minus the number of constraints (= 9−2 = 7 in this simulation
example). For 100 realizations of the model parameters, the sample mean will be fairly
well normal distributed and the uncertainty on Cx is about 10%. This allows a bias
test to be performed on the parameter estimates with a given confidence level. For
example, the 95 percentile of a χ2-random variable with seven degrees of freedom
equals 14. According to Table 2, the GTLS and BTLS estimates are unbiased within
a confidence level of 95%, while the TLS and WTLS estimates are biased within this
confidence level. Although the WGTLS (43) estimates are inconsistent, no significant
bias could be detected in the simulation (see Table 2). This is due to the high signal-
to-noise ratio on the noisy frequency response function G(jω). Using each set of 100
estimates of the model parameters, one can also calculate the relative mean square
error of the transfer function estimate

RMSE(G) = E{|(G−G0)/G0|2)},(62)

within an error of 1dB, and compare it to the Cramér–Rao lower bound on the relative
transfer function error (G−G0)/G0. The results are shown in Figure 1c. The BTLS
estimates coincide with the Cramér–Rao lower bound [6]. The large mean square
error (MSE) of the TLS estimator is due to its bias (see Table 2), while that of the
GTLS estimates are due to the variance (see Table 2). The same observation can be
made for the pair WTLS and WGTLS (see Table 2 and Figure 1c).

In simulation 2, only the noise levels differ from simulation 1. The input noise,
∆U(jω), is chosen to be zero-mean Gaussian noise with variance equal to 1E-2. The
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Table 2
Bias test on the model parameters—simulation 1.

estimator eq. (61) result bias test

TLS 2.2e3 biased

WTLS 16 biased

GTLS 6.4 unbiased

WGTLS 3.6 unbiased

BTLS 1.7 unbiased

output noise, ∆Y (jω), is a zero-mean Gaussian noise source with a variance of 1E-
2 passing through a fourth-order Butterworth low-pass filter with its 3dB point at
1 Hz. The number of repeated, independent measurements equals two (K = 2).
Figure 1d compares the generalized total least squares estimates using the sample
noise covariance matrix estimated as described in section 5.3 (SGTLS) to those using
the true noise covariance matrix (GTLS). It can be seen that both RMSE errors almost
coincide. Applying the bias test (61) to both simulation results reveals that both
estimates are unbiased within a confidence level of 95%. It confirms that two repeated,
independent experiments are enough to replace the true noise covariance matrix in
GTLS estimators with the noise sample covariance matrix, while maintaining the
asymptotic properties.

In simulation 3, the noise levels and the number of frequencies differ from simu-
lation 1: σ2

U (jωk) = 4E − 2, σ2
Y (jωk) = 4E − 2|G0(jωk)|2, and F = 500. The ML,

GTLS, SGTLS, multistep BTLS, and multistep SBTLS are calculated starting from
two repeated independent experiments (K = 2). For the SBTLS estimates, the input
and output variances (55) in the left weighting are modeled using 50 Gaussian basis
functions hrsk (jω) = exp(−(ω − µk)2/ζk), with µk equispaced in the band [0.05 Hz,
5 Hz], ζk = 0.05, r, s = 1, 2, and k = 1, 2, . . . , 50. Figure 1e shows the results: the
GTLS and SGTLS estimates coincide and the SBTLS estimates have almost ML ef-
ficiency. Applying the bias test (61) to all the simulation results reveals that all the
estimates are unbiased within a confidence level of 95%.

7.2. MIMO systems. In this section, one simulation example is given to il-
lustrate the difference between the multidimensional and the one-dimensional imple-
mentations that were proposed in section 3. This will be verified for the GTLS (a
multidimensional implementation of the BTLS estimator is not available). Synthetic
data is generated for a system with two inputs and three outputs. Independent,
zero-mean, complex normally distributed noise is added to the synthetic input and
output Fourier coefficients. The standard deviation of the noise equals 0.01 for the
inputs and 0.1 for the outputs. The frequency band is [1 Hz, 100 Hz] and contains
100 equally distributed frequencies. Three estimations are considered: the multidi-
mensional implementation of the GTLS (case 1), the one-dimensional GTLS with
a monic denominator matrix polynomial (case 2), and the one-dimensional GTLS
with the zero-order matrix coefficient of the denominator fixed to the identity ma-
trix (case 3). In Figure 2a, the difference in dB between the true and the estimated
transfer functions of entry (2, 2) is shown. The difference between the estimates are
given in Figure 2b. From Figures 2a and 2b, one can conclude that, for the one-
dimensional case, different constraints do indeed result in different estimates and that
the one-dimensional results differ from the multidimensional one. The differences are,
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Fig. 2. Influence of the parameter constraints. (a) Difference in dB between the true and
estimated transfer function corresponding with entry (2, 2): case 1 (solid line), case 2 (dashed line),
and case 3 (dotted line). (b) Difference in dB between the estimates of: cases 1 and 2 (solid line),
cases 2 and 3 (dashed line), and cases 1 and 3 (dotted line).

however, quite small.

8. Measurement example. Figure 3 shows measurements of the vibrations of
the wings of an airplane (flight flutter data analysis) in the frequency band [4 Hz,
11 Hz]. The test was performed using a series of three short duration burst swept-
sine [4 Hz, 40 Hz] excitations, sampled at 100 Hz. The data was measured using two
channels corresponding to the force and the acceleration response, respectively. The
sample mean and sample (co)variances of the three independent realizations (K = 3)
of the input/output Fourier data are calculated in the band [4 Hz, 11 Hz]. The
measurements have been modeled with a rational form on = 11, od = 10 using the
SGTLS and multistep SBTLS estimators (see Figure 3). For SBTLS the (co)variances
of the input/output DFT spectra in the left weighting are modeled by a constant: put
hrsk (jω) = 1, r, s = 1, 2, and k = 1 in (55). The ML estimates have been added for
comparison purposes. Since three independent realizations are not sufficient to use
sample (co)variances within an ML framework [18], the noise covariance matrix for
the ML estimate was obtained by analyzing the disturbing noise during the dead time
in between consecutive bursts. From Figure 3, it follows that the SBTLS estimates
have ML quality. The SGTLS estimates miss the second resonance peak which can be
explained by the low signal-to-noise ratio of the measurements (about 10 dB on the
transfer function) and its inappropriate weighting (see section 3.2). This measurement
example nicely illustrates that a good frequency-dependent weighting of the residuals
of the equation error (17) is of crucial importance to obtain good estimates.

9. Conclusions. The presented analysis of TLS estimators for frequency domain
identification of multivariable systems leads to the following two main messages:

• Use the equivalent cost function minimized by the estimator to predict its
asymptotic properties. Comparison of this cost with the maximum likeli-
hood solution allows us to propose “optimal” left weighting matrices which
significantly reduce the uncertainty of the TLS estimates.
• Two independent experiments with the same excitation signals are enough

to replace the true noise covariance matrix in WGTLS and BTLS estima-
tors by the noise sample covariance matrix while maintaining the asymptotic
properties. A TLS method has been constructed (SBTLS) which does not
require the prior knowedge of the noise covariance matrix and which has al-
most ML efficiency. Note that these design rules can also be applied to other
identification problems.
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Fig. 3. Comparison between the measurements (dots) and the estimates (solid lines) of the
flight flutter data (model, on = 11, od = 10) : (a) SGTLS, (b) SBTLS, and (c) ML. From top to
bottom: amplitude and phase.

The big advantage of WGTLS estimators over the optimal ML estimator is that
they do not require a nonlinear (iterative) minimization to calculate the solution. In
this paper, it has been shown that their disadvantages, poor efficiency, and impracti-
cality since the noise covariance matrix is mostly unknown, can easily be eliminated.
Moreover, while the ML estimator using the sample noise covariance matrix needs
at least four repeated independent experiments to generate consistent estimates [18],
two are sufficient within a TLS framework.

Appendix 1. In this appendix it will be shown that the WGTLS estimation
problem (12), after elimination of Â, is equivalent to (13), i.e., both cost functions
have the same stationary points. The proof relies on the use of the method of the La-
grangian multipliers. The constrained minimization problem (12) can be reformulated
as follows:

arg min
Â,X,A

trace(W [A− Â][CTC]−1[A− Â]TWT ) + trace(ΛT ÂX)

subject to XTX = Id,
(63)

where Λ ∈ Rn×d is a Lagrangian multiplier matrix. The use of trace(ΛT ÂX) is just
a convenient way of summing Λij [ÂX]ij over all i, j. In its minima, the above cost

function must be stationary w.r.t. Â, X, and Λ. The derivative w.r.t. Â yields

− 2[WTW ][A− Â][CTC]−1 + ΛXT = 0 or 2[WTW ][A− Â] = ΛXTCTC.(64)

Right multiplication of (64) by X, taking into account that ÂX = 0, gives

Λ = 2[WTW ]AX[XTCTCX]−1.(65)
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Elimination of Λ in (64) gives

A− Â = AX[XTCTCX]−1XTCTC.(66)

Replacing A − Â in (63) by (66), and taking into account the constraint ÂX = 0,
results in (13). During the proof we have assumed that W ∈ Rm×m, as well as
C ∈ Rn×n, are nonsingular. It is worthwhile to mention here that even when C is
singular the WGTLS solution (13) remains well defined.

Appendix 2. For a common denominator model it is easy to see that vec(XT ) =
Lx, where L is a matrix containing ones and zeroes only and where the vector x
contains the minimum number of variables to represent all entries of X.

For any parametrization where one or more coefficients are fixed in X, we can
still write vec(XT ) = L[1, x̃]T , where the vector x̃ stands for the unknowns of X
and where a one is included to allow that coefficients of X are known. It boils down
to the previous case by introducing the augmented vector x = [1, x̃]T and imposing
the constraint xTx = 1. The original constraints on X are recovered by appropriate
scaling of x after identification: x̃ = [x2, x3, . . .]

T /x1.
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Abstract. Infinite products of matrices arise in many areas, such as the study of subdivision
and interpolation schemes, Markov chains, and construction of wavelets of compact support. These
products are used here to give sufficient conditions for the continuity and differentiability of a class
of rectangular compactly supported nonseparable N -dimensional prewavelets or scaling functions.
This paper considers the dilation equation φ(X) =

∑
K
CKφ(2X − K), where K ∈ {0, . . . ,m}N ,

φ : RN → R, and CK ∈ R. First, the one-dimensional case is studied, and sufficient conditions on
CK , which guarantee a continuous scaling function φ(X), are given. These conditions are based on
simultaneous triangularizability of two special matrices with entries in terms of CK . Then, these
results are generalized to N dimensions and applied to the particular case where CK ’s are obtained
by binomial interpolation of their values at the corners of the N -cube, {0,m}N . A set of inequalities,
based on sums of CK ’s on the corners of various faces of the N -cube gives sufficient conditions for
the existence of smooth solutions to the dilation equation.

Key words. higher-dimensional scaling functions, infinite matrix products, simultaneous trian-
gularizability.

AMS subject classifications. 26A15, 26A18, 41A05
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1. Introduction. Infinite products of matrices occur in a wide variety of fields.
They may be used to study subdivision algorithms [2, 13, 14], Markov chains [3],
lattice two-scale difference equations [8, 9], and orthonormal bases of compactly sup-
ported wavelets [6].

Our interest is in characterizing certain classes of smooth compactly supported
N -dimensional prewavelets or scaling functions using infinite products of matrices.
These functions are the solutions of the N -dimensional dilation equations

φ(X) =
∑
K

CKφ(2X −K),(1.1)

where φ : RN → R, CK ∈ R, K ∈ {0, . . . ,m}N , and X ∈ RN .
If the values of φ at integer points are known, then one can use (1.1) to get the

values of φ at half integers and, by iterating the process, at all dyadic points (i.e.,
at ZN/2` for all nonnegative `). Since any X can be approximated by a sequence of
dyadic points, e.g., through its binary expansion, the continuity of φ will then provide
the value of φ(X).

An efficient way to describe this process is to convert (1.1) to a matrix equation.
Since the support of the solution is finite, the matrix will be finite too. Then, the
iteration will take the form of multiplication by certain fixed matrices with entries in
terms of CK . There is a one-to-one correspondence between the digits of the binary
expansion of X and the matrices that appear in the product. As more digits of the
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binary expansion are taken into account, the length of the matrix product increases.
Hence, we will take up the question of infinite products of matrices.

In section 2 of this paper, we study the one-dimensional case. Our main result
in that section, Theorem 2.5, classifies a one-parameter class of C` scaling functions
for ` < m − 1. In section 3, we generalize our results to the N -dimensional case. In
Theorem 3.3, we classify a (2N − 1)-parameter family of C` scaling functions in N
dimensions.

2. One-dimensional scaling functions. In one dimension, the dilation equa-
tion may be written as

φ(x) = c0φ(2x) + c1φ(2x− 1) + · · ·+ cmφ(2x−m),(2.1)

where φ : R → R and ci, i = 0, . . . ,m, are given real coefficients. The regularity
properties of the solutions of dilation equations have been extensively studied. In
particular, nontrivial L1 solutions having compact support are characterized in [8]
and shown to have their support in [0,m]. Moreover, it is shown that if φ is r times
continuously differentiable, then r < m−1. The Hölder exponent and fractal structure
of φ are determined in [4, 5, 9]. Continuous solutions are characterized in terms of
the general and joint spectral radii of a family of matrices in [10] (see also [1, 11, 12,
15, 16]).

The point of view in the next section of this paper is to identify certain smooth
one-dimensional scaling functions which lead to the specification of certain smooth
solutions in higher dimensions. Some higher-dimensional scaling functions can be
formed by tensor products of lower-dimensional ones. Our solution is, different how-
ever, and cannot be reduced to a tensor product.

Our construction depends on results concerning infinite products of matrices.
Given a pair of matrices, T0 and T1, any infinite product (e.g., P = T0T1T1T0T1 · · ·)
is associated with a binary number (e.g., x = .01101 . . . ). We give sufficient condi-
tions for (a) the convergence of such products; (b) the existence of a well-defined map
that, given any x ∈ [0, 1], generates a product; and (c) the continuous dependence
of the product on x. The sufficient conditions require that (I) the two matrices are
simultaneously triangularizable by a similarity transformation, (II) the first diagonal
elements of triangular matrices are 1 and the remaining elements are less than one
in absolute value, and (III) the products of each matrix with the eigenvector of the
other matrix (associated with eigenvalue 1) are linearly dependent. While consid-
erably weaker conditions that guarantee the same results are known (see [10]), our
requirement of simultaneous triangularizability can be easily adapted to identify cer-
tain continuous prewavelets in higher dimensions. In particular, we will characterize
a (2N − 1)-parameter family of continuous (m + 1)N -coefficient scaling functions in
N dimensions. Similar results are obtained for higher-order regularity.

2.1. Notation. Define the vector Φ and matrices T0 and T1 by

(2.2a) Φ(x) = [φ(x), φ(x+ 1), . . . , φ(x+m− 1)]t for 0 ≤ x ≤ 1,

(2.2b) ck = 0 for k < 0 or k > m,

(2.2c) (Td)ij = c2i−j+d−1 for 1 ≤ i, j ≤ m and d = 0 or 1,
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T0 =



c0 0 0 0 0 · · · 0 0 0 0
c2 c1 c0 0 0 · · · 0 0 0 0
c4 c3 c2 c1 c0 · · · 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 · · · cm cm−1 cm−2 cm−3

0 0 0 0 0 · · · 0 0 cm cm−1

 ,

T1 =



c1 c0 0 0 0 0 · · · 0 0 0
c3 c2 c1 c0 0 0 · · · 0 0 0
c5 c4 c3 c2 c1 c0 · · · 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 · · · cm cm−1 cm−2

0 0 0 0 0 0 · · · 0 0 cm

 .

(In what follows, the range of i and j is {1, 2, . . . ,m} unless further restricted.) Notice
that the definition of Φ is based on dividing the interval [0,m] into m cells, [i− 1, i],
1 ≤ i ≤ m. We define a pair of vectors or a function f : {0, 1} → Rm to be shift
continuous if f(0)i = f(1)i−1 for 1 < i ≤ m. Obviously, φ(x) is continuous on [0,m]
iff Φ is continuous on [0, 1] and is shift continuous.

We search for the unique normalized continuous solution φ with support in [0,m].
Sufficient conditions for the existence of such a solution and particular examples are
given in the theorems of this section. This solution satisfies φ(x) = 0 for x ≤ 0 or
x ≥ m, Φ(0)1 = Φ(1)m = 0, and

Φ(x) = Tx1
Φ(2x− x1),(2.3)

where x1 is the first digit in the binary expansion of x. In particular if we apply (2.3)
to x = 0 = 0.00 . . ., x = 1 = 0.11 . . ., and x = 1/2 = 0.100 . . . = 0.011 . . ., respectively,
then we get

(2.4a) T0Φ(0) = Φ(0), T1Φ(1) = Φ(1),

(2.4b) T0Φ(1) = T1Φ(0) = Φ(1/2).

Once Φ(0) or Φ(1) is known, one can calculate Φ at dyadics by repeated applications
of (2.3).

Now, suppose x ∈ [0, 1] and indicate its binary expansion by x = 0.x1x2 · · ·
xqxq+1 · · ·. Denote by x̄q the residual after the qth digit, x̄q = 0.xq+1xq+2 · · ·. Then,
by repeated application of (2.3), we get

Φ(x) =

q∏
`=1

Tx`Φ(x̄q).(2.5)

We define Pq(T0, T1, x) =
∏q
`=1 Tx` and P (T0, T1, x) = limq→∞ Pq(T0, T1, x) whenever

the limit exists.
Dyadic numbers have two binary expansions, e.g., x = 1/2 = .100 . . . = .011 . . ..

Therefore, in the definition of Pq(T0, T1, x) a particular expansion of x should be
specified a priori. The consistency of (2.3) at dyadics, i.e., (2.4b), remedies this
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nonuniqueness for the infinite products, and the value of P (T0, T1, x) is then deter-
mined independently of the choice of expansion for x. Further details are provided in
Lemmas 2.4 and 2.5 below.

The matrices T0 and T1 have a very special structure. For example, the subma-
trices obtained by deleting the first row and column of T0 are the same as the one
obtained by deleting the last row and column of T1. Moreover, the columns of T0 and
T1 contain all the ck’s with an even index or all the ck’s with an odd index. How-
ever, these special properties are not used before Lemma 2.7. For this reason, and to
simplify the notation, we use matrices A and B in place of T0 and T1, respectively.

2.2. Conditions for convergence of Pq. Some of the elementary necessary
conditions for existence of P (A,B, x) are expressed in the following lemma.

Lemma 2.1. Let Q be a finite product of A’s and B’s and λ be an eigenvalue of Q.
Then, P (A,B, x) exists for all 0 ≤ x ≤ 1 only if |λ| < 1 or λ = 1 and nondefective.

Proof. These conditions follow immediately from the Jordan normal form of the
matrix under consideration. Here, we give a brief indication. If an eigenvalue |λ| > 1,
then Qν is exponentially unbounded as ν →∞, and the corresponding product does
not exist. If λ = 1 is defective (i.e., its geometric multiplicity is less than its algebraic
multiplicity), then Qν is polynomially unbounded. If |λ| = 1 but λ 6= 1, then Qν does
not have a limit.

We note that if all the eigenvalues of Q are less than 1 in absolute value, then
P (A,B, x) will be zero on a dense set of values of x. (To see this, consider the set
of numbers whose binary expansions end in an infinite repetition of the digit pattern
associated with Q. These numbers form a dense set and P is zero on this set.) One
of the simplest cases for controlling the eigenvalues of products of matrices is when
the matrices are triangular. This prompts the following definition.

Definition 2.2. A finite family of matrices {A} is said to be jointly tied (to 1) if
the matrices are simultaneously lower triangularizable by a similarity transformation,
their leading eigenvalue is 1, and the remaining eigenvalues are less than 1 in absolute
value. Hence, there is an invertible matrix S such that for each A ∈ A we have

S−1AS = Ã, Ãij = 0 for j > i,

Ã11 = 1, and max
i>1
|Ãii| < 1.

The following definition will be used to study the relationship between the two
products associated with the two expansions of the dyadics.

Definition 2.3. Two matrices A and B are called consistent (with respect to a
simple joint eigenvalue λ) if there are VA and VB, eigenvectors of A and B associated
with λ, such that AVB = BVA.

Theorem 2.4. Let A and B be jointly tied. Then, for a given binary expansion
of x, P (A,B, x) exists. P is continuous at x if x is nondyadic. If A and B are
jointly tied and consistent with respect to the joint eigenvalue 1, then P (A,B, x) is
well defined and continuous for all x.

We establish this theorem by proving Lemmas 2.2 through 2.5.

Lemma 2.5. Let U be an m×m lower triangular matrix with U11 = 1, |Uii| < 1
for i > 1, and Uii 6= Ujj for i 6= j. Then, limν→∞ Uν = U∞ exists, and its nonzero
entries are only on the first column. Moreover, Uνij → 0 exponentially for j > 1.
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Proof. The eigenvalues of U , {1, U22, . . . , Umm}, are distinct; hence, U is diago-
nalizable by a similarity transformation. We write U = S∆S−1, where ∆ is diagonal,
S and S−1 are lower triangular, and ∆11 = S11 = S−1

11 = 1. Now, U∞ = S∆∞S−1,
∆∞11 = 1, ∆∞ij = 0 for (i, j) 6= (1, 1). As S and S−1 are lower triangular, we get
U∞i1 = Si1, and the remaining elements of U∞ are zero. Let ε = maxi>1 |Uii|. Then
from Uν = S∆νS−1 we get Uνij = O(εν) for j > 1.

Remark 2.1. The convergence Uνij → U∞ for j > 1 will occur even if Uii for
i > 1 are not distinct. This is evident from the Jordan normal form of U . The
convergence rate, however, could be slower. If the largest Jordan block associated
with ε is of size q, then the elements of Uνi,j for j > 1 are at most of the order of(
ν
q−1

)
εν−q+1.

Remark 2.2. If U is triangular and for a fixed i and any j > i we have |Uii| > |Ujj |,
then, as ν → ∞, the ith column of (U/Uii)

ν converges to a finite vector and all
subsequent columns tend to zero.

Lemma 2.6. Let A and B be jointly tied. Then, for a given binary expansion of
x, P̃ = P (Ã, B̃, x) exists and the only nonzero entries of P̃ are in its first column. In
particular, P̃11 = 1. P̃ , as a function of x, is uniformly bounded.

Proof. Let M = maxi,j{|Ãij |, |B̃ij |} and ε = maxi>1{|Ãii|, |B̃ii|}. Choose δ and
m − 1 distinct εi’s such that ε < εi < δ < 1 for i > 1. Define a lower triangular
matrix U with U11 = 1, Uii = εi for i > 1, Uij = M for i > j, and Uij = 0 for

j > i. The absolute values of entries of Ã and B̃ are dominated by those of U ; hence,
|Pq(Ã, B̃, x)ij | ≤ Uqij . Now, by Lemma 2.2, Uq converges to a matrix whose nonzero

elements are on its first column only. Therefore, limq→∞ Pq(Ã, B̃, x)ij = 0 for j > 1.

Moreover, as q → ∞, Pq(Ã, B̃, x)i1 appears as a series with exponentially decaying

terms; hence, it converges. Specifically, denote Pq(Ã, B̃, x) by P̃q, and write P̃q− P̃1 =∑q−1
`=1 P̃`+1−P̃` =

∑q−1
`=1 P̃`(D̃−I), where I is identity, D̃ = Ã if x`+1 = 0, and D̃ = B̃

if x`+1 = 1. Now, |(D̃ − I)ij | < M + 1 and the exponential decay of Uqij for j > 1

implies (P̃`)ij = o(δ`) for j > 1. Using (D̃ − I)11 = 0 we get (P̃`(D̃ − I))ij = o(δ`)

for all i and j. Therefore, P̃q converges as q →∞. We have (P̃q)11 = 1 for all q, and

hence P̃11 = 1. Note that P̃ (Ã, B̃, x) is uniformly bounded by U∞ for all x.
Define Z to be the first column of P̃ , Zi = P (Ã, B̃, x)i1. Note that P̃Z = Z and

Z1 = 1. Let W = SZ. From P = SP̃S−1 we get Pij = WiS
−1

1j and PW = W ; i.e.,
W is the eigenvector of P associated with eigenvalue 1. (All other eigenvalues are
zero and the null space is generated by columns 2 through m of S.)

Lemma 2.7. Let A and B be jointly tied and consistent; then AB∞ = BA∞.
Proof. Since A and B are jointly tied, then, by Lemma 2.3, A∞ and B∞ exist.

Moreover, similarity transformation preserves consistency, and Ã and B̃ are also con-
sistent. We have AB∞ −BA∞ = S(ÃB̃∞ − B̃Ã∞)S−1. Now, B̃∞ has only zeros on
columns 2 through m, and the first column is just the eigenvector of B̃ whose first
entry is 1. The same applies to Ã. We have (ÃB̃∞− B̃Ã∞)i,j = 0 because, for j > 1,

B∞ij = A∞ij = 0, and, for j = 1, the cancellations occur due to consistency of Ã

and B̃.
Lemma 2.8. Let A and B be jointly tied and consistent; then P (A,B, x) is a

continuous function of x.
Proof. We prove this first for the case when x is not dyadic and then for the case

when x is dyadic. Only in the latter case do we use the consistency of A and B. The
similarity transformation preserves continuity. Hence, it is sufficient to prove that
P (Ã, B̃, x) is a continuous function of x.
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Case 1. Assume that x is not dyadic. Then, the binary expansion of x does not
have a tail of zeros or a tail of ones. Hence, y → x implies that an increasing number
of digits of y agree with those of x.

Suppose that y agrees with x on the first q digits; then

(2.6a) P (Ã, B̃, x)− P (Ã, B̃, y) = Pq(Ã, B̃, x)[P (Ã, B̃, x̄q)− P (Ã, B̃, ȳq)].

Now, for sufficiently large q, Pq(Ã, B̃, x) has near zero entries in positions (i, j) for

j > 1. Moreover, [P (Ã, B̃, x̄q) − P (Ã, B̃, ȳq)] has a zero entry in the (1, 1) position
and the remaining entries are uniformly bounded. As a result, the right-hand side of
(2.6a) approaches zero as q →∞. Therefore, we have limy→x P (Ã, B̃, y) = P (Ã, B̃, x)
for x nondyadic.

Case 2. Assume that x is dyadic. If y approaches x while agreeing with an increas-
ing number of digits of x, then Case 1 applies. Otherwise let x = 0.x1x2 · · ·xq1000 · · ·
and y = 0.x1x2 · · ·xq01 · · · 1yq+ν+2yq+ν+3 · · ·, where the ν digits yq+2 through yq+ν+1

are equal to 1. Note that y → x as ν → ∞, but only the first q digits of y and x
agree.

Now, we write

(2.6b) P (Ã, B̃, x)− P (Ã, B̃, y) = Pq(Ã, B̃, x)[B̃Ã∞ − ÃB̃νP ′],

where P ′ = P (Ã, B̃, ȳq+ν+1). Notice that limν→∞ B̃νP ′ = B̃∞ since all columns

of B̃ν , except the first one, approach zero while P ′11 = 1 and P ′ stays uniformly
bounded. Lemma 2.4 gives limν→∞ B̃Ã∞ − ÃB̃νP ′ = B̃Ã∞ − ÃB̃∞ = 0. Therefore,
limy→x P (Ã, B̃, y) = P (Ã, B̃, x) for x dyadic.

This concludes the proof of Theorem 2.1.
A function f is said to have Hölder exponent (at least) α for 0 ≤ α ≤ 1 if there

is C ≥ 0 such that |f(x)− f(y)| ≤ C|x− y|α. Based on this definition, we can obtain
additional regularity information about P by combining (2.6a) and (2.6b).

Lemma 2.9. Suppose 1 > 2−r = δ > maxi>1{|Ãii|, |B̃ii|}. Then the Hölder
exponent of P is at least r = − log2(δ).

Proof. Consider 1 ≥ y > x ≥ 0; then the binary expansions of x and y will be
x = 0.x1 · · ·xq011 · · · 1xq+n+2xq+n+3 · · · and y = 0.x1 · · ·xq100 · · · 0yq+n+2yq+n+3 · · ·,
where the first q digits are identical and the digits in positions q+2 through q+n+1 are
ones for x and zeros for y. Moreover xq+n+2 = yq+n+2 or xq+n+2 = 0 and yq+n+2 = 1.
In the former case y − x ≥ 2−(q+n+2), and in the latter case y − x ≥ 2−(q+n+1). In
either case |y − x|r ≥ δn+q+2. We have P̃ (y) − P̃ (x) = P̃q(x)[B̃ÃnP̃ (ȳq+n+1) −
ÃB̃nP̃ (x̄q+n+1)]. The absolute values of the (i, j) elements of P̃ (q) for j > 1 are
bounded by C1δ

q for some C1 > 0. The (1, 1) entry of the bracket is zero, and all
others are bounded by C2δ

n. Hence |P̃ (y) − P̃ (x)| ≤ C1C2δ
n+q ≤ C|y − x|r, where

C = C1C2δ
−2. Hence the Hölder exponent of P̃ (x), and therefore that of P (x), is at

least r = − log2(δ).
We have identified sufficient conditions for P (A,B, x) to be well defined and

continuous. Now we concentrate on the special matrices given by (2.2c). The following
two lemmas make full use of the particular structure of T0 and T1. They will be used
to specialize the result of Theorem 2.1 to the solution of the dilation equation (2.1).

Lemma 2.10. Let G be the matrix obtained by removing the first row and col-
umn of T0 or the last row and column of T1. Thus Gij = c2i−j, 1 ≤ i, j ≤ m − 1.
Suppose that G has a right eigenvector V = (g1, g2, . . . , gm−1) associated with eigen-
value α; then T0 has a right eigenvector V0 = (0, g1, g2, . . . , gm−1) and T1 has a right
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eigenvector V1 = (g1, g2, . . . , gm−1, 0), both with the same eigenvalue α and satisfying
T0V1 = T1V0. If α is simple, then T0 and T1 are consistent with respect to α. If∑
k c2k =

∑
k c2k+1 = β, then G, T0, and T1 each have a left eigenvector of the form

(1, 1, . . . , 1) with the same eigenvalue β. Suppose that β is simple; then T0 and T1 are
consistent with respect to the corresponding right eigenvectors and β.

Proof. This is immediate from the special structure of T0 and T1.

Definition 2.11. The coefficients ck are said to satisfy the unit column sum
rule if ∑

k

c2k =
∑
k

c2k+1 = 1.(2.7)

If ck satisfy the unit column sum rule and 1 is a simple eigenvalue, then T0 and
T1 will be consistent with respect to 1. If, in addition, T0 and T1 are jointly tied,
then our construction yields a continuous solution of (2.3) and the corresponding
continuous solution of (2.1). (Notice that Φ(0) and Φ(1) are eigenvectors of T0 and T1

corresponding to eigenvalue 1. According to Lemma 2.7, they are shift continuous, i.e.,
Φ(1)i−1 = Φ(0)i for i > 1.) Now, we proceed to show that φ is properly normalized.

Lemma 2.12. Let φ be a continuous solution of (2.1), and assume Γ =
∫
φ(x)dx 6=

0. Then ∑
k

ck = 2.(2.8)

If Γ = 1, then ∑
k

c2k
∑
n

φ(2n+ 1) +
∑
k

c2k+1

∑
n

φ(2n) = 1.(2.9)

Moreover, if Γ = 1 and ck satisfy the unit column sum rule (2.7), then for any x∑
k

φ(k + x) = 1.(2.10)

Proof. The first sum rule (2.8) for ck’s is obtained by integrating (2.1). (We
use the compactness of the support of φ and ck to simplify our formulas. Unless
otherwise indicated, the integrals are over the entire reals and the summations are
over the entire integers.) To establish (2.9) we form a Riemann sum for the integral
and simplify the sum using (2.1).

Consider the dyadics points at a fixed level `, i.e., the ones of form (2n + 1)/2`.
We use these points to form a Riemann sum S` to approximate

∫
φ. We have S` =

21−`∑
n φ((2n+ 1)/2`). Now, we apply the recursion relation (2.1) to write φ((2n+

1)/2`) in terms of the dyadics at level `− 1. Assume ` > 1; then we have

∑
n

φ

(
2n+ 1

2`

)
=
∑
n

∑
k

ckφ

(
2n+ 1

2`−1
− k
)

=
∑
k

ck
∑
n

φ

(
2n+ 1− k2`−1

2`−1

)
=
∑
k

ck
∑
n

φ

(
2n+ 1

2`−1

)
.
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Therefore, S` = 1/2
∑
k ckS`−1. Hence, if ` > 1 and

∑
ck = 2, then S` = S`−1.

However, if ` = 1, we get

S1 =
∑
n

φ

(
2n+ 1

2

)
=
∑
n

∑
k

ckφ(2n+ 1− k)

=
∑
k

c2k
∑
n

φ(2n+ 1− 2k) +
∑
k

c2k+1

∑
n

φ(2n+ 1− (2k + 1))

=
∑
k

c2k
∑
n

φ(2n+ 1) +
∑
k

c2k+1

∑
n

φ(2n).

Hence, S` = S1 =
∑
k c2k

∑
n φ(2n + 1) +

∑
k c2k+1

∑
n φ(2n). Now, as ` → ∞, we

have S` →
∫
φ = 1, which proves (2.9). Moreover, if ck satisfy the unit column sum

rule, then we get
∑
` φ(`) = 1. (One uses this result to normalize the eigenvectors of T0

and T1 corresponding to eigenvalue 1 in (2.4a). That is,
∑
j Φ(0)j =

∑
j Φ(1)j = 1.)

Finally, we prove (2.10) and show that the integral of φ equals the sum of φ at
any translate of the integers. Consider a vector V = (v1, v2, . . . , vm)t. From (2.7), one
can easily see

∑
i(T0V )i =

∑
i(T1V )i =

∑
i Vi. Hence, if we start with V = Φ(0) or

V = Φ(1) and multiply on the left with T0’s or T1’s, then at any stage the resulting
values of φ(x) at dyadics satisfy (2.10), and in the limit the same equation is satisfied
at all points by continuity of φ.

Theorem 2.13. If T0 and T1 are jointly tied and their entries ck satisfy the unit
column sum rule, then P (T0, T1, x) is well defined and continuous, the columns of P
are identical, and a solution of (2.1) is given by φ(x+ i− 1) = P (T0, T1, x)i,j for any
j. Moreover, this φ is properly normalized, i.e.,

∫
φdx = 1.

Proof. Since ck’s satisfy the unit column sum rule and 1 is a simple eigenvalue,
then, by Lemma 2.7, T0 and T1 are consistent. The matrices are assumed to be
jointly tied; therefore, by Lemma 2.5, P is well defined and continuous. Since ck’s
satisfy the unit column sum rule, then, by the argument in the proof of (2.10), the
sum of elements of any column of any product of T0’s and T1’s, e.g., P (T0, T1, x),
is 1. Now, by the comments following Lemma 2.3, we have Pij = WiS

−1
1j and

1 =
∑
i Pij = S−1

1j

∑
Wi for any j. Hence, the elements of the first row of S−1 are

equal, and we may assume S−1
1j = 1. Then, the columns of P and W are equal, and

each represents φ through φ(x+ i− 1) = P (T0, T1, x)i,j for any j. Using Lemma 2.8
we get

∫
φ =

∑
i φ(x+ i− 1) =

∑
i Pij = 1. Hence, φ is properly normalized.

2.3. Infinite products of a finite family of matrices. Theorem 2.1 can be
generalized to include the products of a finite family of matrices. Let R > 1 be an
integer and r be a digit in base R, i.e., 0 ≤ r ≤ R − 1. Consider R matrices A0,
A1, . . . , AR−1. Represent x ∈ [0, 1] by its expansion in base R, x = 0.x1x2 · · · (now
0 ≤ xq ≤ R − 1). Define Pq(x) =

∏q
`=1Ax` and P (x) = limq→∞ Pq(x) whenever

the limit exists. The family is called consistent if there are simple eigenvectors V0

and VR−1 such that A0V0 = V0, AR−1VR−1 = VR−1, and ArVR−1 = Ar+1V0 for
0 ≤ r ≤ R− 2. Now, we have the following theorem.

Theorem 2.14. Let the family {Ar} be jointly tied and consistent. Then, P (x)
exists and is continuous.

Proof. This is similar to Theorem 2.1.

2.4. Analysis of three-term dilation equations. In this section we give an
example based on the case m = 2. We can achieve triangularization if c1 = c0 + c2,
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in which case for any a 6= b we have

T0 =

(
c0
c2

0

c1

)
=

1

a− b
(
a

−b
−1

1

)(
c1
ac2

0

c0

)(
1

b

1

a

)
,

T1 =

(
c1
0

c0
c2

)
=

1

a− b
(
a

−b
−1

1

)(
c1
bc0

0

c2

)(
1

b

1

a

)
.

We note that the triangularization is not unique. We set a = 0 and b = 1 to get

T0 =

(
c0
c2

0

c1

)
=

(
0

1

1

−1

)(
c1
0

0

c0

)(
1

1

1

0

)
,

T1 =

(
c1
0

c0
c2

)
=

(
0

1

1

−1

)(
c1
c0

0

c2

)(
1

1

1

0

)
.

Now, T̃0 and T̃1 are the middle matrices on the right-hand side of previous equations.
Given an x it is easy to form P̃ = P (T̃0, T̃1, x). For c1 = 1, 0 < c0 < 1, and 0 < c2 < 1,
we have P̃11 = 1, P̃12 = P̃22 = 0. Define σq = σq(x) =

∑q
n=1 xn and σ0(x) = 0. Then,

(P̃q+1)21 = (P̃q)21+ xq+1c0(P̃q)22 and (P̃q)22 = c0
q−σqc2σq . Therefore,

P̃2,1 = z(x) =

∞∑
q=0

xq+1c0
q+1−σqc2σq .

Now, using our previous notation (following Lemma 2.3) we have Z(x) = (1, z(x))t

and

P (T0, T1, x) =

(
z(x)

1− z(x)

z(x)

1− z(x)

)
, φ(x) =

{
z(x) for 0 ≤ x ≤ 1,
1− z(x− 1) for 1 ≤ x ≤ 2.

It is easy to verify that φ(x) is increasing on [0, 1] and decreasing on [1, 2].

2.5. Simultaneous triangularization. The main step in our analysis of the
products of two matrices is to reduce them to a triangular form. Given A and B,
we search for Ã, B̃, and S−1 such that S−1A = ÃS−1 and S−1B = B̃S−1. This
constitutes 2m2 nonlinear algebraic equations. In the case of wavelets, one always
enforces (2.7). Then, S−1

1j = Ã11 = B̃11 = 1. This reduces the number of equations
to 2m2 − 2m and the number of unknowns to 2m2 − 2. (The eigenvalues of A and
B are the elements on the diagonal of Ã and B̃, but their positions are not known.)
Therefore, there are 2m − 2 degrees of freedom in the triangularization (e.g., a and
b in section 2.4). Despite the presence of degrees of freedom, simultaneous triangu-
larization is rarely possible. (It is known that a family of matrices is simultaneously
triangularizable iff the eigenvalues of any product of matrices are equal, in some order,
to the products of eigenvalues of the same matrices.)

The triangularizer matrices which are useful for the construction ofN -dimensional
scaling functions are the ones which work for a class of matrices and have constant
entries. For example, if m = 3, then T0 and T1 can be triangularized when c0 +c3 = 1
or 1/2. But if the sum is 1, then the triangularizer depends on c0 and will not be
suitable for higher-dimensional constructions considered in this paper. On the other
hand when the sum is 1/2, then the triangularizer is constant. In the next section we
focus on the latter case.
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2.6. Analysis of (m + 1)-term dilation equations. A class of matrices T0

and T1 for which constant triangularizers have been obtained are exactly those which
satisfy certain sum rules used to enforce high regularity [9]. Here we require a partic-
ular subset of such rules, i.e.,∑

k

ckk
q(−1)k = 0 for q = 0, . . . ,m− 2,(2.11)

where 00 is taken to be 1. One can solve (2.11) for c1, . . . , cm−1 in terms of the
“corner” values c0 and cm. The resulting coefficients ck and the associated matrices
T0 and T1 satisfy a host of binomial-type identities. The outlines for the proof of some
of these identities are collected in Appendix A as notes. In what follows, we adopt
the usual conventions that

(
a
b

)
= 0 if b > a or b < 0, and 1/c! = 0 if c < 0.

The coefficient matrix of (2.11) is a Vandermonde-type matrix with a nonzero
determinant. Therefore, it is nonsingular. The unique solution is given by “binomial
interpolation” between the endpoint values (see Note A.1),

ck = c0

(
m− 1

k

)
+ cm

(
m− 1

k − 1

)
.(2.12)

For this particular choice of ck’s, an m ×m triangularizer matrix S and its inverse
S−1 are given by (see Note A.2.)

Sij =

(
j − 1

m− i
)

(−1)i+j−m−1

(j − 1)!
, S−1

ij =

(
m− j
i− 1

)
(i− 1)!.(2.13)

(Notice that the entries of S and S−1 are zero below the second diagonal, i.e., if
i+j > m+1.) Upon triangularization, the diagonal elements of T̃0 and T̃1, respectively,
are (see Note A.2)

2m−2(c0 + cm), 2m−3(c0 + cm), . . . , (c0 + cm), c0,
2m−2(c0 + cm), 2m−3(c0 + cm), . . . , (c0 + cm), cm.

(2.14)

By Theorem 2.1, we will have a continuous scaling function if the leading eigenvalue
is one and the remaining eigenvalues are less than one in absolute value. Therefore,
we will have a continuous scaling function if

c0 + cm = 1/2m−2, |c0| < 1, |cm| < 1,(2.15)

and the remaining ck’s are determined by (2.12). We summarize this result in the
following theorem.

Theorem 2.15. If

c0 + cm = 1/2m−2, |c0| < 1, |cm| < 1,

and

ck = c0

(
m− 1

k

)
+ cm

(
m− 1

k − 1

)
,

then P (T0, T1, x) gives the normalized continuous solution of (2.1).
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2.7. Analysis of smooth scaling functions. If the inequalities in (2.15) are
made stricter by a factor of 1/2`, then the degree of smoothness of φ increases by ` .
This is expressed in the following theorem.

Theorem 2.16. If

c0 + cm = 1/2m−2, |c0| < 1/2`, |cm| < 1/2`

for an integer 0 ≤ ` < m− 1 and

ck = c0

(
m− 1

k

)
+ cm

(
m− 1

k − 1

)
,

then P (T0, T1, x) gives the normalized ` times continuously differentiable solution of
(2.1).

Proof. This can be shown by considering the divided difference of φ:

∆(φ, `, h, x) =
1

h`

∑̀
i=0

(−1)i
(
`

i

)
φ(x+ (`− i)h).(2.16)

If the limit of above expression, as h→ 0, exists, then φ is ` times differentiable. We
will use the matrix form of (2.16) and some of the results from Theorem A.1 (see
Appendix A) to prove this theorem.

Consider the binary expansion of the numbers x+ jh for 0 ≤ j ≤ `. If x is not a
dyadic, then, as h → 0, the number of common initial digits of the numbers x + jh
will tend to infinity. To ensure the same for dyadic x, we use the expansion of x that
ends in a tail of zeros if h > 0; however, if h < 0, then we use the expansion that ends
in a tail of ones. Suppose that the binary expansions of x + jh’s differ only on the
k (possibly infinite) digits in the positions n + 1 through n + k. Then we may write
x+ jh = y + 2−nwj + 2−n−kz, where wj ’s, for 0 ≤ j ≤ `, are equidistant numbers, y
represents the initial common digits, and z represents the ending common digits (if
any). Here y, z, and wj ’s are in the unit interval. Let ~ = 2nh, θ = w0, and define

D̃ = D̃(k, `, ~, θ), as in Theorem A.1, by

D̃ = D̃(k, `, ~, θ) =
1

~`
∑̀
i=0

(−1)i
(
`

i

)
P̃k(w`−i).(2.17)

Then the triangularization of the matrix form of (2.16) leads to

Q̃n(x) = S−1∆(Φ, `, h, x)S = 2n`P̃n(x)D̃(k, `, ~, θ)P̃ (z).(2.18)

While the first ` columns of 2n`P̃n(x) grow unbounded as n → ∞, they are nullified
by the first ` rows of D̃, which are zero. The (` + 1)-st column of 2n`P̃n(x) is finite,
and its diagonal entry is 1. This column multiplies the first entry of the (`+ 1)-st row
of D̃, which is `!. The remaining columns of 2n`P̃n(x) for j > ` + 1 and elements of
D̃ for i − j < ` are zero. Also notice that P̃ (z)11 = 1 and P̃ (z)ij = 0 for j > 1. As

a result, all columns of Q̃ = limn→∞ Q̃n beyond the first one are zero. Moreover, the
first column is simply the “normalized” form of the (`+ 1)-st column of P̃ (x), that is,

Q̃(x)i,1 = `! lim
n→∞ 2n`P̃n(x)i,`+1.(2.19)

The existence of this limit follows from Remark 2.2.
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To establish the continuity of the `th derivative, we note that the pair of eigenvec-
tors of T̃0 and T̃1 corresponding to the eigenvalue 1/2` are, by Lemma 2.7, consistent
and shift continuous. Then an argument similar to Lemma 2.5 or Theorem 2.2 shows
that Q̃ is continuous and shift continuous. Hence φ is ` times continuously differen-
tiable.

Remark 2.3. If ` is allowed to be a real number, ` = [`] + r, 0 ≤ r < 1, then
dφ[`]/dx[`] is Hölder continuous with exponent at least r. This follows from considering
the submatrices obtained by removing the first [`] rows and columns of 2[`]T̃0, 2[`]T̃1,
and applying the methods of Remark 2.2 and Lemma 2.6.

3. N-dimensional scaling functions. Higher-dimensional wavelets and scal-
ing functions are important in analyzing multivariable cases. Rectangular wavelets
can be constructed for RN in ways similar to the one-dimensional case [7, Chapter
10]. However, as the number of dimensions and coefficients increases, it becomes
less practical to ascertain regularity properties of the general N -dimensional scaling
functions and the corresponding wavelets.

Our aim in this section is to identify a class of smooth scaling functions by gener-
alizing the results from section 2 to N dimensions. In order to abbreviate the formulas
and compare quantities in N dimensions, we first introduce a few notations. Assume
X = (X1, X2, . . . , XN ) and Y = (Y1, Y2, . . . , YN ) are two N -tuples. We define re-
verse lexicographic order X ≺ Y to mean XN < YN , or there is 1 ≤ n < N so that
Xn < Yn and Xn′ = Yn′ , for n′ > n. For the N -tuple I ∈ {1, . . . ,m}N , we define

Î = 1 +
∑N
n=1m

n−1(In − 1). The hat function enumerates the cells in the N -cube,
[0,m]N , from 1 to mN , by going through components with lower indices first. Notice
Î < Ĵ iff I ≺ J . Finally, if s is a scalar, and it is added or compared to a vector, then
s stands for (s, s, . . . , s).

Now, to generalize (2.2) to N dimensions, let Hµ ∈ {0, . . . ,m − 1}N for µ =
1, . . . ,mN be ordered by (0, . . . , 0) = H1 ≺ H2 ≺ · · · ≺ HmN = (m − 1, . . . ,m − 1).
Then we have

(3.1a) Φ(X) = [φ(X +H1), φ(X +H2), . . . , φ(X +HmN )]t for X ∈ [0, 1]N ,

(3.1b) CK = 0 for K /∈ {0, . . . ,m}N ,

(3.1c) (TD)ÎĴ = C2I−J+D−1 for I, J ∈ {1, . . . ,m}N and D ∈ {0, 1}N .

(In what follows, the range of I, J , and D is as in (3.1c) unless further restricted.)
Notice that TD is an mN ×mN matrix. To identify a particular entry for a given I
and J , first we divide the matrix into m×m subsquares and locate the square at the
position (IN , JN ); then we divide this mN−1×mN−1 matrix into m by m subsquares
and locate the square at the position (IN−1, JN−1) and so on until (I1, J1) is located
in the final m ×m matrix. In this manner we have N nested grids on each TD. We
label these grids as level N (for the coarsest) through level 1 (for the finest). The
value of Dn determines the nth component of the index of CK . Inside each level-n
grid element this component is fixed, and across the grid elements its values changes
in a pattern similar to the indexing of the matrix for the one-dimensional problem,
i.e., TDn . The triangularization steps (see section 3.2 below) will utilize these grids.
The statements and proofs of the one-dimensional case are easily generalized to the
N -dimensional case by using these grids.
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To generalize the iteration formula (2.3), first we define the following convention.
We will show the qth digit of the nth component of X by Xn,q. Then, X∗,q will
indicate the vector of such digits. Similarly, X̄n,q and X̄∗,q will be used to indicate
the residual after the qth digit. Now, any continuous solution of (1.1) with its support
in [0,m]N satisfies

Φ(X) = TX∗,1Φ(2X −X∗,1) = TX∗,1Φ(X̄∗,1),(3.2)

and the repeated applications of (3.2) result in

Φ(X) =

q∏
`=1

TX∗,`Φ(X̄∗,q).(3.3)

We define Pq({TD}, X) =
∏q
`=1 TX∗,` , and P ({TD}, X) = limq→∞ Pq({TD}, X) =

whenever the limit exits.

Suppose X ∈ [0, 1]N and 1 ≤ n ≤ N , and define Xen (respectively, Xcn) to be
a vector which is same as X except that its nth component is 1 (respectively, 0).

We define F (X) : [0, 1]N → RmN to be shift continuous if for any n, 1 ≤ n ≤ N ,
F (Xcn)Î = F (Xen)Ĵ whenever I − J = 0en. (Here, the cell I is immediately after
the cell J in the direction of the nth axis. The corresponding components of F are
required to have the same value on the common face between the two cells.) Now,
φ(X) is continuous on [0,m]N iff Φ(X) is continuous on [0, 1]N and shift continuous.
(As Φ is determined from its values at {0, 1}N , the requirement of shift continuity
may also be limited to this set.)

The notion of consistency of matrices (as it appears in Definition 2.2 for base 2
and in Theorem 2.3 for bases larger than 2) can be generalized to higher dimensions in
a componentwise fashion. For example, consider a set of matrices AD for D ∈ {0, 1}N .
These matrices are called consistent if for any n, 1 ≤ n ≤ N , the pair ADcn, ADen are
consistent.

Theorem 3.1. Suppose that {AD} are jointly tied; then, for a given binary
expansion of X, P ({AD}, X) exists. P is well defined and continuous at X if all
components of X are nondyadic. If the matrices are consistent, then P is well defined
and continuous at any X. P is Hölder continuous with exponent at least − log2(δ) if
1 > δ > |λ|, where λ is any nonleading eigenvalue of any AD.

Proof. The existence of P is proved in the same manner as in the one-dimensional
case (Theorem 2.1). To prove continuity or obtain the Hölder exponent, we estimate
|P (Y ) − P (X)| through the triangle inequality. Consider an N -cube with X and Y
as two diagonally opposite corners. Define a set of points Zn, 1 ≤ n ≤ p = 2N−2 + 2,
which start at X, go through the vertices of the N -cube, and arrive at Y . We have
|P (Y )−P (X)| ≤∑p−1

n=1 |P (Zn+1)−P (Zn)|. Each consecutive pair of vertices differ in
only one coordinate, and hence, we may apply the estimates in Lemma 2.5 or 2.6 to
each term of the sum. (The same estimates cannot be applied to P (Y )−P (X) directly
because different components of X and Y may approach each other at different rates
or some components may be dyadic while others are nondyadic.) The remaining steps
in the proof are similar to the one-dimensional case.

Suppose that Ω is a sublist of (1, . . . , N), i.e., Ω = (n1, n2, . . .) and 1 ≤ n1 <
n2 < · · · ≤ N . We say K is even (odd) on Ω if Kn1 ,Kn2 , . . . are even (odd) and the
remaining components of K are odd (even). Now the sum rule (2.7) can be generalized
as follows.
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Definition 3.2. We say the coefficients CK satisfy the unit column sum rule if∑
K odd on Ω

CK =
∑

K even on Ω

CK = 1 for every Ω.(3.4)

Notice that if CK ’s satisfy this property, then the column sum for any column of
any TD is 1. In that case, all matrices have a left eigenvector of the form (1, 1, . . . , 1).
As in the one-dimensional case, there is a matrix G, obtained by eliminating certain
rows and columns of the matrices, which has a similar left eigenvector. To obtain
G, we start from any TD and for each n eliminate the first (respectively, the last)
row and column of each of the level-n grid elements if Dn is zero (respectively, one).
Thus G is an (m− 1)N × (m− 1)N matrix and is given by GÎ′,Ĵ′ = C2I′−J ′ , where I ′

and J ′ are taken from {1, . . . ,m− 1}N and Î ′ = 1 +
∑N
n=1(m− 1)n−1(I ′n − 1). Any

right eigenvector of G can be extended to an eigenvector of TD by padding it with
zeros at the locations where the rows of TD were eliminated. In particular the right
eigenvector corresponding to 1 generates an eigenvector for each TD. If 1 is a simple
eigenvalue, then the consistency of {TD} easily follows.

We are looking for the unique normalized continuous solution of (1.1) with support
in [0,m]N . According to (3.2) such a solution will satisfy certain simple and important
properties (similar to (2.4)) as follows:

(3.5a) TDΦ(D) = Φ(D),

(3.5b) Φ

(
Dcn+Den

2

)
= TDcnΦ(Den) = TDenΦ(Dcn),

and in general for any X ∈ [0, 1]N

(3.5c) Φ

(
Xcn+Xen

2

)
= TX∗,1enΦ(X̄∗,1cn) = TX∗,1cnΦ(X̄∗,1en).

Other properties of these solutions (similar to the “sum rules” in Lemma 2.8) are
expressed as follows.

Lemma 3.3. Let φ be a continuous solution of (1.1), and assume Γ =
∫
φ(X)dX

6= 0. Then ∑
K

CK = 2N .(3.6)

If Γ = 1, then

∑
Ω

( ∑
K even on Ω

CK
∑

K odd on Ω

φ(K) +
∑

K odd on Ω

CK
∑

K even on Ω

φ(K)

)
= 1.(3.7)

Moreover, if CK ’s satisfy the unit column sum rule and Γ = 1, then for all X we have∑
K

φ(X +K) = 1.(3.8)

Proof. This is identical to the proof for the one-dimensional case. The integration
of (1.1) gives (3.6). A Riemann sum approximation to the integral provides (3.7) and
its special case (3.8).
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Theorem 3.4. If CK ’s satisfy the unit column sum rule and TD’s are jointly
tied, then P ({TD}, X) exists, is continuous, and has identical columns. The dilation
equation (1.1) has a continuous solution given by φ(X + I − 1) = P ({TD}, X)Î,Ĵ for

any Ĵ . Moreover, this solution is properly normalized, i.e.,
∫
φ(X)dX = 1.

Proof. The proof is identical to the proof for the one-dimensional case, Theorem
2.2.

3.1. Analysis of 32-term dilation equations. In this section, we give an
example based on m = 2 and N = 2. We have Φ(X1, X2) = [φ(X1, X2), φ(X1 +
1, X2), φ(X1, X2 + 1), φ(X1 + 1, X2 + 1)]t and

T00 =


C00 0 0 0
C20 C10 0 0
C02 0 C01 0
C22 C12 C21 C11

 , T01 =


C01 0 C00 0
C21 C11 C20 C10

0 0 C02 0
0 0 C22 C12

 ,

T10 =


C10 C00 0 0
0 C20 0 0
C12 C02 C11 C01

0 C22 0 C21

 , T11 =


C11 C01 C10 C00

0 C21 0 C20

0 0 C12 C02

0 0 0 C22

 .

We can triangularize these matrices in two steps if

C10 = C00 + C20, C01 = C00 + C02, C12 = C02 + C22, C21 = C20 + C22,
C11 = C01 + C21 = C10 + C12 = C00 + C20 + C22 + C02.

(3.9)

Let In denote an n× n identity matrix, and define

S =

(
0 1
1 −1

)
, S2 =

(
0 I2

I2 −I2

)
, S1 =

(
S 0
0 S

)
,

S−1 =

(
1 1
1 0

)
, S2

−1 =

(
I2 I2

I2 0

)
, S1

−1 =

(
S−1 0

0 S−1

)
.

Then, any of matrices TD, D ∈ {0, 1}2, can be triangularized by

T̃D = S1
−1S2

−1TDS2S1.

The four eigenvalues of each of the four matrices may be given in terms of the “corner”
CK ’s as

(C00 + C20 + C22 + C02, C00 + C02, C00 + C20, C00),

(C00 + C20 + C22 + C02, C00 + C02, C02 + C22, C02),

(C00 + C20 + C22 + C02, C22 + C20, C00 + C20, C20),

(C00 + C20 + C22 + C02, C22 + C20, C02 + C22, C22).

Notice that sums of CK ’s on every corner, corners of every side, and corners of the
entire square show up as eigenvalues. For convergence of the products of TD’s, we
need the leading eigenvalue to be 1 and the remaining eigenvalues to be less than 1
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in absolute value. The result can be displayed in terms of a three-parameter space,
say, (C00, C02, C20). Therefore, we require C22 = 1− C00 − C02 − C20 and

−1 < C00 < 1, −1 < C02 < 1, −1 < C20 < 1,

0 < C00 + C02 < 1, 0 < C00 + C20 < 1, 0 < C00 + C02 + C20 < 2.

The remaining CK ’s are then determined by (3.9). Notice that this solution has three
degrees of freedom and can change its sign on [0, 2]2, while a tensor product solution
φ(x, y) = φ1(x)φ2(y), where φ1 and φ2 satisfy

φ1(x) = αφ1(2x) + φ1(2x− 1) + (1− α)φ1(2x− 2),

φ2(y) = βφ2(2y) + φ2(2y − 1) + (1− β)φ2(2y − 2),

has only two degrees of freedom, i.e., 0 < α, β < 1, and a fixed sign.

3.2. Analysis of (m + 1)N -term dilation equations. In this section, we
consider the dilation equations for a given m and N , with coefficients that satisfy
(2.11) along every coordinate direction. In this case the coefficients, CK , are given by
binomial interpolation of their values on the corners of the N -cube, that is, CmD’s.
Applying (2.12) repeatedly along all coordinate directions gives

CK =
∑

D∈{0,1}N
CmD

N∏
n=1

(
m− 1

Kn −Dn

)
.(3.10)

Now, all 2N corresponding TD’s can be triangularized by a set of matrices built
from S given by (2.13). These matrices are constructed as follows: given an n,
1 ≤ n ≤ N , first replace every entry Sij of S with a diagonal matrix SijImn . This
will produce an mn+1 ×mn+1 intermediate matrix. Then, use mN−n−1 copies of the
intermediate matrix to create Sn, a block diagonal matrix of size mN ×mN . Now,
we have simultaneous triangularization by

T̃D = S1
−1S2

−1 · · ·SN−1
−1SN

−1TDSNSN−1 · · ·S2S1.

Here, at each stage n, n = N, . . . , 1, the effect of Sn and Sn
−1 is to triangularize

the current level-n grid elements. The formation of the resulting diagonal blocks is
similar to the one-dimensional formula (2.14). The entries that act as c0 and cm are
a pair of blocks, within each grid’s m ×m subdivision, in the positions (1, 1 + Dn)
and (m,m + Dn − 1). We call these the polar blocks. At the end of each stage
of triangularization the polar blocks and their sum, scaled by factors 1, . . . , 2m−2,
appear on the diagonal. The first entry of TD is CD, and the corresponding indices
of CK ’s in each pair of polar blocks differ in only one component. As a result, the
final summation of CK ’s occur on the corners of the faces of the N -cube. If the face
is n-dimensional, then the sum will appear with scale factors of up to 2(m−2)n.

To formally describe the eigenvalues of TD’s, i.e., the diagonal elements of T̃D’s,
we need to construct sums of CK ’s on the corners of every n-dimensional face of the
N -cube, {0,m}N . Let θ be a sublist of (1, . . . , N), θ = (θ1, θ2, . . . , θn), 1 ≤ θ1 < θ2 <
· · · < θn ≤ N , and assume that θ′ is its complimentary list, θ ∪ θ′ = {1, . . . , N}. (If θ
is empty, then n = 0.) Now, let Dθ = (Dθ1 , Dθ2 , . . . , Dθn) be a free element of {0, 1}n,
and assume that the remaining elements of D form a fixed element of {0, 1}N−n, say,
Dθ′ = Υ. Then, for every Υ there are diagonal entries (with various multiplicities) of
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T̃D in the form

2γ
∑
Dθ

Dθ′=Υ

CmD for 0 ≤ γ ≤ (m− 2)n.

Hence, for the convergence of the matrix products to a continuous function, we require∑
D

CmD = 1/2(m−2)N ,(3.11)

which restricts the sum of CK ’s on all corners of the N -cube. Similarly, for every
n-dimensional (n < N) face of the cube, described by an Υ, we require∣∣∣∣∣∣∣∣

∑
Dθ

Dθ′=Υ

CmD

∣∣∣∣∣∣∣∣ < 1/2(m−2)n.(3.12)

Now, (3.10)–(3.12) characterize a class of CK ’s which produce continuous scaling
functions. As (3.11) indicates, there are 2N − 1 degrees of freedom. (For each n < N
there are

(
N
n

)
2N−n inequalities of the form (3.12). There are 3N − 1 inequalities in

all.)
As in the case of the one-dimensional scaling functions, one can increase the

degree of smoothness of φ by ` if the inequalities (3.12) are made stricter by a factor
of 1/2`. We summarize our results in the following theorem.

Theorem 3.5. If the sum of CK ’s on the corners of the N -cube satisfies∑
D

CmD = 1/2(m−2)N ,

and for every n-dimensional (n < N) face of the N -cube we have∣∣∣∣∣∣∣∣
∑
Dθ

Dθ′=Υ

CmD

∣∣∣∣∣∣∣∣ < 1/2(m−2)n+`,

and all other CK ’s are given by binomial interpolation of their values at the corners
of the N -cube,

CK =
∑

D∈{0,1}N
CmD

N∏
n=1

(
m− 1

Kn −Dn

)
,

then the solution of (1.1) is ` times continuously differentiable. If ` is allowed to be a
real number, then the [`]th derivative of φ is Hölder continuous with exponent at least
`− [`].

Proof. If ` = 0, then we establish continuity by using Theorem 3.2. For ` > 0
we investigate existence, continuity, and the Hölder exponent of the required deriva-
tive of φ by considering the related partial derivatives. The treatment is analogous to
the one-dimensional case, and it uses the generalization of Theorem A.1 to N
dimensions.
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3.3. Examples of 42-term scaling functions. In this section we give some
pictorial examples of the scaling functions obtained by applying (3.10)–(3.12) to the
case of m = 3 and N = 2. We require

C00 + C03 + C30 + C33 = 1/22,

|C00+C03| < 1/21+`, |C03+C33| < 1/21+`, |C33+C30| < 1/21+`, |C30+C00| < 1/21+`,

|C00| < 1/2`, |C03| < 1/2`, |C30| < 1/2`, |C33| < 1/2`.

The remaining CK ’s are given by (3.10), which in two dimensions reads

Cij = C00

(
m− 1

i

)(
m− 1

j

)
+ C0m

(
m− 1

i

)(
m− 1

j − 1

)
+Cm0

(
m− 1

i− 1

)(
m− 1

j

)
+ Cmm

(
m− 1

i− 1

)(
m− 1

j − 1

)
.

In our example, m = 3, (i, j) ∈ {0, 1, 2, 3}2, and the support of φ is [0, 3]2. For a given
set of coefficients, CK , the supremum of all possible real values of ` will be shown
by `c, the critical exponent. Then, for any ` < `c, the [`]th derivative of φ is Hölder
continuous with exponent (at least) `− [`].

If we choose C00 = C03 = C30 = C33 = 1/16, then we get the two-dimensional
spline in Figure 1. This function fails to have continuous second derivatives at points
in its support where one of the coordinates is an integer. The maximum integer value
that we can use for ` in Theorem 3.3 is 1. Therefore, this function is C1. The critical
exponent is `c = 2.

If we choose C00 = −0.075, C03 = C30 = 0.1, and C33 = 0.125, then we get
the graph in Figure 2. The maximum value that we can use for ` in Theorem 3.3
is 1. Therefore, this function is C1, despite appearances. The critical exponent is
`c = − log2 0.45 = 1.152 . . ..

If we choose C00 = −0.5, C03 = C30 = 0.625, and C33 = −0.5, then we get the
graph in Figure 3. The maximum value that we can use for ` in Theorem 3.3 is 0.
Therefore this function is only continuous. The critical exponent is `c = − log2 0.625 =
0.678 . . ..

Appendix A. Some notes on binomial identities. Here we outline the proofs
of some binomial identities used in this paper.

Note A.1. To verify that (2.12) is a solution of (2.11), one evaluates(
x
d

dx

)q
[xb(1− x)m−1] =

m∑
k=0

(−1)k(k + b)q
(
m− 1

k

)
xk+b(A.1)

for 0 ≤ q ≤ m− 2, and b = 0 or −1 at x = 1.
The fact that matrices given by (2.13) are inverses of each other follows from

(A.1) for q = b = 0.
Note A.2. The matrices T̃0 and T̃1 and their divided differences have a particular

zero structure and a simple formula for the entries of the first nonzero subdiagonal.
The divided differences in question are polynomials such as T̃1 − T̃0, T̃1T̃1 − 2T̃1T̃0 +
T̃0T̃1, etc., where the indices form an arithmetic sequence of binary numbers and the
coefficients are the binomial numbers. This is discussed in the following theorem.

Theorem A.1. Consider a set of equidistant numbers wj = θ+j~ for j = 0, . . . , `,
in the unit interval and with binary expansions that differ on the first k digits only.
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Fig. 3.1. The scaling function for C00 = C03 = C30 = C33 = 1/16. Here, `c = 2.
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Fig. 3.2. The scaling function for C00 = −0.075, C03 = C30 = 0.1, C33 = 0.125. Here,
`c = 1.152 . . ..

Define

D̃ = D̃(k, `, ~, θ) =
1

~`
∑̀
i=0

(−1)i
(
`

i

)
P̃k(w`−i).(A.2)

Then

D̃i,j = 0 if i < m and i < j + `,(A.3)

D̃m,j = 0 if c0 = cm and m < j + `,(A.4)

D̃i,i−` = `!

(
i− 1

`

)
2k(m+`−i−1)(c0 + cm)k for ` < i < m.(A.5)
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Fig. 3.3. The scaling function for C00 = −0.5, C03 = C30 = 0.625, and C33 = −0.5. Here,
`c = 0.678 . . ..

In particular, if ck’s satisfy the unit column sum rule, then c0 + ck = 1/2m−2 and we
have

D̃i,i−` = `!

(
i− 1

`

)
2k(`+1−i).(A.6)

The first entry of this list is

D̃`+1,1 = `!.(A.7)

Proof. We prove the theorem for T̃1 and T̃0. The general case is similar and can
be shown by induction on `. The proof rests on simple divided difference properties
of polynomials. We establish that S−1T0S and S−1T1S are lower triangular, with
diagonal entries given by (2.14). Define the matrices Ma for a = 0, 1, 2 by (Ma)i,j =(
m−1

2i−j−a
)
. We have T0 = c0M1 + cmM2 and T1 = c0M0 + cmM1. First, we show that

S−1MaS is lower triangular and determine its diagonal entries. The main step is to
prove the following identity:

∑
1≤k,l≤m

(i− 1)!

(
m− k
i− 1

)(
m− 1

2k − l − a
)(

j − 1

m− l
)

(−1)l+j−m−1

(j − 1)!
= 0(A.8)

for j > i and a = 0, 1, 2.
A brief outline of the proof of (A.8) is as follows. First, we notice that for each

fixed i the elements of row i of S−1 are the values of a polynomial of order i − 1 in
j. Then we will show that the same is true of S−1Ma (except that when a = 0, the
last row is a polynomial of order m− 2, and when a = 2, the last row is zero). Next
we observe that for each j the elements of the column j of S are proportional to the
coefficients of the divided difference scheme of order j−1. Therefore, when j > i, the
product of row i of S−1Ma and column j of S is zero; hence, (A.8) follows.

Now we show that row i of S−1Ma is a polynomial of degree at most i − 1. For
a fixed i let s(j) = S−1

ij . Obviously s is polynomial of degree i− 1. Define g and h in
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terms of alternate values of S−1Ma on row i; that is,

∑
1≤k≤m

(i− 1)!

(
m− k
i− 1

)(
m− 1

2k − l − a
)

=

{
g(l) for l odd,
h(l) for l even.

(A.9)

The alternate columns of S−1
ij are identical up to a shift. Hence, for the j’s with same

parity, we get g as the same linear combination of translates of s. Therefore, g is a
polynomial of degree i − 1. A similar argument applies to h. We will show that for
i < m these two polynomials are identical. Define f(x) = s(x/2), and notice that the
leading term of f is (−x/2)i−1. Assume a = 0 (the cases for a = 1 and a = 2 can be
treated similarly). Then we write (A.9) as

g(x) =
∑
r

(
m−1
2r−1

)
f(x+ 2r − 1),

h(x) =
∑
r

(
m−1

2r

)
f(x+ 2r).

(A.10)

Suppose f(x) =
∑
p apx

p, where ap = 0 for p < 0 or p > i − 1. Then from binomial
expansion of (A.10) we obtain

g(x) =
∑
p,q ap

(
p
q

)
xp−q

∑
r

(
m−1
2r−1

)
(2r − 1)q,

h(x) =
∑
p,q ap

(
p
q

)
xp−q

∑
r

(
m−1

2r

)
(2r)q.

(A.11)

But from Note A.1 we have

∑
r

(
m− 1

2r − 1

)
(2r − 1)q =

∑
r

(
m− 1

2r

)
(2r)q for 0 ≤ q ≤ m− 2;(A.12)

therefore, g(x) and h(x) are identical if their degree i − 1 does not exceed m − 2;
that is, if i < m. In this case the leading term of the polynomial, from (2.19), is
2m−2(−x/2)i−1. Now the entries on column j of S may be written as [(−1)i+j

(
j−1
m−i

)
]×

[(−1)m+1/(j − 1)!]. The first part is the divided difference scheme of order j − 1, and
the second part is a constant. Therefore, the product of row i of S−1Ma and column
j of S is zero when i < j. Hence, S−1MaS is lower triangular. When i = j < m,
then the product is 2m−i−1. For i = j = m we need to distinguish among three
cases. When a = 0, the last row of S−1Ma is [m− 1, 1, 0, 0, . . . , 0]. The interpolating
polynomial of these values is of degree m − 1. Hence, its product with column m
of S is zero. When a = 2, then the last row itself is zero. When a = 1, we get a
nonzero contribution, i.e., 1. This explains the particular form of the eigenvalues in
(2.14).
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Abstract. The inverse stochastic spectrum problem involves the construction of a stochastic
matrix with a prescribed spectrum. The problem could be solved by first constructing a nonnegative
matrix with the same prescribed spectrum. A differential equation aimed to bring forth the steep-
est descent flow in reducing the distance between isospectral matrices and nonnegative matrices,
represented in terms of some general coordinates, is described. The flow is further characterized
by an analytic singular value decomposition to maintain the numerical stability and to monitor the
proximity to singularity. This flow approach can be used to design Markov chains with specified
structure. Applications are demonstrated by numerical examples.

Key words. nonnegative matrix, stochastic matrix, least squares, steepest descent, isospectral
flow, structured Markov chain, analytic singular value flow
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1. Introduction. Inverse eigenvalue problems concern the reconstruction of ma-
trices from prescribed spectral data. The spectral data may involve complete or partial
information of eigenvalues or eigenvectors. Generally, a problem without any restric-
tions on the matrix is of little interest. In order for the inverse eigenvalue problem to
be meaningful, it is often necessary to restrict the construction to special classes of
matrices, such as symmetric Toeplitz matrices or matrices with other special struc-
tures. In this paper we limit our attention to the so-called stochastic matrices, i.e.,
matrices with nonnegative elements where all their row sums are equal to one. We
propose a numerical procedure for the construction of a stochastic matrix so that its
spectrum agrees with a prescribed set of complex values. If the set of prescribed val-
ues turns out to be infeasible, the method produces a best approximation in the sense
of least squares. To our knowledge, this inverse eigenvalue problem for stochastic
matrices has not been studied extensively, probably due to its difficulty as we shall
discuss below. Nevertheless, for a variety of physical problems that can be described
in the context of Markov chains, an understanding of the inverse eigenvalue problem
for stochastic matrices and a capacity to solve the problem would make it possible
to construct a system from its natural frequencies [8, 12]. The method proposed in
this paper appears to be the first attempt at tackling this problem numerically with
some success. Our technique can also be applied as a numerical way to solve the long
standing inverse eigenvalue problems for nonnegative matrices.

Associated with every inverse eigenvalue problem are two fundamental questions:
the theoretic issue on solvability and the practical issue on computability. The major
effort in solvability has been to determine a necessary or sufficient condition under
which an inverse eigenvalue problem has a solution, whereas the main concern in
computability has been to develop an algorithm by which, knowing a priori that the
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Fig. 1. Θ4 by the Karpelevič theorem.

given spectral data are feasible, a matrix can be constructed numerically. Both ques-
tions are difficult and challenging. Searching through the literature, we have found
only a handful of inverse eigenvalue problems that have been completely understood
or solved. A collection of inverse eigenvalue problems and their status reviews can
be found in a recent article [7]. The focus of this paper is on the computability for
stochastic matrices.

For stochastic matrices, the inverse eigenvalue problem is particularly difficult as
can be seen from the involvement in the best known result on existence by Karpelevič
[15, 17]. Karpelevič completely characterized the set Θn of points in the complex
plane that are eigenvalues of stochastic n × n matrices. In particular, the region
Θn is symmetric about the real axis. It is contained within the unit circle and its
intersections with the unit circle are points z = e(2πa/b)i, where a and b run over all
integers satisfying 0 ≤ a < b ≤ n. The boundary of Θn consists of these intersection
points and of curvilinear arcs connecting them in circular order. These arcs are
characterized by specific parametric equations whose formulas can be found in [15, 17].
For example, a complex number λ is an eigenvalue for a 4 × 4 stochastic matrix if
and only if it belongs to a region Θ4 such as the one shown in Figure 1. Complicated
though it may seem, the Karpelevič theorem characterizes only one complex value at
a time and does not provide further insight into when two or more points in Θn are
eigenvalues of the same stochastic matrix. Minc [17] distinctively called the problem
we are considering, where the entire spectrum is given, the inverse spectrum problem.

It is known that the inverse eigenvalue problem for nonnegative matrices is vir-
tually equivalent to that for stochastic matrices. For example, a complex nonzero
number α is an eigenvalue of a nonnegative matrix with a positive maximal eigen-
value r if and only if α/r is an eigenvalue of a stochastic matrix. Our problem is much
more complicated because it involves the entire spectrum. Fortunately, based on the
following theorem we can proceed with our computation once a nonnegative matrix
is found.
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Theorem 1.1. If A is a nonnegative matrix with positive maximal eigenvalue r
and a positive maximal eigenvector x, then D−1r−1AD is a stochastic matrix where
D := diag{x1, . . . , xn}.

We thus should turn our attention to the inverse eigenvalue (or spectrum) prob-
lems for nonnegative matrices, a subject that has received considerable interest in the
literature. Some necessary and a few sufficient conditions on whether a given set of
complex numbers could be the spectrum of a nonnegative matrix can be found, for
example, in [1, 3, 9, 10, 11, 13, 14, 18, 21] and the references contained therein. Yet
numerical methods for constructing such a matrix, even if the spectrum is feasible,
still need to be developed. Some discussion can be found in [6, 21]. Regardless of
all the efforts, the inverse eigenvalue problem for nonnegative matrices has not been
completely resolved to this date.

In an earlier paper [6] the first author developed an algorithm that can construct
symmetric nonnegative matrices with prescribed spectra by means of differential equa-
tions. Symmetry was needed there because the techniques by then were for flows in
the group of orthogonal matrices only. Upon realizing the existence of an analytic
singular value decomposition (ASVD) for a real analytic path of matrices [5, 16, 22],
we are able to advance the techniques in [6] to general matrices in this paper.

This paper is organized as follows. We reformulate the inverse stochastic spec-
trum problem as that of finding the shortest distance between isospectral matrices
and nonnegative matrices. In section 2 we introduce a general coordinate system to
describe these two types of matrices and discuss how this setting naturally leads to
a steepest descent flow. This approach generalizes what has been done before, but
requires the inversion of matrices that is potentially dangerous. In section 3 we argue
that the steepest descent flow is in fact analytic and hence an ASVD exists. We
therefore are able to describe the flow by a more stable vector field. We illustrate the
application of this differential equation to the inverse spectrum problem by numerical
examples in section 4.

2. Basic formulation. The given spectrum {λ1, . . . , λn} may be complex val-
ued. It is not difficult to create a simple, say tridiagonal, real-valued matrix Λ carrying
the same spectrum. For multiple eigenvalues, one should also consider the possible
real-valued Jordan canonical form, depending on the geometric multiplicity. Matrices
in the set

M(Λ) := {PΛP−1|P ∈ Rn×n is nonsingular}(1)

obviously are isospectral to Λ. Let

π(Rn+) := {B ◦B|B ∈ Rn×n}(2)

denote the cone of all nonnegative matrices, where A ◦ B := [aijbij ] represents the
Hadamard product of matrices if A = [aij ] and B = [bij ]. Our basic idea is to find
the intersection of M(Λ) and π(Rn+). Such an intersection, if it exists, results in a
nonnegative matrix isospectral to Λ. Furthermore, if the condition in Theorem 1.1
holds, i.e., if the eigenvector corresponding to the positive maximal eigenvalue is
positive, then we will have solved the inverse spectrum problem for stochastic matrices
by a diagonal similarity transformation. The difficulty, as we pointed out earlier, is
the lack of means to determine if the given spectrum is feasible. An arbitrarily given
set of values λ1, . . . , λn, even if λi ∈ Θn for all i, may not be the spectrum of any
nonnegative matrix. In this case, it is reasonable to ask for only the best possible
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approximation. To handle both problems at the same time, we reformulate the inverse
spectrum problem as that of finding the shortest distance betweenM(Λ) and π(Rn+):

minimize F (P,R) :=
1

2
‖PΛP−1 −R ◦R‖2,(3)

where ‖ · ‖ represents the Frobenius matrix norm. Obviously, if Λ is feasible, then
F (P,R) = 0 for some suitable P and R. Note that the variable P in (3) resides in the
open set of nonsingular matrices, whereas R is simply a general matrix in Rn×n. The
optimization in (3) subjects to no other significant constraint. Since the optimization
is over an unbounded open domain, it is possible that the minimum does not exist.
We shall comment more on this point later.

The Fréchet derivative of F at (P,R) acting on (H,K) is calculated as follows:

F ′(P,R)(H,K) = 〈PΛP−1 −R ◦R,HΛP−1 − PΛ(P−1HP−1)−K ◦R−R ◦K〉
= 〈(PΛP−1 −R ◦R)P−TΛT − P−TΛTPT (PΛP−1 −R ◦R)P−T , H〉(4)

−〈2(PΛP−1 −R ◦R) ◦R,K〉,

where 〈·, ·〉 denotes the Frobenius inner product of two matrices. Define, for abbrevi-
ation,

M(P ) := PΛP−1,(5)

∆(P,R) := M(P )−R ◦R.(6)

The norm of ∆(P,R) represents how close we are able to solve the inverse spectrum
problem. With respect to the product topology on Rn×n ×Rn×n, we can easily read
off the gradient ∇F of the objective function F from (4):

∇F (P,R) =
(
(∆(P,R)M(P )T −M(P )T∆(P,R))P−T ,−2∆(P,R) ◦R) .(7)

Therefore, the flow (P (t), R(t)) defined by the differential equations

dP

dt
= [M(P )T ,∆(P,R)]P−T ,(8)

dR

dt
= 2∆(P,R) ◦R,(9)

where [·, ·] denotes the Lie bracket of two matrices, signifies, in fact, the steepest
descent flow for the objective function F .

An important advance we have made here is that the gradient ∇F (P,R) no
longer needs to be projected as was required in [6] since P need not be orthogonal.
On the other hand, a possible frailty of this advance is that the solution flow P (t) is
susceptible to becoming unbounded.

The differential system (8) and (9) has another interesting property that is useful
for constructing Markov chains with designated structure. The Hadamard product
in (9) implies that if rij = 0, then

drij
dt = 0. Thus the zero structure in the original

matrix R(0) is preserved throughout the integration. We may use this property to
explore the possibility of constructing a Markov chain with prescribed linkages and
spectrum.
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3. ASVD flow. A somewhat worrisome feature of the differential system (8) and
(9) is the involvement of P−1. In this section we propose using the ASVD as a stable
way to carry out the computation. Also, we pointed out earlier that the minimization
(3) over two open sets may not have a minimum. It is possible during the integration
that the flow P (t) from one particular starting value gradually moves toward the
boundary, i.e., the closed subset of singular matrices in Rn×n, and becomes more and
more nearly singular. The ASVD technique allows us to monitor the situation. If the
singular values indicate that P (t) is nearly rank deficient, we can abort the integration
and restart from a new initial value.

An analytic singular value decomposition of the path of matrices P (t) is an ana-
lytic path of factorizations

P (t) = X(t)S(t)Y (t)T ,(10)

where X(t) and Y (t) are orthogonal and S(t) is diagonal. In [5] Bunse-Gerstner et al.
prove that an ASVD exists if P (t) is analytic. The fact that P (t) defined by (8) and
(9) is indeed analytic follows from the Cauchy–Kovalevskaya theorem [19] since the
coefficients of the vector field in (8) and (9) are analytic. With this understanding,
we may proceed to describe the differential equations for the ASVD of P (t).

It is worthy to point out that the two matrices P and R are used, respectively, as
coordinates to describe the isospectral matrices and nonnegative matrices. We may
have used more dimensions of variables than necessary to describe the underlying
matrices, but that does no harm. When flows P (t) and R(t) are introduced, corre-
spondingly, a flow in M(Λ) and a flow in π(Rn+) are also introduced. To stabilize
the computation, we further describe the motion of the coordinate P by three other
variables X, S, and Y according to (10). The flows of X(t), S(t), and Y (t) can be
found in the following way due to Wright [16, 22].

Differentiating both sides of (10), we obtain the following equation after some
suitable multiplications:

XT dP

dt
Y = XT dX

dt
S +

dS

dt
+ S

dY T

dt
Y.(11)

Define

Q(t) := XT dP

dt
Y,(12)

Z(t) := XT dX

dt
,(13)

W (t) :=
dY T

dt
Y.(14)

Note that Q(t) is known from (8), where the inverse of P (t) is calculated from

P−1 = Y S−1XT .(15)

The diagonal entries of S = diag{s1, . . . , sn} provide us with information about the
proximity of P (t) to singularity. On one hand, comparing the diagonal entries on
both sides of (11), we obtain the differential equation for S(t)

dS

dt
= diag(Q),(16)
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since both Z(t) and W (t) are skew symmetric. On the other hand, comparing the
off-diagonal entries on both sides of (11), we obtain the linear system

qjk = zjksk + sjwjk,(17)

−qkj = zjksj + skwjk.(18)

If s2
k 6= s2

j , we can solve this system and obtain

zjk =
skqjk + sjqkj
s2
k − s2

j

,(19)

wjk =
sjqjk + skqkj
s2
j − s2

k

(20)

for all j > k. Even if s2
k = s2

j , the existence of an ASVD guarantees that the equations
must be consistent, so zjk and wjk still can be solved. Detailed consideration of this
situation is elucidated in [22]. The basic idea is to continue differentiating (11) to
obtain

ZTQ+XT P̈ Y +QWT = ŻS + ZṠ + S̈ + ṠW + SẆ .(21)

Picking out the terms zjk and wkj produces the equations

skżjk + sjẇkj + 2ṡkzjk + 2ṡjwkj = (XT P̈ Y )jk −
∑
i 6=k

zjiqik −
∑
i 6=j

qjiwki,(22)

sj żjk + skẇkj + 2ṡjzjk + 2ṡkwkj = −(XT P̈ Y )kj +
∑
i 6=j

zkiqij +
∑
i 6=k

qkiwji.(23)

As long as ṡj 6= ṡk, subtraction of the above two equations eliminates żjk and ẇkj and
gives rise to a second relationship between zjk and wkj . In this way, we get a simple
cross cover of the paths of the two singular values sj(t) and sk(t). If ṡj = ṡk again,
then it can be shown that a further differentiation of (11) will provide yet another
equation to determine zjk and wkj as long as s̈j 6= s̈k, and the argument may continue
as long as it is needed.

Once Z(t) and W (t) are known, the differential equations for X(t) and Y (t) are
given, respectively, by

dX

dt
= XZ,(24)

dY

dt
= YWT .(25)

By now we have developed a complete coordinate system (X(t), S(t), Y (t), R(t))
for matrices in M(Λ) × π(Rn+). The differential equations (24), (16), (25), and (9)
with the relationship (10) describe how these coordinates should be varied in t to
produce the steepest descent flow for the objective function F . This flow is ready to
be integrated numerically by any initial value problem solvers. We have thus proposed
a numerical method for solving the inverse stochastic spectrum problem.

4. Convergence. When assessing the convergence properties of the foregoing
approach, we must distinguish carefully the means used to measure the convergence.

First of all, the approach fails only at two occasions—either P (t) becomes singular
in finite time or F (P (t), R(t)) converges to a nonzero constant. The former case,
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detected by examining the singular values of P (t), requires a restart from a new
initial value with the hope of avoiding the singularity. The latter case indicates that
a least squares local solution has been found, but that solution has not yet solved
the inverse spectrum problem. A restart may help to locate an exact solution, if the
prescribed spectrum is feasible, or move to another least squares approximation that
may produce a different objective value.

In all cases, the function

G(t) := F (P (t), R(t))(26)

enjoys the property that

dG

dt
= −‖∇F (P (t), R(t))‖2 ≤ 0(27)

along any solution curve (P (t), R(t)). It follows that G(t) is monotone decreasing
and that dG

dt = 0 only when a local stationary point of F (P,R) is reached. Suppose
that P (t) remains nonsingular throughout the integration, an assumption that seems
generic according to our experiences. Then G(t) has to converge. It is in this sense
that our method is globally convergent.

In [6] the coordinate matrix P (t) is limited to be orthogonal; hence it is bounded
and exists for all t. This constraint is not imposed on the approach discussed in the
current paper. Generally there is no guarantee that P (t) is bounded. However, in
the case that the solution flow (P (t), R(t)) corresponding to a certain initial value
indeed is bounded and exists for all t ≥ 0, then we can conclude from Lyapunov’s
second method [4] that ω-limit points of P (t) exist and that each limit point satisfies
∇F (P,R) = 0. In other words, limit points of the flow are necessarily stationary
points. Since the vector field always points to the steepest descent direction and other
types of stationary points are unstable, any limit point reached through numerical
computation will most likely be a local minimizer for F . The structure of the ω-limit
set of the differential system (8) and (9) can be further analyzed in a way similar
to that in [6]. For example, if the ω-limit set of a flow contains a point at which
F (P,R) = 0, then that point is the only element in the ω-limit set. The flow hence
converges to that limit point. We shall not repeat the detailed argument here. Our
experiences seem to indicate that our method works reasonably well for solving the
inverse spectrum problem.

5. Numerical experiment. In this section, we report some experiences of our
experiment with the differential equation applied to the inverse problem. The compu-
tation is carried out by MATLAB 4.2a on an ALPHA 3000/300LX workstation. The
solvers used for the initial value problem are ode113 and ode15s from the MATLAB
ODE SUITE [20]. The code ode113 is a PECE implementation of Adams–Bashforth–
Moulton methods for nonstiff systems. The code ode15s is a quasi-constant step size
implementation of the Klopfenstein–Shampine family of the numerical differential for-
mulas for stiff systems. The statistics about the cost of integration can be obtained
directly from the odeset option built in the integrator. More details of these codes
can be found in the document [20]. The reason for using these two codes is simply for
convenience and illustration. Any other ODE solvers can certainly be used instead.

In our experiments, the tolerance for both absolute error and relative error is
set at 10−12. This criterion is used to control the accuracy in following the solution
path. The high accuracy we required here has little to do with the dynamics of
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the underlying vector field. We examine the output values at a time interval of 10.
The integration terminates automatically when the norm of ∆(P,R) or the relative
improvement of ∆(P,R) between two consecutive output points is less than 10−9,
indicating either a stochastic matrix with the prescribed spectrum or, in the case
of an infeasible spectrum, a least squares solution has been found. So as to fit the
data comfortably in the running text, we report only the case n = 5 and display all
numbers with five digits.

Example 1. To ensure the feasibility of test data, we start with a randomly gener-
ated stochastic matrix and use its eigenvalues as the objective spectrum. To demon-
strate the robustness of our approach, the initial values of the differential equations
are also generated randomly. Reported below is one typical run in our experiments.

The random matrix

A =


0.0596 0.2586 0.0838 0.3022 0.2958
0.0972 0.2833 0.3559 0.2545 0.0092
0.2015 0.1143 0.3645 0.2669 0.0528
0.2637 0.2116 0.1920 0.0333 0.2994
0.1785 0.3138 0.1386 0.2146 0.1545


is stochastic. Its spectrum {1.0000,−0.2403, 0.1186± 0.1805i,−0.1018}, also random
but feasible, is used as the target. We note that the presence of complex-conjugate
pair(s) of eigenvalues in the spectrum is quite common. Orthogonal matrices X0, Y0

and the diagonal matrix S0 from the singular value decomposition P0 = X0S0Y0 of
the random matrix

P0 =


0.2002 0.4213 0.9229 0.7243 0.4548
0.6964 0.0752 0.9361 0.2235 0.0981
0.7538 0.3620 0.2157 0.5272 0.2637
0.4366 0.3220 0.8688 0.1729 0.8697
0.8897 0.1436 0.7097 0.5343 0.7837

 ,
together with the matrix R0 = 0.83291, where 1 is the matrix with all entries 1, are
used as the initial values for X(t), Y (t), S(t), and R(t), respectively. Figure 2 depicts
the history of F (P (t), R(t)) throughout the integration. As is expected, F (P (t), R(t))
is monotone decreasing in t. The flow P (t) converges to a nonnegative matrix with
the prescribed spectrum that by Theorem 1.1 is converted into a stochastic matrix B:

B =


0.1679 0.0522 0.4721 0.0000 0.3078
0.1436 0.1779 0.4186 0.1901 0.0698
0.0000 0.1377 0.5291 0.3034 0.0299
0.0560 0.4690 0.2404 0.0038 0.2309
0.1931 0.1011 0.5339 0.1553 0.0165

 .
Note that B is not expected to be correlated to A other than the spectrum since

no other information of A is used in the calculation. While the history of F (P (t), R(t))
is independent of the integrator used, Figure 3 indicates the number of steps taken
in each interval of length 10 by the nonstiff solver ode113 and by the stiff solver
ode15s. Both solvers seem to work reasonably well, although the stiff solver clearly
is advancing with much larger step sizes at the cost of solving implicit algebraic
equations. Figure 4 summarizes the statistics of the cost when using ode15s. It
should be pointed out that the numerical computation of the partial derivative (and
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the related function evaluations) could have been saved if the interval of output points
had been larger [20].

Suppose we merely change the initial value R0 in the above to another random
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matrix:

R0 =


0.8329 −0.9698 0.2274 0.9466 −0.1409
−0.6222 0.3131 −0.7072 0.6990 −0.6490

0.5684 0.4914 0.2558 −0.2685 −0.0901
−0.9794 0.6124 −0.4724 −0.9758 −0.8408
−0.5250 −0.9640 0.0399 −0.0852 0.4312

 .
Then the resulting stochastic matrix C becomes

C =


0.1422 0.0310 0.8267 0.0000 0.0001
0.0016 0.5337 0.2791 0.0756 0.1099
0.0000 0.6413 0.1603 0.0000 0.1984
0.2549 0.7019 0.0139 0.0037 0.0255
0.0360 0.6595 0.2178 0.0315 0.0553

 ,
illustrating the nonuniqueness of the solution for the inverse spectrum problem and
also the robustness of our differential equation approach.

Example 2. In this example, we illustrate the application of our approach to the
structured stochastic matrix. Suppose we want to find a stochastic matrix with eigen-
values {1.0000,−0.2608, 0.5046, 0.6438,−0.4483}. Furthermore, suppose we want the
Markov chain to be such that the states form a ring and that each state is linked at
most to its two immediate neighbors. We begin with the initial matrices

P0 =


0.1825 0.7922 0.2567 0.9260 0.9063
0.1967 0.5737 0.7206 0.5153 0.0186
0.5281 0.2994 0.9550 0.6994 0.1383
0.7948 0.6379 0.5787 0.1005 0.9024
0.5094 0.8956 0.3954 0.6125 0.4410
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and R0 = 0.92101̂, where

1̂ =


1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1

 .
As we pointed out earlier, the zeros in R0 are invariant under the integration of (8)
and (9). Thus we are maintaining the ring structure while searching for the one with
matched spectrum. It turns out that the stochastic matrix

D =


0.0000 0.3094 0 0 0.6906
0.0040 0.5063 0.4896 0 0
0 0.0000 0.5134 0.4866 0
0 0 0.7733 0.2246 0.0021
0.4149 0 0 0.3900 0.1951


is the limit point of the solution flow and possesses the desirable spectrum.

Example 3. By a result of Dmitriev and Dynkin [17], a complex number α with
| argα| ≤ 2π

n is an eigenvalue of an n × n stochastic matrix if and only α lies ei-

ther in the triangle 4(0, 1, e2πi/n) or in 4(0, 1, e−2πi/n). The result by replacing the
complex-conjugate pair in the spectrum of Example 1 with another pair of complex-
conjugate values in these two triangles will not alter the fact that every individual
value is an eigenvalue of a certain stochastic matrix. However, whether these values
are eigenvalues of the same stochastic matrix is difficult to confirm.

We experiment with, for instance, the eigenvalues .3090±0.5000i. Using the same
initial values (R0 = 0.83291) as in Example 1, we have experienced extremely slow
convergence for this case. The history of F (P,R) in Figure 5 clearly indicates this
observation. The limit point, given by

E =


0.3818 0.0000 0.4568 0.0000 0.1614
0.5082 0.3314 0.0871 0.0049 0.0684
0.0000 0.0000 0.5288 0.4712 0.0000
0.0266 0.7634 0.0292 0.0310 0.1498
0.5416 0.0524 0.3835 0.0196 0.0029

 ,
exhibits an unexpected zero structure that we think is the cause of the slow conver-
gence. The variation of the smallest singular value in the ASVD is plotted in Figure 6,
indicating that matrices P (t) stay away from singularity at a good distance. Suppose
we modify the initial value to reflect the structure by simply setting the corresponding
entries in the original R0 to zero. Then the flow converges to another limit point,

F =


0.3237 0 0.4684 0 0.2079
0.4742 0.3184 0.1303 0.0007 0.0764
0 0.0000 0.5231 0.4769 0
0.0066 0.7536 0.0372 0.0958 0.1068
0.5441 0.0429 0.3959 0.0022 0.0149

 ,
at an almost equally slow pace. The spectra of both E and F agree with the specified
spectrum within expected computational errors.
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6. Conclusion. The theory of solvability on the inverse spectrum problem for
stochastic or nonnegative matrices is yet to be developed; nevertheless we have pro-
posed an ODE approach that is capable of constructing numerically stochastic or
nonnegative matrices with the desirable spectrum if the spectrum is feasible. The
method is easy to implement by existing ODE solvers. The method can also be used
to approximate least squares solutions or linearly structured matrices.

Acknowledgments. The authors wish to thank Bart De Moor for bringing this
problem to their attention and Carl Meyer for kindly pointing them to reference [17].
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Abstract. Let S = {x1, x2, . . . , xn} be a set of distinct positive integers. The set S is called gcd-
closed if it contains the greatest common divisor (xi, xj) of xi and xj for 1 ≤ i, j ≤ n. The matrix [S]
is called the least common multiple (LCM) matrix on S if its i, j entry is the least common multiple
[xi, xj ] of xi and xj . Bourque and Ligh conjectured that the LCM matrix on a gcd-closed set is
invertible [Linear Algebra Appl., 174 (1992), pp. 65–74]. The aim of this note is to show that this
conjecture holds if n ≤ 7, but it does not hold in general when n ≥ 8.

Key words. least common multiple, LCM matrix, greatest common divisor, gcd-closed set,
singularity
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1. Introduction. Let S = {x1, x2, . . . , xn} be a set of distinct positive integers.
The matrix [S] having the least common multiple of xi and xj as its i, j entry is called
the least common multiple (LCM) matrix on S. Let (x1, . . . , xk) denote the greatest
common divisor of x1, . . . , xk. The set S is gcd-closed if (xi, xj) ∈ S for 1 ≤ i, j ≤ n.
Note that this implies (xj1 , . . . , xjk) ∈ S. Let µ denote Möbius function, i.e., µ(1) =
1, µ(n) = (−1)k for n = p1p2 · · · pk where p1, p2, . . . , pk are distinct prime numbers
and µ(n) = 0 for the other n. It is well known that setting g(n) = 1

n

∑
d|n dµ(d);

then g(n) = 1
n (1−p1)(1−p2) · · · (1−pk) if p1, . . . , pk are the prime factors of n and∑

d|n g(d) = 1
n (see, e.g., [1]).

The following result is due to Bourque and Ligh [2]; it generalizes Smith’s result
on LCM matrices [5].

Lemma 1.1 (see [2]). Let S = {x1, x2, . . . , xn} be a set of distinct positive integers.
If S is gcd-closed, then

det[S] =

n∏
i=1

x2
iαi, where αi =

∑
d|xi
d6 |xl
xl<xi

g(d).(1)

One of our results (see Theorem 1.4) is an alternative formula for calculating αi
more rapidly. We see that if S is factor-closed (i.e., S contains every divisor of any
element of S); then det[S] =

∏n
i=1 x

2
i g(xi) 6= 0, so [S] is invertible (see Smith [5]).

The authors of [2] conjectured that invertibility of [S] holds even under the weaker
property that S be only gcd-closed. This will be disproved in Example 2, while we
show in Theorem 1.6 that the conjecture holds if |S| ≤ 7.

We first introduce a symmetric function w = w(y1, . . . , yk) on the positive integers

∗ Received by the editors December 6, 1996; accepted for publication (in revised form) by G.P.
Styan July 7, 1997; published electronically July 17, 1998. This research was supported by the
National Science Foundation of China.

http://www.siam.org/journals/SIMAX/19-4/31374.html
† Department of Mathematics, Beijing Normal University, Beijing 100875, China (bywang@

sun.ihep.ac.cn).
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by

w(∅) = 0, w(y1) = 1
y1
, w(y1, y2) = 1

y1
+ 1

y2
− 1

(y1,y2) , . . . ,

w(y1, y2, . . . , yk) =

k∑
t=1

(−1)t−1
∑

1≤i1<···<it≤k

1

(yi1 , . . . , yit)
.

Lemma 1.2. Let y1, y2, . . . , yk be positive integers; then

w(y1, y2, . . . , yk) = w(y1, y2, . . . , yk−1) + w(yk)
−w((y1, yk), (y2, yk), . . . , (yk−1, yk)).

Proof. Note that (y1, y2, . . . , yk) = ((y1, yk), (y2, yk), . . . , (yk−1, yk)) and∑
1≤i1<···<it≤k

1

(yi1 , . . . , yit)
=

∑
1≤i1<···<it≤k−1

1

(yi1 , . . . , yit)

+
∑

1≤j1<···<jt−1≤k−1

1

(yj1 , . . . , yjt−1 , yk)
.

We have

w(y1, y2, . . . , yk) =
k−1∑
t=1

(−1)t−1
∑

1≤i1<···<it≤k−1

1

(yi1 , . . . , yit)

+ 1
yk

+
k∑
t=2

(−1)t−1
∑

1≤j1<···<jt−1≤k−1

1

((yj1 , yk), . . . , (yjt−1
, yk))

= w(y1, y2, . . . , yk−1) + w(yk)− w((y1, yk), (y2, yk), . . . , (yk−1, yk)).

Lemma 1.3. Let y1, y2, . . . , ym(m ≥ 2) be positive integers. If ym|yi for some
i 6= m, then w(y1, y2, . . . , ym) = w(y1, y2, . . . , ym−1). Particularly, w(y1, . . . , y1) =
w(y1), w(y1, . . . , yk, 1) = w(y1, . . . , yk).

Proof. Use induction on m.
For m = 2, from y2|y1 we have (y1, y2) = y2 and w(y1, y2) = 1

y1
+ 1

y2
− 1

(y1,y2) =

w(y1).
Observe that (yi, ym) = ym and (yj , ym)|ym. Using inductive hypothesis and

Lemma 1.2, we obtain

w(y1, y2, . . . , ym) = w(y1, y2, . . . , ym−1) + w(ym)
−w((y1, ym), . . . , (yi−1, ym), ym, (yi+1, ym), . . . , (ym−1, ym))
= w(y1, y2, . . . , ym−1) + w(ym)− w(ym)
= w(y1, y2, . . . , ym−1).

Now we show the following result.
Theorem 1.4. Let S = {x1, x2, . . . , xn} be a set of positive integers and x1 >

x2 > · · · > xn. If S is gcd-closed, then

det[S] =

n∏
i=1

x2
iβi,

where βi = w(xi)− w((xi, xi+1), (xi, xi+2), . . . , (xi, xn)), i = 1, . . . , n.
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Proof. By (1), we only need to prove αi = βi, i = 1, . . . , n.
For a fixed i, let {(xi, xi+1), (xi, xi+2), . . . , (xi, xn)} = {y1, . . . , ym}; then

yj |xi, j = 1, . . . ,m, and

αi =
∑
d|xi
d6 |xl
l>i

g(d) =
∑
d|xi

d6 | (xi,xl)
l>i

g(d) =
∑
d|xi
d6 |yj

1≤j≤m

g(d).(2)

On the other hand, using 1
k =

∑
d|k g(d), we have

βi = w(xi)− w(y1, . . . , ym)

=
1

xi
−

m∑
t=1

(−1)t−1
∑

1≤i1<···<it≤m

1

(yi1 , . . . , yit)
(3)

=
∑
d|xi

g(d) +
m∑
t=1

(−1)t
∑

1≤i1<···<it≤m

∑
d|(yi1 ,...,yit )

g(d).

Fix a d. If d 6 |xi then g(d) occurs in neither (2) nor (3). Now assume d|xi. Let
J = {j : d|yj}. If J = ∅, then the coefficients of g(d) in (2) and (3) are both 1. If
|J | ≥ 1, this coefficient is in (3),

1 +

m∑
t=1

(−1)t ·#{t−subsets of J} =

m∑
t=0

(−1)t
(|J |
t

)
= (1− 1)|J| = 0,

as it is in (2). In this reasoning d was arbitrary so, we have shown that αi = βi.
Example 1. Let S1 = {42, 15, 3, 1}; then S1 is gcd-closed, and

det[S1] = 422(w(42)− w(3)) · 152(w(15)− w(3)) · 32(w(3)− w(1))
= 422( 1

42 − 1
3 ) · 152( 1

15 − 1
3 ) · 32( 1

3 − 1)
= 42(−13) · 15(−4) · 3(−2)
= −196560.

If using (1), that is,

det[S1] = 422(g(42) + g(21) + g(14) + g(7) + g(6) + g(2))
·152(g(15) + g(5)) · 32g(3)

= 422(− 2
7 + 4

7 + 3
7 − 6

7 + 1
3 − 1

2 ) · 152( 8
15 − 4

5 ) · 32(− 2
3 )

= 42(−13) · 15(−4) · 3(−2)
= −196560.

Example 2. S2 = {30450, 174, 75, 70, 5, 3, 2, 1}.
Note that 30450 = 2 · 3 · 5 · 5 · 7 · 29, 174 = 2 · 3 · 29, 75 = 3 · 5 · 5, 70 = 2 · 5 · 7.

We can see that S2 is gcd-closed, but

β1 =
1

30450
− w(174, 75, 70)

=
1

30450
− 1

174
− 1

75
− 1

70
+

1

5
+

1

3
+

1

2
− 1

=
1

30450
(1− 175− 406− 435 + 6090 + 10150 + 15225− 30450)

= 0.



ON THE SINGULARITY OF LCM MATRICES 1043

Therefore det[S2] = 0.

Using (1) leads to extensive computation.

Example 2 shows that the conjecture of [2] does not hold in general. It is easy
to see that, more generally, if n ≥ 8 and we are given distinct prime numbers with
x1 > · · · > xn−8 > 30450, then S = {x1, . . . , xn−8} ∪ S2 is gcd-closed and [S] is
singular.

However we will prove that the conjecture of [2] holds if n ≤ 7.

Lemma 1.5. If y1 6 | y2, y2 6 | y1, then w(y1, y2) < 0.

Proof. Let (y1, y2) = d, y1 = dz1, y2 = dz2; then z1, z2 ≥ 2, (z1, z2) = 1, and
w(y1, y2) = 1

dw(z1, z2) = 1
d ( 1
z1

+ 1
z2
− 1) ≤ 1

d ( 1
2 + 1

3 − 1) < 0.

Theorem 1.6. Let S = {x1, x2, . . . , xn} be a set of distinct positive integers. If
S is gcd-closed and n ≤ 7, then [S] is invertible.

Proof. Without loss of generality, we assume that x1 > x2 > · · · > xn(n ≥ 2) and
xn = 1, since S is gcd-closed.

From Theorem 1.4, we have β1 = 1
x1
− w((x1, x2), (x1, x3), . . . , (x1, xn−1), 1).

Set S′ = {(x1, x2), (x1, x3), . . . , (x1, xn−1)}; then S′ ⊆ S and |S′| ≤ 5. We will show
β1 6= 0.

If S′ = φ or S′ = {1}, then β1 = 1
x1
− 1 < 0. Otherwise, using Lemma 1.3 we can

choose {y1, . . . , yt} ⊆ S′ such that

β1 =
1

x1
− w(y1, . . . , yt),(4)

where 2 ≤ yi < x1, yi 6 | yj for i 6= j, 1 ≤ i, j ≤ t, 1 ≤ t ≤ 5.

According to Lemma 1.5, w(yi, yj) < 0 for any i 6= j.

Note by gcd-closedness of S that if yi, yj ∈ S′, (yi, yj) ≥ 2, then (yi, yj) ∈ S′.
Now when t = 1, β1 = 1

x1
− 1

y1
< 0. When t = 2, β1 = 1

x1
− w(y1, y2) > 0.

When t ≥ 3, let us first to prove w(y1, y2, y3) < 0. Set (y1, y2, y3) = d; there are
two cases.

Case 1. (y1, y2) = d (or (y1, y3) = d, or (y2, y3) = d).

Then w(y1, y2, y3) = w(y2, y3) + 1
y1
− 1

(y1,y3) < 0.

Case 2. (y1, y2) = d1 > d, (y1, y3) = d2 > d, (y2, y3) = d3 > d.

If d1 = d2 (or d1 = d3; or d2 = d3), then d1|d, which is a contradiction. So,
d1, d2, d3 are distinct positive integers of S′, but di /∈ {y1, y2, y3}, i = 1, 2, 3 by (4), and
this contradicts |S′| ≤ 5. It follows that Case 2 cannot happen and w(y1, y2, y3) < 0.

Hence when t = 3, we obtain β1 = 1
x1
− w(y1, y2, y3) > 0.

For t = 4, let (y1, y2, y3, y4) = d. There are also two cases.

Case 1. There exists some yj , e.g., y4 such that (y4, yi) = d, i = 1, 2, 3.

Then w(y1, y2, y3, y4) = w(y1, y2, y3) + 1
y4
− 1

(y4,y1) < 0, and β1 > 0.

Case 2. For j = 1, 2, 3, 4 there are ij such that (yj , yij ) = dj > d. This case is
impossible, since dj ∈ S′, dj 6= yi (by (4)), and |S′| ≤ 5 imply that d1 = d2 = d3 = d4

and dj |d.

Finally, when t = 5, then S′ = {y1, . . . , y5}. So (yi, yj) = 1, for otherwise
there exists a k 6= i such that (yi, yj) = yk|yi, which contradicts (4). We obtain
w(y1, . . . , y5) = 1

y1
+ · · ·+ 1

y5
− 4 < 0, and hence β1 > 0.

Thus, we have proved that β1 6= 0. Similarly, also βi 6= 0, i = 2, . . . , n. Therefore
[S] is invertible by Theorem 1.4.
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Lemma 1.7. Let y1, y2, . . . , ym be positive integers and let y1 ≥ yj , (yt, yj) =
1, 1 ≤ t < j ≤ m. Then

w(y1, y2, . . . , ym) =

{
w(y1) if yj |y1, j = 2, . . . ,m;
< 0 otherwise.

Proof. By Lemma 1.3 we can assume that y1, y2, . . . , ym are distinct.
The first case is obvious. For the others, if m = 2, then w(y1, y2) < 0 by

Lemma 1.5; if m ≥ 3, then w(y1, y2, . . . , ym) = w(y2, . . . , ym) + 1
y1
− 1 = · · · =

1
y1

+ 1
y2

+ · · ·+ 1
ym
−m+ 1 ≤ 1 + 1

2 + m−2
3 −m+ 1 = −4m+11

6 < 0.

Corollary. Let S = {x1, x2, . . . , xn} be a gcd-closed set with x1 > x2 > · · · >
xn. If (xt, xj) = 1, 2 ≤ t < j ≤ n, then [S] is invertible.

Proof. By Theorem 1.4, βi = w(xi) − w((xi, xi+1), (xi, xi+2), . . . , (xi, xn)), i =
1, . . . , n. Noting that ((xi, xt), (xi, xj)) = 1, i+1 ≤ t < j ≤ n, we obtain βi 6= 0, i =
1, . . . , n by Lemma 1.7. It follows that [S] is invertible.

Remark. Recently, we saw that Haukkanen, Wang, and Sillanpää showed in [3]
that the conjecture of [2] does not hold, in general, and a counterexample is given
in the case where n = 9 with x1 = 180. We also saw that in [4] Hong gave a
counterexample in the case where n = 8 with x1 = 227700.
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Abstract. We introduce a new Krylov subspace iteration for large scale eigenvalue problems
that is able to accelerate the convergence through an inexact (iterative) solution to a shift-invert
equation. The method also takes full advantage of exact solutions when they can be obtained with
sparse direct method. We call this new iteration the truncated RQ (TRQ) iteration. It is based upon
a recursion that develops in the leading k columns of the implicitly shifted RQ iteration for dense
matrices. Inverse-iteration-like convergence to a partial Schur decomposition occurs in the leading
k columns of the updated basis vectors and Hessenberg matrices. The TRQ iteration is competitive
with the rational Krylov method of Ruhe when the shift-invert equations can be solved directly and
with the Jacobi–Davidson method of Sleijpen and Van der Vorst when these equations are solved
inexactly with a preconditioned iterative method. The TRQ iteration is related to both of these
but is derived directly from the RQ iteration and thus inherits the convergence properties of that
method. Existing RQ deflation strategies may be employed directly in the TRQ iteration.

Key words. Krylov methods, Arnoldi method, Lanczos method, eigenvalues, deflation, precon-
ditioning, restarting
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1. Introduction. Recently, there have been a number of research developments
in the numerical solution of large scale eigenvalue problems [21], [11], [17], [6], [19],
[16], [13], [1], [5]. The state of the art has advanced considerably, and general purpose
numerical software is emerging for the nonsymmetric problem [8], [4], [12], [3], [18],
[10]. The development of this new general purpose software for the nonsymmetric
problem is a welcomed advance. However, the methods in these packages are not able
to effectively utilize a preconditioned iterative solver to implement a shift and invert
spectral transformation to accelerate convergence. They all require highly accurate
solutions to the shift-invert equations, and the cost of producing such accuracy with an
iterative method is generally prohibitive. In this paper, we introduce a new iteration
for large scale problems that is in the same spirit as the implicitly restarted Arnoldi
method used in ARPACK [21], [12]. However, this new method is very amenable
to acceleration of convergence with inexact (iterative) solutions to the shift-invert
equations. Moreover, the algorithm introduced here can take full advantage of exact
solutions when they can be obtained with a sparse direct method.

We call this new iteration the truncated RQ (TRQ) iteration. It is based upon a
recursion that develops in the leading k columns of the implicitly shifted RQ iteration
for dense matrices. This iteration is analogous to the well-known QR iteration, but it
implicitly factors the shifted Hessenberg matrix into an RQ factorization (triangular
times orthogonal) and then multiplies the factors in reverse order rather than using
a QR factorization for this iteration. The main advantage in the large scale setting
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is that inverse-iteration-like convergence occurs in the leading column of the updated
basis matrix. Thus, eigenvalues rapidly converge in the leading principal submatrix of
the iterated Hessenberg matrix. A partial Schur form rapidly emerges in the leading
portion of the factorization. The leading principal submatrix of the iterated Hes-
senberg matrix becomes upper triangular with the desired eigenvalues appearing as
diagonal elements.

A k-step TRQ iteration is derived by developing a set of equations that define the
k+ 1st column of the updated set of basis vectors and the updated projected Hessen-
berg matrix that would occur if a full RQ iteration were carried out. The resulting
equations have a great deal in common with the update equation that defines the ratio-
nal Krylov method of Ruhe [16] and also with the projected correction equation that
defines the Jacobi–Davidson method of Sleijpen and Van der Vorst [19]. The TRQ it-
eration is comparable to and quite competitive with the rational Krylov method when
it is possible to factor and solve the shift-invert equations directly. With restarting, it
is possible to define an inexact TRQ iteration that compares very favorably with the
Jacobi–Davidson method. The TRQ iterations developed here are derived directly
from the RQ iteration and may take advantage of all that is known about deflation
strategies in the dense case. Moreover, the convergence behavior follows directly from
the convergence properties of the RQ iteration.

In section 2, we derive the TRQ equations that will define the TRQ iteration
and investigate the existence and uniqueness of the solution to these equations. We
also introduce the formal specification of the TRQ iteration. In section 3 we turn
to some implementation issues that arise when a sparse direct solution to the shift-
invert equation is possible. We show that the Arnoldi relation existing in the leading
k columns may be used to greatly reduce the amount of computation required to
solve the TRQ equations. In section 3 we also discuss the selection of shifts to be
used in the TRQ iteration when factorizations are only allowed intermittently. Also,
deflation schemes are introduced. In section 4 we give several numerical examples
to illustrate the convergence behavior of the TRQ iteration. We demonstrate that
the convergence is cubic on symmetric problems and quadratic on nonsymmetric
problems when a factorization is done at each step. We also show that the more
practical alternative of factoring intermittently is quite competitive with the rational
Krylov method employing the same type of shift strategy. A comparison is made with
implicitly restarted Arnoldi (IRA) in the case that only one factorization is allowed,
and we observe that IRA is more efficient than TRQ in this case.

In section 5, we develop the inexact TRQ iteration with restarting. Restarting is
required to maintain an Arnoldi factorization and hence a Krylov relationship amongst
the columns of the k-step factorization. As convergence takes place, standard defla-
tion techniques are employed to lock converged Schur vectors, and orthogonalization
against these converged vectors takes place naturally through the Arnoldi process.
In some sense, this process is closely related to inverse iteration with Wielandt de-
flation [23, p. 596], [17, p. 117]. We illustrate an apparent numerical advantage of
placing the inverse iteration within the context of the TRQ iteration and show some
explicit comparisons with deflated inverse iteration indicating clear superiority of the
TRQ scheme. Of course, the purpose of introducing possibly inexact solutions to
the shift-invert equations is to provide for the use of preconditioned iterative solution
techniques on these equations. We show numerical experiments indicating very favor-
able comparison with the Jacobi–Davidson method using the same iterative method
for solving the update equations in both schemes. Moreover, we give some prelimi-
nary evidence that a shifted form of a standard preconditioner for the original matrix
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is a satisfactory preconditioner for the update equations. Constructing a modified
preconditioner for the projected update equations (as required in Jacobi–Davidson)
does not seem to be necessary with inexact TRQ.

Throughout this paper, capital and lower case Latin letters denote matrices and
vectors, respectively, while lower case Greek letters denote scalars. The jth canonical
basis vector is denoted by ej . The Euclidean norm is used exclusively and is denoted
by ‖ · ‖. The transpose of a matrix A is denoted by AT and conjugate transpose
by AH . Upper Hessenberg matrices will appear frequently and are usually denoted
by the letter H. The subdiagonal elements of such Hessenberg matrices play a special
role in our algorithms. The jth subdiagonal element (i.e., the (j + 1, j)st element) of
an upper Hessenberg matrix H will be denoted by βj . The conjugate of a complex
number α is denoted by ᾱ.

2. Truncating the RQ iteration. The implicitly shifted QR iteration is gener-
ally the method of choice for the computation of all the eigenvalues and eigenvectors of
a square matrix A. Practical implementation of the algorithm begins with a complete
reduction of A to upper Hessenberg form

AV = V H

with V HV = I and H upper Hessenberg. The QR iteration is then applied to H to
produce a sequence of orthogonal similarity transformations

H(j+1) ← (Q(j))HH(j)Q(j), V (j+1) ← V (j)Q(j)

with H(1) ≡ H, V (1) ≡ V, and Q(j) implicitly constructed and applied through a
“bulge chase” process that is mathematically equivalent to obtaining Q(j) through
the QR-factorization Q(j)R(j) = H(j)−µjI, j = 1, 2, . . . , where {µj} is a set of shifts

selected as the algorithm proceeds. We use v
(j)
i to denote the ith column of V (j)

and ρ
(j)
ii to denote the (i, i)th entry of R(j). It is straightforward to show that H(j)

remains upper Hessenberg throughout and that

v
(j+1)
1 ρ

(j)
11 = (A− µjI)v

(j)
1 and (A− µjI)Hv(j+1)

n = v(j)
n ρ̄(j)

nn.

Hence, the last column is an inverse iteration sequence and the first column is a power
method or polynomial iteration. The implicitly restarted Arnoldi method provides a
means to truncate this QR iteration and take advantage of the shifted-power-method-
like convergence properties of the leading k columns of the iterated basis V (j) without

computing the full QR factorizations. The relations between v
(j+1)
i and v

(j)
i for i =

1, 2, . . . , k on successive iterations are preserved in this truncated IRA iteration as
if the full QR iteration had been carried out. Appropriate shift selection will force
desired eigenvalues and corresponding eigenvectors to emerge in the leading portion
of the factorization as the iteration proceeds.

The following are some advantages of the IRA approach: (i) the number of basis
vectors stored is predetermined and fixed so that orthogonality of the Arnoldi basis
vectors may be enforced numerically, and (ii) the iteration proceeds without having
to compute a matrix factorization. In many situations this iteration is successful, but
it can be slow to converge or fail when the desired portion of the spectrum does not
have a favorable distribution with respect to the entire spectrum of A. It would be
very desirable to devise a scheme that could take advantage of the inverse iteration
properties of the QR iteration instead of the power iteration properties.



1048 D. C. SORENSEN AND C. YANG

Algorithm 1: Implicitly shifted RQ iteration

Input: (A, V,H) with AV = V H, V HV = I, and H is upper
Hessenberg.

Output: (V,H) such that AV = V H, V HV = I and H is upper triangular.

1. for j = 1, 2, 3, ... until convergence,
1.1. Select a shift µ← µj ;
1.2. Factor H − µI = RQ;
1.3. H ← QHQH ; V ← V QH ;

2. end;

Fig. 2.1. Implicitly shifted RQ iteration.

An alternative to the implicitly shifted QR iteration is the implicitly shifted RQ
iteration. Again, the iteration begins with a reduction to Hessenberg form, and then
the iteration demonstrated in Figure 2.1 is applied.

It is easily shown that

(A− µjI)v
(j+1)
1 = v

(j)
1 ρ

(j)
11 .

Thus, the sequence v
(j)
1 in the first column is an inverse iteration sequence, and one

would expect very rapid convergence of leading columns of V (j) to Schur vectors of A.
In the large scale setting it is generally impossible to carry out the full iteration

involving n×n orthogonal similarity transformations. It would be desirable to truncate
this update procedure after k steps to maintain and update only the leading portion
of the factorizations occurring in this sequence. This truncation is obtained from a
set of defining equations that emerge during the partial completion of an RQ step. To
derive these relations, partition V = (Vk, V̂ ), where Vk denotes the leading k columns
of V, and let

H =

(
Hk M

βke1e
T
k Ĥ

)
be partitioned conformably so that

A(Vk, V̂ ) = (Vk, V̂ )

(
Hk M

βke1e
T
k Ĥ

)
.(2.1)

Now, for a given shift µ, partially factor H − µI to obtain

H − µI =

(
Hk − µIk M̂

βke1e
T
k R̂

)(
Ik 0

0 Q̂

)
,

where Ĥ − µI = R̂Q̂. Then

(A− µI)(Vk, V̂ Q̂
H) = (Vk, V̂ )

(
Hk − µIk M̂

βke1e
T
k R̂

)
.(2.2)

If Givens transformations were being used, for example, then to complete the RQ
factorization in (2.2), one would continue applying Givens rotations from the right
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using each rotation to annihilate a subdiagonal element. However, at this point of
the factorization, there is a set of equations that uniquely determines the first column
v+ of the matrix V̂ Q̂H . If these equations can be formulated and solved, then the
leading portion of this iteration may be obtained using just the leading k+ 1 columns
(Vk, V̂ e1) and the leading k columns of the Hessenberg matrix H. The remaining
n− k− 1 columns of V and of H need never be formed or factored. To formulate the
defining relations, equate the leading k + 1 columns on both sides of equation (2.2)
to obtain

(A− µI)(Vk, v+) = (Vk, v)

(
Hk − µIk h
βke

T
k α

)
,

where v = V̂ e1, v+ = V̂ Q̂He1, h = M̂e1, and α = eT1 R̂e1. From this relationship, it
follows that v+ must satisfy

(A− µI)v+ = Vkh+ vα(2.3)

with V Hk v+ = 0 and ‖v+‖ = 1 since the columns of (Vk, v+) must be orthonormal.
These conditions may be expressed succinctly through the TRQ equations(

A− µI Vk
V Hk 0

)(
v+

−h
)

=

(
vα
0

)
, ‖v+‖ = 1.(2.4)

In addition to these TRQ equations, we note that the first k columns on both sides
of (2.2) are in a k-step Arnoldi relationship

(A− µI)Vk = Vk(Hk − µIk) + fke
T
k(2.5)

with fk = vβk.
The algorithm we shall develop depends upon the determination of v+, h, and α

directly from equation (2.4) rather than from the RQ factorization procedure. The
fact that the RQ factorization exists assures that a solution to (2.4) exists even when
the bordered matrix in (2.4) is singular.

The following lemmas characterize how singularity can occur in these equations.
Moreover, we prove that the solution to (2.4) is unique even when the bordered matrix
is singular. In the next section we show that the singular case in (2.4) is benign and
easily dealt with numerically.

Lemma 2.1. Assume A− µI is nonsingular (i.e., that µ is not an eigenvalue of
A) and that equations (2.4) and (2.5) hold as a result of the partial RQ factorization
described by (2.2). Then the bordered matrix

B ≡
(
A− µI Vk
V Hk 0

)
(2.6)

is nonsingular if and only if V Hk (A− µI)−1Vk is nonsingular. Moreover, if V Hk (A−
µI)−1Vk is singular and z is any nonzero vector such that V Hk (A − µI)−1Vkz = 0,
then w = −(A − µI)−1Vkz is nonzero and v+ = w

‖w‖ , h = − z
‖w‖ , and α = 0 satisfy

the TRQ equations.
Proof. Since the RQ factorization R̂Q̂ = Ĥ − µI always exists, it follows that

(2.4) must hold in any case. The assumption that A− µI is nonsingular provides the
block factorization

B =

(
I 0

V Hk (A− µI)−1 I

)(
A− µI Vk

0 −V Hk (A− µI)−1Vk

)
.(2.7)

Clearly, B is nonsingular if and only if V Hk (A− µI)−1Vk is nonsingular.
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To establish the second part of the lemma, we show that the equation(
A− µI Vk

0 V Hk (A− µI)−1Vk

)(
w
z

)
=

(
v

V Hk (A− µI)−1v

)
α(2.8)

has a nonzero solution (wH , zH)H with α = 0 if and only if and only if V Hk (A−µI)−1Vk
is singular.

To prove this, suppose first that α = 0 and (wH , zH)H is a nonzero solution to
(2.8). Then V Hk (A − µI)−1Vk must be singular because A − µI is assumed to be
nonsingular. On the other hand, if we assume V Hk (A−µI)−1Vk is singular and z is a
nonzero vector such that V Hk (A− µI)−1Vkz = 0, then putting w = −(A− µI)−1Vkz
will provide a nonzero solution to (2.8) with α = 0. Moreover, w must be nonzero
since z is nonzero and (A − µI)−1Vk has linearly independent columns. Therefore,
v+ = w

‖w‖ , h = − z
‖w‖ , and α = 0 will satisfy the TRQ equations.

Lemma 2.1 indicates that the solution to (2.4) will be unique if and only if V Hk (A−
µI)−1Vk is either nonsingular or has a one-dimensional null space. The following
lemma establishes this fact and hence the uniqueness of the solution to the TRQ
equations (2.4).

Lemma 2.2. Assume A − µI is nonsingular and that equations (2.4) and (2.5)
hold. If G ≡ V Hk (A− µI)−1Vk is singular, then the null space of GH is span{ek}.

Proof. Let y = V Hk (A− µI)−1fk, and define Hµ ≡ Hk − µIk. Then

GHµ = V Hk (A− µI)−1VkHµ

= V Hk (A− µI)−1[(A− µI)Vk − fkeTk ]

= Ik − yeTk .(2.9)

If G is singular and x is any nonzero vector such that 0 = xHG, then (2.9) implies

0 = xHGHµ = xH − (xHy)eTk .

Since x 6= 0, this equation implies xHy 6= 0, which in turn implies that x/(xHy) = ek.
Hence, eTkG = 0 and the null space of GH is span{ek}. This concludes the proof of
the lemma.

Finally, the following lemma indicates that exact singularity of B rarely occurs.
Lemma 2.3. Assume A − µI is nonsingular and that equations (2.4) and (2.5)

hold. Then α = 0 in (2.4) and V Hk (A− µI)−1Vk is singular if and only if the shift µ

is an eigenvalue of Ĥ in equation (2.1).
Proof. It is sufficient to show V Hk (A− µI)−1Vk is singular if and only if the shift

µ is an eigenvalue of Ĥ in equation (2.1). To this end, note that V Hk (A− µI)−1Vk is

singular if and only if V Hk (A−µI)−1Vkz = 0 for some z 6= 0. Since (Vk, V̂ ) is unitary,
any such z must satisfy

Vkz = (A− µI)V̂ g = (A− µI)(Vk, V̂ )

(
0
g

)
for some nonzero vector g (i.e., (A − µI)−1Vkz must be in the range of V̂ ). This
implies

Vkz = (Vk, V̂ )

(
Hk − µIk M

βke1e
T
k Ĥ − µIn−k

)(
0
g

)
= VkMg + V̂ (Ĥ − µIn−k)g.
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Since (Vk, V̂ ) is unitary, it follows that

(Ĥ − µIn−k)g = 0,(2.10)

and since g is nonzero, this implies the singularity of (Ĥ − µIn−k).
Now, suppose that there is a nonzero g that satisfies (2.10). Observe that Mg 6= 0

since this would imply A − µI is singular. Hence, the argument just given may be
reversed to produce a nonzero z such that V Hk (A− µI)−1Vkz = 0, and the lemma is
proved.

The TRQ equations may be used to develop a truncated k-step version of the
implicitly shifted RQ iteration. If a k-step Arnoldi factorization (2.5) has been ob-
tained, then a k-step TRQ iteration may be implemented as shown in Algorithm 2
(Figure 2.2).

Algorithm 2: Truncated RQ (TRQ) iteration

Input: (A, Vk, Hk, fk) with AVk = VkHk + fke
T
k , V

H
k Vk = I, Hk upper

Hessenberg.
Output: (Vk, Hk) such that AVk = VkHk, V

H
k Vk = I and Hk is upper triangular.

1. Put βk = ‖fk‖ and put v = fk/βk;
2. for j = 1, 2, 3, ... until convergence,

2.1. Select a shift µ← µj ;

2.2. Solve

(
A− µI Vk
V Hk 0

)(
v+

−h
)

=

(
vα
0

)
with ‖v+‖ = 1;

2.3. Put α = 1/‖w‖, v+ = wα, h = −zα;

2.3. RQ Factor

(
Hk − µIk h
βke

T
k α

)
=

(
Rk r
0 ρ

)(
Qk q
σeTk γ

)
;

2.4. Vk ← VkQ
H
k + v+q

H ;
2.5. βk ← σeTkRkek; v ← vkσ̄ + v+γ̄;
2.6. Hk ← QkRk + µIk;

3. end;

Fig. 2.2. The truncated RQ iteration.

The key idea here is to determine the k + 1st column v+ of the updated matrix
V and the k + 1st column of H that would have been produced in the RQ iteration
by solving the linear system (2.4). Then, the iteration is completed through the nor-
mal RQ iteration. As eigenvalues converge, the standard deflation rules of the RQ
iteration may be applied. Orthogonality of the basis vectors is explicitly maintained
through accurate solution of the defining equation. Moreover, even if the accuracy of
this solution is relaxed, orthogonality may be enforced explicitly through the orthog-
onalization scheme developed in [7]. We shall refer to this as the DGKS procedure.
Potentially, the linear solve indicated at Step 2.2 of Algorithm 2 could be provided
by a straightforward block elimination scheme. However, considerable refinements to
this scheme are possible due to the existing k-step Arnoldi relationship (2.5). This
will be discussed in the next section.

3. Implementation issues. In this section, we address some practicalities as-
sociated with efficient implementation of the TRQ iteration.
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3.1. Solving the TRQ equations. The truncated RQ iteration described in
the previous section will only be effective in the large scale setting if there is an
efficient means for solving the TRQ equations. Recall that A, Hk, Vk, and fk = vβk
are in a k-step Arnoldi relation (3.1) so that

(A− µI)Vk = Vk(Hk − µIk) + fke
T
k .(3.1)

Rescaling the right-hand side of the system (2.4) leads to(
A− µI Vk
V Hk 0

)(
w
z

)
=

(
fk
0

)
.(3.2)

If we put d = (A− µI)−1fk and y = V Hk d, then block Gaussian elimination leads to
solving the equations

(i) V Hk (A− µI)−1Vkz = y,
(ii) (A− µI)w = fk − Vkz.

If A−µI is nonsingular, these two equations together with equation (3.1) may be used
to derive a solution to equation (3.2) with just a single linear solve. It is not necessary
to solve a blocked system of k equations as the straightforward application of block
Gaussian elimination described in the previous section would indicate. Moreover, this
efficient solution scheme does not depend on determining the singularity of the TRQ
equations (2.4) in any way. The underlying theory is developed with the following
lemma.

Lemma 3.1. Assume A − µI is nonsingular, and define G ≡ V Hk (A − µI)−1Vk
and Hµ ≡ (Hk − µIk). There is a vector s such that either

(Ik −HµG)s 6= 0 or eTkGs 6= 0.(3.3)

For any such s, put

w ≡ (I − VkV Hk )(A− µI)−1Vks.

Then w 6= 0 and a solution v+, h, α to (2.4) is given by

v+ = w/‖w‖, h = (Ik −HµG)s/‖w‖, α = −βkeTkGs/‖w‖.

Proof. If eTkGs = 0 for all vectors s, then the matrix HµG is singular and there
must be a nonzero vector s such that (Ik − HµG)s 6= 0. Therefore, there is a k-
dimensional vector s that satisfies either θ ≡ eTkGs 6= 0 or (Ik −HµG)s 6= 0.

For any such s, put w ≡ (I − VkV Hk )(A− µI)−1Vks. Observe that

(A− µI)w = (A− µI)(I − VkV Hk )(A− µI)−1Vks

= Vks− (A− µI)VkGs

= Vks− [VkHµ + fke
T
k ]Gs

= Vk(Ik −HµG)s− fkθ.(3.4)

The conditions on s assure that the right-hand side of (3.4) is nonzero. It follows that
w 6= 0 and that

(A− µI)v+ = Vkh+ vα,

where v+ = w/‖w‖, h = (Ik −HµG)s/‖w‖, and α = −βkθ/‖w‖.
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Remark 1. Our original motivation for developing Lemma 3.1 was to handle the
case when µ is an eigenvalue of Hk. A particular choice of s for this case is to put
s = q where qHHµ = 0 and qHq = 1. Then

qH(Ik −HµG)s = qHs = qHq = 1.

The conditions of Lemma 3.1 are clearly satisfied with this choice of s. However, we
do not use this choice in practice.

Remark 2. The most general form of selecting a right-hand side for constructing
w is to take

w ≡ (I − VkV Hk )(A− µI)−1(Vkt+ fkη),

where s ≡ t − Hµekη is chosen to satisfy the conditions of Lemma 3.1. To see this,
observe that

Vkt+ fkη = Vks+ [VkHµ + fke
T
k ]ekη

= Vks+ (A− µI)Vkekη.

Hence,

(I − VkV Hk )(A− µI)−1(Vkt+ fkη) = (I − VkV Hk )(A− µI)−1Vks.

Thus, there is no mathematical reason to include the term fkη, but the additional
freedom may eventually have some numerical consequences that are not apparent at
the moment. Note that when the shift µ is an eigenvalue of Hk then the combination
of t = 0,η = 1 is prohibited because the corresponding vector s does not satisfy
either of the conditions (3.3) required for constructing the solution in Lemma 3.1.
The parameters t and η here are obviously related to the corresponding parameters
appearing in the rational Krylov subspace (RKS) method. It is interesting to note
that the choice t = 0,η = 1 is also prohibited in RKS when µ is an eigenvalue of Hk.

Remark 3. An alternative to forming h as described in Lemma 3.1 is to form
w as described above and normalize to get v+ = w/‖w‖. Then, construct h and α
using the DGKS procedure to orthogonalize the vector (A−µI)v+ against Vk and fk,
respectively. Thus,

h← V Hk (A− µI)v+ = V Hk Av+, α← fHk (A− µI)v+/‖fk‖.

Lemma 3.1 justifies Algorithm 3 to solve the TRQ equations. Once again, we remark
that the DGKS procedure may be used at Steps 2, 3, and 4 of Algorithm 3 to assure
that both V Hk v+ = 0 and (A− µI)v+ = Vkh+ vα to working accuracy. For relatively
small values of k, the main computational effort is the solution of the equation (A−
µI)w = Vkt + fkη. As mentioned in Remark 2, there may be advantageous choices
of t and η to overcome inaccuracies due to ill-conditioning when µ is very nearly an
eigenvalue of A. We used t = ek and η = 0 in all of the experiments reported in
section 4. This choice seemed to perform consistently well as compared to many of
the obvious choices such as taking t to be an eigenvector of Hk. Finally, it is clear
that incremental rescaling may be introduced as in inverse iteration to avoid overflow
and that the scalar θ appearing in the proof of Lemma 3.1 need not be computed
explicitly.
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Algorithm 3: Direct Solution of the TRQ Equations

Input: (A, Vk, Hk, fk, µ) with AVk = VkHk + fke
T
k , V Hk Vk = I and V Hk fk = 0.

Output: (v+, h, α) such that (A−µI)v+ = Vkh+ fkα, V Hk v+ = 0 and ‖v+‖ = 1.

1. Choose t and η and solve (A− µI)w = Vkt+ fkη;
2. y ← V Hk w;
3. w ← w − Vky;
4. v+ ← w

‖w‖ ; α← fHk (A− µI)v+/‖fk‖; h← V Hk Av+;

Fig. 3.1. Direct solution of the TRQ equations.

The formulation just developed is appropriate when a sparse direct factorization
of A−µI is feasible. When this is not the case we must resort to an iterative scheme.
For an iterative scheme, there may be an advantage to solving the projected equation

(I − VkV Hk )(A− µI)(I − VkV Hk )ŵ = fk

and putting

v+ ← w

‖w‖ ,

where w = (I − VkV
H
k )ŵ. This is mathematically equivalent to solving the TRQ

equations. The advantage here is that the matrix

(I − VkV Hk )(A− µI)(I − VkV Hk )

is most likely to be much better conditioned than A−µI when µ is near an eigenvalue
of A. A projected equation of this form plays a key role in the Jacobi–Davidson
method recently developed in [19], [20], [9]. It also provides a means for allowing
inaccurate solutions and preconditioning as we shall discuss later in section 5.

3.2. Selection of shifts. Another important issue to be addressed in the TRQ
iteration is the selection of shifts. Various options are available. They lead to different
convergence behavior. We discuss only a few simple options below. The tradeoffs and
comparison to other algorithms will also be discussed in section 4.

The simplest strategy is to use a fixed shift µ throughout the TRQ iteration. This
shift is referred to as the target shift in the following discussion. In this case, a single
matrix factorization of A − µI may be used repeatedly to get inverse power method
type of convergence. However, if the ratio

σ =
|λj − µ|
|λj+1 − µ|(3.5)

is close to 1, the approximation to λj converges extremely slowly. In section 5, we
compare this approach with the shifted and inverted IRA. It is observed that the
shifted and inverted IRA is often more efficient in obtaining a few eigenvalues near a
prescribed shift.

At the other extreme, we could adjust the shift at each iteration to enhance the
rate of convergence. Eigenvalues of Hk are natural candidates for the shift. They
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provide the best approximations to eigenvalues of A from the subspace spanned by
the columns of Vk and are referred to as the Ritz values. Before each TRQ update,
we compute the Ritz values and choose the one closest to the target shift as the next
shift. A converged Ritz value should not be selected as a shift.

This choice of shift usually leads to a quadratic or cubic convergence rate. How-
ever, this rapid convergence is obtained at the cost of factoring a matrix at each
iteration. It is observed from our experiments that Ritz values tend to jump around
during the early stage of the TRQ iteration. Thus, the target shift is used during the
first few iterations until Ritz values start to settle down.

A compromise between the first and the second choice is to use a fixed shift until
an eigenvalue has converged. Another possibility is to use each shift for (at most)
a fixed number of iterations. In either case, the best Ritz value that has not yet
converged may be selected as the next shift. Rapid convergence is generally obtained
with this strategy. The cost for matrix factorization is reduced in comparison with the
second approach. It will be shown in section 5 that this scheme is very competitive
with the rational Krylov method of Ruhe [15], [14], [16].

Finally, the leading k-columns of the implicitly shifted RQ iteration may be ob-
tained by selecting the same set of shifts as the full dense algorithm if desired. For
example, if the elements of the matrix H are denoted by γij , we could use γ11 as the
shift. This corresponds to the Rayleigh quotient shift in the RQ algorithm. Another
alternative is the Wilkinson shift. This is defined to be the eigenvalue of the leading
2× 2 matrix (

γ11 γ12

γ21 γ22

)
that is the nearest to γ11. These strategies may be used when no target shift is given
in advance or when the TRQ iteration is used in conjunction with a deflation scheme
to compute the full spectrum of A.

Once the shift is chosen, an RQ update as described in Steps 2.3 through 2.6
of Algorithm 2 is taken. Clearly, it can be done explicitly, but there may be some
advantage to an implicit application. An implicit shift application is straightforward
since (

Hk − µIk h
βke

T
k α

)
=

(
Hk h
βke

T
k α̃

)
− µ

(
Ik 0
0 1

)
,

where α̃ = α + µ. Thus, the standard bulge-chase implementation of an RQ sweep
corresponding to the shift µ may be applied to the matrix(

Hk h
βke

T
k α̃

)
.

Finally, when the matrix A is real nonsymmetric, we would like to perform the
TRQ iteration in real arithmetic. However, there seems to be no simple analog to the
double shifting strategy used in the QR algorithm. Applying double shifts implicitly
in the TRQ iteration is possible. However, the corresponding TRQ equation involves
Â = (A − µ̄I)(A − µI), and more work is required to solve this equation. It is still
questionable whether a truncated double implicit shifting strategy should be used in
practice. Therefore, we shall not present the details here. A double shift algorithm
that involves solving Âw = v may be found in [22].
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3.3. Deflation. As discussed earlier, in each TRQ iteration the TRQ equation
(2.4) is solved so that a truncated Hessenberg reduction of the form

A(Vk, v+) = (Vk, v)

(
Hk h
βke

T
k α

)
(3.6)

is maintained. As the TRQ iteration proceeds, the leading subdiagonal elements
of Hk become small. Usually, they will become small in order (from top down)
but occasionally this convergence happens further down the subdiagonal. When the
magnitude of a subdiagonal element βj falls below some numerical threshold, it is set
to zero and the matrix Hk is split to give

Hk =

(
Hj M

0 Ĥk−j

)
.

The first j columns of Vk form a basis for an invariant subspace of A, and j eigenvalues
of A may be extracted from Hj . The deflation technique used in the QR algorithm
can be applied here to obtain subsequent eigenvalues. We rewrite (3.6) as

(A− µI)(Vj , V̂k−j , v+) = (Vj , V̂k−j , v)

 Hj − µIj M h1

0 Ĥk−j − µIk−j h2

0 βke
T
k−j α

 ,(3.7)

where

Vk = (Vj , V̂k−j) and h =

(
h1

h2

)
have been partitioned conformably with Vj representing the leading j columns of Vk
and h1 representing the first j components of h.

An upper triangular matrix R̂ and an orthogonal matrix Q̂ of the form

R̂ =

(
R2 r
0 ρ

)
, Q̂ =

(
Q2 q

σeTk−j γ

)
are constructed such that (

Ĥk−j − µIk−j h2

βke
T
k−j α

)
= R̂Q̂.

Multiplying (3.7) from the right by Q̃H =

(
Ij

Q̂H

)
yields

(A− µI)(Vj , V̂
+
k−j , v̂+) = (Vj , V̂k−j , v)

 Hj − µIj M̂ ĥ1

0 R2 r
0 0 ρ

 ,

where V̂ +
k−j = V̂k−jQH2 + v+q

H , v̂+ = σ̄V̂k−jek−j + γ̄v+, M̂ = MQH2 + h1q
H , and

ĥ1 = σ̄Mek−j + γ̄h1. Note that the Vj and Hj are not modified during the deflation.
The next cycle of TRQ iteration starts with the selection of a new shift. The roles

of Ĥk−j ,V̂j and v̂+ are replaced by Ĥ+
k−j = Q2R2 + µIk−j , V̂ +

j and v̂+, respectively.
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If the subdiagonal elements of Hk converge to zero in order (from top to bottom,) a
partial Schur form

AVj = VjRj

is obtained. Of course, when a subdiagonal βj approaches zero out of order, then the
splitting described in equation (3.7) above will still yield a partial Schur form since
the Schur form of HjQj = QjRj can be used to make an explicit transformation.

4. Numerical examples. In this section, we evaluate the cost and performance
of the TRQ iteration. We first show an example indicating that the convergence rate
of TRQ is exactly the same as that of the RQ iteration when the TRQ equations (2.4)
are solved exactly. Comparisons will be made with the shifted and inverted IRA,
the RKS method, and the recently proposed Jacobi–Davidson QR (JDQR) method
[9]. We show that if the shift is fixed, TRQ does not provide much advantage over
the shifted and inverted IRA. However, if the shifts are allowed to change during
the iteration, TRQ often performs better than IRA in terms of number of iterations
and is competitive with the RKS and the JDQR algorithms. Numerical examples
will be presented to demonstrate the performance of the algorithm. All numerical
experiments are performed using MATLAB 4.2 on a SUN-SPARC 2.

4.1. Convergence rate of TRQ. The rate of convergence of TRQ follows from
that of the full RQ iteration. For certain choices of shifts, it is cubic for symmetric
eigenvalue problems and quadratic for nonsymmetric problems. In fact, if the Arnoldi
iteration with the starting vector v0 is used to produce the Hessenberg reduction
required by Algorithm 1 as an input, the first k eigenvalues appearing on the diagonal
of the output triangular matrix will be exactly the same as the those computed by
TRQ with the same starting vector.

In the following, we present an example that verifies the fast convergence of TRQ.
We choose to work with a standard 5-point discrete Laplacian defined on [0, 1]× [0, 1]
with zero Dirichlet boundary conditions. For simplicity, the 100 by 100 symmetric
matrix is scaled by h2, where h = 1/101 is the mesh size of the discretization. We
are interested in 4 eigenvalues with the smallest magnitude. The size of the Arnoldi
factorization used in the TRQ iteration is set to be 5 (k = 5.) In each TRQ iteration,
eigenvalues of the 5 × 5 tridiagonal matrix H5 defined in Step 2.6 of Algorithm 2
are computed. The one closest to zero that has not yet converged is chosen as the
next shift µ. Table 4.1 lists the subdiagonal element βj (j = 1, 2, 3, 4) of H5 at each
iteration. Once |βj |/(|Hj,j |+ |Hj+1,j+1|) drops below a prescribed tolerance of 10−15,
we set βj to zero. Clearly, the first eigenvalue converges cubically and the second one
shows cubic convergence rate after the first one has converged. At the end of the 12th
iteration, all four eigenvalues

λ1 = 0.16203,

λ2 = 0.39851,

λ3 = 0.39851,

λ4 = 0.63499

are found. The convergence criterion here was a tolerance of 10−15 in the test for
declaring a subdiagonal element to be zero. The computed direct residuals for all
converged eigenpairs were on the order of 10−15. The multiplicity of the eigenvalue
0.39851 is detected.
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Table 4.1
Convergence history of the 4 computed eigenvalues of a two-dimensional Laplacian.

Iteration µ β1 β2 β3 β4

1 0.18638 2.31× 10−2 2.18× 100 1.91× 100 1.58× 100

2 0.16204 2.33× 10−7 6.23× 10−1 1.84× 100 2.18× 100

3 0.16203 1.11× 10−21 2.10× 10−1 1.36× 100 1.84× 100

4 0.44417 0 7.92× 10−2 1.27× 10−1 1.55× 100

5 0.39857 0 1.36× 10−5 3.83× 10−2 7.24× 10−1

6 0.39851 0 4.08× 10−17 1.36× 10−1 9.47× 10−2

7 0.40410 0 0 1.34× 10−2 3.14× 10−2

8 0.39851 0 0 3.84× 10−8 4.24× 10−2

9 0.39851 0 0 8.58× 10−21 5.71× 10−2

10 0.63614 0 0 0 2.15× 10−3

11 0.63499 0 0 0 1.52× 10−10

12 0.63499 0 0 0 1.88× 10−28

Table 4.2
Comparison of computational work and storage between TRQ and IRA. We assume that k

eigenvalues closest to the shift σ are of interest. An Arnoldi factorization of length k is maintained
in TRQ, and p(≥ 1) shifts are applied in each IRA iteration (i.e., an Arnoldi factorization of length
k + p is maintained). We use MATVEC to denote the matrix vector multiplication used in TRQ,
and use SOLVE to indicate the cost of solving a linear system in both TRQ and IRA. The operation
GEMV refers to dense matrix vector multiplications needed in carrying out Arnoldi factorization.
The RQ or QR update refers to the bulge chase process used in both algorithms.

TRQ IRA

Initialization cost MATVEC (k times): variable SOLVE (k + p times): variable
GEMV: O(nk2) GEMV: O(n(k + p)2)
Factorization: variable Factorization: variable

Cost per iteration SOLVE: variable SOLVE (p times): variable
Shift selection O(k3) GEMV: O(n(k + p)2)
RQ update: O(nk + k2) Shift selection: O((k + p)3)

QR update:
O(n(k + p) + (k + p)2)

Storage O(n(k + 1) + (k + 1)2) O(n(k + p+ 1) + (k + p+ 1)2)

4.2. Comparison with IRA. It is mentioned in section 3.2 that a simple way
of selecting a shift in Step 2.1 of Algorithm 2 is to use a fixed shift throughout the TRQ
iteration. Besides its simplicity, this strategy may also reduce the computational cost
when factoring A − µI is expensive. However, as one may expect, the convergence
rate of each desired eigenvalue is typically linear in this case. When the ratio σ
defined in (3.5) is close to 1, slow convergence is usually observed. In the following,
we compare this variant of the TRQ algorithm with the shifted and inverted IRA since
both algorithms factor the matrix A − µI only once. It is shown in Table 4.2 that
TRQ requires slightly less work and storage per iteration. However, our numerical
experiments often show that the shifted and inverted IRA converges faster than TRQ
with the same shift. An example is presented below to demonstrate this phenomenon.
The problem involves the two-dimensional Laplacian used in the previous section. The
four smallest eigenvalues are sought. We placed the target shift at zero and ran TRQ
with k = 5 (TRQ(5)). The results are compared with IRA with k = 4, p = 1
(IRA(1)), and IRA with k = 4, p = 4 (IRA(4).) The value of p indicates the number
of shifts used in the IRA iteration [21]. Since the ratio ρ = |λ1|/|λ2| is close to 1, we
expect TRQ to converge slowly. In Table 4.3, we list the converged eigenvalues and
the number of linear systems solved before each eigenvalue has converged. One way
to accelerate the TRQ iteration is to increase the size of the Arnoldi factorization.



TRUNCATED RQ ITERATION 1059

Table 4.3
Comparison of IRA and TRQ on a two-dimensional Laplacian.

Eigenvalue TRQ(5) IRA(1) IRA(4)

0.16203 36 11 6
0.39851 79 16 7
0.39851 161 26 8
0.63499 186 40 11

Table 4.4
Comparison of TRQ(k) with different values of k.

k No. of linear solves

5 186
10 132
15 132

The motivation is to take advantage of large gaps that may exist in the unwanted
portion of the spectrum. However, the gain is usually not significant unless such gaps
are large enough. In Table 4.4, we compare the total number of linear solves used in
finding the four desired eigenvalues of the two-dimensional Laplacian with different k
values. We observe that as k increases, the number of linear solves required in TRQ
does not always decrease. Clearly, one does not want to use a k that is too large for
this will increase the computational cost.

4.3. Comparison with RKS. The convergence rate of TRQ may be improved
if shifts are chosen to be the best eigenvalue approximations from the subspace
spanned by columns of Vk. However, this scheme requires factoring a matrix A−µjI
at each iteration. To reduce the overall cost of TRQ, the third shift selection strategy
discussed in section 3.2 may be used; i.e., a shift is used repeatedly until either a
Ritz value has converged or a fixed number of iterations has occurred. Then a new
shift is selected. This strategy is also employed in the RKS introduced by Ruhe [15],
[14], [16]. In this section, we show by numerical example that TRQ is competitive
with RKS.

The basic recursion involved in RKS [15] may be characterized by the equation

AVk+1Ĥk = Vk+1Ĝk,

where Vk+1 is n by k + 1, Ĥk and Ĝk are k + 1 by k, and V Hk+1Vk+1 = Ik+1. We

denote the jth column of Vk+1, Ĥk, and Ĝk+1 by vj , hj , and gj , respectively. They
are produced by a sequence of Arnoldi-like steps shown in Figure 4.1.

The choice of tj is arbitrary, but tj = ej is recommended. The subspace spanned
by the columns of Vk do not form a Krylov subspace, and approximate eigenvalues
may be obtained by solving the generalized eigenvalue problem

Gks = µHks,(4.1)

where Gk and Hk are the submatrices consisting of the first k rows of Ĝk and Ĥk,
respectively. The convergence of each Ritz value can be monitored by the estimate
derived in [15]. Deflation must be done properly [16] to avoid missing multiple eigen-
values. The cost of RKS per iteration is listed in Table 4.5.

It is mentioned in [16] that a large basis is needed when the eigenvalue problem is
ill-conditioned. Thus, reorthogonalization becomes expensive. Purging and restarting
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Rational Krylov subspace (RKS) iteration

Input: (A, v1) such that ‖v1‖ = 1.
Output: (Vk+1, Ĥk, Ĝk) such that AVk+1Ĥk = Vk+1Ĝk, V

H
k+1Vk+1 = I,

and Hk+1 is upper Hessenberg.

1. Choose t1 = e1;
2. V1 ← (v1); Ĥ0 = ( ); Ĝ0 = ( );
3. for j = 1, 2, 3, ..., k.

3.1. Choose a shift µj ;
3.2. wj+1 ← (A− µjI)−1(Vjtj);

3.3. hj ← V Hj wj ; Ĥj ← (Ĥj−1, hj);

3.4. gj ← hjµj + tj ; Ĝj ← (Ĝj−1, gj);
3.5. wj+1 ← wj+1 − Vjhj ; βj = ‖wj+1‖;
3.6. Ĥj ←

(
Ĥj

βje
T
j

)
; Ĝj ←

(
Ĝj

µjβje
T
j

)
;

3.7. vj+1 ← wj+1/βj ; Vj+1 ← (Vj , vj+1);
3.8. Choose a vector tj+1;

4. end

Fig. 4.1. Rational Krylov subspace iteration.

Table 4.5
The cost of the RKS iteration. The value of k is usually much larger than the number of

desired eigenvalues kd. Again, SOLVE refers to solving a linear system in Step 3.2 of the algorithm.
The operation GEMV refers to dense matrix vector multiplications needed in carrying out the RKS
factorization. Ritz approximation refers to solving the generalized eigenvalue problem Hks = µGks.

Operation Cost

Factorization(intermittently) variable
SOLVE variable
GEMV O(nk2)
Ritz approximation O(k3)
Purging & restart O(nkkd + k4)
Storage O(n(k + 1) + 2(k + 1)2)

have been proposed in [16]. However, these schemes are still experimental and not
well understood. In contrast, the size of Vk is fixed during the TRQ iteration, and the
update is done by an orthogonal transformation. The convergence can be monitored
by checking the magnitude of subdiagonal elements of Hk. Deflation is built into the
TRQ iteration, and eigenvalues with multiplicity greater than one cause no difficulty.
At convergence, a partial Schur form is constructed automatically without further
reordering.

In the following, we compare TRQ and RKS on a 340×340 Tolosa matrix [2]. The
Tolosa matrix is a model problem that has the important features of matrices that
arise in the stability analysis of an airplane in flight. The full spectrum of this matrix
is plotted in Figure 4.2. Eigenvalues with largest imaginary parts are of interest. We
use the RKS code developed by Ruhe [16] for comparison. The same random starting
vector is used in both RKS and TRQ. In the RKS code, Ritz values are computed
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Fig. 4.2. The spectrum of a 340× 340 Tolosa matrix.

Table 4.6
Comparison of IRA and TRQ on a Tolosa matrix.

Eigenvalue RKS RKS TRQ(6) TRQ(6) TRQ(6) IRA(10)
m = 5 m = 10 m = 1 m = 5 m = 10

−132.3 + 430.1i 12 14 11 14 15 14
−127.9 + 425.2i 15 16 13 16 17 51
−123.5 + 420.2i 17 18 15 17 18 64
−119.3 + 415.2i 19 20 17 19 20 125
−115.1 + 410.2i 31 22 19 21 22 201

Factorizations 9 6 19 7 6 1

from (4.1) at each iteration. A Ritz value is flagged as converged when the Ritz
estimate falls below tol = 10−10. The initial shift is placed at µ = −150 + 410i. The
same shift is used for at most m iterations. A new shift is selected after the current
shift has been used for m iterations or after convergence of a Ritz value. The same
shift selection strategy is used in TRQ for comparison. In Table 4.6, we list the first
five computed eigenvalues and the number of iterations taken before each eigenvalue
has converged. We choose m = 5 and m = 10 in RKS. The size of the Arnoldi
factorization used in TRQ is set to be 6 (k = 6.) We tried m = 1 (optimal shift
selection), m = 5, and m = 10 in TRQ. At the bottom of the table, we accumulated
the total number of factorizations used in each run. For m = 5, the convergence
history of RKS and TRQ are plotted in Figures 4.3 and 4.4, respectively. In these
figures, we plot the residual norm of each approximate eigenvalue against the number
of flops (floating point operations.) The vertical dotted line marks the end of each
iteration; the dash-dot line marks the end of a matrix factorization. It is observed
from Table 4.6 that it takes more than 10 iterations for both RKS and TRQ to locate
the first eigenvalue. Once the first one emerges, both algorithms converge at a rate
of two iterations per eigenvalue. Notice that horizontal axes in Figures 4.3 and 4.4
are labeled with different scales. For this problem, RKS builds a larger subspace
than TRQ in order to capture all desired eigenpairs. Thus, more orthogonalizations
are performed in RKS. This explains the larger number of flops required by RKS.
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Fig. 4.3. The convergence history of RKS.
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Fig. 4.4. The convergence history of TRQ.

Residual norms of all Ritz pairs are plotted in Figure 4.3. Only five of them have
converged to the desired tolerance of 10−10. Clearly, TRQ is competitive with RKS
in terms of both the number of factorizations and the number of iterations, and both
algorithms compare favorably with IRA with p = 10 (IRA(10)).

4.4. Comparison with JDQR. If factoring A − µI is inexpensive, we may
consider using an optimal shift described in section 3.2 in each TRQ iteration. In
this case, the performance of TRQ is comparable with that of the Jacobi–Davidson
method.

Given an initial approximation v0 of a desired eigenvector, the Jacobi–Davidson
method [19] finds, at each step, a correction vector zk that is orthogonal to the previous
approximate eigenvector uk. A new subspace is created by adjoining this vector to the
previous subspace and taking the span. The next approximate eigenpairs are drawn
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from projection onto the new subspace. The correction vector zk is obtained from the
equation

(I − ukuHk )(A− θkI)(I − ukuHk )zk = −rk and zk ⊥ uk,(4.2)

where rk = Auk − θkuk and θk is the current approximation to the eigenvalue of
interest. It can be shown [19] that if (4.2) is solved exactly, the Jacobi–Davidson
method becomes the accelerated inverse iteration, i.e., it builds an orthonormal basis
of the subspace

S(A, v0, {θj}) = span{v0, v1, v2, . . . vk},
where vj = (A − θjI)−1vj−1. Ritz approximations are extracted from this subspace.
It is shown in [16] that this method is equivalent to RKS with an optimal shift
selected in each iteration. The subspace S(A, v0, {θj}) is not a Krylov subspace. The
Hessenberg relationship (3.1) is not preserved in the Jacobi–Davidson iteration. To
obtain several eigenvalues and eigenvectors, some standard deflation schemes [17] are
needed. To avoid building a large dimensional subspace S, restarting is also necessary.
The implementation of the JDQR algorithm is explained in detail in [9]. We compare
the performance of TRQ and JDQR on a standard eigenvalue problem arising from
the stability analysis of the Brusselator wave model (BWM) [2]. Eigenvalues with
largest real parts are of interest. They help to determine the existence of stable
periodic solutions to the Brusselator wave equation as some parameter varies. The
size of the matrix we choose is 200 × 200. The 32 rightmost eigenvalues are plotted
in Figure 4.5. We place the target shift at σ = 1.0 and use TRQ and JDQR to find 4
eigenvalues closest to σ. In Table 4.7, we list the first four computed eigenvalues and
the number of factorizations used to obtain each one of them. In the runs using TRQ,
we tried k = 5 and k = 8. In JDQR, the maximum dimension of subspace from which
approximate eigenpairs are drawn is 8. Restart begins at the 6th column (jmin = 5.)
It is denoted by JDQR(5,8) in Table 4.7.

It is observed from Table 4.7 that TRQ takes fewer iterations to find all four
eigenvalues of interest. However, as pointed out in [9], the correction equation may
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Fig. 4.5. The 32 rightmost eigenvalues of a 200× 200 BWM matrix.
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Table 4.7
Comparison of TRQ and JDQR on the BWM problem.

Eigenvalue TRQ(5) TRQ(8) JDQR(5,8)

1.820× 10−5 + 2.140i 8 6 14
1.820× 10−5 − 2.140i 11 8 17
−0.6747 + 2.529i 14 12 19
−0.6747− 2.529i 16 14 21

be solved by one step of GMRES iteration in the first jmin steps of JDQR iterations.
This is equivalent to building the initial Jacobi–Davidson search space [9] by running
a jmin-step Arnoldi iteration. For the BWM problem, this technique reduces the total
number of exact solves in JDQR(5,8) to 16.

5. Inexact TRQ and restarting. Rapid convergence of the TRQ algorithm is
observed in section 4 when the TRQ equation

(I − VkV Hk )(A− µI)(I − VkV Hk )v+ = vα with V Hk v+ = 0, ‖v+‖ = 1(5.1)

is solved exactly in each iteration. In this section, we explore the possibility of relax-
ing the solution accuracy of (5.1) while maintaining the rapid convergence of TRQ
iteration. This is extremely important for many applications in which the factoriza-
tion of A − µI is too costly, and an approximate solution of (A − µI)x = b can be
provided by an iterative solver.

Recall that one of the important characteristics of the TRQ algorithm is the
inverse iteration relation between the first column of V +

k and the first column of
Vk, i.e.,

(A− µI)v+
1 = v1.

If an optimal shift is chosen at each iteration, the convergence of v1 to an eigenvector
of A is often quadratic or cubic. We will show in the following that if the projected
equation is solved approximately, an inexact inverse iteration is maintained between
v+

1 and v1. Superlinear convergence can still be achieved if optimal shifts are used.
Suppose ṽ+ is an approximate solution to (5.1). Since I − VkV Hk is a projection,

we may replace ṽ+ with (I−VkV Hk )ṽ+ in (5.1). Thus, we explicitly orthogonalize the
approximate solution ṽ+ against all columns of Vk through

ṽ+ ← (I − VkV Hk )ṽ+

and normalize it so that ‖ṽ+‖ = 1. The unknowns h and α present in (2.4) are then
computed directly as if ṽ+ were an exact solution to (5.1), i.e.,

h̃← V Hk (A− µI)ṽ+ = V Hk Aṽ+, α̃← vH(A− µI)ṽ+.

These lead to the equation

(A− µI)(Vk, ṽ+) = (Vk, v)

(
Hk − µIk h̃
βke

T
k α̃

)
+ zeTk+1,(5.2)

where zeTk+1 is an error term with

z ≡ (A− µI)ṽ+ − (Vk, v)

(
h̃
α̃

)
.
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By construction, z satisfies

V Hk z = 0, vHz = 0.

We may now compute an upper triangular R̂ = (Rk0
r
ρ) and an orthogonal Q̂ = (Qk

σeT
k

q
γ)

such that (
Hk − µIk h̃
βke

T
k α̃

)
= R̂Q̂

and multiply (5.2) from the right by Q̂H to get

(A− µI)(VkQ
H
k + ṽ+q

H , vkσ̄ + ṽ+γ̄) = (Vk, v)

(
Rk r
0 ρ

)
+ z(qH , γ̄).

The first column of V +
k = VkQ

H
k + ṽ+q

H is related to the first column of Vk through
the equation

(A− µI)v+
1 = ρ11v1 + zδ,(5.3)

where v+
1 = V +

k e1 and δ is the first element of the vector q. Since the orthogonal

matrix Q̂ is constructed from accumulation of a sequence of Givens rotations used in
the RQ factorization, δ is a product of (k−1) sines. Its magnitude is bounded by 1 and
it is likely to be quite small due to the accumulated product of sines. Thus, the error
term present in the inexact inverse iteration (5.3) is at worst of the same magnitude
as the error introduced in solving (5.1) and is very likely to be much smaller. In
fact if the first subdiagonal element β1 is small (indicating the (1,1) element of Hk is
nearly an eigenvalue of A), then |δ| is very likely to be smaller than |β1| which may
be verified by considering the effect of the final Givens rotation to occur in the RQ
step. Therefore, the error committed by accepting the inexact solution to the linear
system (5.1) is damped by the RQ step to obtain a more accurate inverse-iteration
relation between the vectors v+

1 and v1 than might be expected.
We would like to continue the TRQ update as described in Steps 2.4–2.6 of Al-

gorithm 2. However, because of the error incurred in (5.2), the updated orthonormal
basis V +

k = VkQ
H + ṽ+q

H no longer spans a Krylov subspace. However, the first
column of V +

k is approximately what we would have obtained if the TRQ equation
is solved exactly. Thus, one may recover a truncated Hessenberg reduction by run-
ning a k-step Arnoldi process with v+

1 as the starting vector. We refer to this step
as a restart. The restarted TRQ (RTRQ) iteration is summarized in Algorithm 4 in
Figure 5.1.

If a Krylov subspace type of method (such as conjugate gradient or GMRES)
is used to solve the TRQ equation in step 2.2 of the above algorithm, it may be of
advantage to work with the operator B ≡ (I − VkV Hk )(A − µI)(I − VkV Hk ) directly
since B may be better conditioned in the subspace V ⊥k . Of course, the matrix B need
not be formed explicitly, only the matrix vector multiplication Bv is required.

5.1. Comparison with JDQR. In the following, we present a numerical ex-
ample of using the inexact RTRQ to compute the eigenvalues of the CK656 matrix
described in [2]. Eigenvalues of this matrix all have multiplicity two. We look for 4
eigenvalues near the target shift σ = 5.0, and set k = 5 in RTRQ (RTRQ(5)). The
computational result is compared with JDQR with jmin = 5, jmax = 8 (JDQR(5,8)).
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Algorithm 4: Truncated RQ iteration with restart (RTRQ)

Input: (A, Vk, Hk, fk) with AVk = VkHk + fke
T
k , V

H
k Vk = I, Hk upper

Hessenberg.
Output: (Vk, Hk) such that AVk = V Hk, V

H
k Vk = I and Hk is upper triangular.

1. Put βk = ‖fk‖ and put v = fk/βk;
2. for j = 1, 2, 3, ... until convergence,

2.1. Select a shift µ← µj ;
2.2. Solve (I − VkV Hk )(A− µI)(I − VkV Hk )w = v approximately;
2.3. w ← (I − VkV Hk )w, v+ ← w/‖w‖;
2.4. h← V Hk Av+, α← vH(A− µI)v+ ;

2.5. RQ Factor

(
Hk − µIk h
βke

T
k α

)
=

(
Rk r
0 ρ

)(
Qk q
σeTk γ

)
;

2.6. v1 ← VkQ
H
k e1 + v+q

He1;
2.7. Restart: (Hk,Vk,v,βk) ← Arnoldi(A,v1);

3. end;

Fig. 5.1. Restarted TRQ iteration.

Table 5.1
Comparison of RTRQ and JDQR on the CK656 problem.

Eigenvalue RTRQ(5) JDQR(5,8)

5.5024 3 15
5.5024 6 23
1.5940 11 25
1.5940 17 35

The same random starting vector is used in both tests. The TRQ equation and the
projected correction equation in JDQR are solved by GMRES with no precondition-
ing or restart. The maximum GMRES steps allowed in each linear solve is set to
be 10. The GMRES residual tolerance is set to be 10−6. The optimal shift selection
strategy is used in both tests; i.e., the Ritz value that is the nearest to the target shift
but has not converged is used as the next shift. No tracking [9] is used in JDQR. In
Table 5.1, we list the four eigenvalues of interest and the number of iterations taken
by RTRQ and JDQR before each eigenvalue has converged. We observe that for this
example, RTRQ takes fewer iterations than JDQR to capture eigenvalues of interest.
In particular, RTRQ is able to capture the first eigenvalue much quicker than JDQR.
However, RTRQ costs more per iteration than JDQR because the projection in the
TRQ equation always involves k vectors, and k matrix vector multiplications must
be performed in each iteration to reconstruct an Arnoldi factorization. Thus, the
overall performance should be compared in terms of total number of matrix vector
multiplications or flops used in both methods. This is illustrated in Figure 5.2. We
plot the residual of each approximate eigenpair against the number of flops. The
residuals of the approximate eigenpairs are monitored one at a time. When the resid-
ual curve corresponding to the approximation to the eigenpair (λj , zj) drops below
10−9, we start to monitor and record the residual for the next approximate eigenpair
(λj+1, zj+1). We should point out that the comparison made here is still preliminary.



TRUNCATED RQ ITERATION 1067

RTRQ
JDQR

0 5 10 15

x 10
6

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

flops

re
si

du
al

 n
or

m

Fig. 5.2. Convergence history of RTRQ and JDQR for the CK656 matrix.
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Fig. 5.3. The structure of a 200× 200 BWM matrix.

Several techniques are available to improve the performance of JDQR [9] and many
of these may be used in RTRQ as well.

5.2. The effect of preconditioning. Solving the TRQ equation is the most
expensive part of the TRQ iteration. When an iterative method is used, a good pre-
conditioner may accelerate the convergence and reduce the overall cost. The improved
accuracy in the solution to the TRQ equation often brings about a reduction in the
total number of TRQ iterations.

One may precondition the projected system

(I − VkV Tk )(A− µI)(I − VkV Tk )w = v

directly to obtain an approximate solution to the TRQ equation. However, it may
not be easy to find a good preconditioner M for the projected matrix (I−VkV Tk )(A−
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Table 5.2
Comparison of RTRQ with and without preconditioner.

Eigenvalue Diagonal ILU(0) Tridiagonal

1.820× 10−5 + 2.140i 80 21 7
1.820× 10−5 − 2.140i > 100 38 12
−0.6747 + 2.529i > 100 52 19
−0.6747− 2.529i > 100 66 23

µI)(I − VkV
T
k ). Instead, one usually has a preconditioner for the matrix A. As

pointed out in [9], this preconditioner may need to be projected into V ⊥k in order to
accelerate the convergence of the Jacobi–Davidson iteration. The projected shifted
preconditioner is sometimes not a good preconditioner for the projected shifted ma-
trix A. This extra projection does not seem to be necessary in the TRQ iteration
since the TRQ equations may be solved using the scheme discussed in section 3. This
scheme solves a linear system (A − µI)w = v. Thus, a preconditioner of A may be
easily applied. In the following we present an example that demonstrates the effect
of preconditioning on the restarted TRQ iteration. Four eigenvalues of the BWM
matrix used in section 4 are computed, and the size of the Arnoldi factorization in
the TRQ iteration is set to be 5 (k = 5.) The target shift is placed at 1.0. The TRQ
equation is solved using a preconditioned GMRES with no restart. The maximum
number of GMRES iterations allowed in each solve is set to be 10. The GMRES
residual tolerance is set to be 10−6. The structure of the BWM matrix is shown
in Figure 5.3. We used the diagonal part, the tridiagonal part, and the incomplete
LU factors (ILU(0)) of the matrix A as the preconditioner. The number of itera-
tions used to obtain the four eigenvalues near 1.0 are listed in Table 5.2. Without
a preconditioner no eigenvalue is found in 100 iterations. The convergence history
of RTRQ with various preconditioners is shown in Figure 5.4. The residual norm
of each approximate eigenpair is plotted against the number of flops subsequentially.
The solid curve corresponds to RTRQ with tridiagonal preconditioning. The dashed
curve corresponds to RTRQ with ILU(0) preconditioning. The dash-dot curve corre-
sponds to RTRQ with diagonal preconditioning. The dotted curve is associated with
RTRQ with no preconditioning. When the residual curve drops below the dotted line
indicating the acceptable residual tolerance 10−9, we start to monitor and record the
residual of the next approximate eigenpair. It is observed that a good preconditioner
improves the convergence of RTRQ dramatically.

5.3. Comparison with accelerated inverse iteration with Wielandt de-
flation. The inexact TRQ iteration with restart does not completely mimic the ex-
act TRQ. In particular, the truncated Hessenberg reduction is enforced through an
Arnoldi iteration rather than an implicit RQ update. The method behaves more
like a single vector iteration with deflation than an RQ iteration in which the rapid
convergence of one eigenvalue is often accompanied with the convergence of other
eigenvalues at a slower pace.

In this section, we compare restarted TRQ with the accelerated inverse iteration
combined with a deflation scheme that is very close to the Wielandt deflation (IN-
VWD) [17, p. 117] for computing a few eigenvalues of A. We show that the exact
TRQ performs better than the exact INVWD and the inexact TRQ appears to be
more reliable than the inexact INVWD.

The inverse iteration can be viewed as a shifted and inverted power iteration. It



TRUNCATED RQ ITERATION 1069

no         

diagonal   

tridiagonal

ILU(0)     

0 1 2 3 4 5 6

x 10
7

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

flops

re
si

du
al

 n
or

m

Fig. 5.4. Convergence history of preconditioned TRQ for the BWM matrix.

requires solving

(A− µI)w = v,

where v is the previous approximation to an eigenvector and w is the current ap-
proximation. The acceleration is achieved by choosing, at each iteration, a shift µ
that is the best approximation to the desired eigenvalue. Once an eigenpair (λ, u) has
been found, the next pair may be obtained by applying shifted power iteration to the
deflated operator A1 = (A − µI)−1 − uqH , where q = (A − µI)−Hu. This deflation
scheme is an variant of the explicit Wielandt deflation [23, p. 596], [17, p. 117]. The
deflated operator A1 = (I−uuH)(A−µI)−1 does not preserve right eigenvectors of A
in general, unless A is normal. However, it does preserve Schur vectors of A. Thus, to
generalize this deflation scheme for a converged invariant subspace, one should replace
u with a matrix of Schur vectors U that spans the converged invariant subspace and
satisfies UHU = I. This is a more stable variant of a technique referred to as the
Schur–Wielandt deflation in [17, p. 122]. It leads to the algorithm INVWD (Figure
5.5) which we adopt here for comparison to RTRQ.

In the following, we first present an example that demonstrates the advantage of
using TRQ over using inverse iteration with Schur–Wielandt-like deflation. Then we
compare the performance of the inexact TRQ with restart to the inverse iteration in
which the linear system is solved approximately.

In the first example, we choose A to be the two-dimensional discrete Laplacian
used before. Six eigenvalues of the smallest magnitude are computed. The size the
Arnoldi factorization maintained in the TRQ iteration is 7 (k = 7.) The same size
is chosen for the deflated Arnoldi iteration used in INVWD to help determine the
shift. The same random starting vector is used in both TRQ and INVWD. In IN-
VWD, a Ritz pair (µj , zj) is considered to be converged if the direct residual norm
‖rj‖ = ‖Azj − µjzj‖ falls below tol = 10−12. In TRQ, the convergence criterion is a
tolerance of machine epsilon in the test for declaring a subdiagonal element to zero.
Table 5.3 shows the number of iterations taken before each eigenvalue has converged.
In Figure 5.6, the convergence history of the residual for each computed eigenpair is
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(INVWD) A Schur–Wielandt deflated inverse iteration

Input: (A, µ, v, U) such that (µ, v) is the current approximation to
the desired eigenpair, and columns of U contain the converged
Schur vectors.

Output: A new approximate eigenpair (µ+, v+) that may be used in the
next cycle of an inverse iteration.

1. Solve (A− µI)w = v;
2. v ← (I − UUH)w; v ← v/‖v‖;
3. f ← Av; α = vHw;
4. H1 = (α); V = (v); f ← f − vα;
5. f ← (I − UUH)f ;
6. for j = 1, 2, ..., k

6.1. βj = ‖f‖; vj+1 ← f/βj+1;

6.2. Vj+1 = (Vj , vj+1); Hj ←
(

Hj

βje
T
j

)
;

6.3. z ← Avj+1; z ← (I − UUH)z;
6.4. h← V Hj z; Hj+1 = (Hj , h);
6.5. f ← z − Vj+1h;

7. end;
8. Compute an desired Ritz pair (µ+,v+) from Hk and Vk to be used in the

next cycle of an inverse iteration.

Fig. 5.5. Schur–Wielandt deflated inverse iteration.

shown. The height of each circle and star corresponds to the residual of the eigenpair
computed by TRQ and INVWD, respectively. The TRQ residuals corresponding to
the approximations to the same eigenpair are connected by a solid line. The INVWD
residuals are connected by a dash-dot line. The circles below the dotted line corre-
spond to the residuals of converged eigenpairs computed by TRQ. It is easily observed
that the global convergence of TRQ is better than INVWD. In INVWD, every resid-
ual curve starts from the top (‖r‖ ≈ 10−1), whereas in TRQ, the convergence of the
second and fifth eigenpairs are followed by the immediate convergence of the third
and the sixth pairs. The residual for the fifth eigenpair starts from roughly 10−10

and drops below 10−14 in one iteration. We should also mention that the convergence

Table 5.3
Comparison of TRQ and INVWD on a two-dimensional Laplacian.

Eigenvalue TRQ INVWD

0.16203 3 3
0.39851 6 7
0.39851 7 13
0.63499 10 17
0.77129 12 20
0.77129 13 24
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Fig. 5.6. Traces of the residual in TRQ and INVWD.

of INVWD is sensitive to the starting vector and the size of the subspace used to
obtained the shift. Eigenvalues may not necessarily converge in order. For exam-
ple, large eigenvalues may appear early when we look for the ones with the smallest
magnitude.

In the next example, we compare the performance of the inexact TRQ with that
of the inexact INVWD. We consider computing eigenvalues of the DW1024 matrix
that arises from dielectric waveguide problems in integrated circuit applications [2].
Four eigenvalues near 1.0 are of interest. In both methods, linear systems are solved
by GMRES with no restart. The maximum number of GMRES iterations allowed is
set to be 10. The GMRES residual tolerance is set to be 10−8. The size of the Arnoldi
factorization maintained in the inexact TRQ iteration is set to be 5 (k = 5.) The
same size is set for the deflated Arnoldi iteration used in INVWD to determine the
shift. The traces of the residual for each computed eigenpair are shown in Figure 5.7.
Residual norms are plotted against the number of flops. The solid curve corresponds
to the residual norm of the inexact TRQ. The dotted curve corresponds to the residual
of the inexact INVWD. We observe that the inexact INVWD converges much slower
than the inexact TRQ.

6. Conclusions. This development of the TRQ iteration has led to a promis-
ing way to take advantage of situations when shift-invert equations can be solved
directly and also when they can only be solved inexactly through iterative means.
We have demonstrated with several numerical experiments that this scheme provides
a promising and competitive alternative to rational Krylov methods and the Jacobi–
Davidson method in the two respective cases. The scheme is relatively simple and
very efficient in terms of required numerical computation compared to these and other
related methods. Finally, the convergence properties and deflation schemes are easily
understood through the close connection with the RQ iteration for dense matrices.

Future research will focus upon analyzing the filtering properties obtained from
embedding the shift-invert equations in the TRQ iteration. Equation (5.3) indicates
a damping of the error introduced by inexact solution when the RQ iteration is car-
ried out. The numerical properties and implications of this phenomenon are not yet



1072 D. C. SORENSEN AND C. YANG

RTRQ 
INVWD

0 0.5 1 1.5 2 2.5 3

x 10
8

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

flops

re
si

du
al

 n
or

m

Fig. 5.7. Traces of the residual in inexact TRQ and INVWD.

understood.
We chose the GMRES method to solve the TRQ equation iteratively in the in-

exact TRQ method because of its simplicity and reliability. Certainly, other iterative
solvers such as QMR, BICGSTAB could have been used. It would be interesting to
compare the performance of these iterative solvers in the TRQ context. More re-
search is required with respect to preconditioners and how they should be utilized
within the TRQ equations. Exhaustive computational experimentation and com-
parisons are needed to determine whether the TRQ equations should be solved in
bordered form, projected form, or by utilizing Lemma 3.1. These are issues both for
direct and iterative solutions of the TRQ equations. The extension of these ideas to
the generalized eigenvalue problem will also be important. Eventually, we expect to
produce numerical software based upon this scheme to complement the IRA schemes
already available in ARPACK.
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Abstract. The QR algorithm and its variants are among the most popular methods for cal-
culating eigenvalues of matrices. Typical implementations chase bulges from top to bottom of an
upper Hessenberg matrix. It is also possible to chase bulges from bottom to top. There are some
situations in which it may be advantageous to chase bulges in both directions at once, in which case
one needs a procedure for passing bulges through each other without mixing up the information that
the bulges convey. This paper derives a procedure for passing bulges of arbitrary degree through
each other. Experiments with a Fortran 90 program show that the procedure works well in practice
for bulges of degree two.
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1. Introduction. The family of QR-like algorithms [12], [7], [8], [15] is one of the
most prominent classes of algorithms for solving matrix eigenvalue problems. Most
implementations of QR-like algorithms are bulge chasing algorithms. The matrix
is first transformed to a condensed form (usually upper Hessenberg) by a similarity
transformation. Then each QR iteration consists of a sequence of similarity transfor-
mations, which first create a bulge in the condensed form, then chase the bulge from
one end of the matrix to the other.

For simplicity we will confine ourselves in this paper to the upper Hessenberg
condensed form. Typically, bulges are created at the top of the matrix and chased
downward, but it is also sometimes useful to create bulges at the bottom of the matrix
and chase them upward. One might also wish to create bulges at both ends of the
matrix and chase them toward each other. Then one has to ask how to pass the bulges
through each other without mixing up the information that they contain. This paper
will address that problem.

The problem of passing bulges through each other, or bulge exchange, was first
considered by Byers [2], [3], who showed how to exchange two bulges of degree one
or two in a Hamiltonian Hessenberg matrix. The motive was to create a version of
the QR algorithm that preserves the Hamiltonian form. This is achieved by requiring
that the transforming matrices be symplectic, which requires in turn that two “mirror
image” bulges be chased in opposite directions. Watkins [16] showed that the bulge
exchange does not depend on Hamiltonian structure; it can be done in arbitrary upper
Hessenberg matrices, not only for QR algorithms, but for LR, SR, and other QR-like
algorithms as well. However, the discussion in [16] was restricted to bulges of degree
one.

Obviously it must be possible to exchange bulges of arbitrary degree, but for years
we could not see how to do it. Finally we were able to discern the mechanism by which
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information is carried by bulges [18], and this proved to be the key to understanding
the bulge exchange process in general.

To give an idea of where bulge exchanges may be useful beyond the preservation
of Hamiltonian form, we shall sketch two potential applications. First, bidirectional
chasing (chasing bulges in both directions) may prove to be an effective strategy for
decreasing memory traffic in parallel QR codes on distributed memory machines.
Blocks of the matrix are doled out to the processors. Whenever a bulge gets to a
block boundary, information has to be passed back and forth between processors. If
a bulge from above arrives at a block boundary at the same time as another bulge
arrives from below (and this can certainly be arranged), then information about both
bulges can be swapped with no more effort than it would take to pass information
about a single bulge. Thus the total message passing is decreased substantially.

The second potential application is of a completely different nature. There is a
class of algorithms, exemplified by the LR algorithm without pivoting [22], [5], that
operate on highly condensed, e.g., tridiagonal, forms. Algorithms of this type are able
to preserve the highly condensed form because they forego pivoting. The price they
pay for this is that they can be unstable because they must sometimes use extremely
large multipliers (i.e., small pivots) in the elimination operations that the algorithm
performs. A typical safeguard against this is to save a copy of the matrix before each
iteration. If at any point during the iteration a multiplier exceeds a certain tolerance,
the iteration is aborted and restarted with different shifts. The ability to pass bulges
through each other offers an alternative to the wasteful restarting process. If at any
time during the bulge chase it is found that an excessive multiplier is about to arise,
the bulge can simply be stopped. A new bulge chase, with different shifts, can be
initiated, and the new bulge can be passed right through the old one, which waits in
place until conditions improve. Once one or two (or perhaps 100) bulges have passed
through, conditions will become favorable for chasing the original bulge forward.

This paper’s contents. This paper derives a general procedure for passing
bulges of arbitrary size through each other. Section 2 sets the stage by introducing ex-
plicit and implicit GR and RG algorithms and establishing the relationships between
them. The implicit algorithms are the ones that chase bulges. A new explanation
of the mechanism by which the bulges carry information is presented. Section 3, the
heart of the paper, derives a procedure for exchanging bulges without mixing up the
information that they carry. Section 4 describes numerical experiments that demon-
strate the viability of the bulge exchange procedure for bulges of degree two in the
QR (unitary) case.

Notation. The vector space of complex n-tuples is denoted ICn. The standard
basis vectors in ICn are denoted ei, i = 1, . . . , n. The ith entry of ei is 1 and all other

entries are 0. Technically we should write e
(n)
i to specify the dimension of the space

in which ei lies, but we shall delete the n, which will always be clear from context.

The space of m× n complex matrices will be denoted ICm×n. aij and a
(k)
ij denote the

(i, j) entries of matrices A and Ak, respectively. A∗ is the matrix whose (i, j) entry
is aji. Im is the identity matrix in ICm×m. Script letters such as S will be used to

denote subspaces of ICn. S⊥ denotes the orthogonal complement of S in ICn.

2. Explicit and implicit GR algorithms.
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GR and RG decompositions. We will work within the context of the class
of QR-like algorithms known as GR algorithms [20]. 1 The basic operation in an
iteration of a GR algorithm is a GR decomposition. Given a matrix B ∈ ICn×n, a GR
decomposition of B is a factorization of B into a product

B = GR,

where G is nonsingular and R is upper triangular. There are many ways to do a
GR decomposition. For example, one can require that G be a unitary matrix, in
which case the decomposition is called a QR decomposition. Every B has a QR
decomposition; under mild conditions 2 the QR decomposition is essentially unique
[15]. Another possibility is to require that G be lower triangular with ones on the
main diagonal, that is, unit lower triangular. Then the decomposition is called an LR
(or LU) decomposition. Almost every B has an LR decomposition, which is unique
[15].

One can equally well perform an RG decomposition, B = RG, putting the up-
per triangular matrix first. There are many different types of RG decompositions,
including RQ and RL.

Explicit GR and RG algorithms. Let us begin with GR algorithms. These
are iterative processes; for our purposes it suffices to focus on a single iteration,
starting with a matrix A ∈ ICn×n and resulting in a matrix Â that is similar to A.
First a spectral transformation function f is chosen. For the purpose of specifying
the class of algorithms, the only requirement on f is that the matrix f(A) be well
defined. The next step is to perform a GR decomposition: f(A) = GR. Just as there
is much latitude in how f is chosen, there is also a great deal of choice in how the
GR decomposition is carried out. Now there is the additional requirement that f(A)
have a GR decomposition of the desired type (e.g., LR). If this is not the case, then
either f or the type of GR decomposition being used has to be changed. Once a GR
decomposition has been performed, the final step is to use G to perform a similarity
transformation on A; specifically Â = G−1AG. The whole process is summarized by
two equations

f(A) = GR, Â = G−1AG.

We call this a GR iteration driven by f . If this process is performed repeatedly with
intelligent choices of f and G, the iterates will tend to (block) upper triangular form,
revealing the eigenvalues of A.

In addition to GR algorithms there are RG algorithms, which are defined in a
similar fashion. An RG iteration driven by f is summarized by the two equations

f(A) = RG, Â = GAG−1.

As we shall see, the RG algorithm is the GR algorithm with time reversal. Repeated
application of the RG algorithm will also lead to (block) upper triangular form, but
(assuming fixed f , for example) the (blocks of) eigenvalues will come out in the
opposite order on the main diagonal.

1All of the developments of this paper have extensions that can be applied to GZ algorithms for
the generalized eigenvalue problem [11], [8], [15], [21].

2For example, B is nonsingular or B is a proper upper Hessenberg matrix.
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If A has spectrum λ1, . . . , λn, then f(A) has spectrum f(λ1), . . . , f(λn). The
point of applying f is to spread out the spectrum. The more spread out it is (plotting
magnitudes |f(λi) | on a logarithmic scale), the faster the iterates converge [20].

Commonly f is taken to be a polynomial, but in this paper we will focus on
rational f . Let us suppose to begin with that f = 1/q, where q is a polynomial whose
zeros are not eigenvalues of A. A GR iteration driven by 1/q has the form

q(A)−1 = GR, Â = G−1AG.

Notice that this is the same as an RG iteration driven by q, since the equations can
be rewritten as

q(A) = R̃G̃, Â = G̃AG̃
−1
,

where G̃ = G−1 and R̃ = R−1.
Now suppose f = p/q, where p and q are polynomials. A GR iteration has the

form

q(A)−1p(A) = GR, Â = G−1AG.(2.1)

This can be decomposed into two iterations, a GR iteration driven by p followed by
an RG iteration driven by q, as follows. First

p(A) = G1R1, Ǎ = G−1
1 AG1.

Then

q(Ǎ) = R2G2, Â = G2ǍG
−1
2 .

Using the equation q(A) = G1q(Ǎ)G−1
1 = G1R2G2G

−1
1 , we see easily that Â and

A are related by (2.1), where G = G1G
−1
2 is nonsingular and R = R−1

2 R1 is upper
triangular. Thus a GR iteration driven by a rational function can be accomplished
by a GR iteration driven by the numerator polynomial followed by an RG iteration
driven by the denominator polynomial. One easily checks that the same result is
achieved if the RG step is done first; the order of the steps is immaterial.

Remark. Nothing that has been said so far depends on p and q being polynomials.
Consider a GR step driven by any function p for which p(A) is invertible. Follow that
with an RG step driven by the same p. As we have just seen, the result is a GR step
driven by p/p = 1. Now 1(A) = I, whose spectrum is as unspread as possible; a GR
step driven by I goes nowhere. This shows that the RG iteration driven by p cancels
the GR iteration driven by p. In other words, an RG iteration is a GR iteration run
in reverse.

Implicit GR and RG algorithms. If p is a polynomial, even if its degree is
as low as two, computing p(A) is an expensive proposition. Therefore GR iterations
are usually effected by a process that avoids the explicit computation of p(A). These
are called implicit GR iterations, and they require that the matrix first be reduced
to a condensed form such as upper Hessenberg. Let us assume, therefore, from this
point on that A is a proper upper Hessenberg matrix. Upper Hessenberg means almost
upper triangular: aij = 0 for i > j + 1. Proper means that ai,i−1 6= 0 for i = 2, . . . , n.

The key results are the following theorems. Notice that if p(A) = GR, then
the first column of G is proportional to p(A)e1, which is the first column of p(A).
Theorem 2.1 is a sort of converse of this simple observation.
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Theorem 2.1. Let A ∈ ICn×n be a proper upper Hessenberg matrix, and let p be
a polynomial. Let G be a nonsingular matrix whose first column is proportional to
x = p(A)e1, such that Â = G−1AG is upper Hessenberg. Then there exists an upper
triangular matrix R such that p(A) = GR.

This is Theorem 2.4 of [19]. It says that if we can manage a similarity transfor-
mation that has the right first column and preserves upper Hessenberg form, we will
have done a GR iteration. The next theorem is the RG analogue of Theorem 2.1.

Theorem 2.2. Let A ∈ ICn×n be a proper upper Hessenberg matrix, and let q
be a polynomial. Let G be a nonsingular matrix whose last row is proportional to
yT = eTn q(A), such that Â = GAG−1 is upper Hessenberg. Then there exists an upper
triangular matrix R such that q(A) = RG.

Thus if we can manage a similarity transformation that has the right last row and
preserves upper Hessenberg form, we will have done an RG iteration. Theorems 2.1
and 2.2 are special cases of Theorems 2.9 and 2.10, which will be proved below.

Similarity transformations satisfying the conditions of Theorems 2.1 and 2.2 can
be effected by bulge chasing algorithms. Chasing algorithms that perform GR iter-
ations were described in [19]. These algorithms begin by doing a similarity trans-
formation that creates a bulge in the upper Hessenberg form at the top. Then they
return the matrix to upper Hessenberg form by similarity transformations that clear
the columns one by one, proceeding from left to right. The effect of this is to chase
the bulge down the main diagonal and off of the bottom edge of the matrix.

For variety’s sake we will describe here bulge chasing algorithms that perform
RG iterations implicitly. These create a bulge at the bottom and chase it to the top.
Suppose we wish to carry out an RG iteration driven by the polynomial q of degree
k. According to Theorem 2.2, we need a similarity transformation whose last row
is proportional to yT = eTn q(A), the last row of q(A). We wish to avoid calculating
q(A) explicitly. It turns out that computing only the last row is much cheaper if
k � n, as we shall assume. The polynomial q is normally given in factored form
q(z) = (z − τ1)(z − τ2) · · · (z − τk). Thus

yT = eTn (A− τ1I) · · · (A− τkI),

which can be computed by a sequence of k matrix vector multiplications. Since en
has only its last entry nonzero and A is upper Hessenberg, only the bottom k+1 rows
of A are involved in the computation, only the last k+1 entries of yT can be nonzero,
and yT can be computed in O(k3) flops. We have yi = 0 for i = 1, . . . , n− k − 1. It
is important to note that yn−k 6= 0, because A is properly upper Hessenberg. Indeed
yn−k = an,n−1an−1,n−2 · · · an−k+1,n−k.

Let G0 = diag{In−k−1, G̃0}, where G̃0 is a matrix whose last row is proportional
to ỹT0 =

[
yn−k · · · yn

]
. Thus the last row of G0 is proportional to yT .

Clearly eTk+1G̃0 = α−1
0 ỹT0 for some nonzero α0. Another way to put this is to say

that G̃0 is chosen in such a way that G̃
−1

0 “eliminates” or “clears out” ỹT0 in the sense

that ỹT0 G̃
−1

0 = α0e
T
k+1.
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Let A1 = G0AG
−1
0 . This matrix is not upper Hessenberg; it has a bulge at the

@
@
@
@
@
@
@

bottom that protrudes k diagonals beyond the subdiagonal. The tip is at the position

a
(1)
n,n−k−1. This entry is certainly nonzero. In fact a

(1)
n,n−k−1 = α−1

0 yn−kan−k,n−k−1.
We call this a bulge of degree k.

The rest of the iteration consists of a sequence of similarity transformations that
return the matrix to upper Hessenberg form by clearing out the rows one by one from
bottom to top. The first step is to choose a G1 such that G−1

1 clears out the last row
of A1. The form of G1 is diag{In−k−2, G̃1, 1}, where the last row of G̃1 is proportional
to

ỹT1 =
[
a

(1)
n,n−k−1 · · · a

(1)
n,n−1

]
.

Thus eTk+1G̃1 = α−1
1 ỹT1 or ỹT1 G̃

−1

1 = α1e
T
k+1. When A1 is tranformed to A1G

−1
1 , the

last row is returned to upper Hessenberg form; the bulge is reduced by one row. When
the similarity transformation is completed by left multiplication by G1, a column is
added to the left-hand edge of the bulge. In other words, the matrix A2 = G1A1G

−1
1

has a bulge whose tip is at a
(2)
n−1,n−k−2. This tip entry is certainly nonzero. Indeed

a
(2)
n−1,n−k−2 = α−1

1 a
(1)
n,n−k−1an−k−1,n−k−2.

This step establishes the pattern for the process. The next transforming matrix

G2 has the form diag{In−k−3, G̃2, I2}, where G̃2 is chosen so that G̃
−1

2 returns row
n − 1 to Hessenberg form and so on. After n − 1 steps the iteration is complete.
Taking Â = An−1, we have Â = GAG−1, where G = Gn−2 · · ·G1G0. In this matrix
product every factor except G0 has the general form diag{M, 1}. Consequently the
last row of G is the same as the last row of G0, which is proportional to the last row
of q(A). Since Â is upper Hessenberg, we conclude from Theorem 2.2 that the bulge
chasing algorithm affects an iteration of an RG algorithm driven by q.

This development establishes a somewhat weak connection between explicit and
implicit versions of RG algorithms. A much more detailed connection is established
in [21].

The relationship between y and q. It is obvious that q determines y uniquely
(given a fixed A) through the equation yT = eTn q(A). It is worth noting that y
determines q uniquely as well.

Proposition 2.3. Let A be a properly upper Hessenberg matrix. Let y ∈ ICn.
Then there is a unique polynomial q of degree less than n such that yT = eTn q(A). If
yi = 0 for i = 1, . . . , n− k − 1 and yn−k 6= 0, then q has degree exactly k.

Proof. Since A is properly upper Hessenberg, the row vectors eTn , eTnA, eTnA
2,

. . . , eTnA
n−1 are linearly independent. Indeed, the first nonzero entry of eTnA

k is
in position n − k. Thus there exist unique coefficients c0, . . . , cn−1 such that yT =
eTn (c0I + c1A+ c2A

2 + · · ·+ cn−1A
n−1). The proposition follows easily.
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This “row-wise” result has the following column-wise analogue.
Proposition 2.4. Let A be a properly upper Hessenberg matrix. Let z ∈ ICn.

Then there is a unique polynomial q of degree less than n such that z = q(A)e1. If
zi = 0 for i = k + 2, . . . , n and zk+1 6= 0, then q has degree exactly k.

How information is carried in the bulge. In an RG or GR iteration driven
by the polynomial q, the information that needs to be carried in the bulge is the
polynomial q itself, which we shall assume is monic, without loss of generality. q can
be factorized completely over the complex field: q(z) = (z − τ1) · · · (z − τk), and it
is usually presented in this form. Knowledge of the roots τ1, . . . , τk, which are called
the shifts for the iteration, is equivalent in principle to knowledge of q.

How is this information carried in the bulge? We already answered this question
in [18]. Here we shall prove the main results of [18] by a different approach, getting
some new insights along the way.

A good overall view of the bulge chasing process is achieved by embedding the
pencil A− µIn in a larger pencil Ã− µNn+1 obtained by adjoining a column on the
left and a row at the bottom.

Ã− µNn+1 =

[
x A− µIn
0 yT

]
.(2.2)

We will consider various choices of vectors x and y. Notice that Nn+1 is not an identity
matrix; it is a strictly upper triangular matrix with ones on the superdiagonal. The
symbol N stands for nilpotent. Since Nn+1 is singular, a pencil of this form must
have at least one infinite eigenvalue.

Let us first consider the case x = e1, y = en. Then the pencil Ã−µNn+1 is upper
triangular. Its determinant is the product of the subdiagonal entries of A, which is
nonzero because A is properly upper Hessenberg. Thus the characteristic polynomial
det(Ã − µNn+1) is a nonzero constant, which means that the pencil is regular and
has no finite eigenvalues; all n+ 1 eigenvalues are infinite. In fact each main diagonal
entry aj+1,j − 0µ signals an infinite eigenvalue.

For the purpose of analyzing an iteration of the RG algorithm driven by q, we
take

x = e1 and yT = eTn q(A).(2.3)

Now the eigenvalues of (2.2) are not all infinite. The pencil is not upper triangular,
but it is still block triangular. It has the form[

H0 ∗
0 B0

]
− µNn+1,(2.4)

where H0 is upper triangular and nonsingular, and B0 ∈ IC(k+1)×(k+1) would be
upper triangular, except that its last row consists of ỹT , the nonzero part of yT .
The asterisk denotes a submatrix whose values are not of immediate interest. The
spectrum of Ã− µNm+1 is the union of the spectra of H0 − µNn−k and B0 − µNk+1.
The spectrum of H0 − µNn−k consists of ∞ repeated n − k times. The spectrum of
B0 − µNk+1 is much more interesting.

Theorem 2.5. If q(z) = (z− τ1) · · · (z− τk), then the eigenvalues of B0−µNk+1

are τ1, . . . , τk,∞. In other words, the characteristic polynomial of B0 − µNk+1 is q.
Proof. The entry in the lower left-hand corner of B0 is yn−k, which is nonzero. It

follows easily that the characteristic polynomial det(B0−µNk+1) has degree k. Thus



BULGE EXCHANGES IN ALGORITHMS OF QR TYPE 1081

the pencil is regular and has k finite eigenvalues and one infinite eigenvalue. We just
need to show that the finite eigenvalues are τ1, . . . , τk.

Let τi be any one of the roots of q. Then q(z) = r(z)(z− τi) for some polynomial
r of degree k − 1. Thus yT = sT (A − τiIn), where sT = eTn r(A). Only the last k
entries of s can be nonzero; let s̃ ∈ ICk denote this subvector. Then, in view of the
definition of B0, the equation yT = sT (A− τiIn) is equivalent to

[
s̃T −1

]
(B0 − τiNk+1) = 0,

so τi is an eigenvalue of B0 − µNk+1 with left eigenvector
[
s̃T −1

]
.

The proof is now complete if τ1, . . . , τk are distinct, as there can be no more than
k finite eigenvalues. We can deduce the general result by continuity; just perturb the
roots slightly to make them distinct. This causes a slight perturbation of ỹ. Then
invoke the fact that the roots of the characteristic polynomial depend continuously
on the data.3

Theorem 2.5 has an analogue for GR iterations, which we shall note for future
reference. This is Theorem 1 of [18].

Theorem 2.6. Let q be a polynomial of degree k. Let Ã − µNn+1 be given by
(2.2), where x = q(A)e1 and y = en. Let B0−µNk+1 be the (k+1)× (k+1) subpencil
from the upper left-hand corner of the pencil Ã − µNn+1. Then the characteristic
polynomial of B0 − µNk+1 is q.

Theorem 2.5 implies that the eigenvalues of Ã− µNn+1 given by (2.2) and (2.3)
are ∞, repeated n− k+ 1 times, and τ1, . . . , τk. Now let us consider what happens to
this pencil during an RG iteration that transforms A to Â. Each transformation that
is applied to A has a corresponding transformation on the pencil. Under each such
transformation the new pencil is equivalent to the old one, so the pencil’s eigenvalues
are preserved.

Consider the very first transformations. The transformation of A to AG−1
0 cor-

responds to multiplying the pencil Ã − µNn+1 by diag{1, G−1
0 } on the right. This

begins to form the bulge in A. Note, however, that the pencil already has a bulge: the
nonzeros in the vector y disturb the triangular form; the part of the block named B0

in (2.4) can be viewed as a bulge. Recall that the initial transformation G0 is designed
so that yTG−1

0 = α0e
T
n . This implies that when diag{1, G−1

0 } is applied to the pencil
on the right, it clears out the last row of the bulge. The transformation from AG−1

0

to A1 = G0AG
−1
0 corresponds to left multiplication of the pencil by diag{G0, 1}, and

it adds one new column to the bulge.

This point of view shows that the initial similarity transformation, which we had
viewed at first as a bulge-creating transformation, can also be viewed as a bulge
chasing transformation.

3Another approach is to reverse the argument given here. If µ is an eigenvalue, then it has a left
eigenvector, whose last entry is easily seen to be nonzero. This implies a relationship yT = sT (A−
µIn) for some vector s with zeros in all but the last k positions. It follows that q(z) = r(z)(z − µ)
for some r, so µ is one of the zeros of q.
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At intermediate stages in the bulge chase the matrix Ai has the form

@
@
@@

@
@
@@

.

The corresponding pencil, which we can call Ãi − µNn+1, has a corresponding bulge
which prevents it from being upper triangular. It is, however, block upper triangular.
It can be written in the block form

Ãi − µNn+1 =

 Hi − µNj ∗ ∗
Bi − µNk+1 ∗

Ki − µNn−k−j

 ,
where j is the column index of the first column of the bulge in Ai. Hi − µNj and
Ki − µNn−k−j are upper triangular and have only ∞ as eigenvalues, repeated j and
n− k− j times, respectively. The pencil Bi−µNk+1 contains the bulge, so let us call
it the bulge pencil. Since Ãi − µNn+1 has the same eigenvalues as the original pencil
Ã − µNn+1, we can conclude that the eigenvalues of the bulge pencil are τ1, . . . , τk
and ∞. This shows how information about q is carried in the bulge; it is our main
result.

Theorem 2.7. Consider a bulge chase driven by q(z) = (z − τ1) · · · (z − τk).
For i = 1, 2, . . . the k finite eigenvalues of the bulge pencil Bi − µNk+1 are the shifts
τ1, . . . , τk. In other words, the characteristic polynomial of the bulge pencil is q.

Remark. This is a theoretical result, valid when the arithmetic is performed
exactly. In floating-point arithmetic it can fail badly if k is large [18]. Thus one
should use fairly small values of k (e.g., 2–6) in practice.

The local viewpoint. We have proved Theorem 2.7 by looking at the eigenval-
ues of the big pencil. This is the global viewpoint. A second approach (used in [18]) is
to prove the result by induction. We know that the initial bulge pencil B0−µNk+1 has
eigenvalues τ1, . . . , τk,∞. We can prove Theorem 2.7 by showing that Bi+1 − µNk+1

has the same eigenvalues as Bi − µNk+1. This is the local viewpoint, and it has an
important advantage. When we consider matrices with two or more bulges, we want
to be sure that each bulge retains the shifts that it is carrying. We would not want
shifts somehow to hop from one bulge to another. The local viewpoint shows that
this does not happen; the shifts travel with the bulge.

The transformations that generate Bi+1−µNk+1 from Bi−µNk+1 are associated
with the similarity transformation Ai+1 = GiAiG

−1
i . Right multiplication of Ai by

G−1
i corresponds to an equivalence transformation on Bi−µNk+1 that clears out the

last row. This deflates the infinite eigenvalue. That is, the transformed pencil has
block triangular form; the bottom 1 × 1 block has eigenvalue ∞, and the top k × k
block has eigenvalues τ1, . . . , τk. Now delete the infinite eigenvalue by discarding the
last row and column from the pencil. Next enlarge the pencil by adjoining a row and a
column (obtained from the big pencil) at the top. This adds a new infinite eigenvalue.
Now, left multiplication by Gi transforms this pencil to Bi+1 − µNk+1. This is an
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equivalence tranformation, so it preserves the eigenvalues. Thus the eigenvalues of
Bi+1 − µNk+1 are the same as those of Bi − µNk+1.

The final configuration. At the end of the iteration, A has been transformed
to Â = GAG−1, and the pencil has been transformed to[

z Â
0 αeTn

]
− µNn+1,

where z = Ge1. The bulge has been chased from Ã, but the pencil still has a bulge,
which has been compressed into z. Only the first k + 1 entries of z can be nonzero,
so we can express the pencil in block triangular form as[

Bn−1 − µNk+1 ∗
Hn−1 − µNn−k

]
,

where Hn−1 − µNn−k is upper triangular and has an (n − k)-fold eigenvalue ∞.
Bn−1 − µNk+1 is the final bulge pencil of the RG iteration, and its characteristic
polynomial is, of course, q. This is exactly the form of a pencil for the start of a GR
iteration. If Â is properly upper Hessenberg, we can perform a GR iteration that
undoes the RG iteration by chasing the bulge back down to the bottom.

Â will be properly upper Hessenberg as long as none of the shifts is an eigenvalue
of A.4 This is the generic case. If, on the other hand, some of the shifts are eigenvalues
(i.e., q(A) is singular), there will be a deflation at the end of the RG iteration [19],
and the iteration will not be reversible.

We elaborate on these last remarks (generic case). Assuming Â is properly upper
Hessenberg, we can invoke Proposition 2.4 with A replaced by Â to conclude that
z = βq̃(Â)e1 for some unique monic polynomial q̃ of degree k and nonzero constant
β. Theorem 2.6, applied with A, x, and q replaced by Â, z, and q̃, respectively, then
implies that the characteristic polynomial of Bn−1−µNk+1 is q̃. However, we already
know that the characteristic polynomial is q. Thus z = βq(Â)e1, which is exactly the
configuration we want for the beginning of a GR iteration on Â [19].

Chasing bulges in both directions. Our discussion of explicit GR algorithms
showed that a GR iteration driven by a rational function p/q can be broken into a GR
iteration driven by the polynomial p and an RG iteration driven by the polynomial
q. These can be performed in either order.

If we want to implement the process implicitly, our task is to chase a bulge from
the top of the matrix to the bottom (GR iteration), then chase a different bulge from
bottom to top (RG iteration). Alternatively we can do the upward chase before the
downward chase. We can also consider chasing both bulges at once, which brings us
to the heart of the paper.

If we wish to perform a GR iteration driven by p, we need to start by calculating
x = αp(A)e1, which is used to create a bulge at the top of the matrix. Similarly, an
RG iteration is started by calculating yT = βeTn q(A), which is used to create a bulge
at the bottom. We can simultaneously perform similarity transformations that create
both of these bulges and then push them toward each other. The upper (lower) bulge

4Indeed, in this case q(A) is nonsingular, R = q(A)G−1 is nonsingular, and Â = R−1AR. The
product of a properly upper Hessenberg matrix with two nonsingular upper triangular matrices is
clearly properly upper Hessenberg.
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has a bulge pencil whose characteristic polynomial is p (resp., q). In the big pencil
viewpoint, we start with the configuration (2.2), where

x = αp(A)e1 and yT = βeTn q(A).

In this configuration the pencil Ã − µNn+1 has eigenvalues σ1, . . . , σm and ∞ corre-
sponding to the top bulge, τ1, . . . , τk and ∞ corresponding to the bottom bulge, and
∞ with multiplicity n−m− k − 1 in the middle.

Once the bulges have met, we need to pass them through each other somehow.
The subpencil that contains the two bulges has the form[

B11 B12

0 B22

]
− µNm+k+2,

where B11 − µNm+1 and B22 − µNk+1 have characteristic polynomials p and q, re-
spectively. The challenge is to perform similarity transformations on the matrix that
transform this pencil into the form[

C11 C12

0 C22

]
− µNm+k+2,

where C11 − µNk+1 and C22 − µNm+1 have characteristic polynomials q and p, re-
spectively. That is, we want to interchange the positions of the shifts. If we can
accomplish this, we can then complete the iteration by chasing the new bulges away
from each other until they are pushed off of the ends of the matrix. Call the resulting
matrix Â = G−1AG. The final pencil is[

z Â
0 wT

]
− µNn+1,

where z has nonzeros in at most its first k + 1 positions, and w has nonzeros in at
most its last m+ 1 positions. In block triangular form the pencil looks like D − µNk+1 ∗ ∗

E − µNn−k−m−1 ∗
F − µNm+1

 .
D − µNk+1 and F − µNm+1 have characteristic polynomials q and p, respectively.

From what we now know about the transmission of information in bulges, this
procedure ought to effect a GR iteration driven by the rational function p/q. However,
we have not yet proved that it does. We will prove it in the generic case when Â is
properly upper Hessenberg.5

Let us assume Â is properly upper Hessenberg. Then, since D−µNk+1 has q as its
characteristic polynomial, we have z = γq(Â)e1 by Proposition 2.4 and Theorem 2.6.
Similarly, since F − µNm+1 has p as its characteristic polynomial, wT = δeTnp(Â) by
Proposition 2.3 and Theorem 2.5. Summarizing the initial and final conditions, we
have

x = αp(A)e1, yT = βeTn q(A),(2.5)

5Nothing bad happens in the nongeneric case. Indeed, deflations are highly desirable. However,
the nongeneric case is harder to describe, and we prefer not to deal with the complications here.
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z = γq(Â)e1, wT = δeTnp(Â).(2.6)

These are clearly redundant; the conditions on x and z imply the conditions on y and
w, for example. This follows from the invariance of the eigenvalues of the big pencil.
The similarity transformation Â = G−1AG corresponds to the transformation[

z Â
0 wT

]
=

[
G−1

1

] [
x A
0 yT

] [
1

G

]
(2.7)

on the big pencil. Expanding this equation, we find that it is equivalent to the three
equations

Â = G−1AG, x = Gz, wT = yTG.(2.8)

Theorem 2.9, which shows that the transformation Â = G−1AG is a GR iteration
driven by p/q, will use the first two equations from (2.8) and the first equation from
(2.5) and (2.6).

The proof of Theorem 2.9 depends on some basic facts about Krylov matrices.
Given any A ∈ ICn×n and any v ∈ ICn, the Krylov matrix K(A, v) is the n× n matrix
whose columns are v,Av,A2v, . . . , An−1v. One easily proves the following proposition.

Proposition 2.8. If A is upper Hessenberg, then K(A, e1) is upper triangular.
If A is properly upper Hessenberg, then K(A, e1) is nonsingular.

Theorem 2.9. Suppose A and Â are proper upper Hessenberg matrices satisfying
Â = G−1AG. Let x = αp(A)e1 and z = γq(Â)e1 for some nonzero scalars α and γ,
and suppose x = Gz. Then there exists upper triangular R such that

q(A)−1p(A) = GR.

Thus the similarity transformation Â = G−1AG is an iteration of the GR algorithm
driven by the rational function p/q.

Proof. Since GÂ = AG, we have GÂ
i

= AiG for all i, and Gq(Â) = q(A)G.
Furthermore, the various hypotheses imply

αp(A)e1 = x = Gz = γGq(Â)e1 = γq(A)Ge1,

so p(A)e1 = ρq(A)Ge1, where ρ = γ/α 6= 0. More generally,

p(A)(Aie1) = ρAiq(A)Ge1 = ρq(A)G(Â
i
e1),

for i = 0, 1, 2, . . . , n− 1. This can be rewritten as

p(A)K(A, e1) = ρq(A)GK(Â, e1).

Thus q(A)−1p(A) = GR, where R = ρK(Â, e1)K(A, e1)−1 is upper triangular by
Proposition 2.8. Because we are restricted to the generic case, q(A) is guaranteed to
be nonsingular [19].

If we take q = 1 in Theorem 2.9, we have z = γe1, and the theorem reduces to
Theorem 2.1. The proof is valid even in the nongeneric case, because now q(A) = I.
In the nongeneric case both p(A) and K(Â, e1) are singular, but the proof remains
valid.

Theorem 2.9 has a companion.
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Theorem 2.10. Suppose A and Â are proper upper Hessenberg matrices satisfy-
ing Â = GAG−1. Let yT = βeTn q(A) and wT = δeTnp(Â) for some nonzero scalars β
and δ, and suppose wTG = yT . Then there exists upper triangular R such that

q(A)p(A)−1 = RG.

Thus the similarity transformation Â = GAG−1 is an iteration of the RG algorithm
driven by the rational function q/p.

This is just a restatement of Theorem 2.9 with the symbols G and G−1 inter-
changed; the hypotheses of the two theorems are equivalent. If one wishes to prove
Theorem 2.10 directly, one can do so with the help of Krylov matrices built by stacking
rows of the form eTn , e

T
nA, e

T
nA

2, . . . from bottom to top.
If we take p = 1 in Theorem 2.10, we have wT = δeTn , and the theorem reduces

to Theorem 2.2. The proof is valid even in the nongeneric case.

3. Bulge exchanges. The following important question remains. Given a pencil[
B11 B12

0 B22

]
− µNm+k+2,(3.1)

where B11 − µNm+1 and B22 − µNk+1 have characteristic polynomials p and q, re-
spectively, how do we transform it to the form[

C11 C12

0 C22

]
− µNm+k+2,(3.2)

where C11 − µNk+1 and C22 − µNm+1 have characteristic polynomials q and p, re-
spectively?

This is a block swapping problem similar to that of swapping two blocks of a
matrix in real Schur form [1] or two blocks of a matrix pencil in generalized real Schur
form [9], [10]. These swaps are accomplished by applying a transformation determined
by solving a Sylvester or generalized Sylvester equation, respectively.

The method of [9], [10] cannot be applied directly to the pencil (3.1) because that
method is designed for pencils F −λG with arbitrary G; it will not preserve the right-
hand matrix Nm+k+2. In order to preserve the special form of (3.1) and (3.2), we must
restrict ourselves to equivalence transformations of a certain type, namely, those that
correspond to similarity transformations on the matrix in which B is embedded. Thus
every application of a transformation diag{1, G−1} on the right must be matched by
a transformation diag{G, 1} on the left. We shall see how to transform (3.1) to (3.2)
using only transformations of this type by solving a Sylvester-like equation.

A critical assumption will be that σi 6= τj for all i and j, where σ1, . . . , σm and
τ1, . . . , τk are, as before, the zeros of p and q, respectively. This is the normal situation.
After all, there is no profit in sending the same shift in opposite directions. For rapid
convergence the τ ’s should be well separated from the σ’s.

Deflating subspaces. We review some of the basic ideas associated with de-
flations of matrix pencils [13], [14, p. 752]. Let B − µM be an n × n regular ma-
trix pencil. Regular means that the characteristic polynomial det(B − µM) is not
identically zero. Let S be a subspace of ICn of dimension j, with 0 < j < n.
Let T B = BS = {Bx | x ∈ S}, let T M = MS, and let T̃ = T B + T M . Then
(B − µM)S ⊆ T̃ for all µ. S is called a deflating subspace for the pencil B − µM if
dim(T̃ ) ≤ j. If S is a deflating subspace and T is any j-dimensional subspace of ICn

containing T̃ , then (S, T ) is called a deflating pair of subspaces for the pencil B−µM .
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The following characterization is clearly true. A pair (S, T ) of j-dimensional
subspaces is a deflating pair if and only if BS ⊆ T and MS ⊆ T .

There is also a useful matrix characterization of deflating pairs. Let s1, . . . , sj
and t1, . . . , tj be bases of S and T , respectively, and let S1 = [s1, . . . , sj ] ∈ ICn×j and
T1 = [t1 · · · tj ] ∈ ICn×j . Then (S, T ) is a deflating pair for the pencil B − µM if and
only if there exist matrices B′11,M

′
11 ∈ ICj×j such that

BS1 = T1B
′
11 and MS1 = T1M

′
11.(3.3)

If equations (3.3) hold, then every eigenvalue of B′11−µM ′11 is an eigenvalue of B−µM .
Indeed, if (B′11 − νM ′11)v = 0, then (B − νM)(S1v) = 0. Notice that the eigenvector
S1v is a member of S. Conversely, every eigenvector of B − µM that belongs to S is
associated with an eigenvector of B′11 − µM ′11. The j eigenvalues of B′11 − µM ′11 are
called the eigenvalues of B − µM associated with the deflating subspace S.6

If it happens that MS = T , the bases can be chosen so that Msi = ti, i = 1, . . . , j.
With this choice the equations (3.3) take the simpler form

BS1 = T1F and MS1 = T1,

which can also be written as the single equation

BS1 = MS1F.(3.4)

Then the eigenvalues of the pencil associated with S are just the eigenvalues of the
matrix F . The equation MS = T holds iff the matrix M ′11 is nonsingular iff all of the
eigenvalues of B − µM associated with S are finite.

Knowledge of deflating subspaces allows one to transform the pencil to block
triangular form. Let S1 and T1 be matrices satisfying (3.3), and let S2, T2 ∈ ICn×(n−j)

be matrices chosen so that S =
[
S1 S2

]
and T =

[
T1 T2

]
are nonsingular. Let

B′−µM ′ = T−1(B−µM)S. Then (3.3) implies (B−µM)S1 = T1(B′11−µM ′11), from
which we find that B′ − µM ′ has the form[

B′11 − µM ′11 B′12 − µM ′12

0 B′22 − µM ′22

]
.

A pencil that has been transformed to this form has (Ej , Ej) as a deflating pair, where
Ej = span{e1, . . . , ej}.

Deflating subspaces are also known as right deflating subspaces. A left deflating
subspace for B − µM is one that is right deflating for B∗ − µ̄M∗. Thus (S, T ) is a
left deflating pair for B − µM if and only if B∗S ⊆ T and M∗S ⊆ T . The matrix
characterization takes the form

S∗1B = B′11T
∗
1 and S∗1M = M ′11T

∗
1 .

Proposition 3.1. The pair (S, T ) is right deflating for B − µM if and only
if (T ⊥,S⊥) is a left deflating pair. If (S, T ) is a deflating pair, then the sets of
eigenvalues associated with (S, T ) and (T ⊥,S⊥) are complementary subsets of the
spectrum of B − µM , counting multiplicity.

Proof. BS ⊆ T if and only if B∗T ⊥ ⊆ S⊥. This is true for any operator, so it is
true for M also. The first part follows immediately.

6These values clearly do not depend on the choice of T , nor on the choice of bases s1, . . . , sj and
t1, . . . , tj .
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The second part is perhaps most easily seen by looking at matrices. If (S, T ) is
a deflating pair, there is a similarity transformation to block triangular form

T−1(B − µM)S = B′ − µM ′ =

[
B′11 − µM ′11 B′12 − µM ′12

0 B′22 − µM ′22

]
,(3.5)

where S =
[
S1 S2

]
and T =

[
T1 T2

]
. The eigenvalues associated with (S, T )

are the eigenvalues of B′11 − µM ′11. It clearly suffices to prove that the eigenvalues
associated with (T ⊥,S⊥) are the eigenvalues of B′22−µM ′22. The similarity transfor-
mation (3.5) can also be written as

T−1(B − µM) = (B′ − µM ′)S−1.(3.6)

Define matrices U =
[
U1 U2

]
and V =

[
V1 V2

]
by U∗ = S−1 and V ∗ = T−1.

Then U∗S = I, which implies that the columns of U2 span S⊥. Similarly the columns
of V2 span T ⊥. Writing (3.6) in block form, we have[

V ∗1
V ∗2

]
(B − µM) =

[
B′11 − µM ′11 B′12 − µM ′12

0 B′22 − µM ′22

] [
U∗1
U∗2

]
,

which implies

V ∗2 B = B′22U
∗
2 and V ∗2 M = M ′22U

∗
2 .

This shows that (T ⊥,S⊥) is a left deflating pair (reproving the first part) whose
associated eigenvalues are the eigenvalues of B′22 − µM ′22.

Deflating subspaces in the context of bulge exchange. In the context
of interest here, we have two bulges side by side. The pencil has the form (3.1).
(Em+1, Em+1) and (E⊥m+1, E⊥m+1) are right and left deflating pairs associated with
eigenvalues σ1, . . . , σm,∞, and τ1, . . . , τk,∞, respectively. We would like to reverse
this configuration; we want a pencil of the form (3.2), where (Ek+1, Ek+1) is the right
deflating pair associated with τ1, . . . , τk,∞.

The bulge exchange procedure. We begin with the form (3.1). B22−µNk+1

has eigenvalues τ1, . . . , τk,∞. We want to move these eigenvalues to the top, so to
speak. Our procedure begins by separating the infinite eigenvalue from the others.
This yields the deflating subspace associated with the finite eigenvalues. For now we
are working within the small pencil B22 − µNk+1. The left deflating subspace associ-
ated with the eigenvalue ∞ is the left nullspace of Nk+1, which is U = span{ek+1},
since e∗k+1Nk+1 = 0. Let v∗ denote the last row of B22. Then e∗k+1B22 = v∗, so if
we let V = span{v}, then (U ,V) is the left deflating pair for the eigenvalue ∞. By
Proposition 3.1 the pair (V⊥,U⊥) is the right deflating pair for the finite eigenvalues.

Thus we just have to find span{v}⊥. Let U be a nonsingular matrix such that

v∗U = αe∗k+1(3.7)

for some α, and let Y denote the (k+1)×k submatrix consisting of the first k columns

of U . Then the columns of Y form a basis of V⊥ = span{v}⊥.
Let Z = Nk+1Y . Then, since all of the eigenvalues associated with V⊥ are finite,

the columns of Z are linearly independent and form a basis of U⊥. Therefore, as in
(3.4), there is a k × k matrix F such that

B22Y = ZF = Nk+1Y F.(3.8)
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The eigenvalues of F are τ1, . . . , τk.
It is easy to compute F . Both B22Y and Z have bottom rows consisting entirely of

zeros. Let C and E be the square matrices obtained by deleting these zero rows from
B22Y and Z, respectively. Then C = EF . Since Z has full rank, E is nonsingular.
Therefore F = E−1C.

Now let us shift our attention to the larger pencil[
B11 B12

0 B22

]
− µ

[
N11 N12

0 N22

]
,

where N11 = Nm+1 and N22 = Nk+1. We wish to find the right deflating subspace
associated with τ1, . . . , τk. This is tantamount to satisfying a larger version of (3.8),

which can also be written as B22Y = N22Y F . Thus we seek X ∈ IC(m+1)×k such that[
B11 B12

0 B22

] [
X
Y

]
=

[
N11 N12

0 N22

] [
X
Y

]
F.(3.9)

Proposition 3.2. Equation (3.9) has a unique solution X if σi 6= τj for all i
and j.

Proof. The second of the two blocks in equation (3.9) is just (3.8), so X just has
to be chosen so that the first block is satisfied. This can be written as a Sylvester-like
equation

B11X −N11XF = N12Y F −B12Y.(3.10)

Letting Z = N11X +N12Y , we can write this as the generalized Sylvester equation

B11X − ZF = −B12Y,

N11X − ZI = −N12Y.

This has a unique solution (X,Z), because the pencils B11 − µN11 and F − µI have
disjoint spectra [4].

Our program is to transform [
X
Y

]
,

whose columns span the deflating subspace associated with τ1, . . . , τk, to the leading
part of the pencil. We begin by deflating an infinite eigenvalue, pushing the two
bulges together. This is achieved by right multiplication by diag{Im+1, U} and left
multiplication by diag{Im, U−1, 1}. This is the same U as before, the one that satisfies
v∗U = αe∗k+1. Let B̂ = diag{Im, U−1, 1}Bdiag{Im+1, U}. Multiplying (3.9) on the
left by diag{Im, U−1, 1} and making appropriate insertions, we obtain

B̂

[
X

Î

]
= Nm+k+2

[
X

Î

]
F,

where Î = U−1Y = [e1, . . . , ek] ∈ IC(k+1)×k. By the construction of U , B̂ has the
block triangular form

B̂ =

[
B̃ ∗
0 α

]
.
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If we drop the last row and column, we deflate an infinite eigenvalue. Doing so we
obtain

B̃

[
X
Ik

]
= Nm+k+1

[
X
Ik

]
F.(3.11)

Equation (3.11) shows that the columns of [XIk ] span the right deflating subspace of

B̃ − µNm+k+1 associated with τ1, . . . , τk. We want to move this space to the top of
the pencil. This requires a transformation that compresses the nonzeros in [XIk ] to the
top. Bearing in mind the constraint on the form of the transformations that we are
allowed to perform on B̃, we see that we will not be able to touch the first row of X.
Denoting this row by uT , we can write[

X
Ik

]
=

[
uT

W

]
.

Let G be a nonsingular matrix such that

W = GR,(3.12)

where R ∈ IC(m+k)×k is upper triangular. From the form of W it is clear that R has
full rank (k).

Let C̃ = diag{G−1, 1}B̃diag{1, G}. We are going to transform (3.11) into an
equation involving C̃, but first let us note that[

1
G−1

] [
uT

W

]
=

[
uT

R

]
.

The bottom m rows of R are zero. In order to emphasize this fact we write[
uT

R

]
=

[
R̂
0

]
,

where R̂ ∈ IC(k+1)×k has full rank. Multiplying (3.11) on the left by diag{G−1, 1} and
making appropriate insertions, we obtain

C̃

[
R̂
0

]
= Nm+k+1

[
R̂
0

]
F.(3.13)

C̃ is not block triangular, but, as we shall see, it is nearly so. Before we can break
out two separate bulges, we need to put back the infinite eigenvalue that we removed
earlier. Before we do that, let us investigate the special properties of C̃.

First let C̃NW denote the (k + 1)× (k + 1) submatrix in the northwest corner of
C̃. Then the top k + 1 rows of (3.13) imply that

C̃NW R̂ = Nk+1R̂F,(3.14)

which implies that the k-dimensional subspace spanned by the columns of R̂ is a
deflating subspace of the pencil C̃NW−µNk+1 corresponding to eigenvalues τ1, . . . , τk,
the eigenvalues of F .

This assumes that C̃NW − µNk+1 is a regular pencil. Actually we cannot rule
out the possibility that C̃NW − µNk+1 is singular; it can happen that the last row of
C̃NW is identically zero. However, (3.14) holds in any event.
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Now let C̃SW denote the (m + 1) × (k + 1) submatrix in the southwest corner
of C̃. Notice that C̃SW and C̃NW overlap by one row. The bottom m + 1 rows of
equation (3.13) imply that C̃SW R̂ = 0. Thus all rows of C̃SW (which are members
of ICk+1) are orthogonal to the k linearly independent columns of R̂, so they all lie
in a one-dimensional subspace. Thus C̃SW has rank at most one. In fact the rank is
exactly one; if it were zero, then C̃ − µNk+m+1 would be a singular pencil.

Remark. Let C̃SE be the (m+1)×(m+1) submatrix in the southeast corner of C̃
(overlapping with C̃SW by one column). One can show that the pencil C̃SE−µNm+1

is either singular (with its first column identically zero) or has σ1, . . . , σm,∞ as its
eigenvalues. This fact is not needed for our development, so we omit the proof.

One can also show that the pencil B̃ − µNm+k+1 has similar structure.
We can readily push the bulges apart again by applying a transformation that

condenses the rank-one submatrix C̃SW . Specifically, add one row and one column to
the pencil C̃ − µNm+k+1 to obtain[

C̃ ∗
0 c

]
− µNm+k+2.(3.15)

This restores the infinite eigenvalue that was deleted earlier. Let x ∈ ICm+1 be a
nonzero vector that is proportional to the columns of C̃SW , and let V be a nonsingular
matrix such that

V −1x = βe1(3.16)

for some β. Then V −1C̃SW has nonzero elements only in its first row. Thus if we
apply diag{Ik, V −1, 1} to the left-hand side of (3.15), we will obtain a pencil of the
form [

C11 ∗
0 ∗

]
− µ

[
Nk+1 ∗

0 ∗
]
,

where C11 is (k + 1) × (k + 1). We now complete the transformation by applying
diag{Ik+1, V } on the right to obtain[

C11 C12

0 C22

]
− µNk+m+2.(3.17)

Since this pencil is regular, both of the subpencils C11−µNk+1 and C22−µNm+1

must be regular. It is not hard to see that the eigenvalues of C11 − µNk+1 are
τ1, . . . , τk, and ∞. We just need to show that (3.14) continues to hold when C̃NW
is replaced by C11. But C11 differs from C̃NW only in the last row, so we just have
to check that the last row of the equation remains valid. Let cT denote the last row
of C11. We have to show that cT R̂ = 0. But cT is also the first row of V −1C̃SW , so
cT R̂ = eT1 V

−1C̃SW R̂ = eT1 V
−10 = 0, and we are done. Thus τ1, . . . , τk are eigenvalues

of C11 − µNk+1. Of course ∞ is also an eigenvalue, since Nk+1 is singular. Finally,
C22 − µNm+1 must carry the complement of the spectrum, namely, σ1, . . . , σm and
∞. Our mission is accomplished.

Summary of the procedure. Practical matters. The transformation from
(3.1) to (3.2) is a product of three transformations involving matrices U , G, and V
satisfying (3.7), (3.12), and (3.16), respectively. U and V accomplish simple tasks
that can be handled by a reflector, a Gaussian elimination transformation, or some
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other simple rank-one modification of I. G is a matrix that accomplishes a GR
decomposition of W ∈ IC(m+k)×k, so it will normally be a product of k such simple
transformations. The minimal requirement on all of these matrices is that they be
nonsingular, but we would also like them to be well conditioned for stability’s sake.

Before we can compute the GR decomposition (3.12), we need to calculate X by
solving the Sylvester-like equation (3.10). One approach is to use a variant of the
Bartles-Stewart algorithm [8, p. 388], which exploits the structure of the equation.
However, this may not be worthwhile if m and k are small. Equation (3.10) is a system
of (m+ 1)k linear equations. If, for example, m = k = 2, we have six equations in six
unknowns, which can be solved cheaply by standard software.

The function of the matrix V −1 is to map each column of C̃SW to a multiple of
e1. This is possible in principle because the columns of C̃SW are proportional. In
practice, however, the columns will not be exactly proportional because of roundoff
errors, so there is no one vector x that is proportional to all of the columns. How
does one choose x then? Our solution is to calculate the singular value decomposition
of C̃SW . This is inexpensive if k and m are small. We then take x to be the left
singular vector corresponding to the maximum singular value. This guarantees that
the numbers that this transformation is supposed to make zero are no bigger than
‖V −1 ‖∑i>1 σi in practice. We have to set these numbers to zero in order to continue
the computation. We can do so without compromising backward stability only if the
numbers are tiny, i.e., on the level of the machine precision relative to ‖A‖.

It would be nice if we could prove that these numbers are always tiny, but existing
results [1] suggest that this may not be possible. The accuracy of the transforma-
tion V depends on how accurately the Sylvester-like equation (3.10) is solved. An
accurate solution can be guaranteed if the Sylvester operator X → B11X − N11XF
is well conditioned. We know that this operator is nonsingular if and only if the σi
are all distinct from the τj . Thus it is reasonable to expect that the operator will be
well conditioned if the σi are well separated from the τj . Since we control the shifts,
we can always arrange for good separation, which is also desirable from the stand-
point of convergence. Unfortunately, good separation of the shifts does not absolutely
guarantee a well-conditioned Sylvester operator. Consequently, we cannot guarantee
backward stability without actually checking the numbers that are to be set to zero.
Conversely, we can guarantee backward stability by performing the bulge exchange
tentatively and checking the numbers (cf. [1], [10], [9]). If they are not small enough,
we refuse to perform the exchange. Instead we can either form one big bulge from
the two smaller ones and chase it in one direction or the other or, equivalently, chase
one of the bulges back to its point of origin and follow it with the other. If adequate
shift separation is maintained, events of this type should be rare.

The bulge swapping procedure is summarized as follows:

• Calculate U satisfying (3.7). Extract Y from U .
• Calculate F using (3.8).
• Solve (3.10) for X.
• Perform right transformation involving U and left transformation involving
U−1 to get pencil B̃ − µNm+k+1.
• Calculate G satisfying (3.12).
• Perform left transformation involving G−1 and right transformation involving
G to get pencil C̃ − µNm+k+1.
• Calculate singular value decomposition (SVD) of C̃SW . Let x be the domi-

nant left singular vector.
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• Use x to construct V satisfying (3.16).
• Perform left transformation involving V −1 and right transformation involving
V to get (3.17).
• Check that the numbers that were to be zeroed out really are small. If they

are small, then set them to zero. Otherwise, refuse to perform the swap.

4. Numerical results. To see how these ideas work in practice, we wrote a For-
tran 90 bidirectional double-shift real QR code. This means that m = k = 2, the code
handles real matrices, and all transformations are real and orthogonal (Householder
reflectors). Complex shifts are allowed, but they must occur in conjugate pairs. The
purpose of this exercise was simply to find out whether the exchange procedure works.
We know of no reason to believe that a bidirectional QR algorithm will be faster or
more accurate than a conventional QR code in a serial setting.

The shifting strategy was derived from the standard strategy. That is, σ1 and σ2

(resp., τ1, τ2) are taken to be the eigenvalues of the lower right-hand (resp., upper
left-hand) 2×2 principal submatrix of A. Before an iteration is started, the shifts are
checked to make sure they are not too close together. If

min
i,j
|σi − τj | ≥ 10−3 max

i,j
|aij |,

the iteration is undertaken with the given shifts. Otherwise, the τj are perturbed by
an ad hoc procedure that guarantees the desired separation.

The shifting strategy is decidedly primitive; surely there are better strategies.
For example, one can choose shifts from among the eigenvalues of larger principal
submatrices, as suggested in [17].

Each bulge exchange was performed tentatively. After the swap, the part of the
matrix that contains the two bulges has the form

b11 b12 b13 ∗ ∗ ∗
b21 b22 b23 ∗ ∗ ∗
b31 b32 b33 ∗ ∗ ∗
δ11 δ12 δ13 c11 c12 c13

δ21 δ22 δ23 c21 c22 c23

0 0 0 c31 c32 c33

 ,

where the δij are the numbers that should be zero. The swap is accepted, and the δij
are set to zero, if

max
ij
|δij | ≤ 10εmax

{
max
ij
|bij |,max

ij
|cij |

}
,(4.1)

where ε is the machine precision. If the swap is rejected, the bulge that came up from
below is chased back to the bottom, after which the bulge that came from above is
also chased to the bottom.7

This test is more stringent than is necessary for normwise backward stability; a
threshold of 10ε‖A‖ would be good enough. We chose the stricter criterion in order
to improve the accuracy of small eigenvalues of graded matrices.

7The tentative swaps are performed as follows: The 6×6 submatrix that contains the two bulges
is copied into a small scratch array, and the swap is carried out there. If the swap is rejected, the
scratch work is simply discarded. Thus it is never necessary to “undo” a rejected swap.
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The code was tested on numerous upper Hessenberg matrices, including the fol-
lowing seven examples. Matrix 1 is an 800 × 800 matrix created by filling an array
with random numbers (normal with mean 0 and variance 1) and reducing it to upper
Hessenberg form.

Matrix 2 is a 700× 700 matrix with known eigenvalues, which was created as fol-
lows. A quasi-triangular matrix with 50 real and 650 complex (random) eigenvalues
and a modest departure from normality was built. Then a random orthogonal similar-
ity transformation was applied. Finally, the matrix was reduced to upper Hessenberg
form.

Matrix 3, also 700× 700, was constructed by the same procedure as matrix 2, ex-
cept that the departure from normality was made ten times as great. The eigenvalues
of this matrix are somewhat ill conditioned.

Matrix 4 is a 625 × 625 matrix with characteristic polynomial (x125 − 2)5, con-
structed as follows. A random orthogonal similarity transformation was applied to
the companion matrix of (x125 − 2)5. Then the matrix was reduced to upper Hessen-
berg form. All eigenvalues have geometric multiplicity 1, algebraic multiplicity 5, and
infinitessimal condition number ∞.

Matrix 5 is a 750× 750 matrix created by filling the upper Hessenberg part of an
array with random numbers.

Matrix 6 is a graded 750× 750 matrix obtained by creating an upper Hessenberg
matrix like matrix 5, then multiplying the jth row by 1.1n−j+1, j = 1, . . . , 750.

Matrix 7 is a 600 × 600 matrix with known eigenvalues constructed in the same
way as matrix 2, except that the eigenvalues 1.1m(1±i), m = 1, . . . , 300 were assigned.

Computing times and accuracies are recorded in Tables 4.1 and 4.2, respectively.
All computations were performed in IEEE standard double precision arithmetic on a
DEC AlphaStation 500/333. Four different methods were used. The method denoted
“BIQR” is the bidirectional QR algorithm. The method “QR” denotes the same
Fortran 90 code as BIQR with the parameters set so that bulges are chased downward
only. Thus it is a standard double-shift QR code. Similarly, “RQ” is the same code
set so that it chases bulges upward only; it is a standard double-shift RQ code.
“LAPACK” denotes the LAPACK [6] code DHSEQR, which performs the multishift
QR algorithm. The BIQR, QR, and RQ codes are written in vanilla Fortran 90; we
have not attempted to make them fast. In contrast, the LAPACK code was run using
tuned level-2 BLAS from DEC’s DXML library. Thus it is significantly faster in most
cases. If one wishes to compare only comparable codes, one should compare BIQR
to QR and RQ. Table 4.1 shows that BIQR is about as fast as QR and RQ in most
cases. Similar results were obtained for smaller matrices.

Table 4.1
Time in seconds to calculate eigenvalues.

Method
Matrix n BIQR QR RQ LAPACK

1 800 56 56 61 32
2 700 37 35 38 20
3 700 39 37 40 21
4 625 20 18 19 13
5 750 51 50 48 28
6 750 14 07 29 11
7 600 21 12 14 14

For those matrices whose eigenvalues are known, each number listed in Table 4.2
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is the maximum relative error over all eigenvalues of the matrix. For matrices whose
eigenvalues are not known, the values computed by the LAPACK code were taken to
be the “true” eigenvalues. Table 4.2 shows that BIQR is as accurate as any of the
other methods.

Table 4.2
Maximum relative error in computed eigenvalues.

Method
Matrix BIQR QR RQ LAPACK

1 4× 10−14 4× 10−14 3× 10−14 ———
2 9× 10−14 5× 10−14 3× 10−14 4× 10−14

3 1× 10−03 1× 10−03 1× 10−03 1× 10−03

4 6× 10−05 6× 10−05 6× 10−05 6× 10−05

5 3× 10−12 3× 10−12 3× 10−12 ———
6 9× 10−13 8× 10−13 5× 10+01 ———
7 3× 10−05 3× 10−05 3× 10−05 3× 10−05

BIQR did not reject any bulge swaps on Matrices 1–5. About 4000 iterations
were performed altogether in these five computations. Numerous additional tests on
matrices of these types showed that bulge exchange rejections are extremely rare.

The results for matrix 6, the graded matrix, are quite interesting. All methods
ran much faster on this matrix than on the ungraded matrix 5. The considerable
savings were due to the matrix’s tendency to split apart during QR iterations. Notice
that in this case “QR” is significantly faster than LAPACK. Most methods were able
to resolve even the smallest eigenvalues. The exception was RQ, which chases bulges
in the “wrong” direction and thereby deflates the large eigenvalues first. Not only
did it fail to resolve the small eigenvalues; it was also much slower than the other
methods. If the grading is reversed, RQ performs well and QR looks bad (and so does
LAPACK).

While computing the eigenvalues of matrix 6, BIQR rejected 62 bulge swaps
during iterations 67–132. Many of these just barely failed to pass the test (4.1).
Every one of them would have passed the less stringent test maxij |δij | < 10ε‖A‖,
but then the smallest eigenvalues would not have been resolved as well. When the
run was repeated with the test (4.1) turned off, the maximum relative error jumped
from 10−12 to 10−8.

On matrix 7, BIQR rejected 59 bulge swaps in the first 66 iterations. Turning off
the test (4.1) caused no loss of accuracy in this case.

These experiments do not demonstrate the superiority of the code BIQR; indeed,
they were not expected to. They do demonstrate the viability of the bulge swapping
procedure, which has several potential applications to eigenvalue computations.
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Abstract. Given a symmetric and not necessarily positive definite matrix A, a modified
Cholesky algorithm computes a Cholesky factorization P (A + E)PT = RTR, where P is a per-
mutation matrix and E is a perturbation chosen to make A+ E positive definite. The aims include
producing a small-normed E and making A+E reasonably well conditioned. Modified Cholesky fac-
torizations are widely used in optimization. We propose a new modified Cholesky algorithm based
on a symmetric indefinite factorization computed using a new pivoting strategy of Ashcraft, Grimes,
and Lewis. We analyze the effectiveness of the algorithm, both in theory and practice, showing that
the algorithm is competitive with the existing algorithms of Gill, Murray, and Wright and Schnabel
and Eskow. Attractive features of the new algorithm include easy-to-interpret inequalities that ex-
plain the extent to which it satisfies its design goals, and the fact that it can be implemented in
terms of existing software.
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1. Introduction. Modified Cholesky factorization is a widely used technique in
optimization; it is used for dealing with indefinite Hessians in Newton methods [11],
[21] and for computing positive definite preconditioners [6], [20]. Given a symmetric
matrix A, a modified Cholesky algorithm produces a symmetric perturbation E such
that A + E is positive definite, along with a Cholesky (or LDLT) factorization of
A+E. The objectives of a modified Cholesky algorithm can be stated as follows [21].

O1. If A is “sufficiently positive definite” then E should be zero.
O2. If A is indefinite, ‖E‖ should not be much larger than

min{ ‖∆A‖ : A+∆A is positive definite }

for some appropriate norm.
O3. The matrix A+ E should be reasonably well conditioned.
O4. The cost of the algorithm should be the same as the cost of standard Cholesky

factorization to highest order terms.
Two existing modified Cholesky algorithms are one by Gill, Murray, and Wright

[11, section 4.4.2.2], which is a refinement of an earlier algorithm of Gill and Mur-
ray [10], and an algorithm by Schnabel and Eskow [21].

The purpose of this work is to propose an alternative modified Cholesky algorithm
that has some advantages over the existing algorithms. In outline, our approach is to
compute a symmetric indefinite factorization

PAPT = LDLT ,(1.1)
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where P is a permutation matrix, L is unit lower triangular, and D is block diagonal
with diagonal blocks of dimension 1 or 2, and to provide the factorization

P (A+ E)PT = L(D + F )LT ,(1.2)

where F is chosen so that D + F (and hence also A + E) is positive definite.1 This
approach is not new; it was suggested by Moré and Sorensen [19] for use with factor-
izations (1.1) computed with the Bunch–Kaufman [3] and Bunch–Parlett [4] pivoting
strategies. However, for neither of these pivoting strategies are all the conditions
(O1)–(O4) satisfied, as is recognized in [19]. The Bunch–Parlett pivoting strategy
requires O(n3) comparisons for an n×n matrix, so condition (O4) does not hold. For
the Bunch–Kaufman strategy, which requires only O(n2) comparisons, it is difficult
to satisfy conditions (O1)–(O3), as we explain in section 3.

We use a new pivoting strategy for the symmetric indefinite factorization devised
by Ashcraft, Grimes, and Lewis [2], for which conditions (O1)–(O3) are satisfied
to within factors depending only on n and for which the cost of the pivot searches
is usually negligible. We describe this so-called bounded Bunch–Kaufman (BBK)
pivoting strategy and its properties in the next section.

There are two reasons why our algorithm might be preferred to those of Gill, Mur-
ray, and Wright and of Schnabel and Eskow (henceforth denoted the GMW algorithm
and the SE algorithm, respectively). The first is a pragmatic one: we can make use of
any available implementation of the symmetric indefinite factorization with the BBK
pivoting strategy, needing to add just a small amount of post-processing code to form
the modified Cholesky factorization. In particular, we can use the efficient implemen-
tations for both dense and sparse matrices written by Ashcraft, Grimes, and Lewis [2],
which make extensive use of levels 2 and 3 BLAS for efficiency on high-performance
machines. In contrast, in coding the GMW and SE algorithms one must either begin
from scratch or make nontrivial changes to an existing Cholesky factorization code.

The second attraction of our approach is that we have a priori bounds that ex-
plain the extent to which conditions (O1)–(O3) are satisfied—essentially, if L is well
conditioned then an excellent modified Cholesky factorization is guaranteed. For the
GMW and SE algorithms it is difficult to describe under what circumstances the
algorithms can be guaranteed to perform well.

2. Pivoting strategies. We are interested in symmetric indefinite factorizations
(1.1) computed in the following way. If the symmetric matrix A ∈ Rn×n is nonzero,
we can find a permutation Π and an integer s = 1 or 2 so that

ΠAΠT =

[ s n−s
s E CT

n−s C B

]
,

with E nonsingular. Having chosen such a Π we can factorize

ΠAΠT =

[
Is 0

CE−1 In−s

] [
E 0
0 B − CE−1CT

] [
Is E−1CT

0 In−s

]
.(2.1)

1Strictly, (1.2) is not a Cholesky factorization, since we allow D + F to have 2 × 2 diagonal
blocks, but since any such blocks are positive definite it seems reasonable to use the term “modified
Cholesky factorization.”
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This process is repeated recursively on the (n− s)× (n− s) Schur complement

S = B − CE−1CT ,

yielding the factorization (1.1) on completion. This factorization costs n3/3 operations
(the same cost as Cholesky factorization of a positive definite matrix) plus the cost
of determining the permutations Π.

The Bunch–Parlett pivoting strategy [4] searches the whole submatrix S at each
stage, requiring a total ofO(n3) comparisons, and it yields a matrix L whose maximum
element is bounded by 2.781. The Bunch–Kaufman pivoting strategy [3], which is used
with the symmetric indefinite factorization in both LAPACK [1] and LINPACK [7],
searches at most two columns of S at each stage, so it requires only O(n2) comparisons
in total. The Bunch–Kaufman pivoting strategy yields a backward stable factorization
[16], but ‖L‖∞ is unbounded, even relative to ‖A‖∞, which makes this pivoting
strategy unsuitable for use in a modified Cholesky algorithm, for reasons explained in
section 3.

To describe the BBK pivoting strategy [2] it suffices to describe the pivot choice
for the first stage of the factorization.

Algorithm BBK (BBK pivoting strategy). This algorithm determines the pivot
for the first stage of the symmetric indefinite factorization applied to a symmetric
matrix A ∈ Rn×n.

α := (1 +
√

17)/8 (≈ 0.64)
γ1 := maximum magnitude of any subdiagonal entry in column 1.
If γ1 = 0 there is nothing to do on this stage of the factorization.
if |a11| ≥ αγ1

use a11 as a 1× 1 pivot (s = 1, Π = I).
else

i := 1; γi := γ1

repeat
r := row index of first (subdiagonal) entry of maximum magnitude

in column i.
γr := maximum magnitude of any off-diagonal entry in column r.
if |arr| ≥ αγr

use arr as a 1× 1 pivot (s = 1, Π swaps rows and columns
1 and r).

else if γi = γr

use

[
aii ari
ari arr

]
as a 2× 2 pivot (s = 2, Π swaps rows and

columns 1 and i, and 2 and r).
else

i := r, γi := γr.
end

until a pivot is chosen
end

The repeat loop in Algorithm BBK searches for an off-diagonal element ari that
is simultaneously the largest in magnitude in the rth row and the ith column, and
it uses this element to build a 2 × 2 pivot; the search terminates prematurely if a
suitable 1× 1 pivot is found.

The following properties noted in [2] are readily verified, using the property that
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any 2× 2 pivot satisfies∣∣∣∣∣
[
aii ari
ari arr

]−1
∣∣∣∣∣ ≤ 1

γr(1− α2)

[
α 1
1 α

]
.

1. Every entry of L is bounded by max{1/(1− α), 1/α} ≈ 2.78.
2. Every 2× 2 pivot block Dii satisfies κ2(Dii) ≤ (1 + α)/(1− α) ≈ 4.56.
3. The growth factor for the factorization, defined in the same way as for Gaus-

sian elimination, is bounded in the same way as for the Bunch–Kaufman
pivoting strategy, namely, by (1 + α−1)n−1 ≈ (2.57)n−1.

Since the value of γi increases strictly from one pivot step to the next, the search
in Algorithm BBK takes at most n steps. The cost of the searching is intermediate
between the cost for the Bunch–Kaufman strategy and that for the Bunch–Parlett
strategy. Matrices are known for which the entire remaining submatrix must be
searched at each step, in which case the cost is the same as for the Bunch–Parlett
strategy. However, Ashcraft, Grimes, and Lewis [2] found in their numerical experi-
ments that on average less than 2.5k comparisons were required to find a pivot from a
k×k submatrix, and they give a probabilistic analysis which shows that the expected
number of comparisons is less than ek ≈ 2.718k for matrices with independently
distributed random elements. Therefore we regard the symmetric indefinite factoriza-
tion with the BBK pivoting strategy as being of similar cost to Cholesky factorization,
while recognizing that in certain rare cases the searching overhead may increase the
operation count by about 50%.

The symmetric indefinite factorization with the BBK pivoting strategy is back-
ward stable; the same rounding error analysis as for the Bunch–Kaufman pivoting
strategy is applicable [2], [16].

The modified Cholesky algorithm of the next section and the corresponding anal-
ysis are not tied exclusively to the BBK pivoting strategy. We could use instead the
“fast Bunch–Parlett” pivoting strategy from [2], which appears to be more efficient
than the BBK strategy when both are implemented in block form [2]. We mention
in passing that a block implementation of the SE algorithm has been developed by
Daydé [5]. Alternatively, we could use one of the pivoting strategies from [8], [9].

3. The modified Cholesky algorithm. We begin by defining the distance
from a symmetric matrix A ∈ Rn×n to the symmetric matrices with minimum eigen-
value λmin at least δ, where δ ≥ 0:

µ(A, δ) = min{ ‖∆A‖ : λmin(A+∆A) ≥ δ }.(3.1)

The distances in the 2- and Frobenius norms, and perturbations that achieve them,
are easily evaluated (cf. [12, Thms. 2.1, 3.1]).

Theorem 3.1. Let the symmetric matrix A ∈ Rn×n have the spectral decompo-
sition A = QΛQT (Q orthogonal, Λ = diag(λi)). Then, for the Frobenius norm,

µF (A, δ) =

(∑
λi<δ

(δ − λi)2

)1/2

and there is a unique optimal perturbation in (3.1), given by

∆A = Qdiag(τi)Q
T , τi =

{
0, λi ≥ δ,
δ − λi, λi < δ.

(3.2)
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For the 2-norm,

µ2(A, δ) = max( 0, δ − λmin(A) ),

and an optimal perturbation is ∆A = µ2(A, δ)I. The Frobenius norm perturbation
(3.2) is also optimal in the 2-norm.

Our modified Cholesky algorithm has a parameter δ ≥ 0 and it attempts to
produce the perturbation (3.2).

Algorithm MC (modified Cholesky factorization). Given a symmetric matrix
A ∈ Rn×n and a parameter δ ≥ 0 this algorithm computes a permutation matrix P ,
a unit lower triangular matrix L, and a block diagonal matrix D with diagonal blocks
of dimension 1 or 2 such that

P (A+ E)PT = LDLT

and A+E is symmetric positive definite (or symmetric positive semidefinite if δ = 0).
The algorithm attempts to ensure that if λmin(A) < δ then λmin(A+ E) ≈ δ.

1. Compute the symmetric indefinite factorization PAPT = LD̃LT using the
BBK pivoting strategy.

2. Let D = D̃ +∆D̃, where ∆D̃ is the minimum Frobenius norm perturbation
that achieves λmin(D̃+∆D̃) ≥ δ (thus ∆D̃ = diag(∆D̃ii), where ∆D̃ii is the

minimum Frobenius norm perturbation that achieves λmin(D̃ii +∆D̃ii) ≥ δ).
To what extent does Algorithm MC achieve the objectives (O1)–(O4) listed in

section 1? Objective (O4) is clearly satisfied, provided that the pivoting strategy
does not require a large amount of searching, since the cost of step 2 is negligible. For
objectives (O1)–(O3) to be satisfied we need the eigenvalues of A to be reasonably

well approximated by those of D̃. For the Bunch–Kaufman pivoting strategy the
elements of L are unbounded and the eigenvalues of D̃ can differ greatly from those
of A (subject to A and D̃ having the same inertia), as is easily shown by example.
This is the essential reason why the Bunch–Kaufman pivoting strategy is unsuitable
for use in a modified Cholesky algorithm.

To investigate objectives (O1)–(O3) we will make use of a theorem of Ostrowski
[18, p. 224]. Here, the eigenvalues of a symmetric n×n matrix are ordered λn ≤ · · · ≤
λ1.

Theorem 3.2 (Ostrowski). Let M ∈ Rn×n be symmetric and S ∈ Rn×n
nonsingular. Then for each k = 1:n

λk(SMST ) = θkλk(M),

where λn(SST ) ≤ θk ≤ λ1(SST ).

Assuming first that λmin(A) > 0 and applying the theorem with M = D̃ and
S = L, we obtain

λmin(A) ≤ λmax(LLT )λmin(D̃).

Now E will be zero if λmin(D̃) ≥ δ, which is certainly true if

λmin(A) ≥ δ λmax(LLT ).(3.3)

Next, we assume that λmin(A) is negative and apply Theorems 3.1 and 3.2 to
obtain

λmax(∆D̃) = δ − λmin(D̃) ≤ δ − λmin(A)

λmin(LLT )
.(3.4)
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Using Theorem 3.2 again, with (3.4), yields

‖E‖2 = λmax(E) = λmax(L∆D̃LT )

≤ λmax(LLT )λmax(∆D̃)

≤ λmax(LLT )

(
δ − λmin(A)

λmin(LLT )

)
(λmin(A) < 0).(3.5)

A final invocation of Theorem 3.2 gives

λmin(A+ E) ≥ λmin(LLT )λmin(D̃ +∆D̃) ≥ λmin(LLT )δ

and

‖A+ E‖2 = λmax(A+ E) = λmax(L(D̃ +∆D̃)LT )

≤ λmax(LLT )λmax(D̃ +∆D̃)

= λmax(LLT ) max(δ, λmax(D̃))

≤ λmax(LLT ) max

(
δ,

λmax(A)

λmin(LLT )

)
.

Hence

κ2(A+ E) ≤ κ2(LLT ) max

(
1,

λmax(A)

λmin(LLT ) δ

)
.(3.6)

We can now assess how well objectives (O1)–(O3) are satisfied. To satisfy objec-
tive (O1) we would like E to be zero when λmin(A) ≥ δ, and to satisfy (O2) we would
like ‖E‖2 to be not much larger than δ − λmin(A) when A is not positive definite.
The sufficient condition (3.3) for E to be zero and inequality (3.5) show that these
conditions do hold modulo factors λmax,min(LLT ). Inequality (3.6) bounds κ2(A+E)
with the expected reciprocal dependence on δ, again with terms λmax,min(LLT ). The
conclusion is that the modified Cholesky algorithm is guaranteed to perform well if
λmin(LLT ) and λmax(LLT ) are not too far from 1.

Note that, since L is unit lower triangular, eT1 (LLT )e1 = 1, which implies that
λmin(LLT ) ≤ 1 and λmax(LLT ) ≥ 1. For the BBK pivoting strategy we have
maxi,j |lij | ≤ 2.781, so

1 ≤ λmax(LLT ) ≤ trace(LLT ) = ‖L‖2F ≤ n+ 1
2n(n− 1)2.7812 ≤ 4n2 − 3n.(3.7)

Furthermore,

1 ≤ λmin(LLT )−1 = ‖(LLT )−1‖2 = ‖L−1‖22 ≤ (3.781)2n−2,(3.8)

using a bound from [15, Thm. 8.13 and Prob. 8.5]. These upper bounds are approx-
imately attainable, but in practice are rarely approached. In particular, the upper
bound of (3.8) can be approached only in the unlikely event that most of the subdi-
agonal elements of L are negative and of near maximal magnitude. Note that each
2× 2 pivot causes a subdiagonal element li+1,i to be zero and so further reduces the
likelihood of ‖L−1‖2 being large.

In the analysis above we have exploited the fact that the extent to which the
eigenvalues of A and D̃ agree can be bounded in terms of the condition of L. If L is
well conditioned then the singular values of A are close to the moduli of the eigenvalues
of D̃. We are currently exploring the application of this fact to the computation of
rank-revealing factorizations.
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4. Comparison with the GMW and SE algorithms. The GMW and SE
algorithms both carry out the steps of a Cholesky factorization of a symmetric ma-
trix A ∈ Rn×n, increasing the diagonal entries as necessary in order to ensure that
negative pivots are avoided. (Actually, the GMW algorithm works with an LDLT

factorization, where D is diagonal, but the difference is irrelevant to our discussion.)
Hence both algorithms produce Cholesky factors of PT (A+ E)P with a diagonal E.
From Theorem 3.1 we note that the “optimal” perturbation in objective (O2) of sec-
tion 1 is, in general, full for the Frobenius norm and can be taken to be diagonal for
the 2-norm (but is generally not unique). There seems to be no particular advantage
to making a diagonal perturbation to A. Our algorithm perturbs the whole matrix,
in general.

By construction, the GMW and SE algorithms make perturbations E to A that
are bounded a priori by functions of n and ‖A‖ only. The GMW algorithm produces
a perturbation E for which

‖E‖∞ ≤
(
β

ξ
+ (n− 1)ξ

)2

+ 2(α+ (n− 1)ξ2) + δ,(4.1)

where δ ≥ 0 is a tolerance,

α = max
i
|aii|, β = max

i 6=j
|aij |, ξ2 = max{α, β/

√
n2 − 1, u },

and u is the unit roundoff [11, p. 110]. For the SE algorithm the perturbation is
bounded in terms of a certain eigenvalue bound φ obtained by applying Gershgorin’s
theorem:

‖E‖∞ ≤ φ+
2τ

1− τ (φ+ α),(4.2)

where τ is a tolerance, suggested in [21] to be chosen as τ = u1/3. The quantity φ
satisfies φ ≤ n(α+ β), so (4.2) is a smaller bound than (4.1) by about a factor n.

The bounds (4.1) and (4.2) can be compared with (3.5) for Algorithm MC. The
bound (3.5) has the advantage of directly comparing the perturbation made by Algo-
rithm MC with the optimal one, as defined by (3.1) and evaluated in Theorem 3.1, and
it is potentially a much smaller bound than (4.1) and (4.2) if |λmin(A)| � |λmax(A)|
and κ2(LLT ) is not too large. On the other hand, the bound (3.5) can be much larger
than (4.1) and (4.2) if κ2(LLT ) is large.

All three algorithms satisfy objective (O1) of not modifying a sufficiently positive
definite matrix, though for the GMW and SE algorithms no condition analogous
to (3.3) that quantifies “sufficiently” in terms of λmin(A) is available. Bounds for
κ2(A+E) that are exponential in n hold for the GMW and SE algorithms [21]. The
same is true for Algorithm MC: see (3.6)–(3.8).

To summarize, in terms of the objectives of section 1 for a modified Cholesky algo-
rithm, Algorithm MC is theoretically competitive with the GMW and SE algorithms,
with the weakness that if κ2(LLT ) is large then the bound on ‖E‖2 is weak.

When applied to an indefinite matrix, the GMW and SE algorithms provide in-
formation that enables a direction of negative curvature of the matrix to be produced;
these directions are required in certain algorithms for unconstrained optimization in
order to move away from nonminimizing stationary points. For an indefinite matrix,
Algorithm MC provides immediate access to a direction of negative curvature from the
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LDLT factorization computed in step 1, and because κ(L) is bounded, this direction
satisfies conditions required for convergence theory [19].

Finally, we consider the behavior of the algorithms in the presence of rounding
errors. Algorithm MC is backward stable because the underlying factorization is [2]:
barring large element growth in the symmetric indefinite factorization with the BBK
pivoting strategy, the algorithm produces LDLT factors not of P (A + E)PT , but of
P (A + E + F )PT , where ‖F‖2 ≤ cnu‖A + E‖2 with cn a constant. Although no
comments on numerical stability are given in [11] and [21], a simple argument shows
that the GMW and SE algorithms are backward stable. Apply either algorithm to
A, obtaining the Cholesky factorization P (A + E)PT = RTR. Now apply the same
algorithm to P (A+E)PT : it will not need to modify P (A+E)PT , so it will return the
same computed R factor. But since no modification was required, the algorithm must
have carried out a standard Cholesky factorization. Since Cholesky factorization is
a backward stable process, the modified Cholesky algorithm must itself be backward
stable.

5. Numerical experiments. We have experimented with Matlab implemen-
tations of Algorithm MC and the GMW and SE algorithms. The M-file for the GMW
algorithm was provided by M. Wright and sets the tolerance δ = 2u (which is the
value of Matlab’s variable eps). The M-file for the SE algorithm was provided by
E. Eskow and sets the tolerance τ = (2u)1/3. In Algorithm MC we set δ =

√
u‖A‖∞.

The aims of the experiments are as follows: to see how well the Frobenius norm of
the perturbation E produced by Algorithm MC approximates the distance µF (A, δ)
defined in (3.1), and to compare the norms of the perturbations E and the condition
numbers of A+ E produced by the three algorithms. We measure the perturbations
E by the ratios

rF =
‖E‖F
µF (A, δ)

, r2 =
‖E‖2
|λmin(A)| ,

which differ only in their normalization and the choice of norm. Algorithm MC
attempts to make rF close to 1. The quantity r2 is used by Schnabel and Eskow to
compare the performance of the GMW and SE algorithms; since E is diagonal for
these algorithms, r2 compares the amount added to the diagonal with the minimum
diagonal perturbation that makes the perturbed matrix positive semidefinite.

First, we note that the experiments of Schnabel and Eskow [21] show that the SE
algorithm can produce a substantially smaller value of r2 than the GMW algorithm.
Schnabel and Eskow also identified a 4 × 4 matrix for which the GMW algorithm
significantly outperforms the SE algorithm:

A =


1890.3 −1705.6 −315.8 3000.3

1538.3 284.9 −2706.6
52.5 −501.2

4760.8

 ,(5.1)

λ(A) = {−0.38,−0.34,−0.25, 8.2× 103}.

We give results for this matrix in Table 5.1; they show that Algorithm MC can also
significantly outperform the SE algorithm.

We ran a set of tests similar to those of Schnabel and Eskow [21]. The matrices
A are of the form A = QΛQT , where Λ = diag(λi) with the eigenvalues λi from one
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Table 5.1
Measures of E for 4× 4 matrix (5.1).

MC GMW SE

rF 1.3 2.7 3.7× 103

r2 1.7 2.7 2.8× 103
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Fig. 5.1. Measures of E for 30 random indefinite matrices with n = 25. Key: GMW —, SE
· · ·, MC - - -.

of three random uniform distributions: [−1, 104], [−1, 1], and [−104,−1]. For the first
range, one eigenvalue is generated from the range [−1, 0) to ensure that A has at least
one negative eigenvalue. The matrix Q is a random orthogonal matrix from the Haar
distribution, generated using the routine qmult from the Test Matrix Toolbox [14],
which implements an algorithm of Stewart [22]. For each eigenvalue distribution we
generated 30 different matrices, each corresponding to a fresh sample of Λ and of
Q. We took n = 25, 50, 100. The ratios rF and r2 are plotted in Figures 5.1–5.3.
Figure 5.4 plots the condition numbers κ2(A+E) for n = 25; the condition numbers
for n = 50 and n = 100 show a very similar behavior. Table 5.2 reports the number
of comparisons used by the BBK pivoting strategy on these matrices for each n; the
maximum number of comparisons is less than n2 in each case.

In Figure 5.5 we report results for three nonrandom matrices from the Test Matrix
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Fig. 5.2. Measures of E for 30 random indefinite matrices with n = 50. Key: GMW —, SE
· · ·, MC - - -.

Table 5.2
Number of comparisons for BBK pivoting strategy.

n: 25 50 100

max 523 2188 8811
mean 343.9 1432.8 5998.4

Toolbox. Clement is a tridiagonal matrix with eigenvalues plus and minus the numbers
n− 1, n− 3, n− 5, . . . , (1 or 0). Dingdong is the symmetric n×n Hankel matrix with
(i, j) element 0.5/(n− i− j + 1.5), whose eigenvalues cluster around π/2 and −π/2.
Ipjfact is the Hankel matrix with (i, j) element 1/(i+ j)!.

Our conclusions from the experiments are as follows.
1. None of the three algorithms is uniformly better than the others in terms of

producing a small perturbation E, whichever measure rF or r2 is used. All
three algorithms can produce values of rF and r2 significantly greater than
1, depending on the problem.

2. Algorithm MC often achieves its aim of producing rF ≈ 1. It produced rF of
order 103 for the eigenvalue distribution [−1, 104] for each n, and the values
of κ2(LLT ) (not shown here) were approximately 100rF in each such case.
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Fig. 5.3. Measures of E for 30 random indefinite matrices with n = 100. Key: GMW —, SE
· · ·, MC - - -.

However, often rF was of order 1 when κ2(LLT ) was of order 102 or 103, so a
large value of κ2(LLT ) is only a necessary condition, not a sufficient one, for
poor performance of Algorithm MC; in other words, the bounds of section 3
can be weak.

3. The condition numbers κ2(A+E) vary greatly among the algorithms. Our ex-
perience is that for δ =

√
u‖A‖∞ Algorithm MC fairly consistently produces

condition numbers of order 100/
√
u; the condition number is, as predicted by

(3.6), much smaller for the random matrices with eigenvalues on the range
[−104,−1], because the algorithm attempts to perturb all the eigenvalues to
δ. The condition numbers produced by the GMW and SE algorithms vary
greatly with the type of matrix.

The fact that rF is close to 1 for the random matrices with eigenvalues in the
range [−104,−1] for Algorithm MC is easily explained. Let A be negative definite.
Then Algorithm MC computes P (A+ E)PT = L(δI)LT . Hence

rF =
‖E‖F

(
∑
i(δ − λi)2)

1/2

≤ ‖E‖F‖A‖F =
‖A− δ · PTLLTP‖F

‖A‖F
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Fig. 5.4. Condition numbers κ2(A + E) for 30 random indefinite matrices with n = 25. Key:
GMW —, SE · · ·, MC - - -.

≤ ‖A‖F + δ‖LLT ‖F
‖A‖F

≤ 1 +
(4n2 − 3n)δ

‖A‖F ,

using (3.7), so rF can exceed 1 only by a tiny amount for Algorithm MC applied to
a negative definite matrix, irrespective of κ2(LLT ).

6. Concluding remarks. Algorithm MC, based on the symmetric indefinite
factorization with the bounded Bunch–Kaufman pivoting strategy, merits considera-
tion as an alternative to the algorithms of Gill, Murray, and Wright and Schnabel and
Eskow. The results in section 5 suggest that the new algorithm is competitive with
the GMW and SE algorithms in terms of the objectives (O1)–(O4) listed in section 1.
Algorithm MC has the advantages that the extent to which it satisfies the objectives
is neatly, although not sharply, described by the bounds of section 3 and that it can be
implemented by augmenting existing software with just a small amount of additional
code.

Since all three modified Cholesky algorithms can “fail,” that is, they can produce
unacceptably large perturbations, it is natural to ask how failure can be detected and
what should be done about it. The GMW and SE algorithms produce their (diagonal)
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Fig. 5.5. Measures of E for three nonrandom matrices. Key: GMW —, SE · · ·, MC - - -.

perturbations explicitly, so it is trivial to evaluate their norms. For Algorithm MC,
the perturbation to A is (see (1.2)) E = PTL(D + F )LTP −A, which would require
O(n3) operations to form explicitly. However, we can estimate ‖E‖∞ using the norm
estimator from [13] (which is implemented in LAPACK). The estimator requires the
formation of products Ex for certain vectors x, and these can be computed in O(n2)
operations; the estimate produced is a lower bound that is nearly always within a
factor 3 of the true norm. For all three algorithms, then, we can inexpensively test
whether the perturbation produced is acceptably small. Unfortunately, for none of
the algorithms is there an obvious way to improve a modified Cholesky factoriza-
tion that makes too big a perturbation; whether improvement is possible, preferably
cheaply, is an open question. Of course one can always resort to computing an op-
timal perturbation by computing the eigensystem of A and using the formulae in
Theorem 3.1.

We note that we have approached the problem of modified Cholesky factorization
from a purely linear algebra perspective. An important test of a modified Cholesky
algorithm is to evaluate it in an optimization code on representative problems, as
was done by Schlick [20] for the GMW and SE algorithms. This we plan to do for
Algorithm MC in future work.

Finally, we mention that a generalization of the modified Cholesky problem mo-
tivated by constrained optimization is analyzed in detail in [17].
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[6] M. J. Daydé, J.-Y. L’Excellent, and N. I. M. Gould, On the Use of Element-By-Element
Preconditioners to Solve Large Scale Partially Separable Optimization Problems, Report
RAL-95-010, Atlas Centre, Rutherford Appleton Laboratory, Didcot, Oxon, UK, 1995.

[7] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK Users’ Guide,
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1979.

[8] I. S. Duff, N. I. M. Gould, J. K. Reid, J. A. Scott, and K. Turner, The factorization of
sparse symmetric indefinite matrices, IMA J. Numer. Anal., 11 (1991), pp. 181–204.

[9] I. S. Duff, J. K. Reid, N. Munskgaard, and H. B. Nielsen, Direct solution of sets of
linear equations whose matrix is sparse, symmetric and indefinite, J. Inst. Math. Appl.,
23 (1979), pp. 235–250.

[10] P. E. Gill and W. Murray, Newton-type methods for unconstrained and linearly constrained
optimization, Math. Programming, 7 (1974), pp. 311–350.

[11] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, Lon-
don, 1981.

[12] N. J. Higham, Computing a nearest symmetric positive semidefinite matrix, Linear Algebra
Appl., 103 (1988), pp. 103–118.

[13] N. J. Higham, FORTRAN codes for estimating the one-norm of a real or complex matrix,
with applications to condition estimation (Algorithm 674), ACM Trans. Math. Software,
14 (1988), pp. 381–396.

[14] N. J. Higham, The Test Matrix Toolbox for Matlab (Version 3.0), Numerical Analysis report
276, Manchester Centre for Computational Mathematics, Manchester, England, 1995.

[15] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1996.

[16] N. J. Higham, Stability of the diagonal pivoting method with partial pivoting, SIAM J. Matrix
Anal. Appl., 18 (1997), pp. 52–65.

[17] N. J. Higham and Sheung Hun Cheng, Modifying the inertia of matrices arising in optimiza-
tion, Linear Algebra Appl., to appear.

[18] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
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